CN109019693B - 一种单斜相wo3纳米长方体的制备方法及其光催化应用 - Google Patents

一种单斜相wo3纳米长方体的制备方法及其光催化应用 Download PDF

Info

Publication number
CN109019693B
CN109019693B CN201811133379.8A CN201811133379A CN109019693B CN 109019693 B CN109019693 B CN 109019693B CN 201811133379 A CN201811133379 A CN 201811133379A CN 109019693 B CN109019693 B CN 109019693B
Authority
CN
China
Prior art keywords
nano
cuboid
monoclinic phase
methylene blue
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811133379.8A
Other languages
English (en)
Other versions
CN109019693A (zh
Inventor
王文嫔
李忠成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201811133379.8A priority Critical patent/CN109019693B/zh
Publication of CN109019693A publication Critical patent/CN109019693A/zh
Application granted granted Critical
Publication of CN109019693B publication Critical patent/CN109019693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种单斜相WO3纳米长方体的制备方法及其光催化应用,具体的说是通过WO3粒子为前驱体,水热合成单斜相WO3纳米长方体,单斜相WO3纳米长方体室温下高效光催化降解浓度为1‑10mg/L的亚甲基蓝溶液,脱除率为100%,无副产物产生。

Description

一种单斜相WO3纳米长方体的制备方法及其光催化应用
技术领域
本发明涉及单斜相WO3纳米长方体的制备方法及其光催化应用,属于光催化剂的制备与应用领域。
背景技术
单斜相WO3是稳定且常见的WO3相,以[WO6]为基本结构单元,通过共角组成,其晶体结构是三氧化铼(ReO3)型。单斜相WO3独特的晶体结构,使其具有光、电和催化性能,在光/电致变色器件、锂离子电池、气敏传感器、光催化剂等领域具有重要的应用前景。近期研究表明WO3材料的化学性质与其形貌密切相关,因此形貌可控合成WO3材料成为了人们研究的热点。
液相合成方法,特别是水热法或者溶剂热法,因其过程简单、条件温和、效率高、成本低廉成为单斜相WO3材料合成的主要方法。主要是利用酸化含W物质形成前驱体,进一步分解形成WO3。例如:Meng等使用HCl和柠檬酸酸化Na2WO4溶液,调节pH值至1,通过180℃水热12h合成了花状结构的WO3(D.Meng,et al.,Journal of Alloys and Compounds,2015,649, 731-738)。Sangpour等用HBF4酸化Na2WO4·2H2O,160℃水热10h得到WO3纳米盘(P.Sangpour,et al.,Journal of Energy Chemistry,2015,24,171-177)。另外,利用一些复杂的路径或价格高的前驱体制备WO3材料。例如:Li等将WCl6加入到苯甲醇体系中,再加入离子液体氯化(1-丁基-3-甲基咪唑),180℃水热24h得到中间产物,然后再在马弗炉中400℃煅烧2h 得到WO3纳米粒子(Z.Li,et al.,Journal of Materials Chemistry A,2013,1,15377-15382)。因此,利用新路径合成单斜相WO3材料来避免使用环境污染的酸、价格高的W的前驱体以及有机溶剂是十分必要的,并使其能够高活性的实现催化反应。
亚甲基蓝,是一种阳离子型碱性染料,广泛用于棉、麻、蚕丝物品、造纸、染料等工业领域。制浆造纸、化工染料、纺织等行业产生大量包含亚甲基的燃料废水。因此,含有机染料亚甲基蓝的废水处理对缓解资源危机及改善人类生活环境具有重要的现实意义。光催化氧化法具有降解脱色彻底、不造成二次污染等优点,在染料废水处理中的应用前景广阔。因此,研究单斜相WO3材料可控合成及调控,使其能够高活性的去除亚甲基蓝,具有潜在的实用价值。
综上所述,作为过渡金属氧化物,单斜相WO3材料传统的合成方法是酸化钨酸盐水热分解和有机体系合成,以商品化单斜相WO3为前驱体水热合成单斜相WO3纳米材料尚未有报道。因此,通过新型路径合成单斜相WO3纳米长方体,使其能够高活性的催化去除染料废水中的亚甲基蓝。
发明内容:
本发明旨在提供一种合成单斜相WO3纳米长方体的方法和在光催化去除亚甲基蓝的应用,实现近100%的去除率。
基于上述目的,本发明所涉及的技术方案如下:
1)单斜相WO3纳米长方体的制备:将在50mL烧杯中加入0.3g商品化WO3粒子和11mL(30%)H2O2,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于240℃水热处理12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到单斜相 WO3纳米长方体,宽度为74-490nm、长度为76-770nm,厚度为24-58nm。
2)将单斜相WO3纳米长方体催化剂用于光催化降解去除亚甲基蓝反应。单斜相WO3纳米长方体在室温反应30min,亚甲基蓝去除率为58%,反应45min,去除率为68%,反应210min达100%。
本发明具有如下优点:
1)利用商品化WO3粒子前驱体。水热合成了单斜相WO3纳米长方体,有效的拓展了单斜相WO3纳米材料的制备方法,使其不再主要局限于酸化钨酸盐分解体系,并能形貌可控合成单斜相WO3
2)室温下单斜相WO3纳米长方体光催化降解亚甲基蓝,实现了亚甲基蓝废水溶液的有效脱除,脱除率为100%。
3)本发明具有环境友好、过程效率高且其光催化降解十分稳定的特点。
附图说明:
图1是WO3纳米长方体的表征结果,(a)XRD和(b-f)电镜图片。
具体实施方式
下列实施例用来进一步说明本发明,但不因此而限制本发明。
实施例1
单斜相WO3纳米长方体具体制备过程如下:在50mL烧杯中加入0.3g商品化的WO3粒子和11mL(30%)H2O2,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于240℃水热处理12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到单斜相WO3纳米长方体,宽度为74-490nm、长度为76-770nm,厚度为24-58nm(如图1所示)。
实施例2-11
实施例1所制备的材料用于光催化降解亚甲基蓝废水溶液。
将50mg实施例1中的材料加入到含有100mL浓度为1-10mg/L亚甲基蓝溶液的250mL锥形瓶中,在暗处处理30min以达到吸附/脱附平衡。将反应体系在搅拌条件下室温用300WXe灯照射一定时间(30-240min),反应产物离心分离后取上层清夜,分光光度仪PerkinElmer Lambda 750在最大吸收波长为664nm处分析其组成。反应结果如下。
表1单斜相WO3纳米长方体光降解亚甲基蓝废水溶液的反应结果
Figure BDA0001814110500000031
由表1可以看出:单斜相WO3纳米长方体光催化降解废水染料中亚甲基蓝有机物,在浓度为10mg/L时反应30min、45min、60min、90min、120min、150min、240min时,脱除率分别为58%、68%、75%、83%、89%、95%、100%。当浓度为1mg/L、2mg/L、5mg/L 时反应240min,脱除率为100%。

Claims (2)

1.一种单斜相WO3纳米长方体的制备方法,具体的说是通过WO3粒子为前驱体,水热合成单斜相WO3纳米长方体,该单斜相WO3纳米长方体室温下可高效光催化降解染料废水中的亚甲基蓝;单斜相WO3纳米长方体由如下步骤制得:将WO3粒子加入到H2O2水溶液,将所得液体转入以聚四氟乙烯为内衬的不锈钢反应釜中于240 oC水热处理10-14 h,得到单斜相WO3纳米长方体。
2.按照权利要求1所述的一种单斜相WO3纳米长方体的制备方法,其特征在于:
单斜相WO3纳米长方体在20-40 oC光催化4-8 h,可光催化降解浓度为1-10 mg/L的亚甲基蓝溶液,脱除率为100%,无副产物产生。
CN201811133379.8A 2018-09-27 2018-09-27 一种单斜相wo3纳米长方体的制备方法及其光催化应用 Active CN109019693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811133379.8A CN109019693B (zh) 2018-09-27 2018-09-27 一种单斜相wo3纳米长方体的制备方法及其光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811133379.8A CN109019693B (zh) 2018-09-27 2018-09-27 一种单斜相wo3纳米长方体的制备方法及其光催化应用

Publications (2)

Publication Number Publication Date
CN109019693A CN109019693A (zh) 2018-12-18
CN109019693B true CN109019693B (zh) 2020-11-17

Family

ID=64614728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811133379.8A Active CN109019693B (zh) 2018-09-27 2018-09-27 一种单斜相wo3纳米长方体的制备方法及其光催化应用

Country Status (1)

Country Link
CN (1) CN109019693B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586072A (zh) * 2019-04-26 2019-12-20 福建工程学院 一种新型结构的wo3微纳米光催化材料
CN113044883B (zh) * 2021-03-15 2022-10-14 陕西科技大学 一种三维绣花球状二硫化钨电极材料的制备方法
CN115739165B (zh) * 2022-12-26 2024-02-23 青岛科技大学 W18o49-w2n异质结构纳米片/n掺杂c的制备及其光催化应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767826B (zh) * 2009-10-30 2011-09-14 陕西科技大学 一种六边形雪花状wo3纳米盘的制备方法
CN106976909B (zh) * 2017-01-19 2018-07-10 青岛科技大学 一种六方相h-MoO3微米棒的制备方法和光催化应用

Also Published As

Publication number Publication date
CN109019693A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
Liu et al. Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property
Malathi et al. A robust visible-light driven BiFeWO6/BiOI nanohybrid with efficient photocatalytic and photoelectrochemical performance
Wang et al. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity
Zhang et al. Construction of TiO2 nanobelts-Bi2O4 heterojunction with enhanced visible light photocatalytic activity
CN109019693B (zh) 一种单斜相wo3纳米长方体的制备方法及其光催化应用
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
WO2021258515A1 (zh) 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物
CN106976909B (zh) 一种六方相h-MoO3微米棒的制备方法和光催化应用
Yu et al. AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO
Shan et al. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials
Hu et al. The effect of hydroxyl group grafting on the photocatalytic phenolic compounds oxidation ability of g-C3N4 prepared by a novel H2O2-alkali hydrothermal method
Li et al. Carbohydrate-regulated synthesis of ultrathin porous nitrogen-vacancy polymeric carbon nitride for highly efficient Visible-light hydrogen evolution
Khasevani et al. Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst
Yang et al. Ascorbic acid-assisted hydrothermal route to create mesopores in polymeric carbon nitride for increased photocatalytic hydrogen generation
Zhao et al. Synthesis of heterostructured Pd@ TiO2/TiOF2 nanohybrids with enhanced photocatalytic performance
Mostafa et al. Effect of microwave heating on the structure, morphology and photocatalytic activity of hydrogen titanate nanotubes
CN106669672B (zh) 一种用于二氧化硫回收的活性炭催化剂及其制备方法
Lin et al. Construction of molecularly doped and cyano defects co-modified graphitic carbon nitride for the efficient photocatalytic degradation of tetracycline hydrochloride
Li et al. An amino functionalized zirconium metal organic framework as a catalyst for oxidative desulfurization
CN108479812B (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用
CN113318768A (zh) 一种复合光催化剂及其制备方法
CN108452789B (zh) 复合光催化剂及其制备方法和降解有机酚的方法
CN112774703A (zh) 一种高效光催化分解水制氢的单质红磷负载的二氧化钛复合催化剂
CN109107566B (zh) 一种wo3·0.33h2o纳米长方体的制备方法及其光催化应用
Kong et al. Preparation of novel BiVO4 nanofibers and their excellent adsorptive properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant