WO2019103049A1 - 地図情報処理装置、地図情報処理方法および地図情報処理プログラム - Google Patents
地図情報処理装置、地図情報処理方法および地図情報処理プログラム Download PDFInfo
- Publication number
- WO2019103049A1 WO2019103049A1 PCT/JP2018/043027 JP2018043027W WO2019103049A1 WO 2019103049 A1 WO2019103049 A1 WO 2019103049A1 JP 2018043027 W JP2018043027 W JP 2018043027W WO 2019103049 A1 WO2019103049 A1 WO 2019103049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- map information
- image
- unit
- data
- difference
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3833—Creation or updating of map data characterised by the source of data
- G01C21/3841—Data obtained from two or more sources, e.g. probe vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3602—Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3815—Road data
- G01C21/3819—Road shape data, e.g. outline of a route
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/203—Drawing of straight lines or curves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/97—Determining parameters from multiple pictures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30241—Trajectory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30256—Lane; Road marking
Definitions
- the present invention relates to a map information processing apparatus, a map information processing method, and a map information processing program for determining whether or not the road shape of map information has changed from locus information of a plurality of moving objects.
- road shape change information on changes in road shape
- Patent Document 1 Therefore, the configuration described in Patent Document 1 is not sufficient, and further improvements are required.
- the present invention has been made in view of such problems, and it is an object of the present invention to more easily determine a road shape change.
- the map information processing apparatus of the present invention includes a difference extraction unit and a road shape change determination unit.
- the difference extraction unit extracts difference data.
- the difference data represents a difference between a movement trajectory image based on movement trajectories of each of a plurality of moving objects and an image different from the movement trajectory image in scalar format based on data in vector format.
- the road shape change determination unit determines whether the difference data is a road shape change by machine learning.
- the present invention can more easily determine the road shape change.
- FIG. 1 is a diagram illustrating an example of the map information processing system according to the first embodiment.
- FIG. 2 is a view showing an example of the relationship between the map information processing apparatus of the first embodiment and the on-vehicle terminal.
- FIG. 3 is a functional block diagram showing an example of functions of the map information processing apparatus of the first embodiment.
- FIG. 4A is a diagram illustrating an example of a method of drawing a moving track image of a vehicle by the moving image drawing unit.
- FIG. 4B is a diagram showing an example of a method of drawing a moving track image of a vehicle by the moving image drawing unit.
- FIG. 5A is a diagram showing an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit.
- FIG. 5B is a diagram showing an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit.
- FIG. 5C is a diagram illustrating an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit.
- FIG. 5D is a diagram illustrating an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit.
- FIG. 6 is a diagram showing an example of a method of determining a road shape change by machine learning.
- FIG. 7 is a flowchart showing an example of road shape change determination processing by the road shape change determination processing program of the first embodiment.
- FIG. 8 is a diagram showing an example of the road shape change determination process of the first embodiment.
- FIG. 9 is a flowchart showing an example of map information update processing by the road shape change determination processing program.
- FIG. 10A is a diagram showing an example of the map information update process.
- FIG. 10B is a diagram showing an example of the map information update process.
- FIG. 10C is a diagram showing an example of the map information update process.
- FIG. 10D is a diagram showing an example of the map information update process.
- FIG. 10E is a diagram showing an example of the map information update process.
- FIG. 11 is a functional block diagram showing an example of functions of the map information processing apparatus of the second embodiment.
- FIG. 12A is a diagram illustrating an example of a method of extracting difference data from a moving trajectory image and a past moving trajectory image by the difference extracting unit according to the second embodiment.
- FIG. 12A is a diagram illustrating an example of a method of extracting difference data from a moving trajectory image and a past moving trajectory image by the difference extracting unit according to the second embodiment.
- FIG. 12B is a diagram illustrating an example of a method of extracting difference data from a moving trajectory image and a past moving trajectory image by the difference extracting unit according to the second embodiment.
- FIG. 12C is a diagram illustrating an example of a method of extracting difference data from the movement trajectory image and the past movement trajectory image by the difference extraction unit according to the second embodiment.
- FIG. 12D is a diagram illustrating an example of a method of extracting difference data from a moving trajectory image and a past moving trajectory image by the difference extracting unit according to the second embodiment.
- FIG. 13 is a flowchart showing an example of road shape change determination processing by the road shape change determination processing program of the second embodiment.
- FIG. 14 is a diagram illustrating an example of road shape change determination processing according to the second embodiment.
- the map information processing system 1 according to the first embodiment of the present invention will be described based on FIG.
- the map information processing system 1 according to the first embodiment is used to easily determine a road shape change when creating a map.
- the map information processing system 1 is comprised including the map information processing apparatus 2 and the some vehicle-mounted terminal 3, as shown in FIG.
- each composition in map information processing system 1 of this embodiment is explained in detail.
- the on-vehicle terminal 3 is mounted on a vehicle 4 traveling on a road.
- the on-vehicle terminal 3 includes, for example, a car navigation device.
- the map information processing apparatus 2 and the on-vehicle terminal 3 are configured to be able to connect to each other by wireless communication.
- wireless communication between a vehicle 4 traveling in Japan and the map information processing apparatus 2 is illustrated by a single arrow.
- probe data is transmitted from the on-vehicle terminal 3 to the map information processing apparatus 2.
- the probe data includes, for example, information of the vehicle position (hereinafter, also referred to as “locus information”) of the vehicle 4 on which the on-vehicle terminal 3 is mounted and the time.
- the probe data includes, for example, information of travel history (attribute information) of the vehicle 4 such as travel distance, travel speed, acceleration, angular velocity, heading of the vehicle, inclination angle, in addition to information of the vehicle position and time.
- information of travel history attribute information
- the on-vehicle terminal 3 can obtain various sensor information from a GPS (Global Positioning System) module mounted on the vehicle 4, a gyro sensor, and an acceleration sensor.
- GPS Global Positioning System
- the information of the own vehicle position is calculated by, for example, GPS data output from the GPS module of the car navigation device. That is, the information on the vehicle position is acquired using the function of the satellite positioning system such as GPS.
- the information on the vehicle position indicates the position coordinates of the vehicle 4 at a certain time.
- the on-vehicle terminal 3 is configured to be able to communicate with the map information processing apparatus 2 via the communication terminal 5 as shown in FIG.
- the on-vehicle terminal 3 transmits probe data including trajectory information of the vehicle 4 to the map information processing apparatus 2 via the communication terminal 5.
- the on-vehicle terminal 3 may be connected to the communication terminal 5 by wire or wireless.
- the on-vehicle terminal 3 may be physically configured separately from the communication terminal 5 or may be integrally configured with the communication terminal 5 built therein.
- the communication terminal 5 is, for example, a communication unit, a mobile phone, or a smartphone.
- the communication terminal 5 is connected so as to be able to communicate with the on-vehicle terminal 3 according to, for example, the BLUETOOTH (registered trademark) or Wi-Fi communication standard.
- the communication terminal 5 is connected, for example, to be able to communicate with the map information processing apparatus 2 via a communication network.
- the map information processing apparatus 2 receives the probe data transmitted from each on-vehicle terminal 3, and acquires locus information included in the probe data.
- the map information processing apparatus 2 determines whether the road shape included in the map information has changed by machine learning based on the locus information. Details of this determination will be described later. When it is determined that the road shape is changing, the map information processing device 2 can update the map information.
- the vehicle-mounted terminal 3 is comprised by the car navigation apparatus, it is not this limitation.
- the in-vehicle terminal 3 is not limited to the car navigation device, but may be various terminal devices.
- a terminal device a mobile telephone, a smart phone, a notebook computer, or a tablet personal computer is mentioned, for example. That is, the on-vehicle terminal 3 may be only a single smartphone brought into the vehicle 4.
- the vehicle 4 of this embodiment is illustrated by the four-wheeled vehicle in which the vehicle-mounted terminal 3 is mounted.
- the vehicle 4 is not limited to a four-wheeled vehicle, and may be a three-wheeled vehicle, a motorcycle, or a bicycle. In other words, the vehicle 4 is a moving body.
- map information processing apparatus 2 Next, the map information processing apparatus 2 according to the first embodiment will be described with reference to FIG.
- the map information processing apparatus 2 includes a map information storage unit 21, a trajectory information acquisition unit 22, a moving image drawing unit 23, a map information conversion unit 24, a difference extraction unit 25, and a road shape change determination unit. 26 and a map information updating unit 27.
- the map information storage unit 21 stores map information.
- the map information storage unit 21 preferably stores map information for each of a plurality of scales.
- Map information is information which comprises a map.
- Map information is composed of data in vector format. More preferably, the map information is composed of data in a three-dimensional vector format.
- the data in vector format includes information indicating the position of the road and the shape of the road. More specifically, the map information has, for example, map image information indicating the shape of a road, information of nodes and links on the map image linked to the map image information, and attribute information indicating whether it is a general road or a highway. ing.
- the nodes indicate intersections and other nodules on the road network representation.
- a link indicates a road section between nodes.
- the map information is configured in mesh units separated into rectangles at fixed latitude and longitude intervals.
- each mesh is composed of a plurality of layers of different scales separated by a predetermined unit.
- the mesh can adopt the standard area mesh standard defined by the Ministry of Internal Affairs and Communications.
- the standard area mesh is composed of an area ratio of about 1/10 in the order of primary mesh, secondary mesh and tertiary mesh.
- the mesh can adopt, as a mesh unit, a divided area mesh subdivided from the first to third meshes.
- the map information When the map information is divided into mesh units, the map information has mesh numbers and corresponding latitude and longitude information.
- the locus information acquisition unit 22 includes a vehicle data reception unit 28 and a data storage unit 29.
- the vehicle data receiving unit 28 receives probe data transmitted from the on-vehicle terminals 3 of the plurality of vehicles 4.
- the data storage unit 29 stores probe data received by the vehicle data receiving unit 28.
- the locus information acquisition unit 22 can acquire locus information of each vehicle 4 included in the probe data by receiving the probe data from each on-vehicle terminal 3. Trajectory information is a set of coordinates represented by latitude and longitude for each time.
- the moving image drawing unit 23 draws movement locus images together based on the locus information of the plurality of vehicles 4 in the predetermined range acquired by the locus information acquisition unit 22.
- the predetermined range adopts, for example, a mesh of any scale that constitutes road information.
- the moving image drawing unit 23 is continuous as shown in FIG. 4A based on information of coordinates, time, traveling speed, acceleration, and angular velocity of locus information included in a plurality of probe data received by the vehicle data receiving unit 28. Acquire m sets of probe data. For example, the moving image drawing unit 23 acquires, as probe data groups, probe data groups having continuous coordinates at predetermined time intervals among the probe data. The moving image drawing unit 23 acquires, from the data storage unit 29, the coordinates of m pieces of locus information included in a group of probe data. The moving image drawing unit 23 plots the acquired coordinates as points P1, P2, and P3 to Pm.
- the moving image drawing unit 23 draws drawn points P1, P2, and P3 to Pm as one moving locus image L by connecting them with a line.
- the moving image drawing unit 23 can generate a moving locus image in scalar form from probe data in vector form including information on time, traveling distance, traveling speed, acceleration, and angular velocity in addition to locus information. .
- the moving image drawing unit 23 may repeatedly draw the movement trajectory image.
- the moving image drawing unit 23 draws a plurality of moving trajectory images in a superimposed manner, it calculates a median or a square average value of each moving trajectory image, and the width direction of each moving trajectory image drawn in a superimposed manner A line connecting center values (center coordinates) may be drawn as an averaged movement trajectory image.
- the moving image drawing unit 23 suppresses an error in GPS data due to multipath and fluctuation in coordinates of trajectory information caused by communication failure.
- the moving image drawing unit 23 can improve the drawing accuracy by suppressing the fluctuation of the coordinates.
- the moving image drawing unit 23 may draw a movement locus image by omitting probe data having a traveling speed equal to or higher than a predetermined speed with reference to information on traveling speed included in the probe data.
- the on-vehicle terminal 3 may be calculated, for example, to 300 km or more where the vehicle speed can not normally be obtained due to an error in GPS data due to multipath or communication failure.
- the moving image drawing unit 23 can suppress erroneous detection of traveling information caused by an error in GPS data due to multipath or communication failure.
- the moving image drawing unit 23 improves the drawing accuracy by suppressing the erroneous detection of the traveling information.
- the moving image drawing unit 23 may draw a movement locus image by omitting probe data in which the traveling speed is not continuous, with reference to information on the traveling speed included in the probe data. As a result, the moving image drawing unit 23 can omit, for example, probe data obtained from the on-vehicle terminal 3 of the vehicle 4 parked halfway in the parking lot. The moving image drawing unit 23 can improve the drawing accuracy of the movement locus image by omitting unnecessary probe data.
- the moving image drawing unit 23 refers to trajectory information and traveling speed information included in the probe data. Then, the moving image drawing unit 23 draws the movement locus image by mutually identifying probe data that can be estimated to move on a freeway and probe data that can be estimated to move on a general road. It can also be done. Thereby, the map information processing apparatus 2 can set only the road type arbitrarily selected as the determination processing target of the road shape change. The map information processing apparatus 2 can improve the processing speed.
- the moving image drawing unit 23 may draw a movement locus image based on the locus information of the vehicle 4 acquired in a predetermined unit period.
- the moving image drawing unit 23 normalizes data, for example, based on locus information accumulated for a predetermined unit period.
- the moving image drawing unit 23 can create probe data for each unit period for each mesh unit from the normalized data.
- the predetermined unit period can be set, for example, for the past 30 days based on the current time point.
- the moving image drawing unit 23 creates probe data of secondary mesh as probe data for each unit period.
- the map information processing apparatus 2 generates the probe data based on the trajectory information accumulated over a predetermined period, thereby improving the drawing accuracy of the movement trajectory image.
- the moving image drawing unit 23 may accumulate past probe data for reference.
- the moving image drawing unit 23 stores probe data of the past serving as a reference for a specific period in advance before probe data of a secondary mesh created based on locus information acquired in a predetermined unit period is created. It can be created based on the trajectory information. It is preferable that past probe data be created for each mesh unit.
- the moving image drawing unit 23 may be set in advance as probe data in the past, for example, 30 days as a specific period. In the present embodiment, the moving image drawing unit 23 creates probe data of secondary mesh accumulated for 30 days as probe data in the past.
- the moving image drawing unit 23 compares the probe data of the newly created secondary mesh with the probe data of the secondary mesh created in the past to determine whether there is a difference. Can. Then, the moving image drawing unit 23 compares the new probe data with the map information as the second step only when there is a difference. Thereby, the map information processing apparatus 2 can detect the road shape change in two steps. Further, the map information processing apparatus 2 makes only the probe data having a difference from the past probe data as a processing target of the extraction process of the difference data by the difference extracting unit 25. The map information processing apparatus 2 processes only the probe data having a difference with the past probe data as a processing target of the difference data, so that the processing target in the difference extracting unit 25 can be reduced. The map information processing apparatus 2 can reduce the processing target in the difference extracting unit 25, so that the processing load can be reduced and the processing speed can be improved.
- the predetermined unit period is set to one day, three days, seven days, and thirty days, but the present invention is not limited to this.
- the predetermined unit period may be set not only on a daily basis, but also on an hourly basis, a monthly basis, or an annual basis, and can be set to any period.
- the specific period was made into 30 days, it is not restricted to this.
- the specific period can be set to any period.
- the moving image drawing unit 23 is not limited to only the configuration for creating probe data of secondary mesh.
- the moving image drawing unit 23 may create probe data in accordance with a primary mesh, a tertiary mesh, or another unit mesh.
- the map information conversion unit 24 converts map information in vector format into map information in scalar format. Specifically, among the map information in the vector format stored in the map information storage unit 21, the map information conversion unit 24 is information on a node linked to the map image information, information on a link, and whether it is a general road or an expressway Omit attribute information indicating. In other words, the map information conversion unit 24 takes out only map image information indicating the shape of the road.
- the map information conversion unit 24 converts map information from a three-dimensional vector format to a two-dimensional scalar format by using only map image information. That is, the map information in the three-dimensional vector format is only map image information, with the node information, the link information, and the attribute information included in the map information being removed.
- the map information in the three-dimensional vector format is converted to the two-dimensional scalar format map information having a simple data configuration by being only map image information.
- the map information processing apparatus 2 can convert the movement locus image obtained by the probe data and the map information into data of the same simple dimension, and it becomes easy to extract the difference in the difference extraction unit 25 described later.
- the map information conversion unit 24 converts the two-dimensional map information converted into the scalar form into a scalar form divided into mesh units of arbitrary scale.
- the map information conversion unit 24 is not limited to the case of converting the two-dimensional map information converted into the scalar form into the scalar form divided into mesh units of arbitrary scale.
- the map information conversion unit 24 is stored in the map information storage unit 21 Among the map information, the map information of a large scale is converted from the vector format to the scalar format.
- the map information processing apparatus 2 can improve the determination speed as to whether or not there is a change in the road shape by roughly determining the whole in the initial stage. In other words, when it is determined that the probability that there is a road shape change from the difference data is less than the predetermined probability or the certain probability, the map information processing apparatus 2 changes the processing target to map information with a larger scale.
- the processing target can be limited to improve the processing speed. As a result, the map information processing apparatus 2 can further improve the determination accuracy.
- the difference extraction unit 25 compares the movement locus image drawn by the movement image drawing unit 23 with the map image different from the movement locus image in the map information converted into the scalar format by the map information conversion unit 24 and makes a difference. It is configured to be able to extract data.
- the map information storage unit 21 and the data storage unit 29 can be configured by, for example, a hard disk drive or a memory of semiconductor memory.
- the memory may store a program for driving a CPU (Central Processing Unit).
- the CPU causes the moving image drawing unit 23, the map information conversion unit 24, the difference extraction unit 25, the road shape change determination unit 26, and the map information update unit 27 to function by executing the program stored in the memory. It is configured to be able to.
- the vehicle data receiving unit 28 can be configured by an appropriate communication module.
- the difference extraction unit 25 acquires the movement trajectory image drawn by the movement image drawing unit 23 and the map image in the map information converted into the scalar format by the map information conversion unit 24.
- FIG. 5A exemplifies the moving track image drawn by the moving image drawing unit 23.
- FIG. 5B exemplifies the map image in the map information converted into the scalar form.
- the difference extraction unit 25 creates an image of composite data obtained by combining the acquired movement trajectory image and the map image.
- the difference extraction unit 25 uses an image that does not overlap between the movement locus image shown in FIG. 5A and the map image shown in FIG. Extract.
- the image of the difference data extracted by the difference extraction part 25 is illustrated in FIG. 5D.
- the image of the difference data is considered to represent the difference between the road at the time of generation of the map information and the current road. That is, the image of difference data is considered to represent road shape change.
- a new road may have been formed in the circled area in FIG.
- the map information processing apparatus 2 determines whether or not the extracted difference data is a road shape change, including the circled portion in FIG.
- the road shape change determination unit 26 determines by machine learning whether the difference data extracted by the difference extraction unit 25 is a road shape change. Deep learning is used as machine learning. Specifically, the road shape change determination unit 26 performs machine learning using the difference data extracted in the past as teacher data. The road shape change determination unit 26 determines whether the newly extracted difference data is a road shape change based on the result of the machine learning.
- machine learning is not limited to the case where a computer learns repetitively from data and finds and predicts a predetermined pattern, but also includes data mining that discovers characteristics of data that has been unknown so far. I understand the meaning.
- Deep learning is a type of machine learning method using a multi-layered neural network 60.
- the neural network 60 has input data and output data, and internal arithmetic processing is performed based on a plurality of artificial neurons.
- the neural network 60 used in machine learning includes three layers. The three layers are illustrated as an input layer 61, an intermediate layer 62, and an output layer 63.
- the middle layer 62 is also called a hidden layer, and may include two or more layers. The middle layer 62 is unlearned if the number of layers is too small. The middle layer 62 is overfit if there are too many layers.
- the road shape change determination unit 26 may appropriately set the number of layers in order to determine whether the difference data is a road shape change.
- An artificial neuron outputs the sum of the output of the previous layer multiplied by a parameter.
- the output data of the artificial neuron is controlled by the activation function to add nonlinearity.
- the activation function for machine learning used in the present embodiment can employ, for example, a soft max function, a sigmoid function, or a Gaussian function.
- the neural network 60 is first given teaching data to the input layer 61 as input data.
- the teacher data is, for example, difference data extracted in the past by the difference extraction unit 25.
- the road shape change determination unit 26 processes teacher data by the input layer 61, the intermediate layer 62, and the output layer 63. That is, the road shape change determination unit 26 dynamically generates and learns an optimal feature amount for the input difference data, and performs forward propagation in which calculation processing is performed by forward information propagation. In FIG. 6, the direction of forward propagation is indicated by a thick single arrow.
- the output result indicates the prediction result as to whether the input difference data is an image of road shape change or noise.
- the road shape change determination unit 26 When learning is performed, the road shape change determination unit 26 reversely performs arithmetic processing by information propagation in the reverse direction by giving information on whether the output result is a road shape change image or noise. Propagation is done. In FIG. 6, the direction of back propagation is indicated by a thick single arrow. In the machine learning, the road shape change determination unit 26 evaluates an output error between input data used for learning as teacher data and output data. The road shape change determination unit 26 preferably optimizes the parameters of each layer and each node in machine learning sequentially from the output error by back propagation.
- the road shape change determination unit 26 can gradually bring the parameters of each layer closer to the optimal value. Then, when the road shape change determination unit 26 inputs the difference data extracted by the difference extraction unit 25 to the input layer 61, the difference data is changed according to the road shape change using the parameter adjusted based on the result of machine learning. It can be judged whether it is an image or not.
- the road shape change determination unit 26 when the road shape change determination unit 26 propagates n pieces of difference data d1 and d2 forward as teacher data, information on M pieces of output data y1 to yM is output to the output layer 63. Is obtained.
- the output data represents a predicted value for predicting whether the input difference data is an image of road shape change or another image.
- the road shape change determination unit 26 is provided with information of M pieces of correct data t1 to tM indicating whether it is an image of road shape change or noise, to the obtained output data y1 to yM.
- the road shape change determination unit 26 performs machine learning to adjust the parameter to an optimal value one by one. In other words, the road shape change determination unit 26 evaluates the deviation between the output data and the correct data by back propagation to optimize the parameters.
- software used for machine learning for example, OpenCV, Numpy, Matplotlib, or Chainer can be adopted.
- the map information updating unit 27 updates the map information stored in the map information storage unit 21. Specifically, the map information updating unit 27 generates map information in vector format from the map information converted into the scalar format corresponding to the difference data determined by the road shape change determination unit 26 to be the road shape change. Generate Then, the map information updating unit 27 updates the map information stored in the map information storage unit 21 with the generated map information. The process of updating the map information will be described in the later-described map information update process.
- map information processing apparatus it is conceivable to simply identify a change in road shape from probe data and a digital map by machine learning.
- digital map data is three-dimensional including map image information indicating the shape of a road, information on nodes and links on the map image linked to the map image information, and attribute information indicating whether it is a general road or an expressway. It is organized in vector format.
- the map information processing apparatus detects a change in road shape newly created using machine learning, the information processing is performed simply by using a digital map of a three-dimensional vector format as a machine learning process target, The amount of information to be processed may be so large that the burden of information processing may become too large. Furthermore, since the map information processing apparatus has a large amount of information to be compared as a machine learning object, it may be difficult to determine which information is to be compared.
- map information processing apparatus 2 of the present embodiment creates a road map by machine learning, determination of road shape change is easily performed by making the processing object as simple as possible.
- the map information processing apparatus 2 of the present embodiment performs normalization in which the vertical and horizontal lengths of the meshes are unified in advance.
- the map information processing apparatus 2 can perform the determination of the road shape change more accurately by restoring the normalized mesh and using it after machine learning.
- map information processing apparatus 2 receives an instruction to start road shape change processing
- the map information processing apparatus 2 starts the determination processing of step 11 to step 19 of FIG. 7.
- the steps are indicated by S.
- the map information processing apparatus 2 performs parameter optimization based on teacher data in advance before determining whether or not there is a road shape change.
- the road shape change determination unit 26 performs machine learning based on the teacher data (S11).
- the road shape change determination unit 26 receives information prepared in advance as teacher data.
- the information prepared in advance is used to set parameters for mutually identifying whether the difference data extracted in the past is an image showing a road shape change or an image such as other noise. Then, for example, the set parameter is held by the road shape change determination unit 26 or stored in a memory accessible by the road shape change determination unit 26.
- the vehicle data reception unit 28 receives the probe data transmitted from each on-vehicle terminal 3.
- the locus information acquisition unit 22 stores the received probe data in the data storage unit 29. Thereby, the locus information acquisition unit 22 acquires locus information of each vehicle 4 included in the received probe data (S12).
- the map information conversion unit 24 extracts map image information indicating the shape of a road from the information included in the map information in vector format stored in the map information storage unit 21.
- the map information conversion unit 24 converts the map information from a three-dimensional vector format into a two-dimensional scalar format by extracting map image information (S13).
- the map information conversion unit 24 converts map information in vector format into a map image in raster format.
- the map information conversion unit 24 converts two-dimensional map information of scalar format into scalar format data of a secondary mesh divided into secondary mesh units as a mesh unit of an arbitrary scale.
- the moving image drawing unit 23 creates secondary mesh probe data by normalizing the accumulated data of the probe data acquired by the locus information acquisition unit 22 for a predetermined unit period.
- the moving image drawing unit 23 draws a moving trace image of the secondary mesh based on the normalized probe data of the secondary mesh (S14).
- the moving image drawing unit 23 accumulates the past probe data acquired by the locus information acquiring unit 22 for a specific period before creating the movement locus image based on the probe data acquired in a predetermined unit period. Perform data normalization.
- the moving image drawing unit 23 creates probe data of a normalized past secondary mesh of data. Then, the moving image drawing unit 23 draws the moving trajectory image of the past secondary mesh based on the normalized past probe data of the secondary mesh.
- the movement trajectory image of the past secondary mesh is referred to for reference.
- the moving image drawing unit 23 draws a movement trajectory image of a secondary mesh drawn based on probe data of a secondary mesh, and a past secondary mesh drawn based on probe data of a past secondary mesh. It is determined whether or not there is a difference by comparing the movement locus image of (S15).
- the moving image drawing unit 23 draws the movement trajectory image of the secondary mesh, but the present invention is not limited to this.
- the moving image drawing unit 23 can draw a movement locus image of a mesh of any scale, such as a primary mesh and a tertiary mesh.
- the moving image drawing unit 23 is not limited to the case of determining whether there is a difference by comparing the movement trajectory image of the secondary mesh and the movement trajectory image of the secondary mesh in the past. For example, the moving image drawing unit 23 directly compares the information of the latitude and longitude included in the probe data of the secondary mesh with the information of the latitude and longitude included in the probe data of the past secondary mesh, and the difference is It can also be determined whether there is any.
- the map information processing apparatus 2 skips S16 to S19 shown in FIG. 7 and the road shape change determination processing ends. That is, the map information processing apparatus 2 executes S16 to S17 only when there is a difference in the determination of S15. Therefore, the map information processing apparatus 2 can reduce the execution frequency of S17.
- the map information processing apparatus 2 may process only the movement locus image having a difference from the movement locus image created based on the probe data accumulated in the past as the processing object of the difference data extraction process by the difference extraction unit 25. it can. Therefore, the map information processing apparatus 2 can reduce the processing load and reduce the processing speed by reducing the processing target in the difference extracting unit 25.
- the difference extraction unit 25 converts the movement locus image drawn in S14 into scalar form in S13.
- the difference data representing the difference with the map image in the map information is extracted (S16).
- the road shape change determination unit 26 determines whether the difference data newly extracted in S16 is a road shape change based on the result of the machine learning learned in S11 (S17).
- the road shape change determination unit 26 outputs the extracted difference data as a road shape change (S19).
- the difference data indicates a road shape change, it is stored for use in the later map information creation process.
- the extracted difference data is NO in S18, which is not a road shape change, S19 is skipped, and the road shape change determination process ends.
- the difference data is not information indicating a road shape change, but is likely to be a simple noise.
- the extracted difference data may be discarded.
- the map information processing apparatus 2 extracts only map image information indicating the shape of the road from the map information in the vector format stored in the map information storage unit 21.
- map information in the three-dimensional vector format is converted into simple two-dimensional scalar format map information in data configuration.
- the map information processing apparatus 2 it is possible to make the movement locus image obtained by the probe data and the map information the same simple two-dimensional data.
- map information processing apparatus 2 detects a change in the road shape newly created using machine learning, it is possible to reduce the processing load of the machine learning by reducing the processing target of the machine learning.
- the map information processing apparatus 2 can easily determine the road shape change by improving the processing speed and further improving the determination accuracy.
- map information update processing by the map information processing apparatus 2 according to the present embodiment will be described with reference to FIG. 9 and FIGS. 10A and 10B.
- the map information processing apparatus 2 When the map information processing apparatus 2 receives an instruction to start the map information update process, the following map information update process is started.
- the map information update process when the instruction to start the map information update process is received, the map information update process is started, but the present invention is not limited to this.
- the map information update process may be automatically started.
- the map information update unit 27 accumulates N pieces of difference data output in S19 of the road shape change determination process, and averages the error of the probe data (S31).
- N is an arbitrary natural number.
- the error averaged probe data is illustrated in FIGS. 10A and 10B.
- FIG. 10B is an enlarged view of a region F1 of FIG. 10A.
- the map information updating unit 27 performs a smoothing process on difference data obtained by averaging the errors, that is, data representing the road shape determined to be a road shape change (S32).
- the road shape on which the smoothing process has been performed corresponds to the shape of the newly created road.
- the map information updating unit 27 acquires, among the map information in the vector format stored in the map information storage unit 21, map information of a mesh including the latitude and longitude of the road shape on which the smooth processing has been performed in S32.
- the road shape determined based on the difference data has latitude and longitude information because it is created based on the probe data. Therefore, the map information updating unit 27 can acquire the map information of the corresponding mesh from the map information storage unit 21 by referring to the latitude and longitude of the probe data of the road shape.
- the map information updating unit 27 superimposes the two-dimensional road shape D2 on which the smoothing process has been performed in S32 on the road shape D3 included in the acquired map information of the vector format mesh S33).
- FIG. 10D is an enlarged view of a region F2 of FIG. 10C.
- the map information updating unit 27 specifies a contact point between the two-dimensional road shape D2 which has been smoothed in S32 and the road shape D3 included in the map information of the mesh in vector format.
- the map information is expressed in a vector format, and thus includes information in the Z-axis direction.
- the Z-axis direction indicates a direction perpendicular to the ground. That is, the map information includes information representing Z-axis coordinates of each road.
- the Z-axis coordinate is, for example, the elevation. Therefore, the contact point between the road shape D2 generated from the difference data and the road in the map information is represented by latitude, longitude, and altitude.
- the map information update part 27 adds a node to each identified contact point (S34).
- FIG. 10D and FIG. 10E they are illustrated as the node N1 and the node N2.
- the nodes added to the road shape D2 generated from the difference data include information on contact points representing the Z-axis direction of each road, so the road shape D2 is converted into a vector format.
- the map information updating unit 27 generates an axis of the road shape D2 in vector format using the specified node (S35).
- the map information updating unit 27 corrects the road width of the road shape D2 obtained from the difference data so as to match the road width of the road shape D3 included in the map information. Then, the road shape D2 of the vector format in which the road width is corrected is connected to the road shape D3 included in the map information by the node (S36).
- the map information updating unit 27 deletes the unnecessary road location D4 and the added node from the road shape D3 included in the map information (S37). For example, the map information updating unit 27 deletes, as the unnecessary road location D4, a location where no probe data exists between the nodes added to the original two-dimensional road shape D2 before conversion.
- the map information updating unit 27 deletes the unnecessary road location D4.
- the map information updating unit 27 updates the map information in the map information storage unit 21 based on the road shape D3 to which the road shape D2 in vector format is connected (S38). When this process ends, the map information update process ends.
- the two-dimensional difference data extracted as the road shape change can be returned to the three-dimensional vector format again, and the map information can be updated.
- the map information can be automatically formatted periodically, and the time required for updating the map information can be reduced.
- the map information processing apparatus 2 includes a control unit, a temporary storage unit, a storage unit, and a wireless communication unit.
- the control unit executes the program read into the storage unit.
- the vehicle data reception unit 28, the moving image drawing unit 23, the map information conversion unit 24, the difference extraction unit 25, the road shape change determination unit 26, and the map information update unit 27 according to the first embodiment correspond to the control unit of the map information processing apparatus 2. included.
- the map information storage unit 21 and the data storage unit 29 of the first embodiment are included in the storage unit of the map information processing apparatus 2.
- the temporary storage unit is a working area for expanding programs and various data read from the storage unit.
- the parts such as the control unit, the temporary storage unit, the storage unit, and the wireless communication unit are mutually connected.
- the map information processing apparatus 2 of the first embodiment can be used, for example, as a technology for automatically formatting map data used in a car navigation system or an automatic driving support system.
- the map information processing method acquires locus information of each of a plurality of moving objects.
- the map information processing method converts map information including information indicating the position and shape of a road from vector format to scalar format. Further, the map information processing method extracts difference data representing a difference between the movement trajectory image drawn from the trajectory information and the map image in the map information converted into the scalar format.
- the computer executes a process of determining whether the difference data is a road shape change by machine learning.
- the map information processing program in the present embodiment acquires trajectory information of each of a plurality of moving objects.
- the map information processing program converts map information including information indicating the position and shape of a road from vector format to scalar format.
- the map information processing program extracts difference data representing a difference between the movement locus image drawn from the locus information and the map image in the map information converted into the scalar format.
- the map information processing program causes the computer to execute a process of determining whether the difference data is a road shape change by machine learning.
- Second Embodiment Hereinafter, another embodiment of the present invention will be described.
- the map information processing apparatus according to the second embodiment is mainly different from the map information processing apparatus 2 according to the first embodiment in that difference data is extracted as compared with the past movement locus image.
- map information processing apparatus 2B in order to distinguish the map information processing apparatus of the second embodiment from the configuration of the map information processing apparatus 2 of the first embodiment, it is also referred to as a map information processing apparatus 2B.
- the map information processing apparatus 2B of the second embodiment will be described with reference to FIG.
- map information processing apparatus 2B of the second embodiment the description of the same configuration as that of the first embodiment will be omitted as appropriate.
- the map information processing apparatus 2B of the second embodiment includes two movements in addition to the map information storage unit 21, the trajectory information acquisition unit 22, the difference extraction unit 25, and the road shape change determination unit 26. It includes an image drawing unit 23, a map information updating unit 27, a movement data generation unit 30, a movement data storage unit 31, and a movement data extraction unit 32.
- one of the two moving image drawing units 23 may be referred to as a first moving image drawing unit 231, and the other may be referred to as a second moving image drawing unit 232.
- the two moving image drawing units 23 are configured in the same configuration, and the input data are different.
- the map information processing apparatus 2 is not limited to the case where two moving image drawing units 23 are used, but can be configured as one moving image drawing unit 23 by sequentially changing input data. It is preferable that the movement data generation unit 30 includes a clocking unit that clocks time. It is preferable that the movement data extraction unit 32 includes a clock unit that clocks time.
- the first moving image drawing unit 231 acquires trajectory information included in the plurality of probe data from the data storage unit 29 of the trajectory information acquisition unit 22 via the movement data generation unit 30.
- the movement data generation unit 30 removes information that is not necessary for drawing the movement locus image from the plurality of acquired probe data.
- the movement data generation unit 30 may generate, for example, data of only a set of coordinates represented by latitude and longitude for each time from a plurality of probe data.
- the movement data generation unit 30 may generate, for example, data of only a set of normalized coordinates obtained by normalizing the variation in coordinates from a plurality of probe data.
- the movement data generation unit 30 is not limited to the case where the movement data generation unit 30 is configured separately from the movement image drawing unit 23, and may be configured to be included in the movement image drawing unit 23.
- the movement data generation unit 30 may be configured to be included in the trajectory information acquisition unit 22.
- the moving image drawing unit 23 may be configured to be included in the trajectory information acquisition unit 22.
- the moving image drawing unit 23 acquires m groups of consecutive probe data, as in the case shown in FIG. 4A of the first embodiment, based on the information of the set of coordinates of locus information. .
- the moving image drawing unit 23 plots the acquired coordinates as points P1, P2, and P3 to Pm.
- the moving image drawing unit 23 draws the points P 1, P 2, and P 3 to Pm plotted as a single movement locus image L by connecting the plotted points P 1, P 2, and P 3 to Pm in the same manner as shown in FIG. 4B of the first embodiment.
- the moving image drawing unit 23 of the second embodiment generates scalars from probe data in vector format including information of time, traveling distance, traveling speed, acceleration, angular velocity, own vehicle azimuth, and gradient angle, in addition to trajectory information. It is possible to generate a form of movement trajectory image.
- the data of only a set of coordinates represented by latitude and longitude generated by the movement data generation unit 30 is configured to be accumulated in the movement data storage unit 31 together with time information.
- the moving image drawing unit 23 of the second embodiment uses past probe data for reference. Trajectory information based on past probe data is stored in the movement data storage unit 31.
- the movement data extraction unit 32 extracts past trajectory information serving as a reference from the movement data storage unit 31.
- the movement data extraction unit 32 may extract predetermined past trajectory information from a specific period set in advance.
- the second moving image drawing unit 232 receives, from the movement data storage unit 31, trajectory information of the past serving as a reference.
- the moving image drawing unit 23 draws a movement locus image from locus information created from the secondary mesh probe data created based on the locus information acquired by the first moving image drawing unit 231 in a predetermined unit period, Based on the past trajectory information accumulated for a specific period in advance by the second moving image drawing unit 232, a past movement trajectory image serving as a reference is drawn. It is preferable that past trajectory information is created for each mesh unit.
- the moving image drawing unit 23 can use, for example, probe data of 30 days in the past as a specific period in advance.
- the moving image drawing unit 23 may use all probe data as a specific period so that all probe data in the past are targets.
- the moving image drawing unit 23 creates, as probe data in the past, trajectory information of the secondary mesh accumulated for 30 days.
- the difference extraction unit 25 of the second embodiment is the probe data of the secondary mesh newly generated by the first moving image drawing unit 231 and the probe of the secondary mesh generated by the second moving image drawing unit 232 in the past. It is comprised so that data can be compared and difference data can be extracted.
- the difference extraction unit 25 is configured separately from the first moving image drawing unit 231 and the second moving image drawing unit 232, but may be configured to be included in the moving image drawing unit 23.
- the predetermined unit period is set to one day, three days, seven days, and thirty days, but the present invention is not limited to this.
- the predetermined unit period may be set not only on a daily basis, but also on an hourly basis, a monthly basis, or an annual basis, and can be set to any period.
- the specific period was made into 30 days, it is not restricted to this.
- the specific period can be set to any period.
- the moving image drawing unit 23 is not limited to only the configuration for creating probe data of secondary mesh.
- the moving image drawing unit 23 may create probe data in accordance with a primary mesh, a tertiary mesh, or another unit mesh.
- the difference extraction unit 25 moves the scalar movement locus image drawn by the first movement image drawing unit 231 based on the probe data in vector form acquired in a predetermined period, and a specific period in advance. It is possible to extract the difference data of the moving locus image of scalar form in the past from the first moving image drawing unit 231 drawn by the second moving image drawing unit 232 based on the probe data of vector form acquired in Is configured as.
- the predetermined period and the specific period may be set appropriately.
- the map information storage unit 21, the data storage unit 29, and the movement data storage unit 31 can be configured by, for example, a hard disk drive or a memory of a semiconductor memory.
- the memory may store a program for driving the CPU.
- the CPU executes a program stored in the memory to execute a first moving image drawing unit 231, a second moving image drawing unit 232, a difference extraction unit 25, a road shape change determination unit 26, a map information updating unit 27,
- the movement data generation unit 30 and the movement data extraction unit 32 can function.
- the vehicle data receiving unit 28 can be configured by an appropriate communication module.
- the difference extracting unit 25 of the second embodiment acquires the moving trajectory image drawn by the first moving image drawing unit 231 and the past moving trajectory image drawn by the second moving image drawing unit 232.
- FIG. 12A exemplifies the moving track image drawn by the first moving image drawing unit 231.
- FIG. 12B exemplifies a past moving locus image drawn by the second moving image drawing unit 232.
- the difference extraction unit 25 creates an image of composite data obtained by combining the acquired movement trajectory image and the acquired movement trajectory image in the past.
- FIG. 12D an image which does not overlap between the movement locus image shown in FIG. 12A and the past movement locus image shown in FIG.
- the image of the difference data extracted by the difference extraction part 25 is illustrated in FIG. 12D.
- the image of the difference data is considered to represent the difference between the road at the time of generation of the map information and the current road. That is, the image of difference data is considered to represent road shape change.
- the map information processing apparatus 2 determines whether or not the extracted difference data is a road shape change, including the part surrounded by the rectangle in FIG.
- the map information updating unit 27 updates the map information stored in the map information storage unit 21. Specifically, the map information updating unit 27 generates map information of vector data from the movement trajectory information corresponding to the difference data determined by the road shape change determination unit 26 to be a road shape change. Then, the map information updating unit 27 updates the map information stored in the map information storage unit 21 with the generated map information.
- the map information processing apparatus 2 may discriminate track information by machine learning after deleting data unnecessary for generation of a movement track image from probe data.
- step 71, 72, 75, 76, and 77 of FIG. 13 of the second embodiment are substantially the same as the processes of steps 11, 12, 17, 18, and 19 of FIG. .
- the movement data generation unit 30 creates secondary mesh probe data by normalizing the accumulated data of the probe data acquired by the trajectory information acquisition unit 22 for a predetermined unit period.
- the movement data generation unit 30 deletes data unnecessary for drawing a movement image from probe data in vector format.
- unnecessary data for example, a traveling distance, a traveling speed, an acceleration, an angular velocity, a vehicle heading, and a slope angle may be mentioned.
- the first moving image drawing unit 231 draws a movement trajectory image of a secondary mesh using the normalized trajectory information of the secondary mesh (S73). In other words, the first moving image drawing unit 231 creates a movement trajectory image using the probe data acquired in a predetermined unit period.
- the second moving image drawing unit 232 draws the movement trajectory image of the past secondary mesh using the trajectory information of the past secondary mesh extracted by the movement data extraction unit 32 from the movement data storage unit 31. Do.
- the movement trajectory image of the past secondary mesh is referred to for reference.
- the moving image drawing unit 23 performs a second movement based on the movement trace image of the secondary mesh drawn by the first movement image drawing unit 231 based on the probe data of the secondary mesh and the probe data of the secondary mesh in the past. Difference data is extracted by comparing the movement trajectory image of the past secondary mesh drawn by the image drawing unit 232 (S74).
- the map information processing apparatus 2 can detect a road shape change without using map information.
- the map information processing apparatus 2 can easily determine the road shape change by improving the processing speed and further improving the determination accuracy.
- the map information processing apparatus 2 of the second embodiment includes a control unit, a temporary storage unit, a storage unit, and a wireless communication unit.
- the control unit executes the program read into the storage unit.
- the control unit of the device 2 is included.
- the map information storage unit 21, the data storage unit 29, and the movement data storage unit 31 of the second embodiment are included in the storage unit of the map information processing apparatus 2.
- the temporary storage unit is a working area for expanding programs and various data read from the storage unit.
- the parts such as the control unit, the temporary storage unit, the storage unit, and the wireless communication unit are mutually connected.
- the map information processing method in Embodiment 2 acquires probe data of each of a plurality of moving objects.
- the map information processing method generates a moving locus image in scalar form based on probe data in vector form acquired in predetermined periods of each of a plurality of moving objects.
- the map information processing method generates a scalar movement past image of movement locus based on probe data of vector form acquired in a predetermined period of each of a plurality of moving objects.
- the map information processing method extracts difference data representing a difference between the movement locus image and the past movement locus image.
- the computer executes a process of determining whether the difference data is a road shape change by machine learning.
- the map information processing program in the present embodiment acquires probe data of each of a plurality of moving objects.
- the map information processing program generates a moving locus image in scalar format based on probe data in vector format acquired in predetermined periods of each of the plurality of moving objects.
- the map information processing program generates a scalar movement past image of a moving locus based on probe data in vector format acquired in a predetermined period of each of a plurality of moving objects.
- the map information processing program extracts difference data representing a difference between the movement locus image and the past movement locus image.
- the map information processing program causes the computer to execute a process of determining whether the difference data is a road shape change by machine learning.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
- Instructional Devices (AREA)
Abstract
道路形状変化の判定を容易に行うことができる地図情報処理装置を提供する。地図情報処理装置は、複数の移動体それぞれの軌跡情報に基づく移動軌跡画像とベクトル形式のデータに基づくスカラー形式の上記移動軌跡画像とは異なる画像とを比較して差分データを抽出する差分抽出部と、機械学習により上記差分データが道路形状変化であるか否かを判定する道路形状変化判定部と、を備える。
Description
本発明は、複数の移動体の軌跡情報から地図情報の道路形状が変化したか否かの判定を行う地図情報処理装置、地図情報処理方法および地図情報処理プログラムに関する。
現状、道路の情報は、国、県、市、区などの行政区画単位で管理されており、道路形状の変化(以下、「道路形状変化」とも称する)の情報は一元化されていない。道路地図を作成するために道路形状変化を把握するためには、新たな道路がどこでどのような形状で形成されたのかを、個別の道路ごとに調べなければならない。
そのため、例えば国土地理院などから発行されているデジタル地図と、車両端末から取得したプローブデータ(Probe Data:軌跡情報)と、に基づいて、道路形状がどのように変化したかを判定し、道路地図の更新を行う方法が考えられる。
この種の地図情報を生成する装置として、車載端末が取得した位置情報に基づいて、道路接続状況を正しく推定して、更新地図を生成する構成が知られている(例えば、特許文献1)。
しかしながら、道路形状は、十字路形状からロータリー形状に変更される場合など、複雑で様々なパターンがあるため、地図情報と位置情報から単純に更新地図を生成することが難しい場合もある。
したがって、特許文献1に記載されている構成だけでは十分ではなく、更なる改良が求められている。
本発明はこのような課題に鑑みてなされたものであり、道路形状変化の判定を、より容易に行うことを目的とする。
本発明の一態様によれば、本発明の地図情報処理装置は、差分抽出部と、道路形状変化判定部と、を備える。上記差分抽出部は、差分データを抽出する。上記差分データは、複数の移動体それぞれの移動軌跡に基づく移動軌跡画像と、ベクトル形式のデータに基づくスカラー形式の上記記移動軌跡画像とは異なる画像との差分を表す。上記道路形状変化判定部は、機械学習により上記差分データが道路形状変化であるか否かを判定する。
本発明は、道路形状変化の判定を、より容易に行うことができる。
(実施形態1)
以下、本発明の実施形態1の地図情報処理システム1を図1に基づいて説明する。実施形態1の地図情報処理システム1は、地図を作成する上で道路形状変化の判定を容易に行うために使用される。地図情報処理システム1は、図1に示すように、地図情報処理装置2と、複数の車載端末3と、を含んで構成されている。以下、本実施形態の地図情報処理システム1における各構成について詳細に説明する。
以下、本発明の実施形態1の地図情報処理システム1を図1に基づいて説明する。実施形態1の地図情報処理システム1は、地図を作成する上で道路形状変化の判定を容易に行うために使用される。地図情報処理システム1は、図1に示すように、地図情報処理装置2と、複数の車載端末3と、を含んで構成されている。以下、本実施形態の地図情報処理システム1における各構成について詳細に説明する。
車載端末3は、道路を走行する車両4に搭載される。車載端末3は、例えば、カーナビゲーション装置より構成される。地図情報処理装置2と車載端末3とは、互いに無線通信により接続することができるように構成されている。図1では、日本を走行する車両4と地図情報処理装置2との無線通信を片矢印で例示している。地図情報処理システム1では、車載端末3からプローブデータが地図情報処理装置2へ送信される。
プローブデータは、例えば、車載端末3が搭載される車両4の自車位置(以下、「軌跡情報」ともいう)および時刻の情報を含んでいる。プローブデータは、自車位置および時刻の情報に加え、例えば、走行距離、走行速度、加速度、角速度、自車方位、勾配角といった車両4の走行履歴(属性情報(attribute))の情報を含んでいる。プローブデータの作成は、例えば、車両4に搭載された車載端末3を用いて行われる。車載端末3は、車両4に搭載されたGPS(Global Positioning System)モジュール、ジャイロセンサ、加速度センサから各種のセンサ情報を入手することができる。自車位置の情報は、例えば、カーナビゲーション装置のGPSモジュールから出力されるGPSデータにより算出される。すなわち、自車位置の情報は、GPSなどの衛星測位システムの機能を用いて取得される。自車位置の情報は、ある時刻における車両4の位置座標を表す。
車載端末3は、図2に示すように、通信端末5を介して、地図情報処理装置2と通信することができるように構成されている。車載端末3は、通信端末5を介して、車両4の軌跡情報を含むプローブデータを地図情報処理装置2へ送信する。車載端末3は、有線、若しくは無線により通信端末5と接続されていればよい。車載端末3は、通信端末5と物理的に別体に構成されていてもよいし、通信端末5が内蔵されて一体的に構成されていてもよい。通信端末5は、例えば、通信ユニット、携帯電話、若しくはスマートフォンである。通信端末5は、スマートフォンの場合、例えば、BLUETOOTH(登録商標)若しくはWi-Fiの通信規格で車載端末3と通信できるように接続される。通信端末5は、スマートフォンの場合、例えば、通信ネットワークを介して地図情報処理装置2と通信できるように接続される。
地図情報処理装置2は、各車載端末3から送信されたプローブデータを受信して、プローブデータに含まれる軌跡情報を取得する。地図情報処理装置2は、軌跡情報に基づいて、機械学習により、地図情報に含まれる道路形状が変化しているか否かを判定する。この判定の詳細については後述する。地図情報処理装置2は、道路形状が変化していると判定した場合には、地図情報を更新することができる。
上述の実施形態においては、車載端末3は、カーナビゲーション装置により構成しているがこの限りではない。車載端末3は、カーナビゲーション装置だけに限られず、各種の端末装置であってもよい。端末装置としては、例えば、携帯電話、スマートフォン、ノートパソコン、若しくはタブレットパソコンが挙げられる。即ち、車載端末3は、車両4に持ち込まれたスマートフォン単体だけであってもよい。また、本実施形態の車両4は、車載端末3が搭載される4輪自動車で例示している。車両4は4輪自動車だけに限られず、3輪自動車、自動二輪車、若しくは自転車でもよい。言い換えれば、車両4は、移動体である。
次に、実施形態1の地図情報処理装置2について、図3を用いて説明する。
本実施形態の地図情報処理装置2は、地図情報記憶部21と、軌跡情報取得部22と、移動画像描画部23と、地図情報変換部24と、差分抽出部25と、道路形状変化判定部26と、地図情報更新部27とを含む。地図情報記憶部21は、地図情報を記憶する。地図情報記憶部21は、複数の縮尺毎に地図情報を記憶しておくことが好ましい。
地図情報とは、地図を構成する情報である。地図情報は、ベクトル形式のデータで構成されている。地図情報は、3次元のベクトル形式のデータにより構成されていることがより好ましい。ベクトル形式のデータとしては、道路の位置および道路の形状を示す情報を含んでいる。より具体的には、地図情報は、例えば、道路の形状を示す地図画像情報、地図画像情報に紐付いた地図画像上のノードやリンクの情報、一般道路か高速道路かを示す属性情報を有している。ノードは、交差点その他道路網表現上の結節などを示す。リンクは、ノードとノードの間の道路区間を示す。また、地図情報は、一定の緯度・経度の間隔で矩形に分離されたメッシュ単位で構成されている。さらに各メッシュは、所定の単位で分離された縮尺の異なる複数の階層から構成されている。メッシュは、日本の場合、例えば、総務省により定められた標準地域メッシュの規格を採用することができる。標準地域メッシュは、1次メッシュ、2次メッシュ、3次メッシュの順に約10分の1の面積比で構成される。さらに、メッシュは、1次~3次メッシュより細分化した分割地域メッシュを、メッシュ単位として採用することができる。地図情報は、メッシュ単位毎に分割される場合、それぞれメッシュ番号と、対応する緯度および経度の情報とを有する。
軌跡情報取得部22は、車両データ受信部28と、データ記憶部29と、を含む。車両データ受信部28は、複数の車両4それぞれの車載端末3から送信されたプローブデータを受信する。データ記憶部29は、車両データ受信部28が受信したプローブデータを記憶する。軌跡情報取得部22は、各車載端末3からプローブデータを受信することにより、プローブデータに含まれる各車両4の軌跡情報を取得することができる。軌跡情報は、時間ごとの緯度・経度により表された座標の集合である。
移動画像描画部23は、軌跡情報取得部22によって取得された所定の範囲にある複数の車両4の軌跡情報に基づいて移動軌跡画像をまとめて描画する。所定の範囲は、例えば、道路情報を構成する任意の縮尺のメッシュを採用する。
以下、移動画像描画部23が車両4の移動軌跡画像を描画する例について説明する。移動画像描画部23は、車両データ受信部28が受信した複数のプローブデータに含まれる軌跡情報の座標、時刻、走行速度、加速度、角速度の情報に基づいて、図4Aに示すように、連続するm個の一群のプローブデータを取得する。例えば、移動画像描画部23は、プローブデータのうち、所定の時間間隔で、連続する座標を有するプローブデータ群を一群のプローブデータとして取得する。移動画像描画部23は、一群のプローブデータに含まれるm個の軌跡情報の座標をデータ記憶部29から取得する。移動画像描画部23は、取得した座標を点P1、P2、P3~Pmとしてプロットする。移動画像描画部23は、図4Bに示すように、プロットした点P1、P2、P3~Pm同士を線で繋いで1つの移動軌跡画像Lとして描画する。これにより、移動画像描画部23は、軌跡情報の他に、時刻、走行距離、走行速度、加速度、角速度の情報を含んだベクトル形式のプローブデータからスカラー形式の移動軌跡画像を生成することができる。
また、移動画像描画部23は、車両データ受信部28がプローブデータを受信すると、移動軌跡画像の描画を繰り返し行ってもよい。移動画像描画部23は、複数の移動軌跡画像を重畳して描画した場合、各移動軌跡画像の中央値または自乗平均値を算出して、重畳して描画された各移動軌跡画像の幅方向の中心値(中心座標)を繋いだ線を、平均化された移動軌跡画像として描画してもよい。これにより、移動画像描画部23は、マルチパスによるGPSデータの誤差、通信障害を起因とする軌跡情報の座標の揺らぎが抑制される。移動画像描画部23は、座標の揺らぎが抑制されることで描画精度を向上できる。
移動画像描画部23は、プローブデータに含まれる走行速度の情報を参照して、走行速度が所定の速度以上のプローブデータを省いて移動軌跡画像を描画してもよい。車載端末3は、GPSデータから走行速度を算出する場合、マルチパスによるGPSデータの誤差、若しくは通信障害を起因として、例えば、車速が通常ありえない300km以上に算出される場合もある。移動画像描画部23は、マルチパスによるGPSデータの誤差、若しくは通信障害を起因とする走行情報の誤検出が抑制できる。移動画像描画部23は、走行情報の誤検出が抑制されることで、描画精度が向上する。
移動画像描画部23は、プローブデータに含まれる走行速度の情報を参照して、走行速度が連続しないプローブデータを省いて移動軌跡画像を描画してもよい。これにより、移動画像描画部23は、例えば、駐車場において途中で駐車した車両4の車載端末3から得られるプローブデータを省くことができる。移動画像描画部23は、不要なプローブデータを省くことで、移動軌跡画像の描画精度を向上させることができる。
移動画像描画部23は、プローブデータに含まれる軌跡情報、走行速度の情報を参照する。そして、移動画像描画部23は、高速道路上を移動していると推定できるプローブデータと、一般道路上を移動していると推定できるプローブデータと、を互いに識別して移動軌跡画像を描画することもできる。これにより、地図情報処理装置2は、任意に選択した道路種別だけを道路形状変化の判定処理対象にすることができる。地図情報処理装置2は、処理速度の向上を図ることができる。
また、移動画像描画部23は、所定の単位期間に取得された車両4の軌跡情報に基づいて移動軌跡画像を描画してもよい。移動画像描画部23は、例えば、所定の単位期間の間を蓄積した軌跡情報に基づいてデータの正規化を行う。移動画像描画部23は、正規化されたデータから、メッシュ単位毎に、単位期間ごとのプローブデータを作成することができる。所定の単位期間は、例えば、現在時点を基準として、過去30日間分に設定することができる。本実施形態においては、移動画像描画部23は、単位期間ごとのプローブデータとして、2次メッシュのプローブデータを作成する。このように、地図情報処理装置2は、所定の期間にわたって蓄積した軌跡情報に基づいてプローブデータを作成することで、移動軌跡画像の描画精度が向上する。
なお、移動画像描画部23は、過去のプローブデータをリファレンスのために蓄積してもよい。移動画像描画部23は、リファレンスとなる過去のプローブデータを、所定の単位期間に取得した軌跡情報に基づいて作成された2次メッシュのプローブデータが作成される以前に、予め特定の期間にわたって蓄積した軌跡情報に基づいて作成することができる。過去のプローブデータは、メッシュ単位毎に作成されていることが好ましい。移動画像描画部23は、予め特定の期間として、例えば、30日を過去のプローブデータとして設定されていればよい。本実施形態においては、移動画像描画部23は、過去のプローブデータとして、30日間蓄積された2次メッシュのプローブデータを作成する。
移動画像描画部23は、第1ステップとして、新たに作成した2次メッシュのプローブデータと、過去に作成した2次メッシュのプローブデータと、を比較して差分があるか否かを判定することができる。そして、移動画像描画部23は、差分があった場合のみ、第2ステップとして、新たなプローブデータと地図情報との比較が行われる。これにより、地図情報処理装置2は、2段階で道路形状変化を検出することができる。また、地図情報処理装置2は、過去のプローブデータと差分があったプローブデータのみを差分抽出部25による差分データの抽出処理の処理対象にしている。地図情報処理装置2は、過去のプローブデータと差分があったプローブデータのみを差分データの処理対象にしているので、差分抽出部25における処理対象を減らすことができる。地図情報処理装置2は、差分抽出部25における処理対象を減らすことができるので、処理負担を軽減し、処理速度の向上を図ることができる。
なお、上述の実施形態では、所定の単位期間を1日間、3日間、7日間、30日間に設定としたがこれに限られるものではない。所定の単位期間は、日単位だけでなく、時間単位、月単位、年単位でもよく、任意の期間に設定することができる。また、上述の実施形態では、特定の期間を30日としたがこれに限られるものではない。特定の期間は、任意の期間に設定することができる。さらに、上述の実施形態では、移動画像描画部23は、2次メッシュのプローブデータを作成する構成だけに限られない。移動画像描画部23は、1次メッシュ、3次メッシュ、若しくは他の単位メッシュに合わせたプローブデータを作成してもよい。
地図情報変換部24は、ベクトル形式の地図情報をスカラー形式の地図情報に変換する。具体的には、地図情報変換部24は、地図情報記憶部21に記憶されているベクトル形式の地図情報のうち、地図画像情報に紐付いたノードの情報、リンクの情報、一般道路か高速道路かを示す属性情報を省く。言い換えれば、地図情報変換部24は、道路の形状を示す地図画像情報だけを取り出す。地図情報変換部24は、地図画像情報だけにすることで、地図情報を3次元のベクトル形式から2次元のスカラー形式に変換する。すなわち、3次元のベクトル形式の地図情報は、地図情報に含まれるノードの情報、リンクの情報および属性情報が取り除かれて、地図画像情報だけとなる。3次元のベクトル形式の地図情報は、地図画像情報だけとなることで、データ構成がシンプルな2次元のスカラー形式の地図情報に変換される。これにより、地図情報処理装置2は、プローブデータにより得られた移動軌跡画像と、地図情報と、を同じシンプルな次元のデータにすることができ、後述の差分抽出部25における差分の抽出を容易にすることができる。また、地図情報変換部24は、スカラー形式に変換した2次元の地図情報を、任意の縮尺のメッシュ単位毎に分割したスカラー形式にする。
上述の実施形態においては、地図情報変換部24は、スカラー形式に変換した2次元の地図情報を、任意の縮尺のメッシュ単位毎に分割したスカラー形式にする場合だけに限られない。例えば、道路形状変化判定部26により、差分データから道路形状変化があるとする確率が所定の確度以下であると判定された場合、地図情報変換部24は、地図情報記憶部21に記憶されている地図情報のうち、縮尺が大きい地図情報をベクトル形式からスカラー形式に変換する。
これにより、地図情報処理装置2は、初期段階では大まかに全体を判定することで、道路形状変化があるか否かの判定速度を向上することができる。言い換えれば、地図情報処理装置2は、差分データから道路形状変化があるとする確率が所定の確度若しくは所定の確度未満と判定された場合、処理対象をより縮尺が大きい地図情報にすることで、処理対象を限定して処理速度を向上させることができる。その結果、地図情報処理装置2は、判定精度をより向上させることができる。
差分抽出部25は、移動画像描画部23により描画された移動軌跡画像と、地図情報変換部24によりスカラー形式に変換された地図情報中の移動軌跡画像とは異なる地図画像とを比較して差分データを抽出することができるように構成されている。
本実施形態の地図情報処理装置2は、地図情報記憶部21およびデータ記憶部29を、例えば、ハードディスクドライブ、若しくは半導体メモリのメモリで構成することができる。メモリには、CPU(Central Processing Unit)を駆動させるプログラムが記憶されていてもよい。CPUは、メモリに記憶されたプログラムが実行されることで、移動画像描画部23、地図情報変換部24、差分抽出部25、道路形状変化判定部26および地図情報更新部27を機能させることができるように構成されている。車両データ受信部28は、適宜の通信モジュールで構成することができる。
以下、図5A~図5Dを参照して、差分抽出部25により差分データを抽出する一例について説明する。
差分抽出部25は、移動画像描画部23により描画された移動軌跡画像と、地図情報変換部24によりスカラー形式に変換された地図情報中の地図画像と、を取得する。図5Aには、移動画像描画部23により描画された移動軌跡画像を例示している。図5Bには、スカラー形式に変換された地図情報中の地図画像を例示している。次に、差分抽出部25は、図5Cに示すように、取得した移動軌跡画像と、地図画像と、を合成した合成データの画像を作成する。差分抽出部25は、合成データの画像を作成した結果、図5Dに示すように、図5Aに示す移動軌跡画像と図5Bに示す地図画像との間で重複しない画像を、差分データの画像として抽出する。これにより、移動軌跡画像のうち、移動軌跡の揺らぎを消して、地図画像からはみ出た移動軌跡の画像のみを抽出することができる。図5Dには、差分抽出部25で抽出された差分データの画像を例示している。差分データの画像は、地図情報が生成された時点での道路と、現在の道路との差分を表すと考えられる。すなわち、差分データの画像は、道路形状変化を表すと考えられる。図5A~図5Dに示す例では、図5中の丸で囲んだ領域において新たな道路が形成された可能性がある。次に、地図情報処理装置2は、図5中の丸で囲われた箇所を含めて、抽出した差分データが道路形状変化であるか否かを判定する。
道路形状変化判定部26は、差分抽出部25が抽出した差分データが道路形状変化であるか否かの判定を機械学習により判定する。機械学習としては、ディープラーニングが用いられている。具体的には、道路形状変化判定部26は、過去に抽出した差分データを教師データとして機械学習を行う。道路形状変化判定部26は、機械学習の結果に基づき、新たに抽出した差分データが道路形状変化であるか否かを判定する。なお、本願では、機械学習は、コンピュータがデータから反復的に学習し、所定のパターンを見出して予測する場合だけに限られず、それまで未知だったデータの特徴を発見するデータマイニングも含む広義の意味に解する。
次に、図6を参照して、道路形状変化判定部26がディープラーニングにより道路形状変化を判定する方法の一例について説明する。ディープラーニングは、多層のニューラルネットワーク60による機械学習の手法の一種である。ニューラルネットワーク60は、入力データと出力データとを持ち、内部の演算処理は複数の人工ニューロンに基づいて行われる。機械学習において使用するニューラルネットワーク60は、3つの層を含んでいる。3つの層は、入力層61と、中間層62と、出力層63として図示している。中間層62は、隠れ層とも呼ばれ、2以上の層を含んでいてもよい。中間層62は、層の数が少なすぎれば、未学習となる。中間層62は、層の数が多すぎれば、過剰適合となる。道路形状変化判定部26は、差分データが道路形状変化であるか否かを判定するために、適宜に層の数が設定されればよい。人工ニューロンは、前の層の出力に対してパラメータを掛けたものの総和を出力する。人工ニューロンの出力データは、活性化関数により制御され、非線形性が付加される。本実施形態において使用される機械学習のための活性化関数は、例えば、ソフトマックス関数、シグモイド関数、若しくはガウス関数を採用することができる。
ニューラルネットワーク60は、機械学習を行うため、初めに入力データとして、教師データが入力層61に与えられる。教師データは、例えば、差分抽出部25により過去に抽出された差分データである。道路形状変化判定部26は、教師データを入力層61、中間層62、出力層63により処理する。すなわち、道路形状変化判定部26は、入力した差分データに最適な特徴量を動的に生成して学習し、順方向の情報伝搬により演算処理する順伝播を行う。図6では、順伝播の方向を極太の片矢印で示している。出力結果は、入力された差分データが道路形状変化の画像であるか、ノイズであるかの予測結果を表す。
また、学習を行う場合には、道路形状変化判定部26は、出力結果が道路形状変化の画像であるか、ノイズであるかの情報を与えることで、逆方向の情報伝搬により演算処理する逆伝播を行う。図6では、逆伝播の方向を太い片矢印で示している。なお、道路形状変化判定部26では、機械学習において、教師データとして学習に使用する入力データと、出力データとの出力誤差を評価する。道路形状変化判定部26は、逆伝播により、出力誤差から逐次的に機械学習における各層と各ノードのパラメータを最適化することが好ましい。
この学習により、道路形状変化判定部26は、各層のパラメータを徐々に最適値に近づけていける。そして、道路形状変化判定部26は、差分抽出部25により抽出された差分データを入力層61に入力すると、機械学習の結果に基づいて調整されたパラメータを用いて、差分データが道路形状変化の画像であるか否かの判定を行うことができる。
道路形状変化判定部26は、例えば、図6に示すように、n個の差分データd1、d2からdnを教師データとして順伝播させると、出力層63にM個の出力データy1~yMの情報が得られる。本実施形態において、出力データは、入力された差分データが道路形状変化の画像であるか、それ以外の画像であるかを予測する予測値を表す。
道路形状変化判定部26は、得られた出力データy1~yMに対して、道路形状変化の画像であるか、ノイズであるかを示すM個の正解データt1~tMの情報が与えられる。道路形状変化判定部26は、正解データt1からtMの情報が与えられて逆伝播を行うと、逐次パラメータを最適な値に調整する機械学習を行う。言い換えれば、道路形状変化判定部26は、逆伝播により出力データと正解データとのずれを評価し、パラメータを最適化している。なお、機械学習のために使用するソフトウェアは、例えば、OpenCV、Numpy、Matplotlib、若しくはChainerを採用することができる。
地図情報更新部27は、地図情報記憶部21に記憶される地図情報を更新する。具体的には、地図情報更新部27は、道路形状変化判定部26により、道路形状変化であると判定された差分データに対応するスカラー形式に変換された地図情報から、ベクトル形式の地図情報を生成する。そして、地図情報更新部27は、生成した地図情報で、地図情報記憶部21に記憶される地図情報を更新する。地図情報を更新する処理については、後述の地図情報更新処理において説明する。
ところで、地図情報処理装置では、機械学習により、単純にプローブデータとデジタル地図とから道路形状の変化を識別させることも考えられる。
しかしながら、一般にデジタル地図のデータは、道路の形状を示す地図画像情報、地図画像情報に紐付いた地図画像上のノードやリンクの情報、一般道路か高速道路かを示す属性情報などを有する3次元のベクトル形式で構成されている。
そのため、地図情報処理装置は、機械学習を用いて新規に作成された道路形状の変化を検出させる場合、単純に3次元のベクトル形式のデジタル地図を機械学習の処理対象として情報処理を行うと、処理対象の情報量が多すぎて情報処理の負担が大きくなり過ぎる場合がある。さらに、地図情報処理装置は、機械学習のオブジェクトとして比較する対象の情報量が多いため、どの情報が比較すべき対象の情報であるのか判断しづらい場合もある。
本実施形態の地図情報処理装置2は、機械学習により道路地図を作成するため、処理対象をできるだけシンプルにすることで、道路形状変化の判定を容易に行っている。
また、地球の形状は、真球ではなく偏球であるため、メッシュの縦横の長さが場所によって異なる場合がある。本実施形態の地図情報処理装置2は、機械学習を行う場合、予め各メッシュの縦横の長さを統一した正規化を行っていることが好ましい。地図情報処理装置2は、機械学習を行った後、正規化されたメッシュを元に戻して利用することで、道路形状変化の判定をより正確に行うことができる。
次に、本実施形態に係る地図情報処理装置2による道路形状変化判定処理について、図7および図8を参照して説明する。地図情報処理装置2は、道路形状変化処理の開始の指示を受け付けると、図7のステップ11からステップ19の判定処理を開始する。以下では、ステップをSで示す。
地図情報処理装置2は、道路形状変化であるか否かを判定する前に予め教師データに基づいてパラメータの最適化を実行する。道路形状変化判定部26は、教師データに基づいて機械学習を行う(S11)。
道路形状変化判定部26は、教師データとして予め準備された情報が入力される。予め準備された情報は、過去に抽出された差分データが道路形状変化を示す画像か、それ以外のノイズなどの画像か、を互いに識別するパラメータの設定のために用いられる。そして、設定されたパラメータは、例えば、道路形状変化判定部26で保持されるか、あるいは、道路形状変化判定部26がアクセス可能なメモリに格納される。
次に、軌跡情報取得部22は、各車載端末3から送信されたプローブデータを車両データ受信部28が受信する。軌跡情報取得部22は、受信したプローブデータをデータ記憶部29が記憶する。これにより、軌跡情報取得部22は、受信したプローブデータに含まれる各車両4の軌跡情報を取得する(S12)。
地図情報変換部24は、地図情報記憶部21に記憶されているベクトル形式の地図情報に含まれる情報のうち、道路の形状を示す地図画像情報を取り出す。地図情報変換部24は、地図画像情報を取り出すことで、地図情報を3次元のベクトル形式から2次元のスカラー形式に変換する(S13)。
言い換えれば、地図情報変換部24は、ベクトル形式の地図情報を、ラスタ形式の地図画像に変換する。本実施形態においては、地図情報変換部24は、スカラー形式の2次元の地図情報を、任意の縮尺のメッシュ単位として、2次メッシュ単位に分割した2次メッシュのスカラー形式のデータに変換する。移動画像描画部23は、軌跡情報取得部22により取得したプローブデータを所定の単位期間の間、蓄積したデータの正規化により2次メッシュのプローブデータを作成する。
移動画像描画部23は、正規化した2次メッシュのプローブデータに基づいて、2次メッシュの移動軌跡画像を描画する(S14)。
なお、移動画像描画部23は、所定の単位期間に取得されたプローブデータに基づき移動軌跡画像を作成する前に、軌跡情報取得部22により取得した過去のプローブデータを特定の期間の間、蓄積してデータの正規化を行う。移動画像描画部23は、データの正規化された過去の2次メッシュのプローブデータを作成する。そして、移動画像描画部23は、正規化した過去の2次メッシュのプローブデータに基づいて、過去の2次メッシュの移動軌跡画像を描画する。過去の2次メッシュの移動軌跡画像は、リファレンス用として参照される。
移動画像描画部23は、第1ステップとして、2次メッシュのプローブデータに基づいて描画した2次メッシュの移動軌跡画像と、過去の2次メッシュのプローブデータに基づいて描画した過去の2次メッシュの移動軌跡画像と、を比較して差分があるか否かを判定する(S15)。
上述の実施形態では、移動画像描画部23は、2次メッシュの移動軌跡画像を描画しているがこれに限られるものではない。移動画像描画部23は、1次メッシュ、3次メッシュなどの任意の縮尺のメッシュの移動軌跡画像を描画することができる。また、移動画像描画部23は、2次メッシュの移動軌跡画像と、過去の2次メッシュの移動軌跡画像と、を比較して差分があるか否かを判定する場合だけに限らない。例えば、移動画像描画部23は、2次メッシュのプローブデータに含まれる緯度・経度の情報と、過去の2次メッシュのプローブデータに含まれる緯度・経度の情報と、を直接比較して差分があるか否かを判定することもできる。
地図情報処理装置2は、移動軌跡画像と過去の移動軌跡画像との間に差分がないS15のNOの場合、図7に示すS16~S19はスキップされ、道路形状変化判定処理は終了となる。すなわち、地図情報処理装置2は、S15の判定において差分があった場合のみ、S16~S17が実行される。したがって、地図情報処理装置2は、S17の実行頻度が削減できる。また、地図情報処理装置2は、過去に蓄積したプローブデータに基づいて作成した移動軌跡画像と差分があった移動軌跡画像のみを差分抽出部25による差分データの抽出処理の処理対象にすることができる。そのため、地図情報処理装置2は、差分抽出部25における処理対象を減らすことで、処理負担を軽減し、処理速度の向上を図ることができる。
これに対し、移動軌跡画像と過去の移動軌跡画像との間に差分があるS15のYESの場合、差分抽出部25は、S14において描画された移動軌跡画像と、S13においてスカラー形式に変換された地図情報中の地図画像との差分を表す差分データを抽出する(S16)。
道路形状変化判定部26は、S11において学習した機械学習の結果に基づき、S16において新たに抽出した差分データが道路形状変化であるか否かを判定する(S17)。
抽出した差分データが道路形状変化であるS18のYESの場合、道路形状変化判定部26は、抽出した差分データを道路形状変化として出力する(S19)。
この場合、差分データは、道路形状変化を示すので、後の地図情報作成処理において使用するために保存しておく。
これに対し、抽出した差分データが道路形状変化でないS18のNOの場合、S19はスキップされ、道路形状変化判定処理は終了となる。この場合、差分データは、道路形状変化を示す情報ではなく、単なるノイズである可能性が高い。よって、抽出された差分データは廃棄されてもよい。
このように、地図情報処理装置2は、地図情報記憶部21に記憶されているベクトル形式の地図情報のうち、道路の形状を示す地図画像情報だけを取り出す。これにより、3次元のベクトル形式の地図情報が、データ構成のシンプルな2次元のスカラー形式の地図情報に変換される。これにより、地図情報処理装置2では、プローブデータにより得られた移動軌跡画像と、地図情報と、を同じシンプルな2次元のデータにすることができる。
その結果、地図情報処理装置2は、機械学習を用いて新規に作成された道路形状の変化を検出させる場合、機械学習の処理対象を減らして処理負担の軽減を図ることができる。地図情報処理装置2は、処理速度を向上させ、さらに判定精度を向上させることで道路形状変化の判定を容易に行うことができる。
次に、本実施形態に係る地図情報処理装置2による地図情報更新処理について、図9および図10A、図10Bを参照して説明する。
地図情報処理装置2は、地図情報更新処理の開始の指示を受け付けると、以下の地図情報更新処理が開始される。なお、上述の実施形態では、地図情報更新処理の開始の指示を受け付けると、地図情報更新処理を開始しているがこれに限られない。例えば、上述の道路形状変化判定処理のS19において所定数の道路形状変化を出力すると、地図情報更新処理を自動的に開始させてもよい。
はじめに、地図情報更新部27は、道路形状変化判定処理のS19において出力した差分データをN個蓄積し、プローブデータの誤差を平均化する(S31)。ここで、Nは、任意の自然数である。誤差を平均化したプローブデータを図10Aおよび図10Bに例示する。図10Bは、図10Aの領域F1を拡大した拡大図である。地図情報更新部27は、誤差を平均化した差分データ、すなわち、道路形状変化であると判定された道路形状を表すデータに対しスムース処理を行う(S32)。スムース処理が行われた道路形状は、新たに作られた道路の形状に相当する。
地図情報更新部27は、地図情報記憶部21に記憶されているベクトル形式の地図情報のうち、S32においてスムース処理を行った道路形状の緯度・経度が含まれるメッシュの地図情報を取得する。差分データに基づいて判定された道路形状は、プローブデータに基づいて作成されているため、緯度・経度の情報を有する。よって、地図情報更新部27は、道路形状のプローブデータの緯度・経度を参照することで、対応するメッシュの地図情報を地図情報記憶部21から取得することができる。
図10Cおよび図10Dに示すように、地図情報更新部27は、S32においてスムース処理を行った2次元の道路形状D2を、取得したベクトル形式のメッシュの地図情報に含まれる道路形状D3に重ねる(S33)。図10Dは、図10Cの領域F2を拡大した拡大図である。
地図情報更新部27は、図10Dに示すように、S32においてスムース処理を行った2次元の道路形状D2と、ベクトル形式のメッシュの地図情報に含まれる道路形状D3との接点を特定する。ここで、地図情報は、ベクトル形式で表されているので、Z軸方向の情報を含む。Z軸方向は、地面に対して垂直な方向を示している。すなわち、地図情報は、各道路のZ軸座標を表す情報を含む。Z軸座標は、例えば、標高である。よって、差分データから生成される道路形状D2と地図情報中の道路との接点は、緯度、経度、標高により表される。そして、地図情報更新部27は、特定した各接点にノードを付加する(S34)。図10Dおよび図10Eでは、ノードN1およびノードN2として例示している。なお、差分データから生成される道路形状D2に付加されるノードには、各道路のZ軸方向を表す接点の情報が含まれるため、道路形状D2は、ベクトル形式に変換される。
地図情報更新部27は、特定したノードを利用して、ベクトル形式の道路形状D2の軸を生成する(S35)。
地図情報更新部27は、差分データから得られた道路形状D2の道路幅を、地図情報に含まれる道路形状D3の道路幅と一致するように修正する。そして、道路幅を修正したベクトル形式の道路形状D2を地図情報に含まれる道路形状D3とノードで連結する(S36)。
地図情報更新部27は、地図情報に含まれる道路形状D3のうち、不要となった道路箇所D4および付加したノードを削除する(S37)。例えば、地図情報更新部27は、変換前の元の2次元の道路形状D2に付加したノード間において、プローブデータが存在しない箇所を不要となった道路箇所D4として削除する。
地図情報更新部27は、不要となった道路箇所D4を削除する。地図情報更新部27は、ベクトル形式の道路形状D2が連結された道路形状D3に基づき、地図情報記憶部21内の地図情報を更新する(S38)。この処理が終了すると、地図情報更新処理は終了となる。
これにより、道路形状変化として抽出された2次元の差分データを再び3次元のベクトル形式に戻して地図情報を更新することができる。その結果、地図情報を定期的に自動フォーマット化することができ、地図情報の更新にかかる手間を軽減することができる。
なお、実施形態1の地図情報処理装置2は、制御部、一時記憶部、記憶部、無線通信部を有する。制御部は、記憶部に読込んだプログラムを実行する。実施形態1の車両データ受信部28、移動画像描画部23、地図情報変換部24、差分抽出部25、道路形状変化判定部26、地図情報更新部27は、地図情報処理装置2の制御部に含まれる。実施形態1の地図情報記憶部21およびデータ記憶部29は、地図情報処理装置2の記憶部に含まれる。一時記憶部は、記憶部から読込まれたプログラムや各種データを展開するワーキングエリアである。制御部、一時記憶部、記憶部、無線通信部などの各部位は相互に接続される。
実施形態1の地図情報処理装置2は、例えば、カーナビゲーションシステムや、自動運転支援システムで使用される地図データを自動でフォーマットする技術として使用することができる。
また、実施形態1における地図情報処理方法は、複数の移動体それぞれの軌跡情報を取得する。地図情報処理方法は、道路の位置および形状を示す情報を含む地図情報をベクトル形式からスカラー形式に変換する。また、地図情報処理方法は、上記軌跡情報から描画された移動軌跡画像と、上記スカラー形式に変換された地図情報中の地図画像との差分を表す差分データを抽出する。地図情報処理方法は、機械学習により、上記差分データが道路形状変化であるか否かを判定する処理を、コンピュータが実行する。
さらに、本実施形態における地図情報処理プログラムは、複数の移動体それぞれの軌跡情報を取得する。地図情報処理プログラムは、道路の位置および形状を示す情報を含む地図情報をベクトル形式からスカラー形式に変換する。地図情報処理プログラムは、上記軌跡情報から描画された移動軌跡画像と、上記スカラー形式に変換された地図情報中の地図画像との差分を表す差分データを抽出する。地図情報処理プログラムは、機械学習により、上記差分データが道路形状変化であるか否かを判定する処理を、コンピュータに実行させる。
(実施形態2)
以下、本発明の別の実施形態について説明する。実施形態2の地図情報処理装置は、実施形態1の地図情報処理装置2と比較して、過去の移動軌跡画像と比較して差分データを抽出する点が主として相違する。以下では、実施形態2の地図情報処理装置を実施形態1の地図情報処理装置2の構成と区別するために、地図情報処理装置2Bとも称する。実施形態2の地図情報処理装置2Bについて、図11を用いて説明する。
(実施形態2)
以下、本発明の別の実施形態について説明する。実施形態2の地図情報処理装置は、実施形態1の地図情報処理装置2と比較して、過去の移動軌跡画像と比較して差分データを抽出する点が主として相違する。以下では、実施形態2の地図情報処理装置を実施形態1の地図情報処理装置2の構成と区別するために、地図情報処理装置2Bとも称する。実施形態2の地図情報処理装置2Bについて、図11を用いて説明する。
実施形態2の地図情報処理装置2Bでは、実施形態1と同様の構成について適宜に説明を省略する。
実施形態2の地図情報処理装置2Bは、図11に示すように、地図情報記憶部21と、軌跡情報取得部22と、差分抽出部25と、道路形状変化判定部26に加え、2つの移動画像描画部23と、地図情報更新部27と、移動データ生成部30と、移動データ記憶部31と、移動データ抽出部32とを含む。以下では、2つの移動画像描画部23のうちの一方を第1移動画像描画部231と称し、他方を第2移動画像描画部232と称する場合もある。2つの移動画像描画部23は、同じ構成で構成されており、入力されるデータが異なっている。地図情報処理装置2は、2つの移動画像描画部23を用いる場合だけに限られず、入力されるデータを順次変えることで、1つの移動画像描画部23で構成することもできる。移動データ生成部30は、時刻を計時する計時部を備えていることが好ましい。移動データ抽出部32は、時刻を計時する計時部を備えていることが好ましい。
以下、移動画像描画部23が車両4の移動軌跡画像を描画する例について説明する。移動画像描画部23のうち、第1移動画像描画部231は、移動データ生成部30を介して、軌跡情報取得部22のデータ記憶部29から複数のプローブデータに含まれる軌跡情報を取得する。移動データ生成部30は、取得された複数のプローブデータから移動軌跡画像の描画に必要でない情報が取り除かれる。移動データ生成部30は、例えば、複数のプローブデータから時間ごとの緯度・経度により表された座標の集合のみのデータを生成すればよい。移動データ生成部30は、例えば、複数のプローブデータから座標のばらつきを正規化された正規化座標の集合のみのデータを生成してもよい。なお、移動データ生成部30は、移動画像描画部23と別体に構成される場合だけに限られず、移動画像描画部23に含まれるように構成されてもよい。また、移動データ生成部30は、軌跡情報取得部22に含まれるように構成されてもよい。同様に、移動画像描画部23は、軌跡情報取得部22に含まれるように構成されてもよい。移動画像描画部23は、具体的には、軌跡情報の座標の集合の情報に基づいて、実施形態1の図4Aに示したものと同様に、連続するm個の一群のプローブデータを取得する。移動画像描画部23は、取得した座標を点P1、P2、P3~Pmとしてプロットする。移動画像描画部23は、実施形態1の図4Bに示したものと同様に、プロットした点P1、P2、P3~Pm同士を線で繋いで1つの移動軌跡画像Lとして描画する。これにより、実施形態2の移動画像描画部23は、軌跡情報の他に、時刻、走行距離、走行速度、加速度、角速度、自車方位、勾配角の情報を含んだベクトル形式のプローブデータからスカラー形式の移動軌跡画像を生成することができる。なお、移動データ生成部30で生成された緯度・経度により表された座標の集合のみのデータは、時刻情報と共に移動データ記憶部31に蓄積されるように構成されている。
実施形態2の移動画像描画部23は、過去のプローブデータをリファレンスのために利用している。過去のプローブデータに基づいた軌跡情報は、移動データ記憶部31に記憶されている。まず、移動データ抽出部32は、移動データ記憶部31からリファレンスとなる過去の軌跡情報を抽出する。移動データ抽出部32は、予め設定された特定の期間から過去の所定の軌跡情報を抽出すればよい。移動画像描画部23のうち、第2移動画像描画部232には、移動データ記憶部31からリファレンスとなる過去の軌跡情報が入力される。移動画像描画部23は、第1移動画像描画部231が所定の単位期間に取得した軌跡情報に基づいて作成された2次メッシュのプローブデータから作成された軌跡情報から移動軌跡画像を描画し、第2移動画像描画部232が予め特定の期間にわたって蓄積したより過去の軌跡情報に基づいて、リファレンスとなるより過去の移動軌跡画像を描画する。過去の軌跡情報は、メッシュ単位毎に作成されていることが好ましい。移動画像描画部23は、予め特定の期間として、例えば、30日を過去のプローブデータを利用できる。移動画像描画部23は、過去の全てのプローブデータが対象となるように特定の期間として全てのプローブデータを利用してもよい。本実施形態においては、移動画像描画部23は、過去のプローブデータとして、30日間蓄積された2次メッシュの軌跡情報を作成する。
次に、実施形態2の差分抽出部25は、第1移動画像描画部231が新たに作成した2次メッシュのプローブデータと、第2移動画像描画部232が過去に作成した2次メッシュのプローブデータと、を比較して差分データを抽出することができるように構成されている。差分抽出部25は、第1移動画像描画部231および第2移動画像描画部232と別体に構成されているが、移動画像描画部23に含まれるように構成されてもよい。
なお、第2の実施形態では、所定の単位期間を1日間、3日間、7日間、30日間に設定としたがこれに限られるものではない。所定の単位期間は、日単位だけでなく、時間単位、月単位、年単位でもよく、任意の期間に設定することができる。また、上述の実施形態では、特定の期間を30日としたがこれに限られるものではない。特定の期間は、任意の期間に設定することができる。さらに、上述の実施形態では、移動画像描画部23は、2次メッシュのプローブデータを作成する構成だけに限られない。移動画像描画部23は、1次メッシュ、3次メッシュ、若しくは他の単位メッシュに合わせたプローブデータを作成してもよい。
言い換えれば、実施形態2の差分抽出部25は、所定の期間に取得したベクトル形式のプローブデータに基づいて第1移動画像描画部231により描画されたスカラー形式の移動軌跡画像と、予め特定の期間に取得したベクトル形式のプローブデータに基づいて第2移動画像描画部232により描画された第1移動画像描画部231よりも過去のスカラー形式の移動軌跡画像と、の差分データを抽出することができるように構成されている。所定の期間および予め特定の期間は、適宜に設定されていればよい。
実施形態2の地図情報処理装置2は、地図情報記憶部21、データ記憶部29および移動データ記憶部31を、例えば、ハードディスクドライブ、若しくは半導体メモリのメモリで構成することができる。メモリには、CPUを駆動させるプログラムが記憶されていてもよい。CPUは、メモリに記憶されたプログラムが実行されることで、第1移動画像描画部231、第2移動画像描画部232、差分抽出部25、道路形状変化判定部26、地図情報更新部27、移動データ生成部30および移動データ抽出部32を機能させることができるように構成されている。車両データ受信部28は、適宜の通信モジュールで構成することができる。
以下、図12A~図12Dを参照して、実施形態2の差分抽出部25により差分データを抽出する一例について説明する。
実施形態2の差分抽出部25は、第1移動画像描画部231により描画された移動軌跡画像と、第2移動画像描画部232により描画されたより過去の移動軌跡画像と、を取得する。図12Aには、第1移動画像描画部231により描画された移動軌跡画像を例示している。図12Bには、第2移動画像描画部232により描画されたより過去の移動軌跡画像を例示している。次に、差分抽出部25は、図12Cに示すように、取得した移動軌跡画像と、取得した過去の移動軌跡画像と、を合成した合成データの画像を作成する。差分抽出部25は、合成データの画像を作成した結果、図12Dに示すように、図12Aに示す移動軌跡画像と図12Bに示す過去の移動軌跡画像との間で重複しない画像を、差分データの画像として抽出する。図12Dには、差分抽出部25で抽出された差分データの画像を例示している。差分データの画像は、地図情報が生成された時点での道路と、現在の道路との差分を表すと考えられる。すなわち、差分データの画像は、道路形状変化を表すと考えられる。図12A~図12Dに示す例では、図12中の矩形で囲んだ領域において新たな道路が形成された可能性がある。次に、地図情報処理装置2は、図12中の矩形で囲われた箇所を含めて、抽出した差分データが道路形状変化であるか否かを判定する。
地図情報更新部27は、地図情報記憶部21に記憶される地図情報を更新する。具体的には、地図情報更新部27は、道路形状変化判定部26により、道路形状変化であると判定された差分データに対応する移動軌跡情報から、ベクトルデータの地図情報を生成する。そして、地図情報更新部27は、生成した地図情報で、地図情報記憶部21に記憶される地図情報を更新する。
なお、実施形態2の地図情報処理装置2は、プローブデータから移動軌跡画像の生成に不要なデータを削除した後、機械学習により軌跡情報を弁別してもよい。
次に、実施形態2に係る地図情報処理装置2による道路形状変化判定処理について、図13および図14を参照して説明する。地図情報処理装置2は、道路形状変化処理の開始の指示を受け付けると、図13のステップ71からステップ77の判定処理を開始する。実施形態2の図13のステップ71、72、75、76、77の処理は、実施形態1の図7のステップ11、12、17、18、19の処理と略同様であるため説明を省略する。
移動データ生成部30は、軌跡情報取得部22により取得したプローブデータを所定の単位期間の間、蓄積したデータの正規化により2次メッシュのプローブデータを作成する。移動データ生成部30は、ベクトル形式のプローブデータから移動画像の描画に不要なデータを削除する。不要なデータとしては、例えば、走行距離、走行速度、加速度、角速度、自車方位、勾配角が挙げられる。
第1移動画像描画部231は、正規化した2次メッシュの軌跡情報を利用して、2次メッシュの移動軌跡画像を描画する(S73)。言い換えれば、第1移動画像描画部231は、所定の単位期間に取得されたプローブデータを利用して、移動軌跡画像を作成する。
そして、第2移動画像描画部232は、移動データ記憶部31から移動データ抽出部32により抽出された過去の2次メッシュの軌跡情報を利用して、過去の2次メッシュの移動軌跡画像を描画する。過去の2次メッシュの移動軌跡画像は、リファレンス用として参照される。
移動画像描画部23は、2次メッシュのプローブデータに基づいて第1移動画像描画部231が描画した2次メッシュの移動軌跡画像と、より過去の2次メッシュのプローブデータに基づいて第2移動画像描画部232が描画した過去の2次メッシュの移動軌跡画像と、を比較して差分データを抽出する(S74)。
このように、実施形態2の地図情報処理装置2は、地図情報を用いることなく道路形状変化を検出することができる。
その結果、地図情報処理装置2は、処理速度を向上させ、さらに判定精度を向上させることで道路形状変化の判定を容易に行うことができる。
なお、実施形態2の地図情報処理装置2は、制御部、一時記憶部、記憶部、無線通信部を有する。制御部は、記憶部に読込んだプログラムを実行する。実施形態2の車両データ受信部28、移動画像描画部23、差分抽出部25、道路形状変化判定部26、地図情報更新部27、移動データ生成部30、移動データ抽出部32は、地図情報処理装置2の制御部に含まれる。実施形態2の地図情報記憶部21、データ記憶部29および移動データ記憶部31は、地図情報処理装置2の記憶部に含まれる。一時記憶部は、記憶部から読込まれたプログラムや各種データを展開するワーキングエリアである。制御部、一時記憶部、記憶部、無線通信部などの各部位は相互に接続される。
また、実施形態2における地図情報処理方法は、複数の移動体それぞれのプローブデータを取得する。地図情報処理方法は、複数の移動体それぞれの所定の期間に取得したベクトル形式のプローブデータに基づいて、スカラー形式の移動軌跡画像を生成する。地図情報処理方法は、複数の移動体それぞれの予め特定の期間に取得したベクトル形式のプローブデータに基づいて、スカラー形式のより過去の移動軌跡画像を生成する。また、地図情報処理方法は、上記移動軌跡画像と、上記過去の移動軌跡画像との差分を表す差分データを抽出する。地図情報処理方法は、機械学習により、上記差分データが道路形状変化であるか否かを判定する処理を、コンピュータが実行する。
さらに、本実施形態における地図情報処理プログラムは、複数の移動体それぞれのプローブデータを取得する。地図情報処理プログラムは、複数の移動体それぞれの所定の期間に取得したベクトル形式のプローブデータに基づいて、スカラー形式の移動軌跡画像を生成する。地図情報処理プログラムは、複数の移動体それぞれの予め特定の期間に取得したベクトル形式のプローブデータに基づいて、スカラー形式のより過去の移動軌跡画像を生成する。地図情報処理プログラムは、上記移動軌跡画像と、上記過去の移動軌跡画像との差分を表す差分データを抽出する。地図情報処理プログラムは、機械学習により、上記差分データが道路形状変化であるか否かを判定する処理を、コンピュータに実行させる。
なお、本発明は上述した実施形態そのままに限定されるものではなく、実施段階でのその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施形態に示される全構成要素を適宜組み合わせても良い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。このような、発明の趣旨を逸脱しない範囲内において種々の変形や応用が可能であることはもちろんである。
1 地図情報処理システム
2 地図情報処理装置
2B 地図情報処理装置
3 車載端末
4 車両
5 通信端末
21 地図情報記憶部
22 軌跡情報取得部
23 移動画像描画部
231 第1移動画像描画部
232 第2移動画像描画部
24 地図情報変換部
25 差分抽出部
26 道路形状変化判定部
27 地図情報更新部
28 車両データ受信部
29 データ記憶部
30 移動データ生成部
31 移動データ記憶部
32 移動データ抽出部
2 地図情報処理装置
2B 地図情報処理装置
3 車載端末
4 車両
5 通信端末
21 地図情報記憶部
22 軌跡情報取得部
23 移動画像描画部
231 第1移動画像描画部
232 第2移動画像描画部
24 地図情報変換部
25 差分抽出部
26 道路形状変化判定部
27 地図情報更新部
28 車両データ受信部
29 データ記憶部
30 移動データ生成部
31 移動データ記憶部
32 移動データ抽出部
Claims (14)
- 複数の移動体それぞれの移動軌跡に基づく移動軌跡画像とベクトル形式のデータに基づくスカラー形式の前記移動軌跡画像とは異なる画像とを比較して差分データを抽出する差分抽出部と、
機械学習により前記差分データが道路形状変化であるか否かを判定する道路形状変化判定部と、
を備えることを特徴とする地図情報処理装置。 - 前記地図情報処理装置は、さらに、
複数の移動体それぞれの軌跡情報を取得する軌跡情報取得部と、
道路の位置および形状を示す情報を含む、ベクトル形式で表された地図情報を記憶する地図情報記憶部と、
ベクトル形式の前記地図情報に基づいてスカラー形式の地図情報に変換する地図情報変換部と、を備え、
前記差分抽出部は、前記軌跡情報から描画された移動軌跡画像と、前記スカラー形式に変換された地図情報中の道路の地図画像との差分を表す差分データを抽出する
ことを特徴とする請求項1に記載の地図情報処理装置。 - 前記複数の移動体それぞれの軌跡情報に基づいて前記移動軌跡画像を描画する移動画像描画部をさらに備え、
前記移動画像描画部は、所定の範囲にある前記移動軌跡画像をまとめて描画する
ことを特徴とする請求項2に記載の地図情報処理装置。 - 前記移動画像描画部は、所定の期間に取得した軌跡情報に基づいて前記移動軌跡画像を描画する前に、予め特定の期間に取得した軌跡情報に基づいて過去の移動軌跡画像を描画し、描画した前記移動軌跡画像と、前記過去の移動軌跡画像と、を比較して差分があるか否かを判定し、
前記差分抽出部は、前記過去の移動軌跡画像と比較して差分があったと判定された前記移動軌跡画像のみを、前記差分データの抽出処理の処理対象にする
ことを特徴とする請求項3に記載の地図情報処理装置。 - 前記地図情報変換部は、前記地図情報のうち、道路の形状を示す地図画像情報だけを取り出してベクトル形式からスカラー形式に変換する
ことを特徴とする請求項2~4のいずれか1つに記載の地図情報処理装置。 - 前記道路形状変化判定部は、過去に抽出した前記差分データにより機械学習を行い、当該機械学習の結果に基づき、新たに抽出した前記差分データが道路形状変化であるか否かを判定する
ことを特徴とする請求項2~5のいずれか1つに記載の地図情報処理装置。 - 前記地図情報記憶部に記憶される地図情報を更新する地図情報更新部をさらに備え、
前記地図情報更新部は、
前記道路形状変化判定部により道路形状変化であると判定された前記差分データをベクトル形式に変換し、
ベクトル形式に変換した差分データを用いて前記地図情報記憶部に記憶される地図情報を更新する
ことを特徴とする請求項2~6のいずれか1つに記載の地図情報処理装置。 - 前記地図情報記憶部は、複数の道路の位置および形状を示す情報を含んだ地図情報を複数の縮尺毎に記憶し、
前記地図情報変換部は、前記機械学習により前記差分データが道路形状変化である確率が所定の確度以下であると前記道路形状変化判定部により判定された場合には、前記地図情報記憶部に記憶されている地図情報のうち、縮尺が大きい地図情報をベクトル形式からスカラー形式に変換する
ことを特徴とする請求項2~7のいずれか1つに記載の地図情報処理装置。 - 複数の移動体それぞれの軌跡情報を取得し、
道路の位置および形状を示す情報を含む地図情報をベクトル形式からスカラー形式に変換し、
前記軌跡情報から描画された移動軌跡画像と、前記スカラー形式に変換された地図情報中の地図画像との差分を表す差分データを抽出し、
機械学習により前記差分データが道路形状変化であるか否かを判定する処理をコンピュータが実行する地図情報処理方法。 - 複数の移動体それぞれの軌跡情報を取得し、
道路の位置および形状を示す情報を含む地図情報をベクトル形式からスカラー形式に変換し、
前記軌跡情報から描画された移動軌跡画像と、前記スカラー形式に変換された地図情報中の地図画像との差分を表す差分データを抽出し、
機械学習により前記差分データが道路形状変化であるか否かを判定する処理をコンピュータに実行させることを特徴とする地図情報処理プログラム。 - 前記地図情報処理装置は、さらに、
複数の移動体それぞれの所定の期間に取得したベクトル形式のプローブデータに基づいてスカラー形式の移動軌跡画像を生成する第1移動画像描画部と、
複数の移動体それぞれの予め特定の期間に取得したベクトル形式のプローブデータに基づいてスカラー形式のより過去の移動軌跡画像を生成する第2移動画像描画部と、を備え、
前記差分抽出部は、前記第1移動画像描画部で生成した前記移動軌跡画像と前記第2移動画像描画部で生成した前記過去の移動軌跡画像とを比較して差分データを抽出する
ことを特徴とする請求項1に記載の地図情報処理装置。 - 前記道路形状変化判定部は、過去に抽出した前記差分データにより機械学習を行い、当該機械学習の結果に基づき、新たに抽出した前記差分データが道路形状変化であるか否かを判定する
ことを特徴とする請求項11に記載の地図情報処理装置。 - 複数の移動体それぞれのプローブデータを取得し、
複数の移動体それぞれの所定の期間に取得したベクトル形式のプローブデータに基づいてスカラー形式の移動軌跡画像を生成し、
複数の移動体それぞれの予め特定の期間に取得したベクトル形式のプローブデータに基づいてスカラー形式のより過去の移動軌跡画像を生成し、
前記移動軌跡画像と、前記過去の移動軌跡画像との差分を表す差分データを抽出し、
機械学習により前記差分データが道路形状変化であるか否かを判定する処理をコンピュータが実行する地図情報処理方法。 - 複数の移動体それぞれのプローブデータを取得し、
複数の移動体それぞれの所定の期間に取得したベクトル形式のプローブデータに基づいてスカラー形式の移動軌跡画像を生成し、
複数の移動体それぞれの予め特定の期間に取得したベクトル形式のプローブデータに基づいてスカラー形式のより過去の移動軌跡画像を生成し、
前記移動軌跡画像と、前記過去の移動軌跡画像との差分を表す差分データを抽出し、
機械学習により前記差分データが道路形状変化であるか否かを判定する処理をコンピュータに実行させることを特徴とする地図情報処理プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880039595.8A CN110914888A (zh) | 2017-11-22 | 2018-11-21 | 地图信息处理装置、地图信息处理方法及地图信息处理程序 |
EP18881072.5A EP3614366A4 (en) | 2017-11-22 | 2018-11-21 | DEVICE, METHOD AND PROGRAM FOR PROCESSING CARTOGRAPHIC INFORMATION |
US16/688,891 US10760920B2 (en) | 2017-11-22 | 2019-11-19 | Map information processing device and map information processing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017224128A JP6586146B2 (ja) | 2017-11-22 | 2017-11-22 | 地図情報処理装置、地図情報処理方法および地図情報処理プログラム |
JP2017-224128 | 2017-11-22 | ||
JP2018201337A JP6557392B1 (ja) | 2018-10-25 | 2018-10-25 | 地図情報処理装置、地図情報処理方法および地図情報処理プログラム |
JP2018-201337 | 2018-10-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/688,891 Continuation US10760920B2 (en) | 2017-11-22 | 2019-11-19 | Map information processing device and map information processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019103049A1 true WO2019103049A1 (ja) | 2019-05-31 |
Family
ID=66630571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043027 WO2019103049A1 (ja) | 2017-11-22 | 2018-11-21 | 地図情報処理装置、地図情報処理方法および地図情報処理プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10760920B2 (ja) |
EP (1) | EP3614366A4 (ja) |
CN (1) | CN110914888A (ja) |
WO (1) | WO2019103049A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111340908A (zh) * | 2020-02-10 | 2020-06-26 | 兰州交通大学 | 一种轨道电子地图生成方法 |
WO2021154155A1 (en) * | 2020-01-31 | 2021-08-05 | Grabtaxi Holdings Pte. Ltd. | Methods and data processing systems for predicting road attributes |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072864B (zh) | 2019-07-03 | 2024-03-12 | 株式会社电装 | 地图数据生成装置 |
US11781875B2 (en) * | 2019-08-21 | 2023-10-10 | Toyota Motor Engineering & Manufacturing North America, Inc. | Apparatus and method for forming and analyzing connected roads |
US11473927B2 (en) * | 2020-02-05 | 2022-10-18 | Electronic Arts Inc. | Generating positions of map items for placement on a virtual map |
KR102206834B1 (ko) * | 2020-04-28 | 2021-01-25 | 네이버랩스 주식회사 | 도로정보 변화 감지 방법 및 시스템 |
CN113506459B (zh) * | 2021-06-11 | 2023-03-28 | 上海追势科技有限公司 | 一种地下停车场众包地图采集方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09243391A (ja) * | 1996-03-08 | 1997-09-19 | Nissan Motor Co Ltd | 車両用経路誘導装置 |
JP2004109021A (ja) * | 2002-09-20 | 2004-04-08 | Clarion Co Ltd | 道路地図情報更新システム |
JP2004198997A (ja) * | 2002-12-20 | 2004-07-15 | Denso Corp | 地図評価システム、及び、照合装置、並びに、地図評価装置 |
JP2008164821A (ja) * | 2006-12-27 | 2008-07-17 | Aisin Aw Co Ltd | 地図情報生成システム |
US20120277993A1 (en) * | 2009-10-22 | 2012-11-01 | Heiko Mund | Incremental map generation, refinement and extension with gps traces |
JP2014052341A (ja) * | 2012-09-10 | 2014-03-20 | Hitachi Automotive Systems Ltd | 地図生成サーバ、地図生成方法及び地図生成システム |
JP2014126372A (ja) * | 2012-12-25 | 2014-07-07 | Denso Corp | 地図表示システム |
JP2017097088A (ja) | 2015-11-20 | 2017-06-01 | 株式会社日立製作所 | 地図生成装置及び地図生成方法、ナビゲーション管理システム |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10010436A1 (de) * | 2000-03-03 | 2001-09-06 | Bosch Gmbh Robert | Verfahren zur Übertragung von ortsbezogenen Dateninformationen zwischen einer Zentrale und einem mobilen Endgerät, mobiles Endgerät und Zentrale |
KR20040111446A (ko) * | 2002-03-29 | 2004-12-31 | 마쯔시다덴기산교 가부시키가이샤 | 지도 매칭 방법, 지도 매칭 장치, 형상 매칭용데이터베이스 및 형상 매칭 장치 |
JP4654823B2 (ja) * | 2005-08-03 | 2011-03-23 | 株式会社デンソー | 道路地図データ更新システム及び道路検出システム |
JP4188394B2 (ja) * | 2005-09-20 | 2008-11-26 | フジノン株式会社 | 監視カメラ装置及び監視カメラシステム |
JP2008164831A (ja) * | 2006-12-27 | 2008-07-17 | Aisin Aw Co Ltd | 地図情報生成システム |
US8073617B2 (en) * | 2006-12-27 | 2011-12-06 | Aisin Aw Co., Ltd. | Map information generating systems, methods, and programs |
JP2009053561A (ja) * | 2007-08-28 | 2009-03-12 | Panasonic Electric Works Co Ltd | 自律移動装置用の地図生成システムおよび地図生成方法 |
WO2010084139A1 (en) * | 2009-01-21 | 2010-07-29 | Universiteit Gent | Geodatabase information processing |
TWI482123B (zh) * | 2009-11-18 | 2015-04-21 | Ind Tech Res Inst | 多狀態目標物追蹤方法及系統 |
GB201211636D0 (en) * | 2012-06-29 | 2012-08-15 | Tomtom Belgium Nv | Method and apparatus for detecting deviations from map data |
SE537553C2 (sv) * | 2012-08-03 | 2015-06-09 | Crunchfish Ab | Förbättrad identifiering av en gest |
US9396508B2 (en) * | 2013-05-15 | 2016-07-19 | Google Inc. | Use of map data difference tiles to iteratively provide map data to a client device |
US9285227B1 (en) * | 2015-01-29 | 2016-03-15 | Qualcomm Incorporated | Creating routing paths in maps |
US9891057B2 (en) * | 2015-03-23 | 2018-02-13 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Information processing device, computer readable storage medium, and map data updating system |
CN106323301B (zh) * | 2015-06-29 | 2020-05-12 | 北京四维图新科技股份有限公司 | 一种道路情报的获取方法及装置 |
JP6696152B2 (ja) * | 2015-11-11 | 2020-05-20 | ソニー株式会社 | 情報処理装置、情報処理方法、プログラム及び情報処理システム |
US20170144047A1 (en) * | 2015-11-20 | 2017-05-25 | Hegemony Technologies | Method and Apparatus for Rowing Analysis Assessment, and Coaching |
US9892318B2 (en) * | 2015-12-22 | 2018-02-13 | Here Global B.V. | Method and apparatus for updating road map geometry based on received probe data |
US10222228B1 (en) * | 2016-04-11 | 2019-03-05 | State Farm Mutual Automobile Insurance Company | System for driver's education |
US10319062B2 (en) * | 2016-09-27 | 2019-06-11 | Google Llc | Rendering map data using descriptions of raster differences |
-
2018
- 2018-11-21 EP EP18881072.5A patent/EP3614366A4/en active Pending
- 2018-11-21 CN CN201880039595.8A patent/CN110914888A/zh active Pending
- 2018-11-21 WO PCT/JP2018/043027 patent/WO2019103049A1/ja unknown
-
2019
- 2019-11-19 US US16/688,891 patent/US10760920B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09243391A (ja) * | 1996-03-08 | 1997-09-19 | Nissan Motor Co Ltd | 車両用経路誘導装置 |
JP2004109021A (ja) * | 2002-09-20 | 2004-04-08 | Clarion Co Ltd | 道路地図情報更新システム |
JP2004198997A (ja) * | 2002-12-20 | 2004-07-15 | Denso Corp | 地図評価システム、及び、照合装置、並びに、地図評価装置 |
JP2008164821A (ja) * | 2006-12-27 | 2008-07-17 | Aisin Aw Co Ltd | 地図情報生成システム |
US20120277993A1 (en) * | 2009-10-22 | 2012-11-01 | Heiko Mund | Incremental map generation, refinement and extension with gps traces |
JP2014052341A (ja) * | 2012-09-10 | 2014-03-20 | Hitachi Automotive Systems Ltd | 地図生成サーバ、地図生成方法及び地図生成システム |
JP2014126372A (ja) * | 2012-12-25 | 2014-07-07 | Denso Corp | 地図表示システム |
JP2017097088A (ja) | 2015-11-20 | 2017-06-01 | 株式会社日立製作所 | 地図生成装置及び地図生成方法、ナビゲーション管理システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3614366A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021154155A1 (en) * | 2020-01-31 | 2021-08-05 | Grabtaxi Holdings Pte. Ltd. | Methods and data processing systems for predicting road attributes |
CN113950611A (zh) * | 2020-01-31 | 2022-01-18 | 格步计程车控股私人有限公司 | 用于预测道路属性的方法和数据处理系统 |
CN113950611B (zh) * | 2020-01-31 | 2023-01-13 | 格步计程车控股私人有限公司 | 用于预测道路属性的方法和数据处理系统 |
CN111340908A (zh) * | 2020-02-10 | 2020-06-26 | 兰州交通大学 | 一种轨道电子地图生成方法 |
CN111340908B (zh) * | 2020-02-10 | 2023-07-25 | 兰州交通大学 | 一种轨道电子地图生成方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110914888A (zh) | 2020-03-24 |
US10760920B2 (en) | 2020-09-01 |
US20200088538A1 (en) | 2020-03-19 |
EP3614366A4 (en) | 2020-12-23 |
EP3614366A1 (en) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019103049A1 (ja) | 地図情報処理装置、地図情報処理方法および地図情報処理プログラム | |
JP6586146B2 (ja) | 地図情報処理装置、地図情報処理方法および地図情報処理プログラム | |
EP3227638B1 (en) | Method and apparatus for providing point of interest information | |
JP5013211B2 (ja) | 運転評価システム及び運転評価プログラム | |
CN102362156B (zh) | 地图数据更新系统、地图数据更新方法 | |
CN104270714B (zh) | 确定用户行动轨迹的方法和装置 | |
CN110686686B (zh) | 用于地图匹配的系统和方法 | |
EP3229152A1 (en) | Distributed online learning for privacy-preserving personal predictive models | |
CN111198560B (zh) | 用于使用变分自编码器网络来预测特征空间衰减的方法和装置 | |
CN102183252A (zh) | 数据处理装置、数据处理方法和程序 | |
US11085791B2 (en) | Method, apparatus, and computer program product for on-street parking localization | |
CN112415558B (zh) | 行进轨迹的处理方法及相关设备 | |
EP3093620B1 (en) | System and method for detecting roundabouts from probe data using vector fields | |
CN114930122B (zh) | 用于更新数字道路地图的方法和处理器电路 | |
US20240255305A1 (en) | Vehicle positioning method and apparatus, computer device, and storage medium | |
CN111859178A (zh) | 一种推荐上车点的方法和系统 | |
CN113450455A (zh) | 用于生成停车场的道路链路的地图的方法、设备和计算机程序产品 | |
CN116164770B (zh) | 路径规划方法、装置、电子设备和计算机可读介质 | |
CN111465936A (zh) | 确定地图上新道路的系统和方法 | |
JP2019139346A (ja) | 画像認識装置、画像認識システム及びプログラム | |
JP2020067656A (ja) | 地図情報処理装置、地図情報処理方法および地図情報処理プログラム | |
JP7039536B2 (ja) | 地図情報処理システム | |
CN116698075B (zh) | 路网数据处理方法、装置、电子设备及存储介质 | |
CN116958316B (zh) | 拓扑图生成方法、装置、计算机设备及存储介质 | |
CN116776999A (zh) | 自动驾驶系统中的自我监督网络的联合学习的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18881072 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018881072 Country of ref document: EP Effective date: 20191119 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |