WO2019103107A1 - 片面照明兼用窓 - Google Patents

片面照明兼用窓 Download PDF

Info

Publication number
WO2019103107A1
WO2019103107A1 PCT/JP2018/043224 JP2018043224W WO2019103107A1 WO 2019103107 A1 WO2019103107 A1 WO 2019103107A1 JP 2018043224 W JP2018043224 W JP 2018043224W WO 2019103107 A1 WO2019103107 A1 WO 2019103107A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transparent substrate
illumination
refractive index
light transmitting
Prior art date
Application number
PCT/JP2018/043224
Other languages
English (en)
French (fr)
Inventor
宇佐美 由久
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019103107A1 publication Critical patent/WO2019103107A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for

Definitions

  • the present invention emits illumination light emitted from a light source at the time of illumination at night and the like and incident on the end of a plate-like transparent substrate and emitting illumination light guided in the transparent substrate from only one side, and not illuminating during daytime etc. Sometimes it relates to a single sided lighting window that acts as a transparent window.
  • a plate-like transparent substrate is used as a light guide plate, and illumination light emitted from a light source is incident on an end portion of the light guide plate to guide the inside of the light guide plate.
  • a backlight is used that emits uniform planar illumination light through a diffuser and / or a prism sheet, and emits the light to a liquid crystal panel.
  • the illumination light guided in the light guide plate is emitted from the other side of the light guide plate, so a reflection plate is disposed on the other side of the light guide plate to provide back light. It has been attempted to increase the illumination efficiency of the illumination light of the light (see Patent Documents 1, 2, 3 and Non-patent Document 1).
  • Patent Document 1 discloses an optical path conversion for converting an optical path to a back surface of a plate-like light guide used in a surface light source device used as a backlight device for illuminating a liquid crystal display panel in a transmissive liquid crystal display device. It discloses that a part is provided.
  • the light path conversion unit changes the light path of light traveling in the surface direction of the light guide and directs it to the light exit surface of the light guide, and the light is emitted from the light exit surface.
  • the optical path conversion unit is formed of a structure having a shape forming a part of a sphere, for example, a hemispherical shape.
  • a resin material, glass (silicon compound), an optically transparent solid material or the like can be used as the light path conversion part.
  • a reflective sheet is provided on the back of the light guide plate, and the light scattered to the back side by the light path conversion unit is returned to the inside of the light guide to minimize the loss of light from the light guide.
  • Patent Document 2 discloses a backlight of a liquid crystal display device in which a dispersive liquid crystal element for generating a predetermined dot pattern is provided on the lower surface of a light guide plate and a reflective plate is provided below the dispersive liquid crystal element. There is.
  • the dispersive liquid crystal element is provided with an electrode composed of a dot matrix, and a predetermined drive signal is input to this electrode to generate a dot pattern having a scattering function similar to that of a scattering dot formed on a conventional light guide plate. Is configured as.
  • Patent Document 3 a plate-like light guide plate used for an illumination device for illuminating a liquid crystal display in a planar manner is not illustrated on the lower surface of the light guide plate, but a plurality of minute shapes of a predetermined shape.
  • a part of light which is incident from the light source on the end face of the light guide plate and travels inside the light guide plate while repeating total reflection on the upper surface and the lower surface of the light guide plate is scattered by the unevenness of the lower surface It discloses that it is taken out.
  • Non-Patent Document 1 also discloses a light guide sheet that can be curved with a thickness of 1 mm.
  • This light guide sheet is made of an acrylic plate on which dot printing is performed, and can emit illumination light from both sides at the time of illumination, and when the illumination light is emitted to only one side, a reflector is provided on the other side. It discloses to arrange.
  • one of the light guide plates is used in planar or curved illumination by a backlight, a lighting device, or a light guide sheet or the like.
  • a backlight In order to emit illumination light to a light emitting surface which is a surface, it has been generally practiced to dispose a reflecting plate on the back surface on the opposite side.
  • a backlight In order to scatter the light being guided and take it out of the light guide plate, a minute unevenness, beads, a dot pattern by a dispersed liquid crystal element, a dot print, etc. are used. In principle, it emits on both sides.
  • the object of the present invention is to solve the problems of the above-mentioned prior art, and at the time of illumination such as night, the light is emitted from the light source, is incident on the end of the plate-like transparent substrate, and is the illumination light guided in the transparent substrate It is an object of the present invention to provide a single-sided lighting combined window that can emit light from only one side and can function as a transparent window during non-illumination such as daytime.
  • the single-sided lighting combined window of the present invention comprises a plate-like transparent substrate having two main surfaces, and a plurality of light transmitting convex portions formed on one of the main surfaces of the transparent substrate And the difference between the refractive index of the light transmitting convex portion and the refractive index of the transparent substrate is -0.2 or more and +0.8 or less, or 1.0 or more and 1.5 or more.
  • the light is emitted from the light source at the time of illumination, is incident on the end of the transparent substrate, is totally reflected inside the transparent substrate and is guided, and the outer interface of the plurality of light transmissive convexes has a critical angle or less
  • the illumination light incident at the incident angle is refracted at the interface and emitted from one main surface of the transparent substrate to make the transparent substrate function as single-sided illumination, and when not illuminated, the transparent substrate as a light transmission window Make it work.
  • the light transmitting convex portion is a convex portion which is formed by being protruded from one main surface by the same material as the transparent base material.
  • the light transmitting convex portion is a bead made of the same material as the transparent substrate, a bead made of a material having the same refractive index as the transparent substrate, or the difference in refractive index is more than ⁇ 0.2 and less than 0.
  • the difference between the refractive index of the light transmitting convex portion and the refractive index of the transparent base material is 1.0 or more and less than 1.5, and the bead made of a material having different refractive index It is preferable that it is a convex part formed by embedding in one main surface of a transparent base material.
  • the protruding height of the beads embedded in one main surface of the transparent substrate is preferably 10% or more and 90% or less of the size of the beads.
  • the protruding height of the beads is preferably half the size of the beads.
  • the size of the beads is preferably 0.1 ⁇ m to 1 mm.
  • the area ratio of several light transmissive convex part with respect to the other main surface of a transparent base material is 40% or less.
  • the size of the light transmitting convex portion on the other main surface of the transparent substrate is preferably 0.1 ⁇ m to 1 mm.
  • the height of the light transmitting convex portion from the other main surface of the transparent substrate is preferably 0.05 ⁇ m to 0.5 mm.
  • the difference between the refractive index of the light transmitting convex portion and the refractive index of the transparent base is preferably ⁇ 0.1 or more and +0.3 or less.
  • the illumination light which is emitted from the light source at the time of illumination at night or the like, is incident on the end of the plate-like transparent substrate and is guided in the transparent substrate from only one side. It can function as a transparent window at the time of non-illumination such as daytime.
  • FIG. 5 is a cross-sectional view showing the next step of the method for producing a single-sided lighting and dual-use window following FIG. 4 as a step for producing one reflective concave surface as a representative.
  • FIG. 6 is a cross-sectional view showing the next process of the method for producing a single-sided lighting and combined window, following FIG. 5; It is sectional drawing which shows 1 process of another example of the manufacturing method of the single-sided illumination combined use window shown in FIG.
  • FIG. 8 is a cross-sectional view showing the next process of the method for producing a single-sided lighting and combined window, following FIG. 7; It is sectional drawing which shows an example of the manufacturing method of the single-sided illumination combined use window shown in FIG.
  • FIG. 2 is a cross-sectional view schematically showing a single-sided lighting window of Example 1; FIG.
  • FIG. 8 is a cross-sectional view schematically showing a single-sided lighting window of Example 2; It is sectional drawing which shows typically the single-sided illumination combined use window of the comparative example 1.
  • FIG. It is sectional drawing which shows typically the single-sided illumination combined use window of the comparative example 2.
  • FIG. is sectional drawing which shows typically the single-sided illumination combined use window of the comparative example 3.
  • FIG. It is a graph of the light emission rate of the upper surface of Example 1-2 and the single side illumination combined window of Comparative Examples 1-3, and a lower surface, and the ratio of a light emission rate. It is a graph of the light emission rate of the upper surface of Example 1-4 and the single side illumination combined window of Comparative Examples 4-6, and a lower surface, and the ratio of a light emission rate.
  • the single-sided illumination double-use window of the present invention has a plate-like transparent base having two main faces, and a plurality of light transmitting convex parts formed on one main face of the transparent base,
  • the difference between the refractive index of the convex portion and the refractive index of the transparent substrate is ⁇ 0.2 or more and +0.8 or less, or 1.0 or more, and is emitted from the light source at the time of illumination, and the transparent group
  • the light is incident on the end of the material, is totally reflected inside the transparent substrate, is guided, and refracts at the interface the illumination light that is incident on the outer interface of the plurality of light transmissive convex sections at an incident angle less than the critical angle
  • the light is emitted from one of the main surfaces of the transparent substrate to cause the transparent substrate to function as single-sided illumination, and when not illuminated, to function as a light transmission window.
  • FIG. 1 is a cross-sectional view schematically showing an example of a single-sided lighting combined window according to a preferred embodiment of the present invention.
  • the single-sided lighting and combined window 10 of the present invention is formed only on a plate-like transparent base 12 having two parallel main faces 12 a and 12 b and one main face 12 a of the transparent base 12. It has a plurality of light transmitting (transparent) convex portions 14 formed, a light source 16 disposed at an end (side surface) 12 c of the transparent base 12, and a reflector 18 provided so as to cover the light source 16.
  • the light source 16 has a wire connected to a power supply, and a switch for switching on and off the connection with the power supply and switching between lighting and non-lighting.
  • the transparent substrate 12 turns on the light source 16 at the time of illumination at night or the like, totally reflects the illumination light emitted from the light source 16 and incident on the end 12c at the two main surfaces 12a and 12b, and is transparent. It functions as a light guide plate for guiding the inside of the base 12.
  • the transparent substrate 12 functions as a transparent light transmitting window (that is, a transparent window) for transmitting light indoors and outdoors, and outdoors from indoors at the time of non-illumination such as daytime when the light source 16 is turned off. is there.
  • the shapes of the main surfaces 12a and 12b of the transparent substrate 12 are not particularly limited, and any shape such as a regular polygon, a polygon, a circle, or an ellipse may be used as long as it can be used as a transparent window. It is good.
  • the shapes of the main surfaces 12a and 12b of the transparent substrate 12 preferably have straight sides since the light source is disposed, and more preferably a rectangle, such as a rectangle, or a square.
  • the end 12 c of the transparent substrate 12 is for disposing the light source 16 for emitting the illumination light guided in the transparent substrate 12. If the light source 16 can be disposed, the plate-like transparent substrate 12 can be provided.
  • the end 12c of the transparent substrate 12 is preferably a side surface on which a plurality of point light sources or linear light sources can be easily disposed, and a side surface perpendicular to the straight sides of the two main surfaces 12a and 12b. It is more preferable that
  • the material of the transparent substrate 12 is not particularly limited, and any material that becomes a transparent plate may be used.
  • the material of the transparent substrate 12 is, for example, vinyl chloride, acrylic, polycarbonate, PET (polyethylene terephthalate), polyethylene, polypropylene, polystyrene, ABS (acrylonitrile butadiene styrene copolymer), polyamide, tetrafluoroethylene, EVA Mention may be made of resins such as ethylene vinyl acetate copolymers, phenols, melamines, polyesters, epoxies and TACs (triacetylcelluloses), as well as glass and transparent inorganic materials such as silicon dioxide (SiO 2 ).
  • vinyl chloride, acrylic, polycarbonate, PET, TAC, glass and the like can be mentioned.
  • the plurality of light transmissive convex portions 14 are emitted from the light source 16, are incident on the end portion 12c of the transparent base 12, and are totally reflected inside the transparent base 12 to be guided to transmit light.
  • the illumination light that has entered the convex portion 14 is refracted as it is, and is emitted from the interface of the light transmissive convex portion 14 to the outside (the side of one main surface 12 a). That is, inside the transparent base 12, it is reflected at the interface of the other main surface 12 b at an angle equal to or greater than the critical angle, and enters the light transmitting convex part 14 from within the transparent base 12.
  • Illumination light which enters the interface at an angle equal to or less than the critical angle is emitted to the outside (one major surface 12 a side).
  • the plurality of light transmitting convex portions 14 function the transparent base 12 as single-sided illumination.
  • the difference between the refractive index of the light transmitting convex portion 14 and the refractive index of the transparent substrate 12 needs to be ⁇ 0.2 or more and +0.8 or less, or 1.0 or more. There is. That is, when the refractive index of the light transmissive convex portion 14 is n1 and the refractive index of the transparent base 12 is n2, the refractive index n1 of the light transmissive convex portion 14 and the refractive index of the transparent base 12 as n2
  • the difference in rates (n1-n2) needs to satisfy the following equation (1).
  • the refractive index difference n1 ⁇ n2 is ⁇ 0.1 or more and +0.3 or less, that is, the following formula (2) is satisfied. ⁇ 0.1 ⁇ n1 ⁇ n2 ⁇ + 0.3 or 1.0 ⁇ n1 ⁇ n2 ⁇ 1.4 (2) Furthermore, it is more preferable that the refractive index difference n1 ⁇ n2 be ⁇ 0.05 or more and +0.1 or less, that is, the following formula (3) be satisfied. ⁇ 0.05 ⁇ n1 ⁇ n2 ⁇ + 0.1 (3)
  • the difference in refractive index (n1-n2) is -0.2 or less, the amount of illumination light emitted from the other principal surface 12b of the transparent substrate 12 increases, and one side of the transparent substrate 12 Not only the light amount of the illumination light emitted from the main surface 12a of the lens 12 decreases, but also the contrast (for example, the light amount ratio of the illumination light emitted from the main surfaces 12a and 12b) decreases.
  • the refractive index difference (n1-n2) is more than 0.8 and less than 1.0 (0.8 ⁇ n1-n2 ⁇ 1.0), or 1.5 or more, the transparent substrate 12 is obtained. Not only the light amount of the illumination light emitted from one of the main surfaces 12a of the light source 12a decreases, but also the contrast (for example, the light amount ratio of the illumination light emitted from the main surfaces 12a and 12b) decreases.
  • the light transmitting convex portion 14 As a material of the light transmitting convex portion 14, polycarbonate, acrylic, vinyl chloride, polyethylene terephthalate (PET), polypropylene, glass and the like are desirable.
  • the light transmitting convex portion 14 be a convex portion which is formed of the same material as the transparent base 12 so as to protrude from one main surface.
  • the light transmissive convex portion 14 is a convex portion formed by embedding light transmissive beads made of the same material as the transparent base 12 in one main surface 12 a of the transparent base 12. Is preferred.
  • the light transmissive convex portion 14 is a convex portion formed by embedding light transmissive beads made of a material having the same refractive index as that of the transparent substrate 12 in one main surface 12 a of the transparent substrate 12. Is preferred.
  • the light transmissive convex portion 14 is made of light transmissive beads made of materials having different refractive indexes, which are small when the difference in refractive index is ⁇ 0.2 or more and less than 0, or 0 or more and +0.8 or less. It is preferable that it is a convex part formed by embedding in one main surface 12a of the transparent base material 12. As shown in FIG. Alternatively, the light transmissive convex portion 14 is formed by embedding light transmissive beads made of materials having different refractive indexes and having a large difference in refractive index of 1.0 or more in one main surface 12 a of the transparent substrate 12. It is preferable that it is a convex part. As described above, by setting the refractive index of the light transmitting beads to be largely different from the refractive index of the transparent base 12 or the binder of the transparent base 12, it is also possible to enhance the reflectivity.
  • the transparent substrate 12 may be attached to the outside and / or the inside of the transparent substrate 12.
  • the light source 16 such as an LED is installed at the end 12 c of the transparent base 12 so as to be simultaneously guided to the inside of the transparent base 12 such as window glass.
  • the film that can be used in the present invention has irregularities formed on the surface, and has a plurality of light transmissive protrusions 14. By sticking this film on the inside of a plurality of sheets of glass, it is possible to prevent the film having the light transmitting convex portion 14 from being soiled. In addition, since it is not necessary to wipe the surface of the film having the plurality of light transmitting convex portions 14 due to the unevenness, it is possible to prevent the plurality of light transmitting convex portions 14 due to the unevenness from coming off by wiping the surface of the film. .
  • the light transmitting convex portion 14 forms fine asperities on one surface of the transparent material layer formed on the main surface 12 a of the transparent base 12 or the main surface 12 a of the transparent base 12 using a laser or the like. You may form by doing. Further, a photoresist is applied to the transparent material layer formed on the main surface 12a of the transparent base 12 or the main surface 12a of the transparent base 12, and after patterning, etching is performed to provide fine asperities on the surface.
  • the light transmitting convex portion 14 may be formed. In addition, the light transmitting convex portion 14 may be formed by embedding light transmitting beads on the main surface 12 a of the transparent base 12 as described later.
  • the plurality of light transmitting convex portions 14 scatter light incident on the major surfaces 12 a and 12 b of the transparent substrate 12.
  • the area ratio of the plurality of light transmissive convex portions 14 may be sufficient if illumination light from the light source 16 is sufficiently emitted. So it needs to be 50% or less.
  • the area ratio of the light transmitting convex portion 14 is preferably 40% or less, more preferably 20% or less, and still more preferably 10% or less.
  • the reason that the area ratio of the light transmitting convex portion 14 needs to be 50% or less is that if the area ratio is more than 50% because there are too many convex portions, a lot of light is emitted near the light source to make the whole uniformly glow. Because it becomes difficult.
  • the light transmitting region of the transparent substrate 12 needs to be 50% or more.
  • the light transmission area of the transparent substrate 12 is preferably 60% or more, more preferably 80% or more, and still more preferably 90% or more. The reason why the light transmitting area of the transparent substrate 12 needs to be 50% or more is because it has the effect that the distant scenery can be seen well through the window.
  • the shape of the light transmitting convex portion 14 formed on one main surface 12 a of the transparent substrate 12 is not particularly limited.
  • the shape of the light transmitting convex portion 14 is required to be the widest on the side of one main surface 12 a and not to be further expanded even if it is performed on the outer end. In this case, it is preferable that the shape of the light transmitting convex portion 14 be a shape that becomes thinner toward the outer end.
  • it is preferable that it is a groove shape etc. of a cross-sectional circular arc shape, a cube, a rectangular parallelepiped, the groove shape of a cross-sectional rectangle shape etc. may be sufficient.
  • the size of the light transmitting convex portion 14 is preferably 0.1 ⁇ m to 1 mm, more preferably 1 ⁇ m to 100 ⁇ m, and still more preferably 3 ⁇ m to 50 ⁇ m.
  • the reason why the size of the light transmitting convex portion 14 is preferably 0.1 ⁇ m to 1 mm is that if it is too large and exceeds 1 mm, the function as a window is degraded, for example, the scenery becomes difficult to see through the window. . On the other hand, if it is too small and less than 0.1 ⁇ m, the effect of scattering light is lost, and it becomes difficult to fulfill the function as illumination.
  • the height of the light transmitting convex portion 14 from the one main surface 12a of the transparent substrate 12 is preferably 0.05 ⁇ m to 0.5 mm, and more preferably 0.5 ⁇ m to 50 ⁇ m. More preferably, it is 1.5 ⁇ m to 25 ⁇ m.
  • the reason why the depth of the light transmitting convex portion 14 is preferably 0.05 ⁇ m to 0.5 mm is that if the size is too large and exceeds 0.5 mm, it becomes difficult to see the landscape through the window, and so on. It is because it falls. On the other hand, if it is too small and less than 0.05 ⁇ m, the effect of scattering light is lost, and it becomes difficult to fulfill the function as illumination.
  • the light source 16 is preferably a plurality of point light sources or linear light sources.
  • a conventionally known light source used in a conventionally known planar illumination device can be used as the light source 16.
  • a plurality of point light sources (LEDs) may be arranged in a line. You may.
  • other point light sources such as LD (Laser Diode) may be used, or linear light sources such as a cold cathode tube and a hot cathode tube may be used.
  • the reflector 18 is for efficiently causing the illumination light emitted from the light source 16 to be incident on the end 12 c of the transparent substrate 12, and the inner surface has light reflectivity.
  • a conventionally known reflector used in a conventionally known planar illumination device may be used as the reflector 18, a conventionally known reflector used in a conventionally known planar illumination device may be used.
  • FIG. 2 is a cross-sectional view showing the operation of one light transmitting convex portion in the single-sided lighting combined window shown in FIG. Of the illumination light L1 and L2 emitted from the light source 16 and incident from the end 12c of the transparent substrate 12 as in the single-sided illumination and window 10 shown in FIG.
  • the light is totally reflected by the main surface 12 b at the main surface 12 a of the light source 12 and enters the light transmitting convex portion 14.
  • the illumination light L 2 is totally reflected by the main surface 12 b of the transparent base 12 and directly enters the light transmitting convex portion 14.
  • the illumination lights L1 and L2 incident on the light transmissive convex portion 14 are respectively incident on the interface of the light transmissive convex portion 14 inclined with respect to the major surface 12a at an incident angle less than the critical angle, and at a predetermined refraction angle
  • the light is refracted and emitted from one of the main surfaces 12a.
  • the light transmitting convex portion 14 formed only on the major surface 12 a of the transparent substrate 12 can cause the transparent substrate 12 to function as single-sided illumination.
  • the light guide plate is provided with fine asperities as in the conventional planar illumination device described above, the light is emitted from the light source and is incident from the end of the light guide plate, and the two main surfaces of the light guide plate
  • the illumination light totally reflected respectively is incident on the fine unevenness provided on the light guide plate, is refracted as it is, exits from the fine unevenness, is scattered by the fine unevenness, and is incident on the two main surfaces.
  • the illumination light is totally reflected if the incident angle to the main surface is equal to or more than the critical angle, and is emitted from the main surface if it is equal to or less than the critical angle.
  • the angle of the light may be bent. Therefore, conventionally, as described above, in addition to the fine recesses, the fine protrusions or the beads are attached.
  • the light collides with the minute depressions or minute projections, the light is emitted to the outside when the angle is equal to or less than the critical angle.
  • the critical angle or more the light is reflected to the inside again, but thereafter, when it strikes on the opposite surface and the critical angle or less, the light is emitted to the outside.
  • providing the fine recesses, the fine protrusions, or the beads on only one side of the light guide plate results in the illumination light being emitted from the two sides.
  • Such a light guide plate can not realize single-sided illumination. For this reason, in order to emit the illumination light guided in the light guide plate to only one surface, it is necessary to provide a reflection layer on the back surface or to arrange a reflection plate.
  • the single-sided illumination double-use window 10 of the present invention a plurality of light transmissions having a refractive index close to a predetermined range on the one main surface 12a of the transparent substrate 12 Since a plurality of light transmitting convex portions 14 having a refractive index equal to or higher than a predetermined value are formed, single-sided irradiation can be realized at the time of illumination, and the transparent substrate 12 functions as a transparent window at the time of non-illumination It can be done.
  • the single-sided lighting window 10 according to the embodiment of the present invention is configured as described above.
  • the single-sided lighting and combining window 10 shown in FIG. 1 forms the plurality of light transmitting convex portions 14 only on one main surface 12 a of the transparent substrate 12, the present invention is not limited to this.
  • the single-sided lighting and combined window 10A of the present invention is embedded only in the plate-like transparent substrate 12 and one of the main surfaces 12 a of the transparent substrate 12, and has a plurality of light transmitting convex portions 22.
  • the light transmitting bead 20 is not particularly limited as long as it is embedded in the main surface 12 a of the transparent substrate 12 to form the light transmitting convex portion 22.
  • the plurality of light transmitting convex portions 22 are formed by bead surface portions protruding from the main surface 12 a.
  • the plurality of light transmitting convex portions 22 of the single sided lighting combined window 10A of the present invention have the same functions as the plurality of light transmitting convex portions 14 of the single sided lighting combined window 10 of the present invention. The description of the functions is omitted.
  • the illumination light emitted from the light source 16 is incident on the end 12 c of the transparent substrate 12 and totally reflected from the inside of the transparent substrate 12 to be guided is one main surface 12 a of the transparent substrate 12
  • the light transmitting beads 20 are incident on the light transmitting beads 20 from the embedded bead surface portions of the plurality of light transmitting beads 20 embedded therein.
  • the illumination light is incident as it is at the same refraction angle as the incident angle.
  • the illumination light is refracted at a refraction angle corresponding to the difference in the refractive index with respect to the incident angle and is incident on the light transmitting bead 20. Thereafter, the illumination light travels in the light transmitting bead 20, and from the light transmitting convex portion 22 which is a bead surface portion protruding from the main surface 12a, the light transmitting bead 20 and the external medium (for example, air) It refracts and emits according to the difference of the refractive index of.
  • the illumination light guided by totally reflecting the inside of the transparent substrate 12 is embedded with the plurality of light transmitting beads 20 embedded in one main surface 12 a of the transparent substrate 12
  • the light may be reflected from the bead surface portion toward the other principal surface 12 b of the transparent substrate 12 and emitted from the principal surface 12 b.
  • the illumination light incident in the light transmitting bead 20 is reflected by the bead surface portion of the light transmitting convex portion 22, and the illumination light from the bead surface portion embedded with the light transmitting bead 20 as it is or the light transmitting bead 20 In the inside, the reflection is repeated between the bead surface portions, and the light may be reflected toward the other principal surface 12 b side of the transparent substrate 12 and emitted from the principal surface 12 b.
  • the illumination light when the illumination light is repeatedly reflected between the bead surface portions in the light transmitting bead 20, it may be emitted from the bead surface portion of the light transmitting convex portion 22.
  • illumination light emitted from the light transmitting convex portion 22 of the bead surface portion of the light transmitting bead 20 on the side of one main surface 12 a of the transparent substrate 12 is The ratio of the illumination light emitted from the other principal surface 12b of the transparent substrate 12 is extremely small, and is negligible as single-sided illumination.
  • the plurality of light transmissive convex portions 22 causes the transparent substrate 12 to function as single-sided illumination.
  • the light transmitting beads 20 and the transparent base 12 have the same refractive index or a transparent material having a similar refractive index. And coating the coating solution comprising the binder on the surface of the plate-like base substrate of the transparent substrate to make the thickness of the formed binder layer smaller than the diameter of the beads 20.
  • the transparent substrate 12 is composed of an original substrate and a binder layer formed on the original substrate, and the surface of the binder layer constitutes the major surface 12 a of the transparent substrate 12.
  • the light transmitting beads 20 can be held by the binder layer and embedded in the major surface 12 a of the transparent substrate 12.
  • the light transmitting beads 20 thus embedded in the binder layer project from the surface of the binder layer (the main surface 12 a of the transparent substrate 12).
  • the protruding height of the light transmitting beads 20 is obtained by subtracting the embedding depth of the light transmitting beads 20 from the size (average diameter) of the light transmitting beads 20.
  • the protruding height of the light transmitting beads 20 is preferably 90% or less and 10% or more of the size (average diameter) of the light transmitting beads 20.
  • the embedding depth is preferably 10% or more and 90% or less of the size (average diameter) of the light transmitting beads 20.
  • the protrusion height of the light transmitting beads 20 is preferably half (50%) or less and 10% or more of the size (average diameter) of the light transmitting beads 20, more preferably half (50%). Is most preferred.
  • the reason is that when the protruding height of the light transmitting bead 20 is less than 10% of the size of the light transmitting bead 20, the light transmission is performed when the refractive index of the light transmitting bead 20 and the transparent substrate 12 are close.
  • the illumination light incident on the insulating beads 20 is not only emitted from the light transmitting convex portion 22 on the main surface 12 a side of the transparent substrate 12 but also reflected from the bead surface embedded with the light transmitting beads 20, This is because the light is emitted from 12b as well, and it will not be single-sided illumination.
  • the light amount of the illumination light emitted from the main surface 12 b is very small, but the light transmitting convex portion of the light transmitting bead 20 It is because the light quantity of the illumination light radiate
  • the protruding height of the light transmitting bead 20 is more than 10% of the size of the light transmitting bead 20, the light amount of the illumination light emitted from the main surface 12b is very small. It is because the light quantity of the illumination light radiate
  • the material of the binder examples include resins such as acryl, urethane, glyoxal, phenol, butadiene, and methacryl, but any other material generally used as a binder may be used.
  • the thickness of the binder is 0.1 to 200%, preferably 1 to 100%, and more preferably 20 to 80% of the average diameter of the light transmitting beads 20. If the thickness of the binder is too thin, the beads 20 can not be held. If it is too thick, the head of the light transmitting bead 20 will not come out of the binder. The reason is that when the thickness of the binder is less than 0.1%, the bead fixing strength of the binder is low, and bead detachment frequently occurs.
  • the material of the light transmitting bead 20 includes the same material as the transparent substrate 12 and the same refractive index as the transparent substrate 12, and the difference in refractive index (n1-n2) with the transparent substrate 12 is -0.2. It is necessary to use a material having a small difference in refractive index, which is the above and +0.8 or less, or a material having a large difference in refractive index, in which the difference (n1 ⁇ n2) in refractive index is 1.0 or more.
  • the material of the light transmitting bead 20 is not particularly limited as long as it is a material used as the transparent substrate 12.
  • Examples of the material of the light transmitting beads 20 include polymethyl methacrylate, polystyrene, methyl methacrylate, polymethyl methacrylate, polyacrylic ester, polymethyl methyl methacrylate, glass, silicon dioxide (SiO 2 ), and the like. It may be.
  • the single-sided lighting and combined window 10A of the present invention light-transmissive beads 20 are embedded in one main surface 12a of the transparent substrate 12 to form the light-transmissive convex portions 22 to realize single-sided illumination at the time of illumination.
  • the transparent substrate 12 can function as a transparent window when not illuminated.
  • the single-sided lighting window 10A according to the embodiment of the present invention is configured as described above.
  • a convex part is shape
  • a mask material is applied to the principal surface 12 a on one side of the transparent substrate 12 to prepare a one-sided mask layer plate 30 on which the mask layer 32 is formed.
  • the mask material is preferably an organic substance such as a polymer that dissolves in an organic solvent.
  • vinyl chloride vinylidene chloride, polyvinyl alcohol, polyvinyl acetate, polystyrene, ABS (acrylonitrile-butadiene-styrene copolymer), polyethylene, polypropylene, polyisobutylene, polyamide, polyacetal, methacrylic, polycarbonate, Teflon (registered trademark), Cellulose acetate, chlorinated polyethers, phenol, urea, melamine, furan, xylene, epoxy, unsaturated polyester, diallyl phthalate and the like can be mentioned.
  • the prepared single sided mask layer plate 30 is irradiated with a laser (not shown) from the side of the mask layer 32 to partially cover the surface of the mask layer 32 and the main surface 12a on one side of the transparent substrate 12
  • a plurality of projections 34 having a mask layer 32 are formed.
  • the convex portion 34 includes the mask layer 32 and the light transmitting convex portion 36 of the transparent base 12.
  • the mask layers 32 of the plurality of convex portions 34 are removed to form a plurality of light transmissive convex portions 36.
  • the single-sided lighting window 10B of the present invention shown in FIG. 6 can be manufactured.
  • the mask material forming the mask layer 32 may be dissolved by an organic solvent or the like.
  • Organic solvents for dissolving the mask material include butanol, propanol, dimethylformamide, acetonitrile, acetone, ethanol, formic acid, chloroform, diethyl ether, dimethyl sulfoxide, tetrahydrofuran, toluene, hexane, benzene, methanol, methylene chloride, acetic acid, ethyl acetate Water, fluorine solvents and the like.
  • FIGS. 7 to 8 another embodiment of the method of manufacturing a single-sided lighting window of the present invention will be described.
  • a flat transparent substrate 12 is prepared.
  • the prepared transparent base 12 is irradiated with a laser (not shown) from the side of the main surface 12 a while adjusting the depth of focus to form a plurality of light transmissive convex portions 14.
  • the single-sided lighting window 10 of the present invention shown in FIG. 1 can be manufactured.
  • a plurality of light transmittances of hemispherical shape are irradiated by irradiating a laser (not shown) on the plurality of trapezoidal light transmitting convex portions 36 of the single sided illumination combined window 10B of the present invention shown in FIG.
  • the convex portion 14 may be formed.
  • a photoresist is applied on the principal surface 12 a on one side of the transparent substrate 12 or on the mask layer 32, and the photoresist is patterned and then etched to form fine irregularities on the surface.
  • a plurality of light transmissive convex portions 14 and a plurality of light transmissive convex portions 36 may be formed.
  • a layer of photoresist on the major surface 12 a of the transparent substrate 12 may be used instead of the mask layer.
  • light transmissive beads 20 are prepared.
  • a coating solution is prepared by mixing the prepared light transmitting beads 20 and a binder, and the produced coating solution is coated on the surface of one side of the plate-like base material 40 constituting the transparent substrate 12.
  • the binder layer 42 is formed on the surface of the original substrate 40 so that the thickness of the binder layer 42 is smaller than the diameter of the light transmitting beads 20.
  • the transparent substrate 12 is composed of the original substrate 40 and the binder layer 42 formed on the original substrate 40, and the surface of the binder layer 42 constitutes the main surface 12 a of the transparent substrate 12.
  • the light transmitting beads 20 can be held by the binder layer 42 and embedded in the main surface 12 a of the transparent substrate 12, and a part of the light transmitting beads 20 can be the main surface 12 a of the transparent substrate 12 ( It can be made to project from the surface of the binder layer 42.
  • the protruding height of the light transmitting beads 20 is preferably 90% or less and 10% or more of the size (average diameter) of the light transmitting beads 20.
  • Example 1 (Simulation example of single-sided illumination and combined window with different embedded depth of light transmitting beads)
  • One light transmitting bead 20 made of 5 silicon dioxide (TiO 2 ) is transparent so that the center position of the light transmitting bead 20 is on the upper surface (one main surface) 12 a of the transparent substrate 12
  • the single-sided lighting combined window of Example 1 embedded in the main surface 12 a of the base 12 was produced.
  • the center position of the light transmitting bead 20 of this Example 1 is set to zero.
  • the embedding depth of the light transmitting beads 20 at this time was 2 ⁇ m.
  • the light emission ratio emitted from the (other main surface) 12b was determined by simulation. This simulation was performed based on ZEMAX's ray tracing software ZEMAX. The results are shown in Table 1 and FIG. Table 1 and FIG. 15 also show the ratio of the light emission ratio of the upper surface (one main surface) 12a, the lower surface (the other main surface) 12b, and both.
  • Example 2 Next, as shown in FIG. 11, the light transmissive beads 20 are transparent substrate 12 so that the center position of the light transmissive beads 20 is located 1 ⁇ m outside from the upper surface (one main surface) 12 a of the transparent substrate 12.
  • a single-sided lighting combined window of Example 2 was produced in the same manner as in Example 1 except that it was embedded in the upper surface (main surface) 12a of the above.
  • a simulation was performed on Example 2 produced, and the light emission rates of the upper surface 12a and the lower surface (the other main surface) 12b were determined.
  • the center position of the light transmitting bead 20 of this Example 2 is +1.
  • the embedding depth of the light transmitting beads 20 at this time was 1 ⁇ m.
  • the ratio of the light emission rate is shown in Table 1 and FIG.
  • Example 3 Next, as shown in FIG. 13, the light transmissive beads 20 are placed on the main surface of the transparent substrate 12 so that the center position of the light transmissive beads 20 is located 1 ⁇ m inside from the upper surface (main surface) 12 a of the transparent substrate 12.
  • a single-sided lighting window of Example 3 was produced in the same manner as in Example 1 except that the surface 12a was embedded.
  • a simulation was performed on Example 3 produced, and the light emission rates of the upper surface 12a and the lower surface (main surface) 12b were determined.
  • the center position of the light transmitting bead 20 of this comparative example 2 is set to -1.
  • the embedding depth of the light transmitting beads 20 at this time was 3 ⁇ m.
  • the ratio of the light emission rate is shown in Table 1 and FIG.
  • Comparative example 1 Next, as shown in FIG. 10, the light transmitting beads 20 are mounted on the main surface 12 a of the transparent substrate 12 so that the center position of the light transmitting beads 20 is located 2 ⁇ m outside from the upper surface 12 a of the transparent substrate 12.
  • a single-sided lighting window of Comparative Example 1 was produced in the same manner as in Example 1 except that the window was placed. The simulation was performed on Comparative Example 1 produced, and the light emission rates of the upper surface 12 a and the lower surface 12 b were determined.
  • the center position of the light transmitting bead 20 of this comparative example 1 is +2.
  • the embedding depth of the light transmitting beads 20 at this time is 0 ⁇ m.
  • the ratio of the light emission rate is shown in Table 1 and FIG.
  • the light transmissive beads 20 are mainly formed of the transparent substrate 12 so that the center position of the light transmissive beads 20 is located 2 ⁇ m inside from the upper surface (main surface) 12 a of the transparent substrate 12.
  • a single-sided lighting window of Comparative Example 3 was produced in the same manner as in Example 1 except that the surface 12a was completely embedded.
  • a simulation was performed on Comparative Example 2 produced, and the light emission rates of the upper surface 12a and the lower surface 12b were determined.
  • the center position of the light transmitting bead 20 of this comparative example 3 is set to -2.
  • the embedding depth of the light transmitting beads 20 at this time was 4 ⁇ m.
  • the ratio of the light emission rate is shown in Table 1 and FIG.
  • the light emission rate of the upper surface (one main surface) 12a is 8.0 ⁇ 10 ⁇ 4 or more.
  • the light emission rate is a value for the light source emission amount 1.
  • the light emission rate of the lower surface (the other main surface) 12 b is 5.9 ⁇ 10 ⁇ 4 or less.
  • the ratio of the light emission rate is 1.35 or more, and single-sided illumination can be realized. Since the transparent substrate 12 is naturally transparent, it naturally functions as a transparent window when not illuminated. On the other hand, in Comparative Example 1, the light emission ratio of the upper surface 12a and the lower surface 12b is 0, which indicates that single-sided illumination can not be realized.
  • the light emission ratio of the upper surface (one main surface) 12a is 1.1 ⁇ 10 ⁇ 3 or more and high.
  • the light emission rate of the lower surface 12b is also as high as 4.9 ⁇ 10 -4 or more.
  • the ratio of the light emission rate is also 3 or less, and sufficient single-sided illumination can not be realized.
  • Example 5 to 6 Comparative Examples 3 to 4
  • Single-sided illumination double-use windows were fabricated as Examples 5 to 6 and Comparative Examples 3 to 4, respectively, in the same manner as in Examples 2 to 3 and Comparative Examples 1 to 2 except for the above.
  • the simulation was performed for each of the examples 5 to 6 and the comparative examples 3 to 4, and the light emission rates of the upper surface 12a and the lower surface 12b were determined.
  • the central positions of Examples 5 to 6 and Comparative Examples 3 to 4 were +1, -1, +2 and -2, respectively.
  • the embedding depth of each of the light transmitting beads 20 of Examples 5 to 6 and Comparative Examples 3 to 4 was 1 ⁇ m, 3 ⁇ m, 0 ⁇ m, and 4 ⁇ m.
  • the results of the light output rates and the ratios of the light output rates are shown in Table 1 and FIG.
  • the light emission rate of the upper surface (one main surface) 12a is 7.1 ⁇ 10 ⁇ 4 or more.
  • the light emission rate of the lower surface (the other main surface) 12b is 3.1 ⁇ 10 -4 or less.
  • the ratio of the light emission rate is also 2.3 or more, and single-sided illumination can be realized.
  • the transparent substrate 12 is naturally transparent, it naturally functions as a transparent window when not illuminated.
  • Comparative Example 3 it is understood that the light emission ratio of the upper surface (one main surface) 12a and the lower surface (the other main surface) 12b is 0, and single-sided illumination can not be realized.
  • the light emission rate of the upper surface (one main surface) 12a is 1.4 ⁇ 10 ⁇ 5
  • the light emission rate of the lower surface (the other main surface) 12 b is also 1.0 ⁇ 10 As low as -5 .
  • the ratio of the light emission rate is also 1.4 or less, and sufficient single-sided illumination can not be realized.
  • Comparative example 5 (Comparative example 5) Then, instead of the light transmissive beads 20 consisting of silicon dioxide (SiO 2), hollow silicon dioxide (SiO 2) particles (hereinafter, referred to as hollow particles) except for using, in the same manner as in Comparative Example 1, The single-sided illumination window of Comparative Example 5 was produced, and a simulation of the light emission rate was performed.
  • the center position of the light transmitting bead 20 of this comparative example 1 is +2.
  • the embedding depth of the light transmitting beads 20 at this time is 0 ⁇ m.
  • the results and the ratio of light emission rate are shown in Table 1 and FIG.
  • 21 types of single-sided lighting combined windows embedded in the major surface 12 a of the transparent substrate 12 were produced such that the center position of the above was on the upper surface (one major surface) 12 a of the transparent substrate 12.
  • Examples 11 to 20 are the cases where the refractive index (n1) is 1.4 to 2.3 in 0.1 increments, and therefore, the refractive index difference (n1 ⁇ n2) is 0. This is the case of -0.1 to +0.8 in one step.
  • the refractive index (n1) is in the range of 2.5 to 2.9 in increments of 0.1. Therefore, the refractive index difference (n1 ⁇ n2) is 0.1. This is the case of +1.0 to +1.4 in steps.
  • the refractive index (n1) is in the range of 1.0 to 1.3 in increments of 0.1. Therefore, the refractive index difference (n1 ⁇ n2) is This is the case of -0.5 to -0.2 in 0.1 increments.
  • Comparative Examples 15 and 16 are the cases where the refractive index (n1) is 2.4 and 3 respectively, and therefore the refractive index difference (n1 ⁇ n2) is 0.9 and This is the case of 1.5.
  • a simulation was performed on the manufactured 21 types of single-sided illumination and combined windows, and the light emission rates of the upper surface 12 a and the lower surface 12 b were determined. The results and the ratio of light emission rate are shown in Table 2 and FIG.
  • the refractive index (n1) of the light transmitting bead 20 is 1.6 to 2.3, and accordingly, the refractive index (n1) of the light transmitting bead 20, In Examples 13 to 20 in which the difference (n1 ⁇ n2) from the refractive index (n1) of the transparent substrate 12 is +0.2 to 0.8, the amount of light emitted from the lower surface is 6.83 ⁇ 10 ⁇ 4 or less It can be seen that the amount of light emitted from the upper surface is 1.67 ⁇ 10 -3 or more, and the amount of target light is larger than in Comparative Examples 11 to 16.
  • the refractive index (n1) of the light transmitting bead 20 is 1.4 to 1.8, or 2.5 to 2.9, so the refractive index difference (n1-n2) is -0.1.
  • the contrast is 3.0 or more. It can be seen that the contrast is higher than in Comparative Examples 11-16. From the above, the effects of the present invention are clear.
  • the single-sided lighting double-use window according to the present invention functions as a transparent window in the daytime etc., and can look at the room from outside and from the outside indoors, and at night etc. the illumination light emitted from the light source is directed indoors only. Since the light can be emitted to function as a lighting window, it can be used as a window of a building, a house, a villa or the like for which such a function is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Planar Illumination Modules (AREA)

Abstract

片面照明兼用窓は、2つの主面を有する板状の透明基材と、透明基材の一方の主面に形成された複数の光透過性凸部とを有し、光透過性凸部の屈折率と透明基材との屈折率との差は、-0.2超、かつ+0.8以下、又は1.0以上、かつ1.5未満であり、照明時に、光源から透明基材の端部に入射され、透明基材の内部を全反射して導光された照明光を透明基材の一方の主面から出射させて、透明基材を片面照明として機能させ、非照明時に、透明基材を、光透過窓として機能させる。片面照明兼用窓は、夜間等の照明時には光源から出射され、板状の透明基材の端部に入射し、透明基材内を導光された照明光を片面のみから出射させることができ、昼間等の非照明時には透明窓として機能させることができる。

Description

片面照明兼用窓
 本発明は、夜間等の照明時には光源から出射され、板状の透明基材の端部に入射し、透明基材内を導光された照明光を片面のみから出射し、昼間等の非照明時には透明窓として機能する片面照明兼用窓に関する。
 液晶表示装置等においては、板状の透明基材が導光板として用いられ、光源から出射された照明光を導光板の端部に入射し、導光板内を導光して、導光板の一方の片面から出射させ、拡散板、及び/又はプリズムシートを通して、均一な面状照明光を生成し、液晶パネルに供給するバックライトが用いられている。このようなバックライトにおいては、導光板内を導光された照明光は、導光板の他方の片面から出射するため、導光板の他方の片面側には、反射板を配設して、バックライトの照明光の照明効率を高めることが行われている(特許文献1、2、3、及び非特許文献1参照)。
 例えば、特許文献1は、透過型の液晶表示装置における液晶表示パネルを照明するバックライト装置として使用する面光源装置に用いられる板状の導光体の背面に、光路を変換するための光路変換部が設けられていることを開示している。この面光源装置では、光路変換部によって導光体内を面方向に進行する光の光路を変更して導光体の出射面に向わせ、光を出射面から出射させている。この光路変換部は、球の一部を構成する形状、例えば半球状を有する構造体からなる。なお、光路変換部としては、導光体と同じ材料、樹脂材料、ガラス(ケイ素化合物)、及び光学的に透明な固体材料等を用いることができるとしている。また、導光板の背面には、反射シートが設けられ、光路変換部によって背面側に散乱された光を導光体の内部に戻し、導光体からの光の損失を最小限にとどめている。
 また、特許文献2には、導光板の下面に所定のドットパターンを発生させる分散液晶素子を配設し、分散液晶素子の下方に反射板を配設する液晶表示装置のバックライトを開示している。分散液晶素子は、ドットマトリクスからなる電極を備えており、この電極に、所定の駆動信号を入力することにより、従来の導光板に形成する散乱ドットと同様の散乱機能を有するドットパターンを発生させるように構成されている。
 また、特許文献3には、液晶表示装置を面状に照明する照明装置に用いられる板状の導光板において、導光板の下面に、図示されてはいないが、所定の形状の複数の微小な凹凸を形成することにより、導光板の端面に光源から入射し、導光板の上面及び下面において全反射を繰り返しつつ導光板の内部を進む光の一部が、下面の凹凸により散乱されて上面から取り出されることを開示している。
 非特許文献1においても、厚さ1mmで、曲面にすることができる導光シートが開示されている。この導光シートは、ドットプリントを施したアクリル板からなり、照明時には両面から照明光を出射することができ、照明光を一方の片面のみに出射する際には、他方の片面に反射板を配設することを開示している。
特開2011-054443号公報 特開2017-054827号公報 特開2010-039236号公報 株式会社共栄コーポレーションのウェブページのhttp://www.kyoei-corp.jp/
 ところで、従来は、特許文献1、2、3、及び非特許文献1に開示されているように、バックライト、照明装置、又は導光シート等による平面、又は曲面照明において、導光板の一方の面である光出射面に照明光を出射するために、反対側の背面には反射板を配設することが一般的に行われていた。このようなバックライトにおいては、導光している光を散乱させて導光板から出すためには、微少な凹凸、ビーズ、分散液晶素子によるドットパターン、及びドットプリント等を用いているが、光学原理的に、両側に出射してしまう。このため、導光板の光出射面の反対側の背面には片側反射板を配設することが必須であった。
 このようなバックライトを照明装置として、住宅の天井、壁、及び床といった所に設置する場合には、従来のバックライトをそのまま利用することで良かったが、透明窓に設置すると、屋内から窓の外が見えなくなるという問題があった。
 本発明の目的は、上記従来技術の問題点を解消し、夜間等の照明時には光源から出射され、板状の透明基材の端部に入射し、透明基材内を導光された照明光を片面のみから出射させることができ、昼間等の非照明時には透明窓として機能させることができる片面照明兼用窓を提供することにある。
 上記目的を達成するために、本発明の片面照明兼用窓は、2つの主面を有する板状の透明基材と、透明基材の一方の主面に形成された複数の光透過性凸部とを有し、光透過性凸部の屈折率と透明基材との屈折率との差は、-0.2超、かつ+0.8以下であり、又は1.0以上、かつ1.5未満であり、照明時に、光源から出射され、透明基材の端部に入射され、透明基材の内部を全反射して導光され、複数の光透過性凸部の外側界面に臨界角以下の入射角で入射した照明光を界面において屈折させて透明基材の一方の主面から出射させて、透明基材を片面照明として機能させ、非照明時に、透明基材を、光透過窓として機能させる。
 ここで、光透過性凸部は、透明基材と同一材料によって一方の主面から突出して形成された凸部であることが好ましい。
 また、光透過性凸部は、透明基材と同一材料製のビーズ、透明基材と同一の屈折率を持つ材料製のビーズ、又は屈折率の差分が-0.2超、かつ0未満、又は0超、かつ+0.8以下であり、異なる屈折率を持つ材料製のビーズを透明基材の一方の主面に埋め込むことによって形成された凸部であることが好ましい。
 また、光透過性凸部は、光透過性凸部の屈折率と透明基材との屈折率の差が1.0以上、かつ1.5未満であり、異なる屈折率を持つ材料製のビーズを透明基材の一方の主面に埋め込むことによって形成された凸部であることが好ましい。
 また 透明基材の一方の主面に埋め込まれたビーズの突出高さは、ビーズのサイズの10%以上、かつ90%以下であることが好ましい。
 また、ビーズの突出高さは、ビーズのサイズの半分であることが好ましい。
 また、ビーズのサイズは、0.1μm~1mmであることが好ましい。
 また、透明基材の他方の主面に対する複数の光透過性凸部の面積率は、40%以下であることが好ましい。
 また、透明基材の他方の主面における光透過性凸部のサイズは、0.1μm~1mmであることが好ましい。
 また、透明基材の他方の主面からの光透過性凸部の高さは、0.05μm~0.5mmであることが好ましい。
 また、光透過性凸部の屈折率と透明基材との屈折率との差は、-0.1以上、かつ+0.3以下であることが好ましい。
 本発明によれば、夜間等の照明時には光源から出射され、板状の透明基材の端部に入射し、透明基材内を導光された照明光を片面のみから出射させることができ、昼間等の非照明時には透明窓として機能させることができる。
本発明の一実施形態に係る片面照明兼用窓の一例を模式的に示す断面図である。 図1に示す片面照明兼用窓における1つの光透過性凸部の作用を示す断面図である。 本発明の他の実施形態に係る片面照明兼用窓の一例を模式的に示す断面図である。 本発明の他の実施形態に係る片面照明兼用窓の製造方法の一例の一工程を示す断面図である。 図4に続く片面照明兼用窓の製造方法の次の工程を代表的に1つの反射性凹面を製造する工程として示す断面図である。 図5に続く片面照明兼用窓の製造方法の次の工程を示す断面図である。 図1に示す片面照明兼用窓の製造方法の他の一例の一工程を示す断面図である。 図7に続く片面照明兼用窓の製造方法の次の工程を示す断面図である。 図3に示す片面照明兼用窓の製造方法の一例を示す断面図である。 実施例1の片面照明兼用窓を模式的に示す断面図である。 実施例2の片面照明兼用窓を模式的に示す断面図である。 比較例1の片面照明兼用窓を模式的に示す断面図である。 比較例2の片面照明兼用窓を模式的に示す断面図である。 比較例3の片面照明兼用窓を模式的に示す断面図である。 実施例1~2、及び比較例1~3の片面照明兼用窓の上面、及び下面の光出射率、及び光出射率の比率のグラフである。 実施例3~4、及び比較例4~6の片面照明兼用窓の上面、及び下面の光出射率、及び光出射率の比率のグラフである。 比較例7~11の片面照明兼用窓の上面、及び下面の光出射率、及び光出射率の比率のグラフである。 屈折率の異なる光透過性ビーズを用いた21種類の片面照明兼用窓の上面、及び下面の光出射率、及び光出射率の比率のグラフである。
 以下、本発明に係る片面照明兼用窓について図面に示す好適実施形態に基づいて詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値、及び上限値として含む範囲を意味する。
[片面照明兼用窓]
 本発明の片面照明兼用窓は、2つの主面を有する板状の透明基材と、透明基材の一方の主面に形成された複数の光透過性凸部とを有し、光透過性凸部の屈折率と透明基材との屈折率との差は、-0.2以上、かつ+0.8以下であり、又は1.0以上であり、照明時に、光源から出射され、透明基材の端部に入射され、透明基材の内部を全反射して導光され、複数の光透過性凸部の外側界面に臨界角以下の入射角で入射した照明光を界面において屈折させて透明基材の一方の主面から出射させて、透明基材を片面照明として機能させ、非照明時に、透明基材を、光透過窓として機能させる。
 本発明の片面照明兼用窓の構成について、図1~図2を用いて説明する。
 図1は、本発明の好適な一実施形態に係る片面照明兼用窓の一例を模式的に示す断面図である。
 図1に示すように、本発明の片面照明兼用窓10は、平行な2つの主面12a、及び12bを有する板状の透明基材12と、透明基材12の一方の主面12aのみに形成された複数の光透過性(透明)凸部14と、透明基材12の端部(側面)12cに配設された光源16と、光源16を覆うように設けられるリフレクタ18とを有する。なお、光源16は、図示しないが、電源に接続される配線と、電源との接続をオンオフし、照明時と非照明時とを切り替えるスイッチとを有している。
 透明基材12は、夜間等の照明時には、光源16を点灯し、光源16から出射され、端部12cに入射された照明光を、2つの主面12a、及び12bにおいて全反射させて、透明基材12の内部を導光する導光板として機能するものである。
 また、透明基材12は、光源16が消灯された昼間等の非照明時には、屋内から屋外、及び屋外から屋内に光を透過させる透明な光透過窓(即ち、透明窓)として機能するものである。
 ここで、透明基材12の主面12a、及び12bの形状は、特に制限的ではなく、透明窓として用いられるものであれば、正多角形、多角形、円形、楕円形などいかなる形状であっても良い。なお、透明基材12の主面12a、及び12bの形状は、光源を配置するので、直線状の辺を有することが好ましく、長方形等の矩形、及び正方形等であることがより好ましい。
 透明基材12の端部12cは、透明基材12内を導光する照明光を出射する光源16を配設するためのものであり、光源16を配設できれば、板状の透明基材12の側面のどこでも良い。透明基材12の端部12cとしては、複数の点状光源、又は線状光源を配置し易い側面であることが好ましく、2つの主面12a、及び12bの直線状の辺に垂直な側面であることがより好ましい。
 透明基材12の材料は、特に制限的ではなく、透明板状になるものなら何でも良い。
 透明基材12の材料としては、例えば、塩化ビニル、アクリル、ポリカーボネート、PET(ポリエチレンテレフタレート)、ポリエチレン、ポリプロピレン、ポリスチレン、ABS(アクリロニトリル・ブタジエン・スチレン共重合体)、ポリアミド、四フッ化エチレン、EVA(エチレン酢酸ビニルコポリマー)、フェノール、メラミン、ポリエステル、エポキシ、及びTAC(トリアセチルセルロース)等の樹脂、並びにガラス、及びニ酸化ケイ素(SiO)等の透明無機材料を挙げることができる。好ましくは、塩化ビニル、アクリル、ポリカーボネート、PET、TAC、及びガラス等を挙げることができる。
 複数の光透過性凸部14は、照明時に、光源16から出射され、透明基材12の端部12cに入射され、透明基材12の内部を全反射して導光されて、光透過性凸部14内に入射した照明光をそのまま屈折させて光透過性凸部14の界面から外側(一方の主面12aの側)に出射する。即ち、透明基材12の内部において、他方の主面12bの界面で臨界角以上の角度で反射され、透明基材12内から光透過性凸部14に入射し、光透過性凸部14の界面に臨界角以下の角度で入射する照明光を外側(一方の主面12a側)に出射する。その結果、複数の光透過性凸部14は、透明基材12を片面照明として機能させるものである。
 このためには、光透過性凸部14の屈折率と透明基材12の屈折率との差が、-0.2以上、かつ+0.8以下であるか、又は1.0以上である必要がある。
 即ち、光透過性凸部14の屈折率をn1、透明基材12の屈折率をn2とする時、光透過性凸部14の屈折率n1と透明基材12の屈折率をn2との屈折率の差(n1-n2)は、下記式(1)を満たす必要がある。
   -0.2<n1-n2≦+0.8、又は1.0≦n1-n2<1.5  …(1)
 また、屈折率の差n1-n2は、-0.1以上、かつ+0.3以下であること、即ち下記式(2)を満足することが好ましい。
   -0.1≦n1-n2≦+0.3、又は1.0≦n1-n2≦1.4…(2)
 更に、屈折率の差n1-n2は、-0.05以上、かつ+0.1以下であること、即ち下記式(3)を満足することがより好ましい。
   -0.05≦n1-n2≦+0.1       …(3)
 ここで、屈折率の差(n1-n2)が-0.2以下であると、透明基材12の他方の主面12bから出射される照明光の光量が多くなり、透明基材12の一方の主面12aから出射される照明光の光量が少なくなるばかりか、コントラスト(例えば、主面12a、及び12bから出射される照明光の光量比)も低くなるからである。
 また、屈折率の差(n1-n2)が、0.8超、かつ1.0未満(0.8<n1-n2<1.0)、又は1.5以上であると、透明基材12の一方の主面12aから出射される照明光の光量が少なくなるばかりか、コントラスト(例えば、主面12a、及び12bから出射される照明光の光量比)も低くなるからである。
 換言すれば、光透過性凸部14は、透明基材12と同一材料、透明基材12と同一の屈折率を含む、光透過性凸部14の屈折率と透明基材12の屈折率との差が、-0.2超、かつ+0.8以下である、屈折率の差がない(屈折率の差=0)、又は小さい材料、もしくは屈折率との差が、1.0以上、かつ1.5未満である屈折率の差が大きい材料からなる必要がある。
 このような光透過性凸部14の材料は、基本的に、上述した透明基材12に用いられる材料は全て用いることができる。この他、光透過性凸部14の材料としては、ポリカーボネート、アクリル、塩化ビニル、ポリエチレンテレフタレート(PET)、ポリプロピレン、及びガラス等が望ましい。
 ここで、光透過性凸部14は、透明基材12と同一材料によって一方の主面から突出して形成された凸部であることが好ましい。
 また、詳細は後述するが、光透過性凸部14は、透明基材12と同一材料製の光透過性ビーズを透明基材12の一方の主面12aに埋め込むことによって形成された凸部であることが好ましい。又は、光透過性凸部14は、透明基材12と同一の屈折率を持つ材料製の光透過性ビーズを透明基材12の一方の主面12aに埋め込むことによって形成された凸部であることが好ましい。又は、光透過性凸部14は、屈折率の差分が-0.2以上、かつ0未満、又は0超、かつ+0.8以下で小さい、異なる屈折率を持つ材料製の光透過性ビーズを透明基材12の一方の主面12aに埋め込むことによって形成された凸部であることが好ましい。又は、光透過性凸部14は、屈折率の差分が1.0以上で大きい、異なる屈折率を持つ材料製の光透過性ビーズを透明基材12の一方の主面12aに埋め込むことによって形成された凸部であることが好ましい。このように、光透過性ビーズの屈折率を透明基材12、又は透明基材12のバインダの屈折率と大きな差があるものとすることで、反射性を高めることも可能である。
 なお、光透過性ビーズとバインダを用いる代わりに、上記材料製のフィルムの表面に凹凸を形成して複数の光透過性凸部14を持つフィルムを作製し、作製されたフィルムを、窓ガラス等の透明基材12の外側、及び/又は内側に貼っても良い。このとき、同時に窓ガラス等の透明基材12の内部に導光されるよう、透明基材12の端部12cにLED等の光源16を設置させる。
 また、透明基材12として用いられる複数枚のガラスを使い、その内側に上記フィルムを貼ることも好ましい。このフィルムが貼られた1枚以上のガラスを透明基材12として用いても良いし、内側にフィルムが貼られた複数枚のガラス全体を透明基材として用いても良い。上述したように、本発明に用いることができるフィルムは、表面に凹凸が形成されており、複数の光透過性凸部14を持っている。このフィルムを複数枚のガラスの内側に貼ることにより、光透過性凸部14を持つフィルムに汚れがつくことを防止できる。また、凹凸による複数の光透過性凸部14を持つフィルムの表面を拭く必要がないので、フィルムの表面を拭くことにより、凹凸による複数の光透過性凸部14がとれてしまうことも防止できる。
 また、光透過性凸部14は、透明基材12の主面12a、又は透明基材12の主面12a上に形成された透明材料層の一方の面にレーザ等を用いて微細凹凸を形成することにより形成しても良い。また、透明基材12の主面12a、又は透明基材12の主面12a上に形成された透明材料層にフォトレジストを塗布し、パターニング後、エッチングすることによって、表面に微細凹凸をつけて、光透過性凸部14を形成しても良い。
 また、光透過性凸部14は、後述するように、光透過性ビーズを透明基材12方の主面12aに埋め込むことによって形成しても良い。
 本発明の片面照明兼用窓10においては、複数の光透過性凸部14は、透明基材12の主面12a、及び12bに入射する光を散乱するので、透明基材12の主面12aに対して、複数の光透過性凸部14を設置する面積を狭くすることによって、実質的に透明窓としての機能を持つことができる。
 本発明の片面照明兼用窓10を実質的に透明窓として機能させるためには、複数の光透過性凸部14の面積率は、光源16からの照明光の光が十分に出射されれば良いので、50%以下である必要がある。光透過性凸部14の面積率は、40%以下であることが好ましく、より好ましくは20%以下、更に好ましくは10%以下である。
 光透過性凸部14の面積率が50%以下である必要がある理由は、凸部が多すぎて面積率が50%を超えると、光源近くで光が多く出射し、全体を均一に光らせることが難しくなるからである。
 本発明の片面照明兼用窓10を実質的に透明窓として機能させるためには、透明基材12の光透過領域は、50%以上である必要がある。透明基材12の光透過領域は、60%以上であることが好ましく、より好ましくは80%以上、更に好ましくは90%以上である。
 透明基材12の光透過領域が50%以上である必要がある理由は、窓越しに、遠方風景が良く見える効果があるからである。
 透明基材12の一方の主面12aに形成される光透過性凸部14の形状は、特に制限的ではない。光透過性凸部14の形状は、一方の主面12a側で最も広く、外側の先端部に行ってもより拡がることが無いようにする必要はある。この場合に、光透過性凸部14の形状は、外側の先端部に行くにしたがって細くなる形状であることが好ましい。例えば、半球形状、半円弧より小さい断面円弧状の部分球状、三角錐等の角錐形状、円錐形状、溝形状、例えば、断面三角形状の溝形状、断面半円筒状の溝形状、半円弧より小さい断面円弧状の溝形状等であることが好ましいが、立方体、直方体、断面矩形状の溝形状等であっても良い。
 光透過性凸部14のサイズは、0.1μm~1mmであることが好ましく、1μm~100μmであることがより好ましく、3μm~50μmであることが更に好ましい。
 光透過性凸部14のサイズが0.1μm~1mmであることが好ましい理由は、大きすぎて1mmを超えると、窓越しに風景が見難くなるなど、窓としての機能が低下するからである。一方、小さすぎて0.1μm未満になると、光を散乱させる効果がなくなり、照明としての機能を果たし難くなるからである。
 また、透明基材12の一方の主面12aからの光透過性凸部14の高さは、0.05μm~0.5mmであることが好ましく、0.5μm~50μmであることがより好ましく、1.5μm~25μmであることが更に好ましい。
 光透過性凸部14の深さが0.05μm~0.5mmであることが好ましい理由は、大きすぎて0.5mmを超えると、窓越しに風景が見難くなるなど、窓としての機能が低下するからである。一方、小さすぎて0.05μm未満になると、光を散乱させる効果がなくなり、照明としての機能を果たし難くなるからである。
 光源16は、複数の点状光源、又は線状光源であることが好ましい。光源16として、従来公知の面状照明装置に用いられる従来公知の光源を用いることができるが、例えば、点状光源である複数のLED(Light Emitting Diode:発光ダイオード)を一列に配置して構成しても良い。また、光源16として、LD(Laser Diode:レーザダイオード)等の他の点状光源を使用してもよいし、冷陰極管及び熱陰極管等の線状光源を使用してもよい。
 リフレクタ18は、光源16から出射された照明光を効率よく、透明基材12の端部12cに入射させるためのものであり、内面が光反射性を有しているものである。リフレクタ18としては、従来公知の面状照明装置に用いられる従来公知のリフレクタを用いれば良い。
 本発明の片面照明兼用窓の作用について説明する。図1に示す片面照明兼用窓10では、複数の光透過性凸部があるが、複数の光透過性凸部の光学的な作用は基本的に同一であるので、以下では、1つの光透過性凸部のみを取り上げ、その光学的な作用について説明する。
 図2は、図1に示す片面照明兼用窓における1つの光透過性凸部の作用を示す断面図である。
 図2に示す片面照明兼用窓10のように、光源16から出射され、透明基材12の端部12cから入射した照明光L1、及びL2の内、照明光L1は、まず、透明基材12の主面12aで、次いで、主面12bで全反射されて、光透過性凸部14に入射する。一方、照明光L2は、透明基材12の主面12bで全反射され、直接、光透過性凸部14に入射する。光透過性凸部14に入射した照明光L1、及びL2は、それぞれ主面12aに対して傾斜した光透過性凸部14の界面に臨界角以下の入射角で入射し、所定の屈折角で屈折して、一方の主面12aから出射する。
 こうして、透明基材12の主面12aのみに形成された光透過性凸部14は、透明基材12を片面照明として機能させることができる。
 これに対し、上述した従来の面状照明装置のように、導光板に微細凹凸が設けられている場合、光源から出射され、導光板の端部から入射し、導光板の2つの主面でそれぞれ全反射された照明光は、導光板に設けられた微細凹凸に入射し、そのまま屈折して微細凹凸から出射したり、微細凹凸で散乱され、2つの主面に入射する。この時、主面への入射角が臨界角以上であれば、照明光は全反射され、臨界角以下であれば、主面から出射する。
 このように、導光板内に封じ込められた照明光を、外側に出射するには、光の角度を曲げれば良い。その為、従来は、上述したように、微細凹部のほか、微細凸部、又はビーズを付けることで実現していた。微細凹部、又は微細凸部に光が衝突したとき、臨界角以下の角度になっていると、光は外に出射する。臨界角以上の場合は、再度内部に反射するが、その後、反対面にぶつかったときに臨界角以下になっていれば、光は外に出射する。このように、微細凹部、微細凸部、又はビーズを導光板の片側の面に設けただけでは、結局、両側の面から照明光が出ることとなる。
 このような導光板では、片面照明を実現できない。
 このため、導光板内を導光される照明光を片側の面だけに出射させるには、裏面に反射層をつけるか、反射板を配置する必要があった。
 しかしながら、これらの形態では、非照明時においても、反射層、又は反射板によって光は透過しないので、透明窓として機能させることができず、窓として設置することは不可能である。
 これに対し、本発明の片面照明兼用窓10では、透明基材12の一方の主面12aに、透明基材12との屈折率の差が所定範囲内の近い屈折率を持つ複数の光透過性凸部14、又は所定値以上の屈折率を持つ複数の光透過性凸部14を形成するので、照明時に片面照射を実現することができ、非照明時に透明基材12を透明窓として機能させることができる。
 本発明の一実施形態の片面照明兼用窓10は以上のように構成される。
 次に、図1に示す片面照明兼用窓10は、透明基材12の一方の主面12aのみに複数の光透過性凸部14を形成しているが、本発明はこれに限定されない。例えば、透明基材12の一方の主面12aのみに、光透過性(透明)材料からなる複数の光透過性(透明)ビーズを埋め込んで、複数の光透過性凸部14を形成しても良い。
 図3に示すように、本発明の片面照明兼用窓10Aは、板状の透明基材12と、透明基材12の一方の主面12aのみに埋め込まれ、複数の光透過性凸部22を形成する複数の光透過性ビーズ20と、透明基材12の端部12cに配設された光源16と、リフレクタ18とを有する。
 光透過性ビーズ20は、透明基材12の主面12aに埋め込まれて光透過性凸部22を形成するものであれば、特に制限的ではない。
 ここで、複数の光透過性凸部22は、透明基材12の主面12aに埋め込まれた光透過性ビーズ20の内、主面12aから突出したビーズ表面部分によって形成される。なお、本発明の片面照明兼用窓10Aの複数の光透過性凸部22は、本発明の片面照明兼用窓10の複数の光透過性凸部14と、同様の機能を有するので、その同様な機能の説明は省略する。
 照明時には、光源16から出射され、透明基材12の端部12cに入射され、透明基材12の内部を全反射して導光された照明光は、透明基材12の一方の主面12aに埋め込まれた複数の光透過性ビーズ20の埋め込まれたビーズ表面部分から光透過性ビーズ20に入射する。この時、各光透過性ビーズ20において、光透過性ビーズ20と透明基材12との屈折率が同じであれば、照明光は、入射角と同じ屈折角でそのまま入射する。一方、屈折率に差があれば、照明光は、入射角に対して屈折率の違いに応じた屈折角で屈折して光透過性ビーズ20に入射する。その後、照明光は、光透過性ビーズ20内を進行し、主面12aから突出したビーズ表面部分である光透過性凸部22から、光透過性ビーズ20と外部の媒質(例えば、空気)との屈折率の違いに応じて屈折して出射する。
 ところで、透明基材12の内部を全反射して導光された照明光のごく一部が、透明基材12の一方の主面12aに埋め込まれた複数の光透過性ビーズ20の埋め込まれたビーズ表面部分から透明基材12の他方の主面12b側に向けて反射され、主面12bから出射することもある。
 また、光透過性ビーズ20内に入射した照明光は、光透過性凸部22のビーズ表面部分で反射され、光透過性ビーズ20の埋め込まれたビーズ表面部分からそのまま、もしくは光透過性ビーズ20内においてビーズ表面部分間で反射を繰り返し、透明基材12の他方の主面12b側に向けて反射され、主面12bから出射することもある。もちろん、照明光は、光透過性ビーズ20内においてビーズ表面部分間で反射を繰り返す場合には、光透過性凸部22のビーズ表面部分から出射することもある。
 しかしながら、本発明の片面照明兼用窓10においては、透明基材12の一方の主面12aの側にある光透過性ビーズ20のビーズ表面部分の光透過性凸部22から出射する照明光に対して、透明基材12の他方の主面12bから出射する照明光の割合は、極めて小さく、片面照明としては無視できるほど小さい。
 こうして、本発明の片面照明兼用窓10においては、複数の光透過性凸部22は、透明基材12を片面照明として機能させる。
 なお、光透過性ビーズ20を透明基材12の主面12aに埋め込む方法としては、詳細は後述するが、光透過性ビーズ20と、透明基材12と同じ、又は屈折率が近い透明材料からなるバインダとからなる塗布液を透明基材の板状の原基材の表面上に塗布し、形成されるバインダ層の厚さをビーズ20の直径より小さくなるようにする方法を挙げることができる。ここで、透明基材12は、原基材と、原基材上に形成されたバインダ層とからなり、バインダ層の表面が透明基材12の主面12aを構成する。こうして、光透過性ビーズ20を、バインダ層で保持して、透明基材12の主面12aに埋め込むことができる。
 このようにしてバインダ層に埋め込まれた光透過性ビーズ20は、バインダ層表面(透明基材12の主面12a)から突出する。この光透過性ビーズ20の突出高さは、光透過性ビーズ20のサイズ(平均直径)から光透過性ビーズ20の埋め込み深さを差し引いたものである。
 光透過性ビーズ20の突出高さは、光透過性ビーズ20のサイズ(平均直径)の90%以下、かつ10%以上であることが好ましい。光透過性ビーズ20の埋め込み深さに換算すると、埋め込み深さは、光透過性ビーズ20のサイズ(平均直径)の10%以上、かつ90%以下であることが好ましい。また、光透過性ビーズ20の突出高さは、光透過性ビーズ20のサイズ(平均直径)の半分(50%)以下、かつ10%以上であることがより好ましく、半分(50%)であることが最も好ましい。
 その理由は、光透過性ビーズ20の突出高さが、光透過性ビーズ20のサイズの10%未満になると、光透過性ビーズ20と透明基材12の屈折率が近い場合には、光透過性ビーズ20に入射した照明光が、透明基材12の主面12a側の光透過性凸部22から出射するだけでなく、光透過性ビーズ20の埋め込まれたビーズ表面から反射され、主面12bからも出射するようになり、片面照明とならなくなるからである。又は、光透過性ビーズ20と透明基材12の屈折率が離れている場合には、主面12bから出射する照明光の光量は非常に少ないが、光透過性ビーズ20の光透過性凸部22から主面12a側に出射する照明光の光量が少なくなり過ぎるからである。
 一方、光透過性ビーズ20の突出高さが光透過性ビーズ20のサイズの10%超であると、主面12bから出射する照明光の光量は非常に少ないが、光透過性ビーズ20の光透過性凸部22から主面12a側に出射する照明光の光量が少なくなり過ぎるからである。
 なお、バインダの材料としては、アクリル、ウレタン、グリオキザール、フェノール、ブタジエン、及びメタクリル等の樹脂を挙げることができるが、この他、バインダとして一般的に用いられるものであればいかなるものでも良い。
 なお、バインダの厚さは、光透過性ビーズ20の平均直径の0.1~200%、好ましくは1~100%、更に好ましくは20~80%である。バインダの厚さが薄すぎるとビーズ20を保持できなくなる。厚すぎると、光透過性ビーズ20の頭がバインダから出なくなる。
 その理由は、バインダの厚さが、0.1%未満であると、バインダのビーズ固定強度が低くなり、ビーズ脱落が頻発するからである。
 光透過性ビーズ20の材料としては、透明基材12と同じ材料、透明基材12と同一の屈折率を含む、透明基材12との屈折率の差(n1-n2)が-0.2以上、かつ+0.8以下である屈折率の差の小さい材料、又は屈折率の差(n1-n2)が1.0以上である屈折率の差の大きい材料からなる必要がある。
 光透過性ビーズ20の材料としては、透明基材12として用いられる材料であれば、全て良く、特に制限的ではない。光透過性ビーズ20の材料としては、例えば、ポリメタクリル酸メチル、ポリスチレン、メタクリル酸メチル、ポリメタクリル酸メチル、ポリアクリル酸エステル、ポリメチルメタクリル酸メチル、ガラス、及び二酸化ケイ素(SiO)等であっても良い。
 本発明の片面照明兼用窓10Aにおいては、透明基材12の一方の主面12aに光透過性ビーズ20を埋め込み、光透過性凸部22を形成することにより、照明時に片面照射を実現することができ、非照明時に透明基材12を透明窓として機能させることができる。
 本発明の一実施形態の片面照明兼用窓10Aは以上のように構成される。
[片面照明兼用窓の製造方法]
 次に、本発明の片面照明兼用窓の製造方法について説明する。
 片面照明兼用窓の製造方法としては、以下の方法がある。
 透明基材に凸部を賦型し、光透過性凸部を形成する。
 例えば、図4~図6を参照して、本発明の片面照明兼用窓の製造方法の一実施形態を説明する。
 図4に示すように、透明基材12の片側の主面12aにマスク材料を塗布し、マスク層32を形成した片側マスク層板30を準備する。
 ここで、マスク材料としては、有機溶剤に溶解するポリマーなどの有機物であることが好ましい。例えば、塩化ビニル、塩化ビニリデン、ポリビニルアルコール、ポリ酢酸ビニル、ポリスチレン、ABS(アクリロニトリル・ブタジエン・スチレン共重合体)、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリアミド、ポリアセタール、メタクリル、ポリカーボネート、テフロン(登録商標)、酢酸セルロース、塩素化ポリエーテル、フェノール、ユリア、メラミン、フラン、キシレン、エポキシ、不飽和ポリエステル、及びジアリルフタレート等を挙げることができる。これらの中では、好ましくは、アクリル、酢酸セルロース、ポリアセタール、ポリスチレン、及び塩化ビニルである。
 次に、図5に示すように、準備した片側マスク層板30にマスク層32の側から図示しないレーザを照射して、マスク層32及び透明基材12の片側の主面12aの表面を部分的に削り、微細凹凸を形成し、マスク層32を有する複数の凸部34を形成する。凸部34は、マスク層32、及び透明基材12の光透過性凸部36からなる。
 最後に、図6に示すように、複数の凸部34のマスク層32を除去して、複数の光透過性凸部36を形成する。
 こうして、図6に示す本発明の片面照明兼用窓10Bを製造することができる。
 ここで、マスク層32を除去するためには、マスク層32を形成しているマスク材料を有機溶媒等によって溶解すればよい。
 マスク材料を溶解する有機溶媒としては、ブタノール、プロパノール、ジメチルホルムアミド、アセトニトリル、アセトン、エタノール、ギ酸、クロロホルム、ジエチルエーテル、ジメチルスルホキシド、テトラヒドロフラン、トルエン、ヘキサン、ベンゼン、メタノール、塩化メチレン、酢酸、酢酸エチル、水、及びフッ素溶剤等を挙げることができる。
 次に、図7~図8を参照して、本発明の片面照明兼用窓の製造方法の他の実施形態を説明する。
 図7に示すように、平板状の透明基材12を準備する。
 次に、図8に示すように、準備した透明基材12に主面12aの側から図示しないレーザを、焦点深度を調整しながら照射して、複数の光透過性凸部14を形成する。
 こうして、図1に示す本発明の片面照明兼用窓10を製造することができる。
 なお、図6に示す本発明の片面照明兼用窓10Bの台形状の複数の光透過性凸部36に図示しないレーザを、焦点深度を調整しながら照射して、半球状の複数の光透過性凸部14を形成しても良い。
 なお、上記の2つの実施形態において、透明基材12の片側の主面12a、又はマスク層32の上にフォトレジストを塗布し、フォトレジストをパターニング後、エッチングすることによって、表面に微細凹凸をつけて、複数の光透過性凸部14、及び複数の光透過性凸部36を形成しても良い。
 この際、透明基材12の主面12a上のフォトレジストの層をマスク層の代わりに用いても良い。
 また、図9を参照して本発明の片面照明兼用窓の製造方法の他の実施形態を説明する。
 図9に示すように、光透過性ビーズ20を準備する。準備された光透過性ビーズ20とバインダとを混合した塗布液を製造し、製造された塗布液を、透明基材12を構成する板状の原基材40の片側の表面上に塗布する。こうして、原基材40の表面上にバインダ層42を形成し、バインダ層42の厚さが光透過性ビーズ20の直径より小さくなるようにする。
 ここで、透明基材12は、原基材40と、原基材40上に形成されたバインダ層42とからなり、バインダ層42の表面が透明基材12の主面12aを構成する。こうして、光透過性ビーズ20を、バインダ層42で保持して、透明基材12の主面12aに埋め込むことができ、光透過性ビーズ20の一部を、透明基材12の主面12a(バインダ層42の表面)から突出させることができる。
 光透過性ビーズ20の突出高さは、光透過性ビーズ20のサイズ(平均直径)の90%以下、かつ10%以上であることが好ましいのは、上述した通りである。
 以下に、シミュレーションによる実施例に基づいて本発明を更に詳細に説明する。以下のシミュレーション実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
(光透過性ビーズの埋め込み深さの異なる片面照明兼用窓のシミュレーション例)
(実施例1)
 図12に示すように、長さ100mm×幅100mm×厚さ20μmの屈折率(n2=)1.5のアクリルからなる透明基材12の中央に、直径4μmの屈折率(n1=)2.5のニ酸化ケイ素(TiO)からなる1個の光透過性ビーズ20を、光透過性ビーズ20の中心位置が透明基材12の上面(一方の主面)12a上に来るように、透明基材12の主面12aに埋め込んだ実施例1の片面照明兼用窓を作製した。この実施例1の光透過性ビーズ20の中心位置を0とした。この時の光透過性ビーズ20の埋め込み深さは、2μmであった。透明基材12と光透過性ビーズ20との屈折率の差(n1-n2)は、1.0(n1-n2=1.0)であった。
 実施例1の片面照明兼用窓の透明基材の12の1つの側面からなる端部12cに光源16から照明光を照射した時の透明基材12の上面(一方の主面)12a、及び下面(他方の主面)12bから射出される光出射率をシミュレーションによって求めた。
 このシミュレーションは、ZEMAX社の光線追跡ソフトウェアZEMAXに基づいて行った。
 その結果を表1及び図15に示す。なお、表1及び図15には、上面(一方の主面)12a、下面(他方の主面)12b、及び両者の光出射率の比率も示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 次に、図11に示すように、光透過性ビーズ20の中心位置が透明基材12の上面(一方の主面)12aから1μm外側に来るように、光透過性ビーズ20を透明基材12の上面(主面)12aに埋め込んだ以外は、実施例1と同様にして、実施例2の片面照明兼用窓を作製した。作製した実施例2についてシミュレーションを行い、上面12a、及び下面(他方の主面)12bの光出射率を求めた。この実施例2の光透過性ビーズ20の中心位置を+1とした。この時の光透過性ビーズ20の埋め込み深さは、1μmであった。
 その結果、及び光出射率の比率を表1、及び図15に示す。
(実施例3)
 次に、図13に示すように、光透過性ビーズ20の中心位置が透明基材12の上面(主面)12aから1μm内側に来るように、光透過性ビーズ20を透明基材12の主面12aに埋め込んだ以外は、実施例1と同様にして、実施例3の片面照明兼用窓を作製した。作製した実施例3についてシミュレーションを行い、上面12a、及び下面(主面)12bの光出射率を求めた。この比較例2の光透過性ビーズ20の中心位置を-1とした。この時の光透過性ビーズ20の埋め込み深さは、3μmであった。
 その結果、及び光出射率の比率を表1、及び図15に示す。
(比較例1)
 次に、図10に示すように、光透過性ビーズ20の中心位置が透明基材12の上面12aから2μm外側に来るように、光透過性ビーズ20を透明基材12の主面12aに載置した以外は、実施例1と同様にして、比較例1の片面照明兼用窓を作製した。作製した比較例1についてシミュレーションを行い、上面12a、及び下面12bの光出射率を求めた。この比較例1の光透過性ビーズ20の中心位置を+2とした。この時の光透過性ビーズ20の埋め込み深さは、0μmである。
 その結果、及び光出射率の比率を表1、及び図15に示す。
(比較例2)
 次に、図14に示すように、光透過性ビーズ20の中心位置が透明基材12の上面(主面)12aから2μm内側に来るように、光透過性ビーズ20を透明基材12の主面12aに完全に埋め込んだ以外は、実施例1と同様にして、比較例3の片面照明兼用窓を作製した。作製した比較例2についてシミュレーションを行い、上面12a、及び下面12bの光出射率を求めた。この比較例3の光透過性ビーズ20の中心位置を-2とした。この時の光透過性ビーズ20の埋め込み深さは、4μmであった。
 その結果、及び光出射率の比率を表1、及び図15に示す。
 表1及び図15から明らかなように、実施例1、2、及び3では、上面(一方の主面)12aの光出射率は、8.0×10-4以上である。本書では、光出射率は、光源出射量1に対する値である。これに対し、下面(他方の主面)12bの光出射率は、5.9×10-4以下である。その結果、光出射率の比率も1.35以上であり、片面照明が実現できていることが分かる。
 なお、透明基材12は、当然透明であるので、非照明時透明窓として機能するのは当然である。
 これに対し、比較例1では、上面12aも、下面12bも、その光出射率は、0であり、片面照明が実現できていないことが分かる。
 また、比較例2では、上面(一方の主面)12aの光出射率は、1.1×10-3以上であり高い。しかしながら、下面12bの光出射率も、4.9×10-4以上と高い。その結果、光出射率の比率も3以下であり、十分なる片面照明が実現できていないことが分かる。
(実施例4)
 ニ酸化ケイ素(TiO)からなる光透過性ビーズ20の代わりに、屈折率(n1=)1.5のニ酸化ケイ素(TiO)からなる1個の光透過性ビーズ20を用いた以外は、実施例1と同様にして、実施例4の片面照明兼用窓を作製した。実施例4についてシミュレーションを行い、上面12a、及び下面12bの光出射率を求めた。透明基材12と光透過性ビーズ20との屈折率の差(n1-n2)は、0(n1-n2=0)であった。即ち、透明基材12と光透過性ビーズ20とは、同じ屈折率であった。光透過性ビーズ20の中心位置は、0であった。光透過性ビーズ20の埋め込み深さは、2μmであった。
 その結果、及び光出射率の比率を表1、及び図16に示す。
(実施例5~6、比較例3~4)
 次に、ニ酸化ケイ素(TiO)からなる光透過性ビーズ20の代わりに、屈折率(n1=)1.5のニ酸化ケイ素(SiO)からなる1個の光透過性ビーズ20を用いた以外は、それぞれ、実施例2~3、及び比較例1~2と同様にして、片面照明兼用窓を実施例5~6、及び比較例3~4として作製した。実施例5~6、及び比較例3~4のそれぞれについて、シミュレーションを行い、上面12a、及び下面12bの光出射率を求めた。実施例5~6、及び比較例3~4のそれぞれの中心位置は、+1、-1、+2、及び-2であった。実施例5~6、及び比較例3~4のそれぞれの光透過性ビーズ20の埋め込み深さは、1μm、3μm、0μm、及び4μmであった。
 それらの光出射率の結果、及び光出射率の比率を表1、及び図16に示す。
 表1及び図16から明らかなように、実施例4、5、及び6では、上面(一方の主面)12aの光出射率は、7.1×10-4以上である。これに対し、下面(他方の主面)12bの光出射率は、3.1×10-4以下である。その結果、光出射率の比率も2.3以上であり、片面照明が実現できていることが分かる。
 なお、透明基材12は、当然透明であるので、非照明時透明窓として機能するのは当然である。
 これに対し、比較例3では、上面(一方の主面)12aも、下面(他方の主面)12bも、その光出射率は、0であり、片面照明が実現できていないことが分かる。
 また、比較例4では、上面(一方の主面)12aの光出射率は、1.4×10-5であり、下面(他方の主面)12bの光出射率も、1.0×10-5と同様に低い。その結果、光出射率の比率も1.4以下であり、十分なる片面照明が実現できていないことが分かる。
(比較例5)
 次に、ニ酸化ケイ素(SiO)からなる光透過性ビーズ20の代わりに、中空二酸化ケイ素(SiO)粒子(以下、中空粒子という)を用いた以外は、比較例1と同様にして、比較例5の片面照明兼用窓を作製し、光出射率のシミュレーションを行った。この比較例1の光透過性ビーズ20の中心位置を+2とした。この時の光透過性ビーズ20の埋め込み深さは、0μmである。
 その結果、及び光出射率の比率を表1、及び図17に示す。
(比較例6~9)
 次に、中空粒子の中心位置を+1(上面12aの外側に1μm)、0((上面12a上0μm))、-1((上面12aの内側に1μm)、-2(上面12aの内側に2μm)にした以外は、比較例5と同様にして、比較例6~9の片面照明兼用窓を作製し、光出射率のシミュレーションを行った。比較例6~9の中空粒子の埋め込み深さは、それぞれ1μm、2μm、3μm、及び4μmであった。
 その結果、及び光出射率の比率を表1、及び図17に示す。
 表1、及び図17から明らかなように、比較例5では、上面(一方の主面)12aも、下面(他方の主面)12bも、その光出射率は、0であり、片面照明が実現できていないことが分かる。
 また、比較例6~9では、上面(一方の主面)12aと下面(他方の主面)12bの光出射率は、略同じであり、片面照明が全く実現できていないことが分かる。
 即ち、中空粒子では、片面照明が実現できないことが分かる。
 以上から、本発明の効果は明らかである。
(光透過性ビーズの屈折率の異なる片面照明兼用窓のシミュレーション例)
(実施例11~25、比較例11~16)
 次に、屈折率(n1=)が、1.0から0.1刻みで3.0までの21種類の直径4μmの1個の光透過性ビーズ20を準備し、図12に示すように、長さ100mm×幅100mm×厚さ20μmの屈折率(n2=)1.5のアクリル製透明基材12の中央に、それぞれ1種類の1個の光透過性ビーズ20を、光透過性ビーズ20の中心位置が透明基材12の上面(一方の主面)12a上に来るように、透明基材12の主面12aに埋め込んだ21種類の片面照明兼用窓を作製した。透明基材12と光透過性ビーズ20との屈折率の差(n1-n2)は、-0.5~+1.5(n1-n2=-0.5~+1.5)であった。
 ここで、実施例11~20は、それぞれ、屈折率(n1)が、0.1刻みで1.4~2.3の場合であり、したがって、屈折率の差(n1-n2)が0.1刻みでー0.1~+0.8の場合である。また、実施例21~25は、それぞれ、屈折率(n1)が、0.1刻みで2.5~2.9の場合であり、したがって、屈折率の差(n1-n2)が0.1刻みで+1.0~+1.4の場合である。
 これに対し、比較例11~14は、それぞれ、屈折率(n1)が、0.1刻みで1.0~1.3の場合であり、したがって、屈折率の差(n1-n2)が、0.1刻みでー0.5~-0.2の場合である。また、比較例15、及び16は、は、それぞれ、屈折率(n1)が、2.4、及び3の場合であり、したがって、屈折率の差(n1-n2)が、0.9、及び1.5の場合である。
 作製した21種類の片面照明兼用窓についてシミュレーションを行い、上面12a、及び下面12bの光出射率を求めた。
 その結果、及び光出射率の比率を表2、及び図18に示す。
Figure JPOXMLDOC01-appb-T000002
 表2、及び図18から明らかなように、光透過性ビーズ20の屈折率(n1)が、1.6~2.3であり、したがって、光透過性ビーズ20の屈折率(n1)と、透明基材12の屈折率(n1)との差(n1-n2)が+0.2~0.8である実施例13~20では、下面から出射される光量が6.83×10-4以下であり、上面から出射される光量が1.67×10-3以上であり、比較例11~16に比べて、目的光量が多いことが分かる。
 一方、光透過性ビーズ20の屈折率(n1)が、1.4~1.8、又は2.5~2.9であり、したがって、屈折率の差(n1-n2)が-0.1~+0.3、又は1.0~1.4である実施例11~15では、上面から出射される光量と下面から出射される光量との比として表されるコントラストが3.0以上であり、比較例11~16に比べて、コントラストが高いことが分かる。
 以上から、本発明の効果は明らかである。
 本発明に係る片面照明兼用窓は、昼間等には透明窓として機能させ、屋内から外部、及び外部から屋内を見ることができ、夜間等には、光源から出射された照明光を屋内のみ向けて出射させて照明窓として機能させることができるので、このような機能が要求されるビル、住宅、及び別荘等の窓として利用することができる。
 以上、本発明に係る片面照明兼用窓についての種々の実施形態、及び実施例を挙げて詳細に説明したが、本発明は、これらの実施形態、及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良、又は変更をしてもよいのはもちろんである。
 10、10A、10B 片面照明兼用窓
 12 透明基材
 12a、12b 主面
 12c 端部
 14、22、36 光透過性凸部
 16 光源
 18 リフレクタ
 20 透過性ビーズ
 30 片側マスク層板
 32 マスク層
 34 凸部
 40 原基材
 42 バインダ層
 L1、L2 照明光
 n1、n2 屈折率

Claims (11)

  1.  2つの主面を有する板状の透明基材と、
     前記透明基材の一方の主面に形成された複数の光透過性凸部とを有し、
     前記光透過性凸部の屈折率と前記透明基材の屈折率との差は、-0.2超、かつ+0.8以下であり、
     又は1.0以上、かつ1.5未満であり、
     照明時に、光源から出射され、前記透明基材の端部に入射され、前記透明基材の内部を全反射して導光され、前記複数の光透過性凸部の外側界面に臨界角以下の入射角で入射した照明光を前記界面において屈折させて前記透明基材の前記一方の主面から出射させて、前記透明基材を片面照明として機能させ、
     非照明時に、前記透明基材を、光透過窓として機能させる片面照明兼用窓。
  2.  前記光透過性凸部は、前記透明基材と同一材料によって前記一方の主面から突出して形成された凸部である請求項1に記載の片面照明兼用窓。
  3.  前記光透過性凸部は、前記透明基材と同一材料製のビーズ、前記透明基材と同一の屈折率を持つ材料製のビーズ、又は前記屈折率の差分が-0.2超、かつ0未満、又は0超、かつ+0.8以下であり、異なる屈折率を持つ材料製のビーズを前記透明基材の一方の主面に埋め込むことによって形成された凸部である請求項1に記載の片面照明兼用窓。
  4.  前記光透過性凸部は、前記光透過性凸部の屈折率と前記透明基材との前記屈折率の差が1.0以上、かつ、1.5未満であり、異なる屈折率を持つ材料製のビーズを前記透明基材の前記一方の主面に埋め込むことによって形成された凸部である請求項1に記載の片面照明兼用窓。
  5.  前記透明基材の前記一方の主面に埋め込まれた前記ビーズの突出高さは、前記ビーズのサイズの10%以上、かつ90%以下である請求項3、又は4に記載の片面照明兼用窓。
  6.  前記ビーズの突出高さは、前記ビーズのサイズの半分である請求項5に記載の片面照明兼用窓。
  7.  前記ビーズのサイズは、0.1μm~1mmである請求項3~6のいずれか1項に記載の片面照明兼用窓。
  8.  前記透明基材の前記他方の主面に対する前記複数の光透過性凸部の面積率は、40%以下である請求項1~7のいずれか1項に記載の片面照明兼用窓。
  9.  前記透明基材の前記他方の主面における前記光透過性凸部のサイズは、0.1μm~1mmである請求項1~8のいずれか1項に記載の片面照明兼用窓。
  10.  前記透明基材の前記他方の主面からの前記光透過性凸部の高さは、0.05μm~0.5mmである請求項1~9のいずれか1項に記載の片面照明兼用窓。
  11.  前記光透過性凸部の屈折率と前記透明基材との屈折率との差は、-0.1以上、かつ+0.3以下である請求項1~10のいずれか1項に記載の片面照明兼用窓。
PCT/JP2018/043224 2017-11-22 2018-11-22 片面照明兼用窓 WO2019103107A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-224262 2017-11-22
JP2017224262 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019103107A1 true WO2019103107A1 (ja) 2019-05-31

Family

ID=66631091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043224 WO2019103107A1 (ja) 2017-11-22 2018-11-22 片面照明兼用窓

Country Status (1)

Country Link
WO (1) WO2019103107A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107553A (ja) * 2005-01-06 2005-04-21 Minoru Yoshida 光拡散シート及びこれを用いたバックライトユニット
JP2014067525A (ja) * 2012-09-25 2014-04-17 Sumitomo Chemical Co Ltd エッジライト型面発光調光装置
JP2014163158A (ja) * 2013-02-26 2014-09-08 Mirai Kikaku:Kk 窓構造体
JP2016058327A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107553A (ja) * 2005-01-06 2005-04-21 Minoru Yoshida 光拡散シート及びこれを用いたバックライトユニット
JP2014067525A (ja) * 2012-09-25 2014-04-17 Sumitomo Chemical Co Ltd エッジライト型面発光調光装置
JP2014163158A (ja) * 2013-02-26 2014-09-08 Mirai Kikaku:Kk 窓構造体
JP2016058327A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 照明装置

Similar Documents

Publication Publication Date Title
US11822113B2 (en) Daylight responsive LED illumination panel with color temperature control
WO2019102959A1 (ja) 片面照明兼用窓
US5442523A (en) Backlighting device
JP5089960B2 (ja) 面光源装置とこれを備えたバックライトユニット、及びこのバックライトユニットを備えた液晶表示装置
JP5608752B2 (ja) 発光装置
WO2010058554A1 (ja) 光学素子および発光装置
JP5511937B2 (ja) 導光板及びこれを用いたエッジライト型バックライト
KR102147940B1 (ko) 조명 장치
CN104748066B (zh) 光学构件及使用光学构件的照明装置
JP2007249220A (ja) プリズムシート、その製造方法、面光源装置、及び、透過型表示体
JP2007188065A (ja) 光学素子及び照明装置
JP2010123295A (ja) 照明ユニットと同ユニットを用いた照明装置
JP2008027905A (ja) 導光板
JP5533310B2 (ja) 導光板、面光源装置および表示装置
JP2010085847A (ja) 光学部品、バックライトユニット及び表示装置
KR100794349B1 (ko) 광학 파이프를 이용한 조명 시스템
JP6230144B2 (ja) 面照明装置
WO2019103107A1 (ja) 片面照明兼用窓
JPH11271765A (ja) 面光源装置
JP2012058479A (ja) 光拡散シート及び光源ユニット
TW201935043A (zh) 微型透鏡導光板及發光裝置
JP2007280961A (ja) 導光板および平面照明装置
TWI412803B (zh) 導光棒及應用其之背光模組
JP2009140906A (ja) 光学的組立体
JP2003317521A (ja) 面光源装置と液晶ディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP