WO2019102172A1 - Procédé de cryoconservation de cellules à visée thérapeutique - Google Patents

Procédé de cryoconservation de cellules à visée thérapeutique Download PDF

Info

Publication number
WO2019102172A1
WO2019102172A1 PCT/FR2018/053012 FR2018053012W WO2019102172A1 WO 2019102172 A1 WO2019102172 A1 WO 2019102172A1 FR 2018053012 W FR2018053012 W FR 2018053012W WO 2019102172 A1 WO2019102172 A1 WO 2019102172A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
composition according
composition
therapeutic purposes
alkanediol
Prior art date
Application number
PCT/FR2018/053012
Other languages
English (en)
Inventor
Joffrey DE LARICHAUDY
Sandy CAZALON NEMORIN
Original Assignee
Laboratoire Francais Du Fractionnement Et Des Biotechnologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoire Francais Du Fractionnement Et Des Biotechnologies filed Critical Laboratoire Francais Du Fractionnement Et Des Biotechnologies
Priority to US16/766,900 priority Critical patent/US11785937B2/en
Priority to EP18826418.8A priority patent/EP3716762A1/fr
Publication of WO2019102172A1 publication Critical patent/WO2019102172A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions

Definitions

  • the present invention relates to a composition
  • a composition comprising, in a physiologically acceptable medium:
  • composition having a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3.
  • the present invention also relates to a method of cryopreserving at least one sample of cells for therapeutic purposes, comprising the following steps: i) mixing the sample of cells for therapeutic purposes with:
  • composition having a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3, and then
  • Cryopreservation is a process in which biological samples are stored at low temperatures.
  • the cryopreservation of biological material is generally carried out by freezing said material, in a suitable medium, such as a tube or a glass or plastic ampoule (generally called “straw” or freezing tube in the field of cryopreservation) , said support being adapted for long-term storage and at low temperature.
  • Cryopreservation poses a number of problems and technical constraints.
  • cellular lesions can occur during thawing, resulting in apoptosis or bursting of the cells.
  • survival of the cryopreserved cells may depend on the conditions and techniques employed during freezing.
  • Control of the cooling rate is important: low speed cooling allows ordered crystallization of the freeze water outside the cells; the cells dehydrate, shrink and water comes out of the cell. Otherwise, intracellular ice formation destroys membrane structures that are lethal to the cell.
  • cryoprotectants For most mammalian cells, as is the case for cell therapy products and drugs, it is also essential to use cryoprotectants to preserve cell integrity and functionality.
  • the finished product is conditioned:
  • cryopreservation compositions comprising in particular human albumin and coenzyme Q10 or L-cysteine.
  • such compositions are not optimal with respect to the preservation of certain cell types. There is therefore a need for the development of a product and / or cell therapy drug that is stable in the long term (ie for several months or even years), and whose cell viability and functionality are preserved.
  • the composition according to the invention makes it possible to meet this need. Indeed, the composition according to the invention makes it possible to obtain cell therapy products comprising cells for therapeutic purposes, ready for use (ie ready to be injected without washing, which avoids any additional manipulations causing a decrease in viability and a loss of cells), stable in the long term after freezing and stable in the medium term after thawing (ie for one to a few hours), easy to use and non-toxic. In addition, the composition according to the invention makes it possible to preserve the viability of cells for therapeutic purposes, and their functionality is maintained.
  • the present invention thus relates to a composition
  • a composition comprising, in a physiologically acceptable medium:
  • composition having a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3.
  • composition according to the invention is called “composition according to the invention” in the present application.
  • the present invention also relates to a method of cryopreserving at least one sample of cells for therapeutic purposes, comprising the following steps: i) mixing the sample of cells for therapeutic purposes with:
  • composition having a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3, and then
  • the present invention also relates to the use of a composition comprising, in a physiologically acceptable medium:
  • composition according to the invention therefore comprises, in a physiologically acceptable medium:
  • the composition has a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3.
  • physiologically acceptable medium an aqueous medium comprising at least one electrolyte.
  • the electrolytes are, for example, sodium, potassium, magnesium and / or calcium salts with anions of chloride, acetate, carbonate, hydrogencarbonate, hydroxide or citrate type.
  • the physiologically acceptable medium is an aqueous medium comprising at least sodium chloride, potassium chloride and calcium chloride.
  • the physiologically acceptable medium further comprises sodium acetate and trisodium citrate.
  • Sodium is preferably present in the composition according to the invention in a concentration of between 130 and 200 mmol / l, preferably between 135 and 190 mmol / l, preferably between 138 and 188 mmol / l.
  • Potassium is preferably present in the composition according to the invention in a concentration of between 0.5 and 5.0 mmol / l, preferably between 1.0 and 4.5 mmol / l, preferably between 1.5 and 4.0 mmol / l.
  • Calcium is preferably present in the composition according to the invention in a concentration of between 0.01 and 10 mmol / l, preferably between 0.01 and 1 mmol / l, preferably between 0.01 and 0.05 mmol / l.
  • the chloride is preferably present in the composition according to the invention in a concentration of between 40 and 110 mmol / l, preferably between 70 and 105 mmol / l, preferably between 65 and 100 mmol / l.
  • Magnesium is preferably present in the composition according to the invention in a concentration of between 0 and 5 mmol / l, preferably between 0.5 and 4.5 mmol / l, preferably between 1 and 3.5 mmol / l.
  • the physiologically acceptable medium is such that the composition containing it has a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3.
  • HC0 3 ions also known as bicarbonate
  • the physiologically acceptable medium is such that the composition containing it has a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3.
  • HC0 3 ions also known as bicarbonate
  • At least one bicarbonate salt is present in the composition of the invention.
  • the composition according to the invention comprises sodium hydrogencarbonate.
  • the bicarbonate salt is present in the composition according to the invention at a concentration of between 20 and 100 mmol / l, preferably between 20 and 80 mmol / l, preferably between 20 and 60 mmol / l, preferably between 20 and 55 mmol / L.
  • the composition of the invention has an osmolarity of between 250 and 1800 mOsm / L, preferably between 280 and 1600 mOsm / L, preferably between 280 and 1500 mOsm / L.
  • the composition according to the invention comprises at least one saccharide (compound a)). Saccharide improves cell survival and function by preserving osmotic balance. A fraction penetrates the cells and stabilizes the membrane structures.
  • the saccharide is preferably selected from monosaccharides, disaccharides and trisaccharides.
  • the monosaccharides are preferably selected from glucose, galactose, fructose and mannose.
  • the saccharide is glucose.
  • the disaccharide preferably has the formula AB, wherein A and B are each independently selected from glucose, fructose and mannose.
  • the saccharide is preferably a disaccharide.
  • the disaccharide is preferably a glucose dimer. More preferably, the disaccharide is selected from trehalose and sucrose.
  • the trisaccharides are preferably selected from raffinose (galactose trimer, glucose and fructose), maltotriose and isomaltotriose (glucose trimers).
  • the saccharide is preferably present in the composition according to the invention in a concentration of between 10 and 20 mmol / l, preferably between 10 and 15 mmol / l, preferably between 12.5 and 15 mmol / l.
  • composition according to the invention comprises at least one amino acid (compound b)).
  • the amino acid is chosen from glutamine, alanyl-glutamine, tryptophan, lysine, methionine, phenylalanine, threonine, valine, leucine and isoleucine, arginine, histidine, tyrosine, cysteine and their mixtures.
  • the amino acid is cysteine, preferably said cysteine is provided as cystine, said cystine being a cysteine dimer.
  • composition according to the invention comprises at least one mixture of glutamine and alanyl-glutamine, in particular a mixture of L-glutamine and L-alanyl-L-glutamine.
  • the composition according to the invention comprises essential amino acids.
  • An essential amino acid is an amino acid that can not be synthesized de novo by the body (usually human) or that is synthesized at an insufficient speed, and must therefore be provided by the diet, a necessary condition for the proper functioning of the organization.
  • tryptophan In humans, there are eight essential amino acids: tryptophan, lysine, methionine, phenylalanine, threonine, valine, leucine and isoleucine.
  • the composition according to the invention comprises the eight essential amino acids mentioned above, as well as arginine, histidine, tyrosine and cysteine.
  • arginine such a mixture of amino acids is in particular marketed by Thermo Fisher under the reference Gibco® MEM Amino Acids 50X.
  • the amino acids are preferably present in the composition according to the invention in a concentration of between 10 and 700 mg / l, preferably between 50 and 700 mg / l, preferably between 100 and 700 mg / l, preferably between 150 and 700 mg / l, preferably between 200 and 700 mg / l, preferably between 250 and 700 mg / l, preferably between 300 and 700 mg / l, preferably between 300 and 600 mg / l.
  • composition according to the invention preferably comprises a mixture of the eight essential amino acids mentioned above, arginine, histidine, tyrosine, cysteine, glutamine and alanylglutamine.
  • composition according to the invention preferably comprises at least one vitamin.
  • the composition according to the invention comprises at least one vitamin chosen from vitamin B1 (thiamine), B2 (riboflavin), B4 (choline), B5 (pantothenic acid), B6 (pyridoxal), B7 (inositol), B9 (folic acid), PP (nicotinamide) and mixtures thereof.
  • vitamin B1 thiamine
  • B2 riboflavin
  • B4 choline
  • B5 pantothenic acid
  • B6 pyridoxal
  • B7 inositol
  • B9 folic acid
  • PP nicotinamide
  • Such a mixture of vitamins is especially marketed by Thermo Fisher under the reference Gibco® MEM Vitamin Solution (100X).
  • the vitamin (s) is (are) preferably present in the composition according to the invention in a concentration of between 0.1 and 100 mg / l, preferably between 0.5 and 90 mg / l. preferably between 1 and 80 mg / L, preferably between 1.5 and 70 mg / L, preferably between 2 and 60 mg / L, preferably between 2.5 and 50 mg / L, preferably between 3 and 40 mg / l, preferably between 3.5 and 30 mg / l, preferably between 4 and 20 mg / l, preferably between 4.5 and 20 mg / l, preferably between 5 and 10 mg / l.
  • composition according to the invention comprises at least DMSO or at least one C3-C5 alkanediol (compound c)).
  • DMSO dimethylsulfoxide
  • DMSO dimethylsulfoxide
  • CH3-SO-CH3 aprotic organic polar solvent of formula CH3-SO-CH3. It is an intracellular cryoprotectant whose main purpose is to replace the intracellular fluid, thus preventing the formation of ice crystals and the osmotic stress inherent in the freeze / thaw phases that burst the membrane structures.
  • DMSO is preferably present in the composition according to the invention in an amount of between 2 and 20% inclusive by volume relative to the total volume of composition, preferably between 3 and 15% inclusive by volume relative to the total volume of composition, preferably and 5 and 10% inclusive.
  • the C3-C5 alkanediol is preferably a linear, branched or cyclic alkane comprising from 3 to 5 carbon atoms, and 2 hydroxyl groups. Preferably, it is chosen from linear alkanes comprising from 3 to 5 carbon atoms, and 2 hydroxyl groups. More preferably, it is chosen from propane-1,2-diol (also called propylene glycol), pentane-1,5-diol and butane-2,3-diol.
  • the C3-C5 alkanediol is preferably propane-1,2-diol (also called propylene glycol).
  • the C 3 -C 5 alkanediol is preferably present in the composition according to the invention in an amount of between 2 and 20% inclusive by volume relative to the total volume of composition, preferably between 3 and 15% inclusive by volume relative to total volume of composition, preferably and 5 and 10% inclusive.
  • the composition according to the invention comprises at least one antioxidant (compound d)).
  • antioxidant is meant any compound to slow down or prevent oxidation caused by an oxidizing agent that can lead to the production of free radicals.
  • the antioxidant makes it possible to protect cells from oxidative stress and thus to maintain or improve their viability.
  • the composition according to the invention comprises at least one antioxidant chosen from glutathione, vitamin C, vitamin E, vitamin A, L-cysteine or coenzyme Q10.
  • the composition according to the invention comprises glutathione.
  • the antioxidant (s) is (are) present in the composition according to the invention in a concentration of between 0.1 and 2 g / l, preferably between 0.2 and 1.75 g / l, preferably between 0.3 and 1.5 g / L.
  • composition according to the invention comprises human albumin.
  • human albumin is present in the composition according to the invention in a concentration of between 0 and 6 g / l, preferably between 1.5 and 5 g / l, preferably between 2 and 4 g / l.
  • the composition according to the invention comprises a platelet lysate.
  • the platelet lysate is preferably present in the composition according to the invention in a concentration of between 5% and 30% by volume, preferably between 15% and 25% by volume relative to the total volume of composition.
  • the platelet lysate comprises at least one growth factor selected from TGF-beta1, EGF, PDGF-AB, IGF-1, VEGF, bFGF and mixtures thereof.
  • the composition according to the invention is substantially free of dextran.
  • substantially free composition is meant that this composition contains less than 10% by weight, preferably less than 5% by weight, preferably less than 3% by weight, preferably less than 1% by weight of dextran.
  • the composition according to the invention does not contain dextran.
  • composition according to the invention comprises, in an aqueous medium comprising electrolytes:
  • composition according to the invention is particularly interesting and aims to cryopreserve at least one sample of cells for therapeutic purposes.
  • the compounds a) to d) used in the composition make it possible to cryoconserve the cells for therapeutic purposes in a durable and effective manner.
  • cryopreservation or “cryopreservation” it is understood that the viability of the cells maintained at a temperature of between 4 ° C. and 20 ° C. for 1 hour after thawing, said thawing following a freezing step at a temperature between -150 and -180 ° C inclusive, is between 90% and 100%, the viability of the cells maintained at a temperature between 4 ° C and 20 ° C for 3 hours after thawing, said thawing following a freezing step at a temperature between -150 and -180 ° C inclusive is between 80% and 100%, the viability of the cells maintained at a temperature between 4 ° C and 20 ° C for 4 hours after thawing, said thawing following a freezing step at a temperature between -150 and -180 ° C inclusive, is between 60% and 100%.
  • the cell viability is measured directly on the cells in the composition of the invention by flow cytometry after labeling the cells with 7-amino-actinomycin D (7-AAD) which is a marker of cell viability.
  • the cell viability is measured directly on the cells in the composition of the invention by counting with a counting automaton such as Nucleocounter after labeling with Orange Acridine (cell marker) and DAPI (marker cell death).
  • Therapeutic cells means cells which in themselves constitute the therapeutic product and which are administered to the patient. These cells are distinct from cells that are cultured for the production of biological drugs, such as, for example, CHO, HEK or YB2 / 0 cells.
  • the cells for therapeutic purposes are preferably chosen from:
  • immune cells such as NK cells, monocytes, B lymphocytes, natural or genetically modified T lymphocytes, such as regulatory T lymphocytes, T cells infiltrating tumors, cytotoxic T lymphocytes, T helper cells (or helper) and T cells with a chimeric antigen receptor (CAR);
  • NK cells such as NK cells, monocytes, B lymphocytes, natural or genetically modified T lymphocytes, such as regulatory T lymphocytes, T cells infiltrating tumors, cytotoxic T lymphocytes, T helper cells (or helper) and T cells with a chimeric antigen receptor (CAR);
  • CAR chimeric antigen receptor
  • myoblasts in particular human ones
  • NK cells are cells of innate immunity. These are non-T (CD3-) non-B lymphocytes (CD19-), characterized in humans by markers CD56, CD16 and NK.
  • Monocytes are leukocytes that evolve into macrophages, dendritic cells or osteoclasts.
  • B cells are the immune cells responsible for the production of antibodies.
  • Regulatory T cells are a subset of CD4 + T cells, which inhibit the proliferation of other effector T cells.
  • Cytotoxic T lymphocytes are a subset of CD8 + T cells that destroy infected cells.
  • Helper T cells are a subset of CD4 + T lymphocytes that mediate the immune response.
  • T lymphocytes with a chimeric antigen receptor also called T-CAR cells
  • CAR chimeric antigen receptor
  • T-CAR cells correspond to a particular technology of cellular engineering. These are T cells that express a chimeric antigen receptor. CAR-T cells are able to kill cancer cells by recognition and binding to the tumor antigen present on said cancer cells.
  • the sample of cells for therapeutic purposes can come from the patient to be treated (in this case the patient and the donor are the same person), by biopsy or blood sample.
  • the composition obtained, once cryopreserved and thawed, will be administered to the same patient: it is an autologous product.
  • the sample of cells for therapeutic purposes may come from another source (i.e. other individual, cellular engineering), in particular by biopsy or blood sample.
  • the composition obtained, once cryopreserved and then thawed, will be administered to a patient to be treated other than the donor: it is an allogeneic product.
  • the composition according to the invention comprises a cell concentration of between 2 and 300 M cells / ml, preferably between 10 and 200 M cells / ml, preferably between 50 and 200 M cells / ml.
  • the present invention also relates to a method of cryopreserving at least one sample of cells for therapeutic purposes, comprising the following steps: i) mixing the sample of cells for therapeutic purposes with: a) at least one saccharide,
  • composition having a pH of between 7.0 and 8.5, preferably between 7.0 and 8.3, and then
  • the step of mixing the sample of cells for therapeutic purposes with the various compounds described above is typically by dilution.
  • the mixture can be carried out at a temperature between + 1 ° C and + 20 ° C inclusive, preferably between + 2 ° C and + 20 ° C inclusive, preferably between + 2 ° C and + 15 ° C inclusive, preferably between + 2 ° C and + 10 ° C inclusive, preferably between + 2 ° C and + 6 ° C inclusive, preferably at 4 ° C.
  • the sample of cells for therapeutic purposes is, for its part, previously cultivated in vitro, in a suitable culture medium. Then it is centrifuged, the supernatant is removed and the pellet is suspended in a mixture of physiologically acceptable medium and compounds a) to d) described above, to obtain a composition having a pH between 7.0 and 8.5, preferably between 7.0 and 8.3.
  • the freezing step (step ii)) is preferably carried out on a temperature descent of + 20 ° C to a temperature between -100 ° C and -180 ° C, preferably between -140 ° C and -160 ° C.
  • the freezing step (step ii)) is carried out on a temperature descent of + 4 ° C. to a temperature of between -100 ° C. and -180 ° C., preferably of between -140 ° C. and -160 ° C.
  • freezing ii) is carried out by placing the mixture obtained in step i) in a container immersed in a mixture of isopropyl alcohol at + 4 ° C., the whole being brought to a temperature of between -70 ° C. and -100 ° C or -70 ° C and -90 ° C or -70 ° C and -80 ° C.
  • This system (“Nalgene canned freezing") allows, thanks to the slow cooling of the alcohol, an almost linear temperature drop of between -1 ° C and -2 ° C per minute.
  • freezing ii) is performed using a programmed freezer.
  • the freezing ii) is done, in particular with the aid of a programmed freezer, by the following steps:
  • step i) placing the mixture obtained in step i) at a temperature of + 4 ° C .; then
  • the product thus obtained frozen, can be stored for a few months at -180 ° C. These temperatures are those applied to the sample.
  • the myoblasts can be prepared as described in application FR2810045.
  • NC200 Nucleocounter NC200 of Chémometec
  • the percentage of myoblasts is measured by flow cytometry. It corresponds to the percentage of living cells CD56 +, CD15- after labeling the cells with specific antibodies CD56, CD15 and propidium lodide (IP). Indeed, the product tested also contains impurities that are CD56- and CD15 + or - cells and that may take precedence over myoblasts because they are less demanding in terms of culture. The goal is to maintain the percentage of myoblasts in the product after freezing.
  • the cells are formulated in the cryopreservation solutions tested ("DMSO 5%” and "DMSO 10%”). They are then frozen at -180 ° C. Their viability is measured immediately after thawing and 3 hours after thawing, on the cells maintained at room temperature in the cryopreservation medium tested.
  • the cell viability level immediately after thawing is greater than 90% and the cell viability rate 3 hours after thawing is greater than 85% ,
  • the rate of myoblasts before freezing and immediately after thawing is very close (64.2% before freezing, 61.5% after thawing for the "DMSO 5%” solution and 64.5% for the "DMSO 10%” solution) .
  • the solutions tested thus make it possible to maintain the percentage of myoblasts in the product.
  • NC200 of Chémometec The measurement of the viability by Nucleocounter NC200 of Chémometec is carried out via a counting automaton: the cells are labeled with Orange Acridine (cell marker) and DAPI (cell death marker). The ratio between the 2 provides the viability of the cells. o Apoptosis
  • the apoptosis test makes it possible to determine the early mortality of the cells by apoptosis.
  • the principle of the apoptosis test is based on a double labeling SYTOX green (membrane integrity marker - marker of dead cells), Annexin V (early apoptosis marker) analyzed by flow cytometry. This labeling makes it possible to distinguish cells with early apoptosis (SYTOX- / AnnexinV +), dead cells (SYTOX + / AnnexinV +) and living cells (SYTOX- / AnnexinV-).
  • SYTOX green membrane integrity marker - marker of dead cells
  • Annexin V early apoptosis marker
  • the cells are formulated in the cryopreservation solutions tested. They are then frozen at -180 ° C. The various tests (viability, apoptosis, phenotype) are then carried out 1 hour after thawing, on the cells maintained at room temperature in the cryopreservation media tested.
  • the formulations tested are effective for the cryopreservation of the myoblasts: the cell viability rate 1 hour after thawing is greater than 90%,
  • the tested formulations make it possible to have a high level of non-apoptotic cells
  • the cells remain functional 1 hour after thawing: they express myosin, which means that they retain their ability to differentiate.
  • Mesenchymal stem cells can be prepared as described in Sensebé L, Bourin P, Pie K. Good manufacturing practices production of mesenchymal stem / stromal cells. Hum Gene Ther. Jan 2011; 22 (1): 19-26. al Experimental Protocols
  • the measurement of the viability by flow cytometry is carried out after labeling the cells with 7-amino-actinomycin D (7-AAD) which is a cell viability marker.
  • 7-AAD 7-amino-actinomycin D
  • the 7-AAD has a strong DNA binding capacity is efficiently released by living cells. Thus the dead cells remain labeled with 7-AAD, while the living cells are not labeled.
  • the apoptosis test makes it possible to determine the early mortality of the cells by apoptosis.
  • the principle of the apoptosis test is based on a double labeling SYTOX green (membrane integrity marker - marker of dead cells), Annexin V (early apoptosis marker) analyzed by flow cytometry. This labeling makes it possible to distinguish cells with early apoptosis (SYTOX- / AnnexinV +), dead cells (SYTOX + / AnnexinV +) and living cells (SYTOX- / AnnexinV-).
  • SYTOX green membrane integrity marker - marker of dead cells
  • Annexin V early apoptosis marker
  • Cell phenotype analysis is performed to determine the stability of the MSC formulation in solutions 4 and 5.
  • the phenotype is analyzed by flux and corresponds to the percentage of CD90 + / CD73 + / CD45- / CD34- cells using specific antibodies CD90, CD73, CD45 and CD34 coupled to a fluorochrome.
  • the "AH4%” corresponds to the reference solution in which the cells are formulated solely in 4% human albumin and stored for 24 hours at +3 ⁇ 2 ° C.
  • the Drug Substance "DS" corresponds to the cells resulting from the harvest at the end of the process before formulation.
  • the cells are formulated in the cryopreservation solutions tested. They are then frozen at -180 ° C. The various tests (viability, apoptosis, phenotype) are then carried out 4 hours and 6 hours after thawing, maintained at room temperature in the cryopreservation media tested. b / Results
  • the formulations tested 4 and 5 are effective for the cryopreservation of MSCs: the cell viability rate 4 hours after thawing is greater than 60%,
  • the phenotype of the MSCs formulated in solutions 4 and 5 is well preserved 4 or 6 hours after thawing (more than 80% of the cells express the CD90 and CD73 markers, less than 1% of the cells express the CD45 markers and
  • the ingredient "5X Ringer Solution + Glutathione Ion Solution” corresponds to:
  • the ingredient "2.5X + glutathione ion solution” corresponds to:
  • the ingredient "Ringer Solution” corresponds to:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hematology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention se rapporte à une composition comprenant, dans un milieu physiologiquement acceptable : a) au moins un saccharide, b) au moins un acide aminé, c) du DMSO ou au moins un alcanediol en C3-C5, d) au moins un antioxydant, et e) des cellules à visée thérapeutique, ladite composition ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3. Elle se rapporte également à un procédé de cryoconservation d'au moins un échantillon de cellules à visée thérapeutique, comprenant les étapes suivantes : i) mélange de l'échantillon de cellules à visée thérapeutique avec les ingrédients a) à d) ci-dessus et un milieu physiologiquement acceptable, afin d'obtenir une composition ayant un pH compris entre 7,0 et 8,5, de préférence entre 7,0 et 8,3, puis ii) congélation de la composition obtenue à l'étape i).

Description

Procédé de cryoconservation de cellules à visée thérapeutique
La présente invention concerne une composition comprenant, dans un milieu physiologiquement acceptable :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
e) des cellules à visée thérapeutique,
ladite composition ayant un pH compris entre 7,0 et 8,5, de préférence entre 7,0 et 8,3.
La présente invention se rapporte également à un procédé de cryoconservation d’au moins un échantillon de cellules à visée thérapeutique, comprenant les étapes suivantes : i) mélange de l’échantillon de cellules à visée thérapeutique avec :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
un milieu physiologiquement acceptable, afin d’obtenir une composition ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3 puis
ii) congélation de la composition obtenue à l’étape i).
La cryoconservation est un processus dans lequel des échantillons biologiques sont stockés à basse température. La cryoconservation de matériel biologique est généralement effectuée par la congélation dudit matériel, dans un support approprié, tel qu’un tube ou une ampoule en verre ou en matière plastique (généralement appelé "paillette" ou tube de congélation dans le domaine de la cryoconservation), ledit support étant adapté pour le stockage à long terme et à basse température.
La cryoconservation pose cependant un certain nombre de problèmes et de contraintes techniques. Notamment, des lésions cellulaires peuvent se produire lors de la décongélation, entraînant l’apoptose ou l’éclatement des cellules. En outre, la survie des cellules cryoconservées peut dépendre des conditions et des techniques employées lors de la congélation.
Le contrôle de la vitesse de refroidissement est important : un refroidissement à faible vitesse permet une cristallisation ordonnée de l’eau congelable à l’extérieur des cellules ; les cellules se déshydratent, se rétrécissent et l’eau sort de la cellule. Dans le cas contraire, la formation de glace intracellulaire entraîne la destruction des structures membranaires qui est létale pour la cellule.
Pour la plupart des cellules de mammifères, comme cela est le cas pour les produits et médicaments de thérapie cellulaire, il est en outre indispensable d’utiliser des cryoprotectants pour préserver l’intégrité et la fonctionnalité cellulaires.
Actuellement, la fabrication à une échelle industrielle (européenne ou mondiale notamment) de produits de thérapie cellulaire pose de nouvelles problématiques, telles que la stabilité du produit fini administré et la variabilité liée à la matière biologique de départ.
Dans la plupart des cas, le produit fini est conditionné :
- frais dans un milieu liquide (type albumine ou solution saline) avec une conservation limitée à quelques heures ou jours, ou bien
- congelé dans une formulation simple à base de DMSO, peu stable et peu efficace à long terme. La quantité non négligeable de cellules mortes, de débris aux effets potentiellement immunogènes et la toxicité pour le patient des excipients couramment utilisés sont autant de limites. La plupart du temps, un lavage des cellules avant administration pour retirer ces éléments toxiques (biologiques ou non) est indiqué ; ces solutions ne sont donc pas compatibles avec une distribution industrielle. De plus, elles offrent peu de flexibilité d’administration et de stockage, au contraire des autres classes de médicaments « classiques ».
Il existe donc un besoin pour le développement d’un produit et/ou médicament de thérapie cellulaire qui soit stable à long terme (i.e. pendant plusieurs mois), qui soit facile à utiliser, directement injectable et non toxique.
Les demandes WO2017/001782 et WO2017/001783 décrivent des compositions de cryopréservation comprenant notamment de l’albumine humaine et du coenzyme Q10 ou de la L-cystéine. Cependant, de telles compositions ne sont pas optimales vis-à-vis de la conservation de certains types cellulaires. Il existe donc un besoin pour le développement d’un produit et/ou médicament de thérapie cellulaire qui soit stable à long terme (i.e. pendant plusieurs mois voire plusieurs années), et dont la viabilité et la fonctionnalité cellulaires sont préservées.
La présente invention permet de répondre à ce besoin. En effet, la composition selon l’invention permet d’obtenir des produits de thérapie cellulaire comprenant des cellules à visée thérapeutique, prêts à l’emploi (i.e. prêts à être injectés sans lavage, ce qui évite toutes manipulations supplémentaires provoquant une baisse de viabilité et une perte de cellules), stables à long terme après congélation et stable à moyen terme après décongélation (i.e pendant une à quelques heures), faciles à utiliser et non toxiques. En outre, la composition selon l’invention permet de préserver la viabilité des cellules à visée thérapeutique, et leur fonctionnalité est maintenue.
La présente invention se rapporte donc à une composition comprenant, dans un milieu physiologiquement acceptable :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
e) des cellules à visée thérapeutique,
ladite composition ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3.
Cette composition est appelée « composition selon l’invention » dans la présente demande.
La présente invention se rapporte également à un procédé de cryoconservation d’au moins un échantillon de cellules à visée thérapeutique, comprenant les étapes suivantes : i) mélange de l’échantillon de cellules à visée thérapeutique avec:
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
un milieu physiologiquement acceptable, afin d’obtenir une composition ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3, puis
ii) congélation de la composition obtenue à l’étape i). La présente invention se rapporte également à l’utilisation d’une composition comprenant, dans un milieu physiologiquement acceptable :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant,
et ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3, pour la cryoconservation d’au moins un échantillon de cellules à visée thérapeutique.
La composition selon l’invention comprend donc, dans un milieu physiologiquement acceptable :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
e) des cellules à visée thérapeutique.
En outre, la composition a un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3.
Par « milieu physiologiquement acceptable », on entend un milieu aqueux comprenant au moins un électrolyte. Les électrolytes sont par exemple des sels de sodium, de potassium, de magnésium et/ou de calcium avec des anions de type chlorure, acétate, carbonate, hydrogénocarbonate, hydroxyde ou citrate. De préférence, le milieu physiologiquement acceptable est un milieu aqueux comprenant au moins du chlorure de sodium, du chlorure de potassium et du chlorure de calcium. De préférence, le milieu physiologiquement acceptable comprend en outre de l’acétate de sodium et du citrate trisodique.
Le sodium est de préférence présent dans la composition selon l’invention en concentration comprise entre 130 et 200 mmol/L, de préférence entre 135 et 190 mmol/L, de préférence entre 138 et 188 mmol/L.
Le potassium est de préférence présent dans la composition selon l’invention en concentration comprise entre 0.5 et 5.0 mmol/L, de préférence entre 1.0 et 4.5 mmol/L, de préférence entre 1.5 et 4.0 mmol/L. Le calcium est de préférence présent dans la composition selon l’invention en concentration comprise entre 0.01 et 10 mmol/L, de préférence entre 0.01 et 1 mmol/L, de préférence entre 0.01 et 0.05 mmol/L.
Le chlorure est de préférence présent dans la composition selon l’invention en concentration comprise entre 40 et 110 mmol/L, de préférence entre 70 et 105 mmol/L, de préférence entre 65 et 100 mmol/L.
Le magnésium est de préférence présent dans la composition selon l’invention en concentration comprise entre 0 et 5 mmol/L, de préférence entre 0.5 et 4.5 mmol/L, de préférence entre 1 et 3.5 mmol/L.
De préférence, le milieu physiologiquement acceptable est tel que la composition qui le contient a un pH compris entre 7,0 et 8,5, de préférence compris entre 7.0 et 8,3. En particulier, des ions HC03 (appelé aussi bicarbonate) sont présents pour ajuster le pH dans cette gamme de valeurs.
De préférence, au moins un sel de bicarbonate est présent dans la composition de l’invention. De préférence, la composition selon l’invention comprend de l’hydrogénocarbonate de sodium.
De préférence, le sel de bicarbonate est présent dans la composition selon l’invention à une concentration comprise entre 20 et 100 mmol/L, de préférence entre 20 et 80 mmol/L, de préférence entre 20 et 60 mmol/L, de préférence entre 20 et 55 mmol/L.
De préférence, la composition de l’invention présente une osmolarité comprise entre 250 et 1800 mOsm/L, de préférence comprise entre 280 et 1600 mOsm/L, de préférence entre 280 et 1500 mOsm/L.
La composition selon l’invention comprend au moins un saccharide (composé a)). Le saccharide améliore la survie et la fonction des cellules en préservant l’équilibre osmotique. Une fraction pénètre les cellules et permet de stabiliser les structures membranaires. Le saccharide est de préférence choisi parmi les monosaccharides, les disaccharides et les trisaccharides.
Les monosaccharides sont de préférence choisis parmi le glucose, le galactose, le fructose et le mannose. De préférence, le saccharide est le glucose. Le disaccharide a de préférence pour formule A-B, dans laquelle A et B sont chacun indépendamment choisis parmi le glucose, le fructose et le mannose. Le saccharide est de préférence un disaccharide. Le disaccharide est de préférence un dimère de glucose. Plus préférentiellement, le disaccharide est choisi parmi le tréhalose et le saccharose.
Les trisaccharides sont de préférence choisis parmi le raffinose (trimère de galactose, glucose et fructose), le maltotriose et l’isomaltotriose (trimères de glucose).
Le saccharide est de préférence présent dans la composition selon l’invention en concentration comprise entre 10 et 20 mmol/L, de préférence entre 10 et 15 mmol/L, de préférence entre 12,5 et 15 mmol/L.
La composition selon l’invention comprend au moins un acide aminé (composé b)). De préférence, l’acide aminé est choisi parmi la glutamine, l’alanyl-glutamine, le tryptophane, la lysine, la méthionine, la phénylalanine, la thréonine, la valine, la leucine et l’isoleucine, l’arginine, l’histidine, la tyrosine, la cystéine et leurs mélanges.
De manière plus préférée, l’acide aminé est la cystéine, de préférence ladite cystéine est apportée sous forme de cystine, ladite cystine étant un dimère de cystéine.
De préférence la composition selon l’invention, comprend au moins un mélange de glutamine et d’alanyl-glutamine, en particulier un mélange de L-glutamine et de L-alanyl- L-glutamine.
De préférence, la composition selon l’invention, comprend des acides aminés essentiels. Un acide aminé essentiel est un acide aminé qui ne peut être synthétisé de novo par l’organisme (généralement humain) ou qui est synthétisé à une vitesse insuffisante, et doit donc être apporté par l’alimentation, condition nécessaire au bon fonctionnement de l’organisme.
Chez l’homme, on compte huit acides aminés essentiels : le tryptophane, la lysine, la méthionine, la phénylalanine, la thréonine, la valine, la leucine et l’isoleucine.
De préférence la composition selon l’invention comprend les huit acides aminés essentiels précités, ainsi que de l’arginine, de l’histidine, de la tyrosine et de la cystéine. Un tel mélange d’acides aminés est notamment commercialisé par Thermo Fisher sous la référence Gibco® MEM Amino Acids 50X. Les acides aminés sont de préférence présents dans la composition selon l’invention en concentration comprise entre 10 et 700 mg/L, de préférence entre 50 et 700 mg/l, de préférence entre 100 et 700 mg/L, de préférence entre 150 et 700 mg/L, de préférence entre 200 et 700 mg/L, de préférence entre 250 et 700 mg/L, de préférence entre 300 et 700 mg/L, de préférence entre 300 et 600 mg/L.
La composition selon l’invention comprend de préférence un mélange des huit acides aminés essentiels précités, de l’arginine, de l’histidine, de la tyrosine, de la cystéine, de la glutamine et de l’alanyl-glutamine.
La composition selon l’invention comprend de préférence au moins une vitamine.
De préférence, la composition selon l’invention comprend au moins une vitamine choisie parmi la vitamine B1 (thiamine), B2 (riboflavine), B4 (choline), B5 (acide panthoténique), B6 (pyridoxal), B7 (inositol), B9 (acide folique), PP (nicotinamide) et leurs mélanges.
Un tel mélange de vitamines est notamment commercialisé par Thermo Fisher sous la référence Gibco® MEM Vitamin Solution (100X).
La (ou les) vitamine(s) est(sont) de préférence présente(s) dans la composition selon l’invention en concentration comprise entre 0,1 et 100 mg/L, de préférence entre 0,5 et 90 mg/L, de préférence entre 1 et 80 mg/L, de préférence entre 1 ,5 et 70 mg/L, de préférence entre 2 et 60 mg/L, de préférence entre 2,5 et 50 mg/L, de préférence entre 3 et 40 mg/L, de préférence entre 3,5 et 30 mg/L, de préférence entre 4 et 20 mg/L, de préférence entre 4,5 et 20 mg/L, de préférence entre 5 et 10 mg/L.
La composition selon l’invention comprend au moins du DMSO ou au moins un alcanediol en C3-C5 (composé c)).
Le DMSO, ou diméthylsulfoxyde, est un solvant polaire organique aprotique de formule CH3-SO-CH3. C’est un cryoprotectant intracellulaire qui a pour but principal de remplacer le liquide intracellulaire, et qui permet ainsi de prévenir la formation de cristaux de glace et le stress osmotique inhérent aux phases de congélation/décongélation qui font éclater les structures membranaires.
Le DMSO est de préférence présent dans la composition selon l’invention en quantité comprise entre 2 et 20% inclus en volume par rapport au volume total de composition, de préférence entre 3 et 15% inclus en volume par rapport au volume total de composition, de préférence et 5 et 10% inclus. L’alcanediol en C3-C5 est de préférence un alcane linéaire, ramifié ou cyclique comprenant de 3 à 5 atomes de carbone, et 2 groupements hydroxyl. De préférence, il est choisi parmi les alcanes linéaires comprenant de 3 à 5 atomes de carbone, et 2 groupements hydroxyl. Plus préférentiellement, il est choisi parmi le propane-1 ,2-diol (également appelé propylène glycol), le pentane-1 ,5-diol et le butane-2,3-diol. L’alcanediol en C3-C5 est de préférence le propane-1 ,2-diol (également appelé propylène glycol).
L’alcanediol en C3-C5 est de préférence présent dans la composition selon l’invention en quantité comprise entre 2 et 20% inclus en volume par rapport au volume total de composition, de préférence entre 3 et 15% inclus en volume par rapport au volume total de composition, de préférence et 5 et 10% inclus.
La composition selon l’invention comprend au moins un antioxydant (composé d)). Par « antioxydant », il est entendu tout composé permettant de ralentir ou empêcher l’oxydation provoquée par un agent oxydant pouvant entraîner la production de radicaux libres. Dans la composition de la présente invention, l’antioxydant permet de protéger les cellules du stress oxydatif et donc de maintenir ou améliorer leur viabilité.
De préférence, la composition selon l’invention comprend au moins un antioxydant choisi parmi le glutathion, la vitamine C, la vitamine E, la vitamine A, la L-cystéine ou le coenzyme Q10.
De préférence, la composition selon l’invention comprend du glutathion.
De préférence, le(s) antioxydant(s) est (sont) présent dans la composition selon l’invention en concentration comprise entre 0,1 et 2 g/L, de préférence entre 0,2 et 1 ,75 g/L, de préférence entre 0,3 et 1 ,5 g/L.
De préférence, la composition selon l’invention, comprend de l’albumine humaine.
De préférence l’albumine humaine est présente dans la composition selon l’invention en une concentration comprise entre 0 et 6g/L, de préférence entre 1 ,5 et 5g/L, de préférence entre 2 et 4g/L. De préférence, la composition selon l’invention, comprend un lysat plaquettaire.
Le lysat plaquettaire est de préférence présent dans la composition selon l’invention en concentration comprise entre 5% et 30% en volume, de préférence entre 15% et 25% en volume par rapport au volume total de composition.
De préférence, le lysat plaquettaire comprend au moins un facteur de croissance choisi parmi TGF-beta1 , EGF, PDGF-AB, IGF-1 , VEGF, bFGF et leurs mélanges.
De préférence, la composition selon l’invention, est substantiellement exempte de dextran. Par composition « substantiellement exempte », on entend que cette composition contient moins de 10% en poids, de préférence moins de 5% en poids, de préférence moins de 3% en poids, de préférence moins de 1% en poids de dextran. De préférence, la composition selon l’invention, ne contient pas de dextran.
De préférence, la composition selon l’invention comprend, dans un milieu aqueux comprenant des électrolytes:
a) du glucose,
b) un mélange de glutamine, alanyl-glutamine, tryptophane, lysine, méthionine, phénylalanine, thréonine, valine, leucine, isoleucine, arginine, histidine, tyrosine et de cystéine,
c) du DMSO ou au moins un alcanediol en C3-C5, de préférence en une concentration comprise entre 3% et 15% en volume par rapport au volume total de composition, et
d) du glutathion.
La composition selon l’invention, est particulièrement intéressante, et vise à cryoconserver au moins un échantillon de cellules à visée thérapeutique. En effet, les composés a) à d) utilisés dans la composition permettent de cryoconserver les cellules à visée thérapeutique, de façon durable et efficace.
Par « cryoconservation » ou « cryopréservation », il est entendu que la viabilité des cellules maintenues à une température comprise entre 4°C et 20 °C durant 1 heure après décongélation, ladite décongélation faisant suite à une étape de congélation à une température comprise entre -150 et -180°C inclus, est comprise entre 90% et 100%, la viabilité des cellules maintenues à une température comprise entre 4°C et 20 °C durant 3 heures après décongélation, ladite décongélation faisant suite à une étape de congélation à une température comprise entre -150 et -180°C inclus, est comprise entre 80% et 100%, la viabilité des cellules maintenues à une température comprise entre 4°C et 20 °C durant 4 heures après décongélation, ladite décongélation faisant suite à une étape de congélation à une température comprise entre -150 et -180°C inclus, est comprise entre 60% et 100%.
Dans un mode de réalisation de l’invention, la viabilité cellulaire est mesurée directement sur les cellules dans la composition de l’invention par cytométrie en flux après marquage des cellules au 7-amino-actinomycin D (7-AAD) qui est un marqueur de viabilité cellulaire. Dans un second mode de réalisation, la viabilité cellulaire est mesurée directement sur les cellules dans la composition de l’invention par comptage avec un automate de comptage tel que Nucleocounter après marquage avec de l’Acridine Orange (marqueur cellulaire) et du DAPI (marqueur de mortalité cellulaire).
Par « cellules à visée thérapeutique », on entend des cellules qui constituent en elles- mêmes le produit thérapeutique, et qui sont administrées au patient. Ces cellules sont distinctes des cellules qui sont cultivées pour la production de médicaments biologiques, comme par exemple les cellules CHO, HEK ou encore YB2/0.
Parmi les cellules à visée thérapeutique, on peut citer notamment les médicaments de thérapie innovante ou les produits de thérapie cellulaire.
Les cellules à visée thérapeutique (composés e)) sont de préférence choisies parmi :
- les cellules immunitaires, telles que les cellules NK, les monocytes, les lymphocytes B, les lymphocytes T, naturels ou génétiquement modifiés, tels que les lymphocytes T régulateurs, les lymphocytes T infiltrant les tumeurs, les lymphocytes T cytotoxiques, les lymphocytes T auxiliaires (ou helper) et les lymphocytes T ayant un récepteur antigénique chimérique (CAR) ;
- les myoblastes notamment humains ;
- les cellules souches hématopoïétiques ;
- les cellules souches mésenchymateuses ;
- les cellules cardiaques ;
- les fibroblastes ; et
- toutes autres cellules naturelles ou génétiquement modifiées. Les cellules NK (ou lymphocytes NK) sont des cellules de l’immunité innée. Ce sont des lymphocytes non T (CD3-) non B (CD19-), caractérisés chez l’homme par les marqueurs CD56, CD 16 et NK.
Les monocytes sont des leucocytes qui évoluent en macrophages, cellules dendritiques ou ostéoclastes.
Les lymphocytes B sont les cellules immunitaires responsables de la production d’anticorps.
Les lymphocytes T régulateurs sont une sous-population de lymphocytes T CD4+, qui inhibent la prolifération d’autres lymphocytes T effecteurs.
Les lymphocytes T cytotoxiques sont une sous-population de lymphocytes T CD8+, qui détruisent les cellules infectées.
Les lymphocytes T auxiliaires (helper) sont une sous-population de lymphocytes T CD4+, intermédiaires de la réponse immunitaire.
Enfin, les lymphocytes T ayant un récepteur antigénique chimérique (CAR), appelés également cellules CAR-T, correspondent à une technologie particulière d’ingénierie cellulaire. Ce sont des lymphocytes T qui expriment un récepteur antigénique chimérique. Les cellules CAR-T sont capables de tuer les cellules cancéreuses, par reconnaissance et liaison à l’antigène tumoral présent sur lesdites cellules cancéreuses.
L’échantillon de cellules à visée thérapeutique peut provenir du patient à traiter (dans ce cas le patient et le donneur sont la même personne), par biopsie ou prélèvement sanguin. Dans ce cas, la composition obtenue, une fois cryoconservée puis décongelée, sera administrée à ce même patient : c’est un produit autologue.
Alternativement, l’échantillon de cellules à visée thérapeutique peut provenir d’une autre source (i.e. autre individu, ingénierie cellulaire), notamment par biopsie ou prélèvement sanguin. Dans ce cas, la composition obtenue, une fois cryoconservée puis décongelée, sera administrée à un patient à traiter autre que le donneur : c’est un produit allogénique.
De préférence, la composition selon l’invention comprend une concentration de cellules comprise entre 2 et 300 M cellules / mL, de préférence entre 10 et 200 M cellules / mL, de préférence entre 50 et 200 M cellules / mL.
La présente invention se rapporte également à un procédé de cryoconservation d’au moins un échantillon de cellules à visée thérapeutique, comprenant les étapes suivantes : i) mélange de l’échantillon de cellules à visée thérapeutique avec: a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
un milieu physiologiquement acceptable, afin d’obtenir une composition ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3, puis
ii) congélation de la composition obtenue à l’étape i).
Dans ce procédé, l’étape de mélange de l’échantillon de cellules à visée thérapeutique avec les différents composés décrits ci-dessus se fait typiquement par dilution. Le mélange peut se faire à une température comprise entre +1 °C et +20°C inclus, de préférence entre +2°C et +20°C inclus, de préférence entre +2°C et +15°C inclus, de préférence entre +2°C et +10°C inclus, de préférence entre +2°C et +6°C inclus, de préférence à 4°C.
De préférence, l’échantillon de cellules à visée thérapeutique est, quant à lui, préalablement cultivé in vitro, dans un milieu de culture approprié. Puis il subit une centrifugation, le surnageant est retiré et le culot est suspendu dans un mélange de milieu physiologiquement acceptable et de composés a) à d) décrits ci-dessus, afin d’obtenir une composition ayant un pH compris entre 7,0 et 8,5, de préférence compris entre 7,0 et 8,3.
L’étape de congélation (étape ii)) est de préférence effectuée sur une descente en température de +20°C jusqu’à une température comprise entre -100°C et -180°C, de préférence comprise entre -140°C et -160°C. De préférence, l’étape de congélation (étape ii)) est effectuée sur une descente en température de +4°C jusqu’à une température comprise entre -100°C et -180°C, de préférence comprise entre -140°C et -160°C.
L’échantillon est ensuite stocké à une température inférieure à -130°C en général. De préférence, la congélation ii) est réalisée en plaçant le mélange obtenu dans l’étape i) dans un récipient immergé dans un mélange d’isopropyl alcool à +4°C, le tout étant mis à une température comprise entre -70°C et -100°C ou -70°C et -90°C ou -70°C et -80°C. Ce système (« congélation en boîte Nalgène ») permet, grâce au refroidissement lent de l’alcool, une descente en température quasi-linéaire comprise entre -1 °C et -2°C par minute. Alternativement, de préférence, la congélation ii) est effectuée à l’aide d’un congélateur programmé. De préférence, la congélation ii) se fait, notamment à l’aide d’un congélateur programmé, par les étapes suivantes :
- placer le mélange obtenu à l’étape i) à une température de +4°C ; puis
- diminuer la température de 1 °C par minute, de 4°C à -40°C ; puis
- diminuer la température de 10°C par minute, de -40°C à -180°C, pour atteindre une température finale de stockage d’environ -180°C.
Le produit ainsi obtenu, congelé, peut être conservé pendant quelques mois à -180°C environ. Ces températures sont celles appliquées à l’échantillon.
L’invention est illustrée par les exemples suivants, nullement limitatifs.
Exemple 1 : Crvopréservation des myoblastes
Les myoblastes peuvent être préparés comme décrit dans la demande FR2810045.
• Essai 1 :
a / Protocoles expérimentaux
o Viabilité cellulaire :
La mesure de la viabilité par Nucleocounter NC200 de Chémometec (ci-après « NC ») est réalisée via un automate de comptage : les cellules sont marquées en présence d’Acridine Orange (celle-ci marque les cellules totales) et par le DAPI (qui ne marque que les cellules mortes dont la membrane est perméabilisée). Le ratio entre les 2 fournit la viabilité des cellules. o Pourcentage myoblastes :
La mesure du pourcentage de myoblastes est réalisée par cytométrie en flux. Elle correspond au pourcentage de cellules vivantes CD56+, CD15- après marquage des cellules à l’aide d’anticorps spécifiques CD56, CD15 et de lodure de propidium (IP). En effet, le produit testé contient également des impuretés qui sont des cellules CD56- et CD15+ ou - et qui peuvent prendre le pas sur les myoblastes car moins exigeants en terme de culture. Le but est de maintenir le pourcentage de myoblastes dans le produit après congélation. Les cellules sont formulées dans les solutions de cryoconservation testées (« DMSO 5% » et « DMSO 10% »). Elles sont ensuite congelées à -180°C. Leur viabilité est mesurée immédiatement après décongélation et 3 heures après décongélation, sur les cellules maintenues à température ambiante dans le milieu de cryoconservation testé.
b / Résultats :
Figure imgf000015_0001
Cf ci-dessous
** Mélange 200mM L-alanyl-L-glutamine
*** Composition en lysat plaquettaire Ces résultats montrent que:
• les formulations « DMSO 5% » et « DMSO 10% » sont efficaces pour la cryoconservation des myoblastes : le taux de viabilité cellulaire immédiatement après décongélation est supérieur à 90% et le taux de viabilité cellulaire 3 heures après décongélation est supérieur à 85%,
• la viabilité des cellules immédiatement après décongélation et 3 heures après décongélation est stable, ce qui signifie les formulations n’induisent pas de stress cellulaire tardif et que la formulation développée est utilisable en clinique sans nécessiter un lavage des cellules au préalable,
• le taux de myoblastes avant congélation et immédiatement après décongélation est très proche (64,2% avant congélation, 61 ,5% après décongélation pour la solution « DMSO 5% » et 64,5% pour la solution « DMSO 10% »). Les solutions testées permettent donc maintenir le pourcentage de myoblastes dans le produit.
• Essai 2 :
a / Protocoles expérimentaux :
o Viabilité cellulaire :
La mesure de la viabilité par Nucleocounter NC200 de Chémometec (ci-après « NC ») est réalisée via un automate de comptage : les cellules sont marquées avec de l’Acridine Orange (marqueur cellulaire) et du DAPI (marqueur de mortalité cellulaire). Le ratio entre les 2 fournit la viabilité des cellules. o Apoptose
Le test d’apoptose permet de déterminer la mortalité précoce des cellules par apoptose.
Le principe du test d’apoptose repose sur un double marquage SYTOX green (marqueur d’intégrité membranaire - marqueur des cellules mortes), Annexine V (marqueur d’apoptose précoce) analysé par cytométrie en flux. Ce marquage permet de distinguer les cellules en apoptose précoce (SYTOX-/AnnexinV+), des cellules mortes (SYTOX+/AnnexinV+) et vivantes (SYTOX-/AnnexinV-). o Test de différenciation myogénique :
Le test de différenciation myogénique est la mesure de l’expression de myosine (qui est une protéine contractile des myotubes, c’est-à-dire les myoblastes différenciés). C’est un marqueur connu de la différenciation qui reflète la fonctionnalité des myoblastes. En effet, les cellules sont mises à différencier dans un milieu appauvri en sérum pendant 4 jours de manière à former des myotubes (= cellules allongées issues de la fusion de plusieurs myoblastes avec une capacité contractile) et le pourcentage de cellules différenciées est mesuré par cytométrie en flux à l’aide d’un anticorps spécifique. Cette capacité fonctionnelle est directement corrélée à l’efficacité des formulations de congélation puisqu’elles doivent préserver la capacité de différencions des cellules à décongélation.
Les cellules sont formulées dans les solutions de cryoconservation testées. Elles sont ensuite congelées à -180°C. Les différents tests (viabilité, apoptose, phénotype) sont ensuite réalisés 1 heure après décongélation, sur les cellules maintenues à température ambiante dans les milieux de cryoconservation testés.
Figure imgf000018_0001
* Cf ci-dessous
** Mélange 200mM L-alanyl-L-glutamine *** Composition en lysat plaquettaire
Figure imgf000020_0001
Ces résultats montrent que :
• les formulations testées sont efficaces pour la cryoconservation des myoblastes : le taux de viabilité cellulaire 1 heure après décongélation est supérieur à 90%,
• les formulations testées permettent d’avoir un taux de cellules non apoptotiques élevé,
• Les cellules restent fonctionnelles 1 heure après décongélation : elles expriment de la myosine, ce qui signifie qu’elles conservent bien leur capacité de différenciation.
Exemple 2 : Cryopréservation des cellules souches mésenchymateuses (MSC) :
Les cellules souches mésenchymateuses peuvent être préparées comme décrit dans Sensebé L, Bourin P, Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther. 2011 Jan; 22 (1 ): 19-26. al Protocoles expérimentaux
o Viabilité cellulaire
La mesure de la viabilité par cytométrie en flux est effectuée après marquage des cellules au 7-amino-actinomycin D (7-AAD) qui est un marqueur de viabilité cellulaire. Le 7-AAD a une forte capacité de liaison à l’ADN est efficacement relargué par les cellules vivantes. Ainsi les cellules mortes restent marquées au 7-AAD, alors que les cellules vivantes ne sont pas marquées. o Apoptose :
Le test d’apoptose permet de déterminer la mortalité précoce des cellules par apoptose. Le principe du test d’apoptose repose sur un double marquage SYTOX green (marqueur d’intégrité membranaire - marqueur des cellules mortes), Annexine V (marqueur d’apoptose précoce) analysé par cytométrie en flux. Ce marquage permet de distinguer les cellules en apoptose précoce (SYTOX-/AnnexinV+), des cellules mortes (SYTOX+/AnnexinV+) et vivantes (SYTOX-/AnnexinV-). o Phénotype :
Une analyse du phénotype des cellules est effectuée afin de déterminer la stabilité des MSC en formulation dans les solutions 4 et 5. Le phénotype est analysé par cytométrie en flux et correspond au pourcentage de cellules CD90+/CD73+/CD45- /CD34- à l’aide d’anticorps spécifiques CD90, CD73, CD45 et CD34 couplés à un fluorochrome.
Le « AH4% » correspond à la solution de référence dans laquelle les cellules sont formulées uniquement dans de l’albumine humaine 4% et conservées pendant 24 heures à +3 ±2°C.
La Drug Substance « DS » correspond aux cellules issues de la récolte en fin de procédé avant formulation.
Les cellules sont formulées dans les solutions de cryoconservation testées. Elles sont ensuite congelées à -180°C. Les différents tests (viabilité, apoptose, phénotype) sont ensuite réalisés 4 heures et 6 heures après décongélation, maintenues à température ambiante dans les milieux de cryoconservation testés. b / Résultats
Figure imgf000022_0001
* Cf ci-dessous
** Mélange 200mM L-alanyl-L-glutamine
*** Composition en lysat plaquettaire
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Les résultats montrent :
• les formulations testées 4 et 5 sont efficaces pour la cryoconservation des MSC : le taux de viabilité cellulaire 4 heures après décongélation est supérieur à 60%,
• le taux de cellules non apoptotiques est supérieur à la solution de référence et est élevé (supérieur à 85%),
• le phénotype des MSC formulées dans les solutions 4 et 5 est bien conservé 4 ou 6 heures après décongélation (plus de 80% des cellules expriment les marqueurs CD90 et CD73, moins de 1 % des cellules expriment les marqueurs CD45 et
CD34).
L’ingrédient « Solution d’ions 5X » correspond à :
Figure imgf000026_0001
L’ingrédient « Solution d’ions 5X glutathion » correspond à :
Figure imgf000026_0002
L’ingrédient « Solution d’ions 5X 50% eau » correspond à :
Figure imgf000027_0001
L’ingrédient « Solution d’ions 5X 50% eau + glutathion » correspond à :
Figure imgf000027_0002
L’ingrédient « Solution d’ions 5X Ringer solution + glutathion » correspond à :
Figure imgf000027_0003
L’ingrédient « Solution d’ions 2,5X + glutathion » correspond à :
Figure imgf000028_0001
L’ingrédient « Plasmalyte » correspond à :
Figure imgf000028_0002
L’ingrédient « Ringer Solution » correspond à :
Figure imgf000028_0003
*** Composition du Iysat plaquettaire
Figure imgf000029_0001

Claims

REVENDICATIONS
1. Composition comprenant, dans un milieu physiologiquement acceptable :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant et
e) des cellules à visée thérapeutique,
ladite composition ayant un pH compris entre 7,0 et 8,5.
2. Composition selon la revendication 1 , caractérisée en ce qu’elle présente un pH compris entre 7,0 et 8,3
3. Composition selon la revendication 1 à 2, caractérisée en ce que le saccharide est choisi parmi les monosaccharides, les disaccharides et les trisaccharides.
4. Composition selon l’une des revendications 1 à 3, caractérisée en ce que l’acide aminé est choisi parmi la glutamine, l’alanyl-glutamine, le tryptophane, la lysine, la méthionine, la phénylalanine, la thréonine, la valine, la leucine et l’isoleucine, l’arginine, l’histidine, la tyrosine, la cystéine et leurs mélanges.
5. Composition selon l’une des revendications 1 à 4, caractérisée en ce que l’acide aminé est la cystéine.
6. Composition selon l’une des revendications 1 à 5, caractérisée en ce que la cystéine est apportée sous forme de cystine, ladite cystine étant un dimère de cystéine.
7. Composition selon l’une des revendications 1 à 6, caractérisée en ce qu’elle comporte au moins une vitamine.
8. Composition selon l’une des revendications 1 à 7, caractérisée en ce que la vitamine est choisie parmi les vitamines B1 , B2, B4, B5, B6, B7, B9, PP et leurs mélanges.
9. Composition selon l’une des revendications 1 à 8, caractérisée en ce que l’alcanediol en C3-C5 est choisi parmi les alcanes linéaires comprenant de 3 à 5 atomes de carbone et 2 groupements hydroxyl, préférentiellement parmi le propane-1 ,2-diol, le pentane-1 ,5- diol et le butane-2,3-diol.
10. Composition selon l’une des revendications 1 à 9, caractérisée en ce que l’alcanediol en C3-C5 est du propylène glycol.
11. Composition selon l’une des revendications 1 à 10, caractérisée en ce que l’antioxydant est choisi parmi le glutathion, la vitamine C, la vitamine E, la vitamine A, la L- cystéine ou le coenzyme Q10.
12. Composition selon l’une des revendications 1 à 11 , caractérisée en ce que l’antioxydant est le glutathion.
13. Composition selon l’une des revendications 1 à 12, caractérisée en ce qu’elle comprend de l’albumine humaine.
14. Composition selon l’une des revendications 1 à 13, caractérisée en ce qu’elle comprend un lysat plaquettaire.
15. Composition selon l’une des revendications 1 à 14, caractérisée en ce qu’elle comporte au moins un sel de bicarbonate.
16. Composition selon l’une des revendications 1 à 15, caractérisée en ce que les cellules à visée thérapeutique sont choisies parmi les cellules NK, les monocytes, les lymphocytes B, les lymphocytes T naturels ou génétiquement modifiés, tels que les lymphocytes T régulateurs, les lymphocytes T infiltrant la tumeur, les lymphocytes T cytotoxiques, les lymphocytes T auxiliaires (ou helper) et les lymphocytes T ayant un récepteur antigénique chimérique (CAR), les myoblastes notamment humains, les cellules souches hématopoïétiques, les cellules souches mésenchymateuses, les cellules cardiaques et les fibroblastes.
17. Composition selon l’une des revendications 1 à 16, caractérisée en ce que le milieu physiologiquement acceptable est un milieu aqueux comprenant des électrolytes, et en ce que la composition comprend:
a) du glucose,
b) un mélange de glutamine, alanyl-glutamine, tryptophane, lysine, méthionine, phénylalanine, thréonine, valine, leucine, isoleucine, arginine, histidine, tyrosine et de cystéine,
c) du DMSO ou au moins un alcanediol en C3-C5, de préférence en une concentration comprise entre 3 et 15% en volume par rapport au volume total de composition,
c) du glutathion, et
e) des cellules à visée thérapeutique.
18. Procédé de cryoconservation d’au moins un échantillon de cellules à visée thérapeutique, comprenant les étapes suivantes :
i) mélange de l’échantillon de cellules à visée thérapeutique avec:
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et
un milieu physiologiquement acceptable, afin d’obtenir une composition ayant un pH compris entre 7,0 et 8,5, puis
ii) congélation de la composition obtenue à l’étape i).
19. Procédé de conservation selon la revendication 18, caractérisé en ce que le pH est compris entre 7,0 et 8,3.
20. Procédé de cryoconservation selon l’une des revendications 18 à 19, caractérisé en ce que la congélation ii) est effectuée jusqu’à une température comprise entre -100°C et - 180°C.
21. Procédé de cryoconservation selon l’une des revendications 18 à 20, caractérisé en ce que la congélation ii) est réalisée en plaçant la composition obtenue en i) dans un récipient immergé dans un mélange d’isopropyl alcool à +4°C, le tout étant mis à une température comprise entre -70°C et -100°C.
22. Utilisation d’une composition comprenant, dans un milieu physiologiquement acceptable :
a) au moins un saccharide,
b) au moins un acide aminé,
c) du DMSO ou au moins un alcanediol en C3-C5,
d) au moins un antioxydant, et ayant un pH compris entre 7,0 et 8,5, pour la cryoconservation d’au moins un échantillon de cellules à visée thérapeutique.
23. Utilisation d’une composition selon la revendication 22, ladite composition ayant un pH compris entre 7,0 et 8,3.
PCT/FR2018/053012 2017-11-27 2018-11-27 Procédé de cryoconservation de cellules à visée thérapeutique WO2019102172A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/766,900 US11785937B2 (en) 2017-11-27 2018-11-27 Method for the cryopreservation of cells for therapeutic purposes
EP18826418.8A EP3716762A1 (fr) 2017-11-27 2018-11-27 Procédé de cryoconservation de cellules à visée thérapeutique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761213 2017-11-27
FR1761213A FR3074018B1 (fr) 2017-11-27 2017-11-27 Procede de cryoconservation de cellules a visee therapeutique

Publications (1)

Publication Number Publication Date
WO2019102172A1 true WO2019102172A1 (fr) 2019-05-31

Family

ID=61003218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053012 WO2019102172A1 (fr) 2017-11-27 2018-11-27 Procédé de cryoconservation de cellules à visée thérapeutique

Country Status (4)

Country Link
US (1) US11785937B2 (fr)
EP (1) EP3716762A1 (fr)
FR (1) FR3074018B1 (fr)
WO (1) WO2019102172A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203562A1 (fr) * 2022-04-19 2023-10-26 Enlivex Therapeutics R&D Ltd Formulation congelée comprenant des cellules apoptotiques

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394788A1 (fr) * 1989-04-28 1990-10-31 Miles Inc. Inoculation en grand fermentateur par utilisation de cellules congelées
WO2001093676A1 (fr) * 2000-06-16 2001-12-13 The United States Of America, As Represented By The Secretary Of Agriculture Cryopreservation d'embryons porcins
FR2810045A1 (fr) 2000-06-07 2001-12-14 Assist Publ Hopitaux De Paris Procede d'obtention de population cellulaires caracterisees d'origine musculaire et utilisations
WO2008061148A2 (fr) * 2006-11-15 2008-05-22 Mariposa Biotechnology Inc Procédés et compositions de cryopréservation d'ovocytes
WO2015066631A2 (fr) * 2013-11-01 2015-05-07 University Of Notre Dame Du Lac Milieu de culture cellulaire et optimisation des bioprocessus
WO2017001782A1 (fr) 2015-06-30 2017-01-05 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Procédé de cryoconservation de cellules a visée thérapeutique
WO2017001783A1 (fr) 2015-06-30 2017-01-05 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Procédé de cryoconservation de cellules à visée thérapeutique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394788A1 (fr) * 1989-04-28 1990-10-31 Miles Inc. Inoculation en grand fermentateur par utilisation de cellules congelées
FR2810045A1 (fr) 2000-06-07 2001-12-14 Assist Publ Hopitaux De Paris Procede d'obtention de population cellulaires caracterisees d'origine musculaire et utilisations
WO2001093676A1 (fr) * 2000-06-16 2001-12-13 The United States Of America, As Represented By The Secretary Of Agriculture Cryopreservation d'embryons porcins
WO2008061148A2 (fr) * 2006-11-15 2008-05-22 Mariposa Biotechnology Inc Procédés et compositions de cryopréservation d'ovocytes
WO2015066631A2 (fr) * 2013-11-01 2015-05-07 University Of Notre Dame Du Lac Milieu de culture cellulaire et optimisation des bioprocessus
WO2017001782A1 (fr) 2015-06-30 2017-01-05 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Procédé de cryoconservation de cellules a visée thérapeutique
WO2017001783A1 (fr) 2015-06-30 2017-01-05 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Procédé de cryoconservation de cellules à visée thérapeutique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DULBECCO: "Dulbecco's Modified Eagle Medium/ Nutrient Mixture F-12 Ham (DMEM/ F12, 1:1 Mixture) With 15mM HEPES buffer, L-Glutamine, Sodium bicarbonate and Trace elements Without Phenol red 1X Liquid Cell Culture Medium Product Code: AL187A Product Description", 16 January 2011 (2011-01-16), XP055456928, Retrieved from the Internet <URL:http://himedialabs.com/TD/AL187A.pdf> [retrieved on 20180306] *
LUC SENSEB? ET AL: "Good Manufacturing Practices Production of Mesenchymal Stem/Stromal Cells", HUMAN GENE THERAPY, vol. 22, no. 1, 1 January 2011 (2011-01-01), pages 19 - 26, XP055080830, ISSN: 1043-0342, DOI: 10.1089/hum.2010.197 *
SENSEBÉ L; BOURIN P; TARTE K: "Good manufacturing practices production of mesenchymal stem/stromal cells", HUM GENE THER., vol. 22, no. 1, January 2011 (2011-01-01), pages 19 - 26, XP055080830, DOI: doi:10.1089/hum.2010.197

Also Published As

Publication number Publication date
FR3074018A1 (fr) 2019-05-31
EP3716762A1 (fr) 2020-10-07
FR3074018B1 (fr) 2020-09-11
US11785937B2 (en) 2023-10-17
US20210244016A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
EP3317400B1 (fr) Procédé de cryoconservation de lymphocytes infiltrant la tumeur
EP3316684B1 (fr) Procédé de cryoconservation de cellules a visée thérapeutique
CN105324480B (zh) 含有海藻糖及葡聚糖的哺乳动物细胞移植用溶液
EP2271209B1 (fr) Matériaux et procédés pour le prélévement hypothermique de sang total
TR201816125T4 (tr) Canlı biyolojik malzemeleri korumak, nakletmek ve saklamak için bileşim ve usul.
EP3716762A1 (fr) Procédé de cryoconservation de cellules à visée thérapeutique
WO2017042501A1 (fr) Milieu de conservation injectable pour la conservation de cellules du sang placentaire, de la moelle osseuse et du sang périphérique
EP3316895B1 (fr) Procédé de cryoconservation de cellules à visée thérapeutique
JP2009219376A (ja) 医療用細胞の保護用液
KR20150101498A (ko) 아스타잔틴 또는 커큐민을 포함하는 돼지 정자 동결보존용 조성물
EP3719115A1 (fr) Composition et procédé pour la culture, la multiplication, la conservation et/ou le prétraitement de cellules
JP2024501087A (ja) 凍結乾燥間葉系幹細胞
EP3880167A1 (fr) Procédé de conservation de cellules à visée thérapeutique
WO2021183653A1 (fr) Compositions pour prolonger la conservation viable et la durée de conservation d&#39;organes et de tissus
KR101746025B1 (ko) 아스타잔틴 또는 커큐민을 포함하는 돼지 정자 동결보존용 조성물
KR101413081B1 (ko) 조류 정자의 보존용 조성물 및 이를 이용한 정자의 보존방법
Sergievich et al. The effect of cryopreservation of bone marrow cells from donor mice that carry the egfp gene, on the lifespan of mice after syngeneic transplantation
WO2023180635A1 (fr) Methode de conservation de cellules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18826418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018826418

Country of ref document: EP

Effective date: 20200629