WO2019102517A1 - 分岐配管ユニットおよびそれを用いた空気調和機 - Google Patents

分岐配管ユニットおよびそれを用いた空気調和機 Download PDF

Info

Publication number
WO2019102517A1
WO2019102517A1 PCT/JP2017/041769 JP2017041769W WO2019102517A1 WO 2019102517 A1 WO2019102517 A1 WO 2019102517A1 JP 2017041769 W JP2017041769 W JP 2017041769W WO 2019102517 A1 WO2019102517 A1 WO 2019102517A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
pipe
branch
piping
Prior art date
Application number
PCT/JP2017/041769
Other languages
English (en)
French (fr)
Inventor
佐々木 俊治
米山 裕康
山梨 良幸
横関 敦彦
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2017/041769 priority Critical patent/WO2019102517A1/ja
Publication of WO2019102517A1 publication Critical patent/WO2019102517A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a branch piping unit and an air conditioner using the same.
  • Patent Document 1 “In an air conditioner in which an outdoor unit and a plurality of indoor units are connected by a refrigerant pipe, the plurality of indoor units do not have an indoor unit having an indoor expansion valve and an indoor expansion valve.
  • the outdoor unit comprises an indoor unit, and an external mounting device externally attached to the indoor unit having no indoor expansion valve, the outdoor unit comprises a first control unit, and the indoor unit comprises a second control unit An external mounting device including an expansion valve provided on one of a plurality of refrigerant pipes connecting an indoor unit having no indoor expansion valve and an outdoor unit; And a third control unit for transmitting / receiving a signal to / from the first control unit, the second control unit, and the refrigerant leak detector, the third control unit including one of the refrigerant pipes by the expansion valve. Depressurize the refrigerant That while, by closing the expansion valve or an electromagnetic valve based on information from the refrigerant leakage detection device when the refrigerant leakage "is described.
  • Patent No. 5517789 gazette
  • the present invention is an invention for solving the above-mentioned problems, which is a branch piping unit in which installation of a solenoid valve (cutoff valve) is easy and which can be shared even under different installation conditions and an air conditioner using the same. Intended to be provided.
  • the branch piping unit of the present invention is a branch piping unit for distributing a refrigerant into two flows, and a first piping (for example, a main piping 70) and a first piping branched from the main piping Blocking to open and close a branch pipe (for example, the first branch pipe 71), a second branch pipe (for example, the second branch pipe 72) which is branched from the main pipe and smaller in diameter than the first branch pipe, and the second branch pipe And a valve (for example, a shutoff valve 6).
  • a first piping for example, a main piping 70
  • a valve for example, a shutoff valve 6
  • An air conditioner according to the present invention is an air conditioner in which an outdoor unit and a plurality of indoor units are connected via a refrigerant pipe including the branch piping unit, and refrigerant leakage detection for detecting refrigerant leakage in the indoor unit ,
  • a control unit (for example, control unit 23) that executes air conditioning control, a first communication line (for example, communication line 19) that sends control signals for air conditioning control from the control unit to the indoor unit, and a refrigerant leak detector
  • the control device includes: a second communication line (for example, communication line 22) for sending a refrigerant leak detection signal to the control device; and a third communication line (for example, communication line 25) for sending a control signal from the control device to the shutoff valve Is provided in the second branch pipe connected to the indoor unit having refrigerant leakage via the third communication line when it is notified that refrigerant leakage is from the refrigerant leakage detector via the second communication line Shut off the shutoff valve, and the refrig
  • the installation of the shutoff valve is easy, and it can be shared even if the construction conditions are different.
  • FIG. 1 is a diagram showing an overall configuration of an air conditioner according to the embodiment.
  • the outdoor unit A and a plurality of indoor units a1 (indoor units 1), a2 (indoor units 2), a3 (indoor units 3), a4 (indoor units 4) are connected by refrigerant piping.
  • the outdoor unit A includes the outdoor heat exchanger 13 shown in FIG. 2, the outdoor blower 12, the compressor 10, the expansion valve 14, and the four-way valve 11.
  • the indoor units a1, a2, a3 and a4 include the indoor heat exchanger 4 and the indoor fan 3 shown in FIG. .
  • Refrigerant leak detectors D1 (refrigerant detection sensor 1), D2 (refrigerant detection sensor 2), D3 (refrigerant detection sensor 3), D4 (refrigerant detection sensor 4) are provided corresponding to the indoor units a1, a2, a3 and a4. It is done.
  • the refrigerant leakage detectors D1, D2, D3, D4 (in the case of referring to the refrigerant detection sensor as a generic term, the refrigerant leakage detector D) detects the leaked refrigerant and detects a signal to the control unit 23 (control device) Send (indicating that a refrigerant leak has occurred).
  • the control unit 23 of the outdoor unit A is connected to each indoor unit a, each refrigerant leak detector D, and a shutoff valve described later via a communication line.
  • the refrigerant leak detector D is installed in each air-conditioned space where the indoor unit a or the indoor unit a is installed. Specifically, when the indoor unit a is a ceiling mount, the refrigerant leak detector D may be installed in the air conditioned space where the indoor unit a is installed. In the case where the indoor unit a is a floor holder, the refrigerant leak detector D may be installed in or near the indoor unit a.
  • Communication lines 19 for communicating the control unit 23 of the outdoor unit A with the indoor unit a and communication lines 22 for communicating the control unit 23 of the outdoor unit A and the refrigerant leakage detector D (Second communication line)
  • communication line 25 third communication line for communicating the control unit 23 of the outdoor unit A and the shutoff valves 6 and 8.
  • a slightly flammable (A2L) refrigerant such as R32, R1234yf, R1234ze is used.
  • FIG. 1 Taking the gas side refrigerant pipe as an example, the gas side refrigerant pipe is connected to the indoor unit by a line branch which branches to each indoor unit in order as viewed from the outdoor unit A side.
  • a gas side branch piping unit 7 with a shutoff valve 6 is provided at the branched portion, which shuts off the flow path through which the refrigerant flows.
  • the details of the refrigeration cycle configuration will be described with reference to FIG.
  • the gas refrigerant pipe is branched and the gas refrigerant is supplied to each indoor unit.
  • the gas refrigerant pipe is joined and the gas refrigerant from each indoor unit is supplied to the outdoor unit A. Do.
  • FIG. 2 is a diagram showing a refrigeration cycle configuration of the air conditioner.
  • the refrigerating-cycle block diagram of the multi type air conditioner (multi-air-conditioner) mentioned as one Example of an air conditioner is shown.
  • a gas-side refrigerant pipe E1 that connects one outdoor unit A and a plurality of indoor units a (a1, a2, a3, a4) and each unit, a liquid-side refrigerant pipe It consists of E2.
  • the gas-side refrigerant pipe E1 and the liquid-side refrigerant pipe E2 are branched and connected by the gas-side branch piping unit 7 and the liquid-side branch piping unit 9, and are distributed to the indoor unit a to supply the refrigerant.
  • the gas side refrigerant pipe E1 to the outdoor gas side block valve 1 of the outdoor unit A and connecting the liquid side refrigerant pipe E2 to the outdoor liquid side block valve 2 of the outdoor unit A, one refrigeration cycle system is configured. ing.
  • the indoor unit a is an indoor unit (room air conditioner), and includes an indoor fan 3 and an indoor heat exchanger 4.
  • the indoor unit a may be an indoor unit (package air conditioner) having a pressure reducing device (expansion valve) inside the unit. Further, the refrigerant leak detector D is attached in the vicinity of the indoor unit a.
  • the outdoor unit A includes a compressor 10, a four-way valve 11, an outdoor blower 12, an outdoor heat exchanger 13, an expansion valve 14, a refrigerant tank 15, and an accumulator 16.
  • the arrows indicate the direction of the refrigerant flowing through the refrigerant pipe, the solid arrows indicate the cooling operation, and the reverse broken arrows indicate the heating operation.
  • the flow direction of the refrigerant is determined by switching of the four-way valve 11 in the outdoor unit A.
  • the gas side branch piping unit 7 and the liquid side branch piping unit 9 have a function of distributing the refrigerant into two flows, and a function of combining the refrigerant into one flow.
  • the refrigerant passes through the liquid side refrigerant pipe E2, and the refrigerant is divided into two flows by the liquid side branch piping unit 9.
  • the refrigerant supplied to the indoor unit a joins the refrigerant into one flow in the gas side branch piping unit 7 and passes through the gas side refrigerant piping E1.
  • the refrigerant passes through the gas side refrigerant pipe E1 and the gas side branch piping unit 7 distributes the refrigerant into two flows.
  • the refrigerant supplied to the indoor unit a is merged into one flow by the liquid side branch piping unit 9 and passes through the liquid side refrigerant piping E2.
  • the refrigerant leakage blocking function and the external mounting device have been disposed in the middle of the connection piping that connects the indoor unit and the branch piping attached to the indoor / outdoor communication piping. For this reason, the work which attaches an external attachment apparatus to a ceiling surface etc. arises separately.
  • piping connection work newly occurs before and after the external mounting device, and there is a possibility that the possibility of refrigerant leakage from the piping connection may occur.
  • an increase in the number of pipes to be prepared according to the construction on site and an increase in the work of setting the pipe length occur.
  • the shutoff valve 6 for shutting off the refrigerant to the indoor unit a is installed in advance in the gas-side branch piping unit 7 which is a branch piping attached to the indoor / outdoor communication piping.
  • the liquid side branch piping unit 9 is previously provided with a shutoff valve 8 that shuts off the refrigerant to the indoor unit a.
  • shut-off valve becomes easy and it can provide a branch piping unit which can be shared even if construction conditions differ. Further, by setting the pipe length from the shutoff valve to the indoor unit a in accordance with the safety setting value of the refrigerant concentration in the room, it is possible to prevent the refrigerant concentration in the room from becoming equal to or higher than the flammable concentration lower limit. In addition, installation of the shutoff valve is facilitated because the installation method is provided in the same branch piping unit according to the construction conditions.
  • the refrigerant leakage detector D issues the refrigerant leakage information to the outdoor unit A, the indoor unit a, and the central management control device 20 and the remote controller 17 to thereby cause the refrigerant leakage.
  • a can be easily identified, and serviceability can be improved. Further, by stopping the operation of only the indoor unit a and enabling the operation of the other indoor units a, it is possible to early repair of the refrigerant leakage and early restoration of the air conditioner.
  • the control unit 23 of the outdoor unit A receives the information on the refrigerant leakage, and the shutoff valve 6 and the liquid side branch piping unit 9 in the gas side branch piping unit 7 connected to the indoor unit a1 via the communication line 25.
  • the shutoff valve 8 is fully closed.
  • the controller 23 of the outdoor unit A instructs the indoor unit a (a1, a2, a3, a4) and the host centralized control device 20 and the remote controller 17 to send information on refrigerant leakage.
  • a warning “indoor unit a1: refrigerant leak” is displayed on the host centralized control device 20 and the remote controller 17.
  • the indoor unit a1 can be completely disconnected from the control system system by stopping the operation of only the indoor unit a1 that has leaked the refrigerant and shutting down the power supply and control communication of the indoor unit a1.
  • the operation of all the indoor units other than the indoor unit a1 can be continued.
  • FIG. 3 is a diagram showing a control system configuration of the air conditioner.
  • FIG. 3 shows a control system configuration diagram of a multi-type air conditioner (multi-air conditioner) cited as one embodiment of the air conditioner.
  • the remote control 17 (air conditioning control terminal) is a remote control that gives control commands (setting of operation / stop, operation mode, temperature, air volume / wind direction, etc.) to the indoor unit a, and is connected to the indoor unit a by a remote control line 18 There is.
  • control commands setting of operation / stop, operation mode, temperature, air volume / wind direction, etc.
  • the control unit 23 of the outdoor unit A is connected by a communication line 21.
  • the control unit 23 of the outdoor unit A is connected to the central management control device 20 via the communication line 21 and to the indoor unit a (a1 to a4) via the communication line 19, and the communication line 22 is It is connected to the refrigerant leak detector D (D1 to D4) via Furthermore, the control unit 23 of the outdoor unit A is connected to the shutoff valves 6 and 8 via the communication line 25. Thereby, one control system is comprised by connecting all.
  • the outdoor unit A, the indoor unit a, the refrigerant leak detector D, the central management control device 20 at the upper level, and the remote control 17 exchange information with each other, and are controlled based on the control program stored in advance. .
  • this embodiment does not mention the detection means and method of the refrigerant leak detector D, it can cope with any detection means and method such as refrigerant gas concentration detection or cycle temperature or pressure fluctuation detection.
  • the point is that information on refrigerant leakage detected by the refrigerant leakage detector D may be transmitted to the control unit 23 of the outdoor unit A by the communication line 22.
  • each refrigerant leakage detector D transmits a detection signal to the control unit 23 (control device) of the outdoor unit A when detecting the refrigerant that has leaked.
  • the control unit of the outdoor unit A receives the detection signal, the control unit controls the shutoff valves 6, 8 corresponding to the detected refrigerant detection sensor to close.
  • the indoor unit a in which the refrigerant leakage has occurred can be separated from the refrigeration cycle, and it is possible to prevent all the refrigerant sealed in the refrigeration cycle from leaking.
  • the communication line 25 connecting the shutoff valves 6, 8 and the outdoor unit A is provided independently of the communication line 19 connecting the indoor unit a and the outdoor unit A, so the communication state on the indoor unit a side Regardless of this, it is possible to reliably shut off the shutoff valves 6 and 8 and to improve the safety further.
  • FIG. 4 is a diagram showing the configuration of the gas side branch piping unit.
  • FIG. 5 is a view showing the configuration of the liquid side branch piping unit.
  • the gas side branch piping unit 7 is provided with a main pipe 70, a first branch pipe 71 branched from the main pipe 70, a second branch pipe 72 branched from the main pipe 70, and a refrigerant flow path provided in the second branch pipe 72.
  • the shutoff valve 6 which shuts off.
  • the second branch pipe 72 is a pipe whose inner diameter is smaller than that of the first branch pipe 71, and the shutoff valve 6 is provided on the second branch pipe 72 whose diameter is reduced.
  • shut-off valve in such a reduced diameter pipe, it is compact and highly energy-saving. A shut off valve can be used. Therefore, it is possible to provide an air conditioner 100 with reduced cost and improved safety.
  • the liquid-side branch piping unit 9 is provided in the main pipe 90, a first branch pipe 91 branched from the main pipe 90, a second branch pipe 92 branched from the main pipe 90, and a second branch pipe 92. And a shutoff valve 8 that shuts off the refrigerant flow path.
  • the second branch pipe 92 is a pipe whose inner diameter is smaller than that of the first branch pipe 91, and the shutoff valve 8 is provided on the second branch pipe 92 whose diameter is reduced.
  • the liquid side branch piping unit 9 also has the same configuration as the gas side branch piping unit 7, but as shown in FIG. 4 and FIG. 5, since the gas side generally has a larger pipe diameter, the second branch is The merits of reducing the diameter of the pipe 92 and reducing the size of the shutoff valve are significant.
  • the pipe length from the shutoff valves 6, 8 to the indoor unit a in accordance with the safety setting value of the refrigerant concentration in the room, the piping from the shutoff valves 6, 8 to the indoor unit a and the indoor unit itself remain. Even if the entire amount of refrigerant leaks into the room, it is possible to prevent the concentration of the refrigerant in the room from becoming equal to or higher than the lower limit value of combustible concentration.
  • a general-purpose product can be used as a connection pipe for connecting the branch pipe to the indoor unit a.
  • the second branch pipe 72 of the gas-side branch piping unit 7 has a first straight portion 72 a extending along the first branch pipe 71 and a curved portion bent from the first straight portion 72 a in a direction away from the first branch pipe 71. And 72b and a second straight portion 72c extending from the curved portion 72b.
  • the shutoff valve 6 is provided in the second straight portion 72c.
  • the shutoff valve 6 can be provided without interfering with the first branch pipe 71 by providing the shutoff valve 6 in the pipe after being bent away from the first branch pipe 71. That is, the shutoff valve 6 can be selected without considering the distance to the first branch pipe 71.
  • the second branch pipe 92 of the liquid side branch piping unit 9 has a first straight portion 92 a extending along the first branch pipe 91 and a curve bending from the first straight portion 92 a in a direction away from the first branch pipe 91. It has a portion 92b and a second straight portion 92c extending from the curved portion 92b.
  • the shutoff valve 8 is provided in the second straight portion 92c.
  • the shutoff valve 8 can be provided without interfering with the first branch pipe 91 by providing the shutoff valve 8 in the pipe after being bent away from the first branch pipe 91. That is, the shutoff valve 8 can be selected without considering the distance to the first branch pipe 91.
  • FIG. 6 is a diagram showing the configuration of an air conditioner using a branch piping unit.
  • the air conditioner 100A includes a plurality of outdoor units A disposed outdoors, a plurality of indoor units a mounted in a space to be air-conditioned in a building, and a refrigerant that causes the outdoor units A and the indoor units a to communicate with each other. It consists of piping and.
  • refrigerant piping is constituted by a total of two systems of the gas side refrigerant piping E1 system and the liquid side refrigerant piping E2 system.
  • the gas side branch piping unit 7 and the liquid side branch piping unit 9 described above are part of the refrigerant piping.
  • the gas-side refrigerant pipe E ⁇ b> 1 among the above will be described (the description of the liquid-side refrigerant pipe E ⁇ b> 2 is omitted).
  • the gas side branch piping unit 7 has a Y-shape, and the piping Pa is connected to the connection portion on one end side thereof. Piping Pb and Pc are connected to two connection parts on the other end side of the gas side branch piping unit 7, and the piping Pc is communicated with the indoor unit a.
  • the connection part of the gas side branch piping unit 7 is connected to another gas side branch piping unit 7 via the piping Pb.
  • one connection of the gas side branch piping unit 7 is communicated with the indoor unit a through the piping Pb, and the other connection portion is the gas side branch piping unit through the gas side branch piping unit 7 and the piping Pb. Connected to 7
  • the indoor unit a is connected to both connection parts via the piping Pc and Pd.
  • a plurality of indoor units a are in communication via the gas side branch piping unit 7.
  • an outdoor unit A and a plurality of indoor units a are connected via a refrigerant pipe including the gas side branch piping unit 7.
  • the main pipe 70 of the branch pipe unit is connected to the outdoor unit A
  • the second branch pipe 72 of the branch pipe unit is connected to the indoor unit a
  • the first branch pipe 71 of the branch pipe unit is
  • the branch piping unit is connected to the main piping 70 of the second branch piping unit, and branching is repeatedly performed in the branch piping unit.
  • the first branch pipe 71A of the gas-side branch piping unit 7A at the end is formed smaller in diameter than the other first branch pipes 71, and the first branch pipe 71A of the gas-side branch piping unit 7A at the end
  • the shutoff valve 6 is provided in the first branch pipe 71A. That is, since the end of the branch does not branch any more, it is characterized in that the diameter of the first branch pipe 71A is reduced and the shutoff valve 6 is provided.
  • the refrigerant piping of the air conditioner of the present embodiment has a gas side refrigerant piping E1 and a liquid side refrigerant piping E2, and the diameter of the liquid side refrigerant piping E2 is smaller than the diameter of the gas side refrigerant piping E1.
  • the diameter of the main piping 90 of the liquid side branch piping unit 9 connected to the liquid side refrigerant piping E2 is smaller than the diameter of the main piping 70 of the gas side branch piping unit 7 connected to the gas side refrigerant piping E1.
  • the branch piping unit is shown in FIGS. 4 and 5, it is not limited thereto.
  • the pipe diameter may change stepwise.
  • the pipe diameter of a tip part may be changing in steps.
  • FIG. 7 is a view showing another example of the configuration of the branch piping unit.
  • the different diameter pipe connection portion 71 d whose pipe diameter changes stepwise is formed at the tip of the first branch pipe 71.
  • a different diameter pipe connection portion 72d in which the pipe diameter changes stepwise is formed at the tip of the second straight portion 72c extending from the curved portion 72b of the second branch pipe 72.
  • the operator can cut and use the different diameter pipe connection portion 72d with a pipe cutter or the like as needed at the time of piping construction.
  • the different diameter tube connection portion 72d and the different diameter tube connection portion 71d are directed in different directions by the curved portion 72b, when cutting the different diameter tube connection portion 72d with a pipe cutter, the different diameter tube connection portion 71d interferes It is possible to smoothly cut the different diameter tube connection portion 72d without doing so. The same applies to the case of cutting the different diameter pipe connection portion 71d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒を2つの流れに分配するための分岐配管ユニットであって、主配管(70)と、主配管から分岐する第1分岐管(71)と、主配管から分岐して第1分岐管よりも小径の第2分岐管(72)と、第2分岐管を開閉する遮断弁(6)と、を備える。分岐配管ユニットを含む冷媒配管を介して、室外機と複数の室内機とが接続される空気調和機の制御装置は、冷媒漏洩検知器から冷媒漏洩である旨を受信した場合、冷媒漏洩がある室内機に接続されている第2分岐管(72)に設けられた遮断弁(6)を遮断する。

Description

分岐配管ユニットおよびそれを用いた空気調和機
 本発明は、分岐配管ユニットおよびそれを用いた空気調和機に関する。
 地球温暖化防止のため、冷凍空調機器に使用する冷媒のGWP(Global Warming Potential;地球温暖化係数)値低減が求められている。GWP値が低い冷媒は、微燃性(可燃性)を有することとなるため、微燃性を有するA2L冷媒を安全に使用するために冷媒漏洩に備えた安全対策を求める法律、規格が制定されている。
 複数台の室内ユニットを備えた空気調和機の冷媒漏洩遮断機能について提案されている(特許文献1参照)。特許文献1には、「室外ユニットと複数台の室内ユニットとを冷媒配管で接続した空気調和機において、複数台の室内ユニットは、室内膨張弁を有する室内ユニットと、室内膨張弁を有さない室内ユニットと、から構成され、室内膨張弁を有さない室内ユニットに対して外部に取付けられる外部取付け装置を備え、室外ユニットは第1の制御部を備え、室内ユニットは第2の制御部と、冷媒漏洩検知器とを備え、外部取付け装置は、室内膨張弁を有さない室内ユニットと室外ユニットとを接続する複数の冷媒配管の一方に設けられた膨張弁と、他方に設けられた電磁弁とを有するとともに、第1の制御部、第2の制御部、冷媒漏洩検知器と信号の送受信を行う第3の制御部を備え、第3の制御部は、膨張弁により一方の冷媒配管の冷媒を減圧する一方で、冷媒漏洩時に冷媒漏洩検知器からの情報に基づいて膨張弁または電磁弁を閉止すること」が記載されている。
特許第5517789号公報
 特許文献1に記載の技術により、室内ユニットで冷媒漏洩時には、膨張弁または電磁弁を閉止して接続配管を遮断することにより、室内から冷媒が漏洩し続けることを防止する。
 室内外連絡配管に取り付けられた分岐配管と室内ユニットを接続する接続配管の途中に膨張弁および電磁弁を搭載した外部取付装置を設置するため、別途外部取付装置を天井面等に取り付ける作業が発生する。また、あわせて現地にて配管施工する際に、新たに外部取付装置の前後に配管接続作業が発生し、配管接続部からの冷媒漏洩の可能性が発生する虞がある。また、現地の施工にあわせて準備する配管の本数増、配管長さ設定作業増の手間が発生する。
 本発明は、前記の課題を解決するための発明であって、電磁弁(遮断弁)の設置が容易で、施工条件が異なっても共用化できる分岐配管ユニットおよびそれを用いた空気調和機を提供することを目的とする。
 前記目的を達成するため、本発明の分岐配管ユニットは、冷媒を2つの流れに分配するための分岐配管ユニットであって、主配管(例えば、主配管70)と、主配管から分岐する第1分岐管(例えば、第1分岐管71)と、主配管から分岐して第1分岐管よりも小径の第2分岐管(例えば、第2分岐管72)と、第2分岐管を開閉する遮断弁(例えば、遮断弁6)と、を備えることを特徴とする。
 本発明の空気調和機は、前記分岐配管ユニットを含む冷媒配管を介して、室外機と複数の室内機とが接続される空気調和機であって、室内機の冷媒漏洩を検知する冷媒漏洩検知器と、空調制御を実行する制御装置(例えば、制御部23)と、制御装置から室内機に空調制御の制御信号を送る第1通信線(例えば、通信線19)と、冷媒漏洩検知器から制御装置へ冷媒漏洩検知信号を送る第2通信線(例えば、通信線22)と、制御装置から遮断弁に制御信号を送る第3通信線(例えば、通信線25)と、を備え、制御装置は、第2通信線を介して冷媒漏洩検知器から冷媒漏洩である旨を受信した場合、第3通信線を介して冷媒漏洩がある室内機に接続されている第2分岐管に設けられた遮断弁を遮断し、第1通信線を介して前記冷媒漏洩がある室内機の運転を停止させることを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、遮断弁の設置が容易で、施工条件が異なっても共用化できる。
実施形態に係る空気調和機の全体構成を示す図である。 空気調和機の冷凍サイクル構成を示す図である。 空気調和機の制御システム構成を示す図である。 ガス側分岐配管ユニットの構成を示す図である。 液側分岐配管ユニットの構成を示す図である。 分岐配管ユニットを用いた空気調和機の構成を示す図である。 分岐配管ユニットの構成の他の例を示す図である。
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、実施形態に係る空気調和機の全体構成を示す図である。空気調和機100は、室外機Aと複数台の室内機a1(室内機1),a2(室内機2),a3(室内機3),a4(室内機4)とが冷媒配管で接続される。室外機Aは、図2に示す室外熱交換器13と、室外送風機12と、圧縮機10と、膨張弁14と、四方弁11と、を含み構成されている。室内機a1,a2,a3,a4(室内機を総称する場合には、室内機aと称する)は、図2に示す、室内熱交換器4と、室内送風機3と、を含み構成されている。
 室内機a1,a2,a3,a4に対応して冷媒漏洩検知器D1(冷媒検知センサ1),D2(冷媒検知センサ2),D3(冷媒検知センサ3),D4(冷媒検知センサ4)が設けられている。冷媒漏洩検知器D1,D2,D3,D4(冷媒検知センサを総称する場合には、冷媒漏洩検知器Dと称する)は、漏洩した冷媒を検知したときに制御部23(制御装置)に検知信号(冷媒漏洩が発生した旨)を送信する。室外機Aの制御部23は、各室内機aと、各冷媒漏洩検知器Dと、後記する遮断弁とを、通信線で接続される。
 冷媒漏洩検知器Dは、室内機aまたは室内機aが設置される各被空調空間に設置される。具体的には、室内機aが天井据付器の場合は、冷媒漏洩検知器Dは、室内機aが設置される被空調空間に設置されるのがよい。また、室内機aが床置き器の場合は、冷媒漏洩検知器Dは、室内機aの内部または近辺に設置されるのがよい。
 通信線には、室外機Aの制御部23と室内機aとを通信する通信線19(第1通信線)、室外機Aの制御部23と冷媒漏洩検知器Dとを通信する通信線22(第2通信線)、室外機Aの制御部23と遮断弁6,8とを通信する通信線25(第3通信線)がある。
 冷媒には、R32、R1234yf、R1234zeなどの微燃性(A2L)冷媒が用いられる。
 室外機Aと各室内機aとは、冷媒配管としてガス側冷媒配管および液側冷媒配管で接続されるが、図1では一方のみを図示している。ガス側冷媒配管を例に説明すると、ガス側冷媒配管は、室外機A側からみて各室内機に対し順に分岐していくライン分岐で室内機に接続される。ここで、分岐する部分には、冷媒が流れる流路を遮断する遮断弁6付きのガス側分岐配管ユニット7が設けられている。液側冷媒配管についても同様となっている。図2を用いて、冷凍サイクル構成の詳細について説明する。なお、暖房時は、ガス側冷媒配管は分岐しつつ各室内機にガス冷媒を供給するが、冷房時は、ガス側冷媒配管は合流しつつ各室内機からのガス冷媒を室外機Aに供給する。
 図2は、空気調和機の冷凍サイクル構成を示す図である。図2には、空気調和機の一実施例として挙げられるマルチ型の空気調和機(マルチエアコン)の冷凍サイクル構成図を示す。マルチ型の空気調和機(マルチエアコン)では、1台の室外機Aと複数台の室内機a(a1,a2,a3,a4)および各ユニットを接続するガス側冷媒配管E1、液側冷媒配管E2で構成されている。ガス側冷媒配管E1と液側冷媒配管E2は、ガス側分岐配管ユニット7および液側分岐配管ユニット9で分岐接続され、室内機aに分配して冷媒を供給する。室外機Aの室外ガス側阻止弁1にガス側冷媒配管E1を接続し、室外機Aの室外液側阻止弁2に液側冷媒配管E2を接続することで、1つの冷凍サイクル系統を構成している。
 室内機aは、室内機(ルームエアコン)であり、室内送風機3、室内熱交換器4で構成されている。なお、室内機a内に、機内に減圧装置(膨張弁)を有する室内機(パッケージエアコン)であってもよい。また、冷媒漏洩検知器Dは室内機aの近傍に取り付けられる。
 室外機Aにおいては、圧縮機10、四方弁11、室外送風機12、室外熱交換器13、膨張弁14、冷媒タンク15、アキュームレータ16で構成されている。矢印は冷媒配管を流れる冷媒の方向を示し、実線矢印が冷房運転で、逆向きの破線矢印が暖房運転を示す。この冷媒の流れ方向は、室外機A内の四方弁11の切り替えにより決められる。
 ガス側分岐配管ユニット7および液側分岐配管ユニット9は、冷媒を2つの流れに分配する機能、冷媒を1つの流れに合流する機能を有する。冷房運転時には、冷媒は液側冷媒配管E2を通り、液側分岐配管ユニット9で冷媒を2つの流れに分配される。室内機aに供給された冷媒は、ガス側分岐配管ユニット7で冷媒を1つの流れに合流され、ガス側冷媒配管E1を通る。暖房運転時には、冷媒はガス側冷媒配管E1を通り、ガス側分岐配管ユニット7で冷媒を2つの流れに分配される。室内機aに供給された冷媒は、液側分岐配管ユニット9で1つの流れに合流され、液側冷媒配管E2を通る。
 従来、室内外連絡配管に取り付けられた分岐配管と室内機を接続する接続配管の途中に冷媒漏洩遮断機能および外部取付け装置を配置していた。このため、別途、外部取付け装置を天井面等に取り付ける作業が発生する。また、あわせて現地にて配管施工する際に、新たに外部取付装置の前後に配管接続作業が発生し、配管接続部からの冷媒漏洩の可能性が発生する虞がある。また、現地の施工にあわせて準備する配管の本数増、配管長さ設定作業増の手間が発生する。
 本実施形態では、室内外連絡配管に取り付けられた分岐配管であるガス側分岐配管ユニット7には、室内機aへの冷媒を遮断する遮断弁6が予め設置されている。同様に、液側分岐配管ユニット9には、室内機aへの冷媒を遮断する遮断弁8が予め設置されている。
 これにより、遮断弁の設置が容易となり、施工条件が異なっても共用化できる分岐配管ユニットを提供することができる。また、遮断弁から室内機aまでの配管長を、室内の冷媒濃度の安全設定値にあわせて設定することにより、室内の冷媒濃度が可燃濃度下限値以上になることを防止することができる。また、施工条件に応じて設置方法が同じ分岐配管ユニットに設けるため遮断弁の設置が容易となる。
 本実施形態によると、冷媒漏洩検知器Dから室外機Aと室内機aおよび上位の集中管理制御機器20やリモコン17に対して、冷媒漏洩の情報を指令することで、冷媒漏洩した当該室内機aを容易に特定することができ、サービス性の向上することが可能となる。さらに当該室内機aのみ運転を停止させ、他室内機aの運転を継続可能とさせることで、冷媒漏洩の早期修理、空気調和機の早期復旧が可能となる。
 ここで、具体例として、仮に室内機a1にて冷媒漏洩が発生した場合、冷媒漏洩検知器D1で検知した冷媒漏洩の情報が、室外機Aの制御部23へ通信線22によって伝送される。室外機Aの制御部23は、その冷媒漏洩の情報により、通信線25を介して、室内機a1に接続されているガス側分岐配管ユニット7内の遮断弁6と液側分岐配管ユニット9の遮断弁8を全閉とさせる。これで、室内機a1への冷凍サイクル系統を全体の冷凍サイクル系統から完全に切り離し、室内機a1からの冷媒漏洩を遮断することができる。
 また、冷媒漏洩遮断と共に、室外機Aの制御部23から室内機a(a1,a2,a3、,a4)および上位の集中管理制御機器20やリモコン17に対して、冷媒漏洩の情報を指令することで、上位の集中管理制御機器20やリモコン17に「室内機a1:冷媒漏洩」という警告を表示する。
 さらに、冷媒漏洩した当該室内機a1のみ運転を停止し、室内機a1の電源および制御通信をシャットダウンさせることで、室内機a1を制御システム系統から完全に切り離すことができる。これにより、室内機a1以外の全室内機の運転を継続することができる。
 図3は、空気調和機の制御システム構成を示す図である。図3は、空気調和機の一実施例として挙げられるマルチ型の空気調和機(マルチエアコン)の制御システム構成図を示す。
 リモコン17(空調制御端末)は、室内機aに制御指令(運転/停止、運転モード、温度、風量/風向などの設定)を与えるリモコンであり、室内機aとはリモコン線18で接続されている。本実施形態では、マルチ型の空気調和機全体の動作を制御する上位の集中管理制御機器20があり、室外機Aの制御部23とは通信線21で接続されている。
 室外機Aの制御部23は、通信線21を介して集中管理制御機器20と接続されており、通信線19を介して室内機a(a1~a4)と接続されており、通信線22を介して冷媒漏洩検知器D(D1~D4)と接続されている。さらに、室外機Aの制御部23は、通信線25を介して遮断弁6,8と接続されている。これにより、全てを接続することで、1つの制御システムを構成している。
 即ち、室外機A、室内機a、冷媒漏洩検知器D、上位の集中管理制御機器20、リモコン17は、お互いに情報を交換し、予め記憶された制御プログラムに基づいて制御されることになる。
 なお、本実施形態は、冷媒漏洩検知器Dの検知手段や方法について言及していないが、冷媒ガス濃度検知またはサイクル温度や圧力変動検知など、如何なる検知手段や方法を問わず対応できる。要は冷媒漏洩検知器Dで検知した冷媒漏洩の情報を、室外機Aの制御部23へ通信線22によって伝送できればよい。
 本実施形態の冷媒漏洩時の制御についてまとめると、各冷媒漏洩検知器Dは、漏洩した冷媒を検知すると検知信号を室外機Aの制御部23(制御装置)に送信する。室外機Aの制御装置は、検知信号を受信すると、検知した冷媒検知センサに対応する遮断弁6,8を閉じるように制御する。これにより、冷媒漏洩が発生した室内機aを冷凍サイクルから切り離すことができ、冷凍サイクル内に封入された全ての冷媒が漏洩してしまうことを防ぐことができる。また、遮断弁6,8と室外機Aとを接続する通信線25は、室内機aと室外機Aとを接続する通信線19とは独立して設けられるため、室内機a側の通信状態に係らず、遮断弁6,8を確実に遮断することができ、より安全性を向上させることができる。
 次に、分岐配管ユニットの詳細について説明する。
 図4は、ガス側分岐配管ユニットの構成を示す図である。図5は、液側分岐配管ユニットの構成を示す図である。ガス側分岐配管ユニット7は、主配管70と、主配管70から分岐する第1分岐管71と、主配管70から分岐する第2分岐管72と、第2分岐管72に設けられ冷媒流路を遮断する遮断弁6と、から構成される。ここで、第2分岐管72は、第1分岐管71よりも内径の小さい配管であり、細径化した第2分岐管72に遮断弁6が設けられる。遮断する配管径が大きいほど遮断弁は大型化し、高価になるとともに、遮断に使用する電力も大きくなるが、このような細径化した配管に遮断弁を設けることで、小型かつ省エネ性の高い遮断弁を使用することができる。したがって、コストを低減して安全性を向上させた空気調和機100を提供することができる。
 同様に、液側分岐配管ユニット9は、主配管90と、主配管90から分岐する第1分岐管91と、主配管90から分岐する第2分岐管92と、第2分岐管92に設けられ冷媒流路を遮断する遮断弁8と、から構成される。ここで、第2分岐管92は、第1分岐管91よりも内径の小さい配管であり、細径化した第2分岐管92に遮断弁8が設けられる。なお、前記した液側分岐配管ユニット9も、ガス側分岐配管ユニット7と同様の構成だが、図4および図5に示すように、ガス側の方が一般的に配管径が大きいため第2分岐管92の細径化および遮断弁の小型化によるメリットが大きい。
 また、遮断弁6,8から室内機aまでの配管長を室内の冷媒濃度の安全設定値にあわせて設定することにより、遮断弁6,8から室内機aへの配管と室内機自体に残る冷媒が全量室内へ漏洩しても、室内の冷媒濃度が可燃濃度下限値以上になることを防止することができる。
 また、分岐管と遮断弁をユニット化することで、分岐管から室内機aまでを接続する接続配管は汎用品を使用することができる。
 また、ガス側分岐配管ユニット7の第2分岐管72は、第1分岐管71に沿って延びる第1直線部72aと、第1分岐管71から遠ざかる方向に第1直線部72aから曲がる曲線部72bと、曲線部72bから延びる第2直線部72cと、を有している。遮断弁6は、第2直線部72cに設けられる。このように、第1分岐管71から離れるように曲がったあとの配管に遮断弁6を設けることで、第1分岐管71と干渉しないで遮断弁6を設けることができる。つまり、第1分岐管71との距離を考慮せず、遮断弁6を選定することができる。
 同様に、液側分岐配管ユニット9の第2分岐管92は、第1分岐管91に沿って延びる第1直線部92aと、第1分岐管91から遠ざかる方向に第1直線部92aから曲がる曲線部92bと、曲線部92bから延びる第2直線部92cと、を有している。遮断弁8は、第2直線部92cに設けられる。このように、第1分岐管91から離れるように曲がったあとの配管に遮断弁8を設けることで、第1分岐管91と干渉しないで遮断弁8を設けることができる。つまり、第1分岐管91との距離を考慮せず、遮断弁8を選定することができる。
 図6は、分岐配管ユニットを用いた空気調和機の構成を示す図である。空気調和機100Aは、屋外に配置される複数台の室外機Aと、建築物内の被空調空間に取付けられる複数の室内機aと、それぞれの室外機Aと室内機aとを連通する冷媒配管とから構成される。通常、冷媒配管は、ガス側冷媒配管E1系統および液側冷媒配管E2系統の計2系統ので構成される。この冷媒配管の一部に前記したガス側分岐配管ユニット7、液側分岐配管ユニット9がある。図6では、前記のうちのガス側冷媒配管E1で説明する(液側冷媒配管E2の記載は省略している)。
 ガス側分岐配管ユニット7はY字状をなし、その一端側の接続部に配管Paが接続される。ガス側分岐配管ユニット7の他端側の2つの接続部には、配管Pb,Pcが接続されていて、配管Pcを室内機aに連通する。ガス側分岐配管ユニット7の接続部は配管Pbを介して他のガス側分岐配管ユニット7に接続される。以下同様に、ガス側分岐配管ユニット7の一方の接続部は配管Pbを介して室内機aに連通され、他方の接続部はガス側分岐配管ユニット7と配管Pbを介してガス側分岐配管ユニット7に接続される。
 最終のガス側分岐配管ユニット7Aにおいては、両方の接続部に配管Pc,Pdを介して室内機aが接続される。このようにして空気調和機100Aは、複数台の室内機aが、ガス側分岐配管ユニット7を介して連通されている。
 本実施形態の空気調和機は、ガス側分岐配管ユニット7を含む冷媒配管を介して、室外機Aと複数の室内機aとが接続される。分岐配管ユニットの主配管70は、室外機Aに接続されており、分岐配管ユニットの第2分岐管72は、室内機aに接続されており、分岐配管ユニットの第1分岐管71は、他の分岐配管ユニットの主配管70に接続されており、分岐配管ユニットで、分岐が繰り返して行われる。
 この分岐が繰り返される際に、終端のガス側分岐配管ユニット7Aの第1分岐管71Aは、他の前記第1分岐管71よりも小径に形成されており、終端のガス側分岐配管ユニット7Aの第1分岐管71Aに遮断弁6を備えている。即ち、分岐の最後はそれ以上分岐しないため、第1分岐管71Aも小径化し遮断弁6を設けることが特徴となっている。
 本実施形態の空気調和機の冷媒配管は、ガス側冷媒配管E1と、液側冷媒配管E2とを有し、液側冷媒配管E2の径は、ガス側冷媒配管E1の径より小径であり、液側冷媒配管E2に接続される液側分岐配管ユニット9の主配管90の径は、ガス側冷媒配管E1に接続されるガス側分岐配管ユニット7の主配管70の径より小径である。
 分岐配管ユニットを図4、図5で示したが、これに限定されるわけではない。例えば、第2分岐管72,92の第2直線部72c,92cの先端部において、管径が段階的に変化していてもよい。また、第1分岐管71,91の第1直線部において、先端部の管径が段階的に変化していてもよい。
 図7は、分岐配管ユニットの構成の他の例を示す図である。ガス側分岐配管ユニット7を例に説明すると、第1分岐管71の先端部には、管径が段階的に変化する異径管接続部71dが形成されている。同様に、第2分岐管72の曲線部72bから延びる第2直線部72cの先端部には、管径が段階的に変化する異径管接続部72dが形成されている。作業者は、配管施工時に必要に応じて、パイプカッタ等で異径管接続部72dを切断して使用することができる。曲線部72bによって、異径管接続部72dと異径管接続部71dが異なる方向に向いているので、パイプカッタで異径管接続部72dを切断する際に、異径管接続部71dが干渉することがなく、異径管接続部72dの切断を円滑に行える。異径管接続部71dを切断する場合も同様である。
 1  室外ガス側阻止弁
 2  室外液側阻止弁
 3  室内送風機
 4  室内熱交換器
 6,8  遮断弁
 7  ガス側分岐配管ユニット
 9  液側分岐配管ユニット
 10  圧縮機
 11  四方弁
 12  室外送風機
 13  室外熱交換器
 14  膨張弁
 15  冷媒タンク
 16  アキュームレータ
 17  リモコン
 18  リモコン線
 19  通信線(第1通信線)
 20  集中管理制御機器
 21  通信線
 22  通信線(第2通信線)
 23  制御部(制御装置)
 24  制御部
 25  通信線(第3通信線)
 70,90  主配管
 71,91  第1分岐管
 72,92  第2分岐管
 72b,92b  曲線部
 72c,92c  第2直線部
 100  空気調和機
 A  室外機
 a,a1,a2,a3,a4  室内機
 D,D1,D2,D3,D4  冷媒漏洩検知器(冷媒検知センサ)
 E1  ガス側冷媒配管(冷媒配管、高低圧ガス冷媒配管、低圧ガス冷媒配管)
 E2  液側冷媒配管(冷媒配管)

Claims (7)

  1.  冷媒を2つの流れに分配するための分岐配管ユニットであって、
     主配管と、前記主配管から分岐する第1分岐管と、前記主配管から分岐して前記第1分岐管よりも小径の第2分岐管と、前記第2分岐管を開閉する遮断弁と、を備える分岐配管ユニット。
  2.  前記第1分岐管は、前記主配管を流れる冷媒の流れ方向に沿って延びる直線部を有し、前記第2分岐管は、前記第1分岐管に沿って延びる第1直線部と、前記第1直線部から前記第1分岐管から遠ざかる方向に曲がる曲線部と、前記曲線部から延びる第2直線部と、を有し、前記遮断弁は、前記第2直線部に設けられている
     ことを特徴とする請求項1に記載の分岐配管ユニット。
  3.  請求項1または請求項2に記載の分岐配管ユニットを含む冷媒配管を介して、室外機と複数の室内機とが接続される空気調和機であって、
     前記室内機の冷媒漏洩を検知する冷媒漏洩検知器と、
     空調制御を実行する制御装置と、
     前記制御装置から前記室内機に前記空調制御の制御信号を送る第1通信線と、
     前記冷媒漏洩検知器から前記制御装置へ冷媒漏洩検知信号を送る第2通信線と、
     前記制御装置から前記遮断弁に制御信号を送る第3通信線と、を備え、
     前記制御装置は、前記第2通信線を介して前記冷媒漏洩検知器から冷媒漏洩である旨を受信した場合、前記第3通信線を介して前記冷媒漏洩がある室内機に接続されている前記第2分岐管に設けられた前記遮断弁を遮断し、前記第1通信線を介して前記冷媒漏洩がある室内機の運転を停止させる
     ことを特徴とする空気調和機。
  4.  請求項1または請求項2に記載の分岐配管ユニットを含む冷媒配管を介して、室外機と複数の室内機とが接続される空気調和機であって、
     前記分岐配管ユニットの主配管は、前記室外機に接続されており、
     前記分岐配管ユニットの第2分岐管は、前記室内機に接続されており、
     前記分岐配管ユニットの第1分岐管は、他の分岐配管ユニットの主配管に接続されており、前記分岐配管ユニットで、分岐が繰り返して行われる際に、
     終端の分岐配管ユニットの第1分岐管は、他の前記第1分岐管よりも小径に形成されており、前記終端の分岐配管ユニットの前記第1分岐管に遮断弁を備える
     ことを特徴とする空気調和機。
  5.  請求項1または請求項2に記載の分岐配管ユニットを含む冷媒配管を介して、室外機と複数の室内機とが接続される空気調和機であって、
     前記冷媒配管は、ガス側冷媒配管と、液側冷媒配管とを有し、
     前記液側冷媒配管の径は、前記ガス側冷媒配管の径より小径であり、
     前記液側冷媒配管に接続される分岐配管ユニットの主配管の径は、前記ガス側冷媒配管に接続される分岐配管ユニットの主配管の径より小径である
     ことを特徴とする空気調和機。
  6.  請求項1または請求項2に記載の分岐配管ユニットを含む冷媒配管を介して、室外機と複数の室内機とが接続される空気調和機であって、
     前記室内機の冷媒漏洩を検知する冷媒漏洩検知器と、
     空調制御を実行する制御装置と、を備え、
     前記制御装置は、前記冷媒漏洩検知器から冷媒漏洩である旨を受信した場合、前記冷媒漏洩がある室内機に接続されている前記第2分岐管に設けられた前記遮断弁を遮断し、前記冷媒漏洩がある室内機の運転を停止させる
     ことを特徴とする空気調和機。
  7.  前記冷媒漏洩検知器は、前記室内機が天井据付器の場合、前記室内機が据付けられている被空調空間に設置され、前記室内機が床置き器の場合、前記室内機の近辺に設置される
     ことを特徴とする請求項3または請求項6に記載の空気調和機。
PCT/JP2017/041769 2017-11-21 2017-11-21 分岐配管ユニットおよびそれを用いた空気調和機 WO2019102517A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041769 WO2019102517A1 (ja) 2017-11-21 2017-11-21 分岐配管ユニットおよびそれを用いた空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041769 WO2019102517A1 (ja) 2017-11-21 2017-11-21 分岐配管ユニットおよびそれを用いた空気調和機

Publications (1)

Publication Number Publication Date
WO2019102517A1 true WO2019102517A1 (ja) 2019-05-31

Family

ID=66630552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041769 WO2019102517A1 (ja) 2017-11-21 2017-11-21 分岐配管ユニットおよびそれを用いた空気調和機

Country Status (1)

Country Link
WO (1) WO2019102517A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026643A1 (ja) * 2021-08-23 2023-03-02 ダイキン工業株式会社 遮断弁装置、及び、空気調和機
WO2024018594A1 (ja) * 2022-07-21 2024-01-25 東芝キヤリア株式会社 マルチ型空気調和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611203A (ja) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp 空気調和装置
JPH11325656A (ja) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd ヘッダー分流器
JP2005337524A (ja) * 2004-05-24 2005-12-08 Daikin Ind Ltd 分岐用管継手及びそれを備えた空気調和装置
JP2007232286A (ja) * 2006-03-01 2007-09-13 Higashio Mech Co Ltd 冷媒配管方法
JP5517789B2 (ja) * 2010-07-02 2014-06-11 日立アプライアンス株式会社 空気調和機
WO2017163321A1 (ja) * 2016-03-23 2017-09-28 三菱電機株式会社 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611203A (ja) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp 空気調和装置
JPH11325656A (ja) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd ヘッダー分流器
JP2005337524A (ja) * 2004-05-24 2005-12-08 Daikin Ind Ltd 分岐用管継手及びそれを備えた空気調和装置
JP2007232286A (ja) * 2006-03-01 2007-09-13 Higashio Mech Co Ltd 冷媒配管方法
JP5517789B2 (ja) * 2010-07-02 2014-06-11 日立アプライアンス株式会社 空気調和機
WO2017163321A1 (ja) * 2016-03-23 2017-09-28 三菱電機株式会社 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026643A1 (ja) * 2021-08-23 2023-03-02 ダイキン工業株式会社 遮断弁装置、及び、空気調和機
WO2024018594A1 (ja) * 2022-07-21 2024-01-25 東芝キヤリア株式会社 マルチ型空気調和装置

Similar Documents

Publication Publication Date Title
JP5517789B2 (ja) 空気調和機
CN109891167B (zh) 空调装置
US11181303B2 (en) Air-conditioning apparatus and air-conditioning system
US20130014525A1 (en) Switching device and air-conditioning apparatus
JP6849021B2 (ja) 冷凍サイクルシステム
US11927355B2 (en) Air conditioning and ventilating system
JP3980601B2 (ja) マルチエアコンシステム及びマルチエアコンシステムの配管連結点検方法
WO2015075846A1 (en) Refrigeration cycle apparatus
EP3270069A3 (en) Cooling/heating switching unit and air conditioner including the same
JP2017009267A (ja) 空気調和システム
US20190338986A1 (en) Air conditioning apparatus
JP6929747B2 (ja) 空気調和機
US11976831B2 (en) Air-conditioner, air-conditioning system, and method for monitoring air-conditioner
JP2013210110A (ja) 空気調和機
WO2019102517A1 (ja) 分岐配管ユニットおよびそれを用いた空気調和機
JP2018124009A (ja) 冷凍装置
US20220290885A1 (en) Air conditioning system
JPH0252967A (ja) 空気調和装置
WO2019097604A1 (ja) ダクト式空気調和機
KR101631445B1 (ko) 공기조화기 및 공기조화기용 센서유닛
JP2019045129A (ja) 空調システム
JPWO2022038708A5 (ja)
WO2015177896A1 (ja) 空気調和装置
JP2012137241A (ja) 空気調和装置
JP6778888B1 (ja) 中継器及び空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP