WO2019100380A1 - 上转换器件和材料及其制造方法 - Google Patents

上转换器件和材料及其制造方法 Download PDF

Info

Publication number
WO2019100380A1
WO2019100380A1 PCT/CN2017/113106 CN2017113106W WO2019100380A1 WO 2019100380 A1 WO2019100380 A1 WO 2019100380A1 CN 2017113106 W CN2017113106 W CN 2017113106W WO 2019100380 A1 WO2019100380 A1 WO 2019100380A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photon
substrate
emitting layer
light
Prior art date
Application number
PCT/CN2017/113106
Other languages
English (en)
French (fr)
Inventor
盛兴
丁贺
史钊
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2017/113106 priority Critical patent/WO2019100380A1/zh
Publication of WO2019100380A1 publication Critical patent/WO2019100380A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present disclosure relates to the technical field of optoelectronic device design, and in particular to a micro-nano-scale up-conversion device.
  • Upconversion is the process of converting multiple low-energy photons into high-energy photons, so-called anti-stokes emissions, including bioimaging, solar collection, and infrared sensing.
  • bioimaging including bioimaging, solar collection, and infrared sensing.
  • solar collection including bioimaging, solar collection, and infrared sensing.
  • infrared sensing There are wide application scenarios in many fields such as display, solid state cooling, etc. Therefore, it is of great significance to prepare high-performance upconversion luminescent materials and devices.
  • the most common up-conversion technique typically relies on upconverting materials prepared using rare earth elements and the like.
  • this process is usually non-linear and requires high coherence and high excitation power to excite the source (usually laser) to excite, the spectrum of the emitted light is narrowband and polychromatic spectral emission, and the lower conversion efficiency (0.001%–1%). And slow response speed ( ⁇ s–ms).
  • the upconversion material based on the triplet quenching mechanism has a high quantum yield (>1%), but is usually susceptible to external conditions (eg, oxygen, etc.), and has an anti-Stokes shift. limitation.
  • An aspect of the present disclosure provides an up-conversion device including a light-emitting layer, and a photon trap layer, forming a closed loop with the light-emitting layer for capturing photons to drive the light-emitting layer to emit photons, wherein the photons are captured
  • the energy of a photon is lower than the energy of a emitted photon.
  • the photon capture layer includes at least two photon capture subunits, and in the case that the photon capture layer includes a plurality of photon capture subunits, the photon capture layer further includes a tunnel junction for Connect adjacent photon capture subunits.
  • the luminescent layer comprises a distributed Bragg reflector layer.
  • the photon trap layer and the light emitting layer form a closed loop, wherein a negative electrode of the light emitting layer is grown on a negative side of the photon trap layer, and a positive electrode of the light emitting layer and the photon trap layer
  • the positive electrodes are connected by a conductive medium.
  • Another aspect of the present disclosure provides a method of fabricating an up-conversion device, comprising: preparing an emissive layer and a photon trap layer, and connecting the light-emitting layer to an electrode corresponding to the photon trap layer to form a closed loop.
  • the photon capture layer includes at least two photon capture subunits, and in the case that the photon capture layer includes a plurality of photon capture subunits, the photon capture layer further includes a tunnel junction design, Connect adjacent photon capture subunits.
  • the luminescent layer comprises a distributed Bragg reflector layer.
  • the preparing the light emitting layer and the photon trap layer comprises: preparing a light emitting layer and a photon trap layer on the first substrate by epitaxial growth, wherein the positive electrode of the light emitting layer and the positive electrode of the photon trap layer In contrast, alternatively, the negative electrode of the light-emitting layer is opposed to the negative electrode of the photon trap layer.
  • the connecting the light-emitting layer to the corresponding electrode on the photon-trapping layer to form a closed loop includes etching the light-emitting layer and the photon-trapping layer to expose the electrode connected to the first substrate And depositing a metal on the electrode farthest from the first substrate and the electrode connected to the first substrate in the light-emitting layer or the photon-trapping layer, and connecting the two electrodes to form a closed loop.
  • the first substrate includes a first sacrificial layer for separating the first substrate.
  • the preparing the light emitting layer and the photon trap layer includes epitaxially growing the light emitting layer on the second substrate layer, and epitaxially growing the photon trap layer on the third substrate layer.
  • the second substrate comprises a second sacrificial layer for separating the second substrate
  • the third substrate comprises a layer third sacrificial layer for separating the third substrate.
  • the manufacturing method further includes anchoring the closed loop.
  • the manufacturing method further includes transferring the closed loop to the fourth substrate, and encapsulating the closed loop and the fourth substrate.
  • an up-conversion material including a light-emitting layer and a photon trap layer for capturing photons to drive the light-emitting layer to emit photons, wherein the captured photons have lower energy than the emitted photons energy of.
  • FIG. 1A shows a cross-sectional view of an up-conversion device in accordance with an embodiment of the present disclosure
  • FIGS. 1B and 1C illustrate cross-sectional views of an up-conversion device in accordance with another embodiment of the present disclosure
  • Figure 2A shows a plot of excitation spectral power versus emission spectral power
  • 2B is a graph showing the relationship between the response speed of the up-conversion device and the fluorescence attenuation
  • FIG. 3 schematically shows a schematic diagram of an up-conversion device in accordance with an embodiment of the present disclosure
  • FIG. 4A schematically illustrates a cross-sectional view of an up-conversion device in accordance with an embodiment of the present disclosure
  • FIG. 4B schematically illustrates a cross-sectional view of a photon capture layer in accordance with an embodiment of the present disclosure
  • 4C schematically illustrates a cross-sectional view of a light emitting layer in accordance with an embodiment of the present disclosure
  • 4D schematically illustrates a working principle diagram of an up-conversion device in accordance with an embodiment of the present disclosure
  • FIGS. 9A and 9B illustrate schematic views of preparing a up-conversion device to form a closed loop, in accordance with an embodiment of the present disclosure
  • FIGS. 10A and 10B schematically illustrate schematic views of preparing an up-converting device light-emitting layer and a photon-trapping layer according to another embodiment of the present disclosure
  • 11A and 11B schematically illustrate schematic views of etching the light-emitting layer and photon trap layer of an up-conversion device according to another embodiment of the present disclosure
  • FIGS. 12A and 12B schematically illustrate schematic views of preparing a deposition metal of an up-conversion device according to another embodiment of the present disclosure
  • FIG. 13 schematically shows a schematic diagram of an up-conversion device in accordance with another embodiment of the present disclosure.
  • an up-conversion device comprising: a light-emitting layer and a photon-trapping layer, forming a closed loop with the light-emitting layer for capturing photons to drive the light-emitting layer to emit photons, wherein The energy of the captured photons is lower than the energy of the emitted photons.
  • the upconversion device can be an integrated upconversion device or a separate upconversion device.
  • FIG. 1A and FIG. 1B and FIG. 1C show.
  • FIG. 1A schematically illustrates a cross-sectional view of an up-conversion device in accordance with an embodiment of the present disclosure.
  • the up-conversion device includes a light-emitting layer 110 and a photon trap layer 120.
  • the up-conversion device is integrated, that is, at least one side of the light-emitting layer 110 and the photon-trapping layer 120 are in contact with each other, and the light-emitting layer 110 is grown on one side of the photon-trapping layer 120, for example, by epitaxial growth.
  • the photon trap layer 120 and the light emitting layer 110 form a closed loop, for example, the electrode of the upper surface of the light emitting layer 110 illustrated in FIG. 1A and the electrode of the lower surface of the photon trap layer 120 are connected to form a closed Loop.
  • the closed loop can turn on the photon trap layer 120 and the light emitting layer 110 such that the photon trap layer 120 provides sufficient voltage for the light emitting layer 110 to cause the light emitting layer 110 to emit photons.
  • FIGS. 1B and 1C schematically illustrate cross-sectional views of an up-conversion device in accordance with another embodiment of the present disclosure.
  • the up-conversion device includes a light-emitting layer 110 and a photon-trapping layer 120, and the light-emitting layer 110 and the photon-trapping layer 120 of the up-conversion device are independently present.
  • the photon trap layer 120 forms a closed loop with the light emitting layer 110, such as two electrodes of the light emitting layer 110 illustrated in FIG. 1B and two electrodes of the photon trap layer 120 illustrated in FIG. 1C. Corresponding connections form a closed loop.
  • the closed loop can turn on the photon trap layer 120 and the light emitting layer 110 such that the photon trap layer 120 provides sufficient voltage for the light emitting layer 110 to cause the light emitting layer 110 to emit photons.
  • the energy of the photons captured by the up-conversion device is lower than the energy of the emitted photons, ie, the wavelength of the captured photons is greater than the wavelength of the emitted photons.
  • the up-conversion device can design different materials and structures according to different requirements of the application scenario to capture photons of wavelengths that meet the requirements of the application scenario, and convert the captured photons into photons smaller than the wavelength of the captured photons, the application scenario Different needs, such as applications in infrared detection, may require conversion of infrared light into visible light, while in medicine, it may be desirable to convert visible light into ultraviolet light.
  • the light emitting layer may be composed of any material capable of converting electrical energy into light energy, such as a semiconductor material, which emits different colors depending on the semiconductor material.
  • a light-emitting layer containing a semiconductor material indium gallium phosphide (InGaP) emits red light
  • a light-emitting layer containing a semiconductor material gallium nitride (GaN) emits blue light.
  • the photon trap layer is composed of a material capable of trapping photons, such as gallium arsenide (GaAs), indium phosphide (InP), and forms a closed loop with the light emitting layer, for example, the photon trapping layer and the light emitting through the metal Floor.
  • the semiconductor material capable of capturing photons converts the energy of the captured photons into electrical energy and drives the photonic layers through the formed closed loop to drive the photons. Wherein, the energy of the captured photon is lower than the energy of the emitted photon, that is, the wavelength of the captured photon is greater than the wavelength of the emitted photon.
  • the photon trapping layer captures infrared (IR) photons having a wavelength of 810 nm and converting the IR photons into electrical energy such that the luminescent layer is turned on to emit red visible light having a wavelength of 630 nm.
  • the photon capture layer captures a long wavelength of 1200 nm. The photon, the luminescent layer emits photons with a wavelength of 1000 nm.
  • This upconversion device features independent miniaturization, good conversion monochromaticity, fast response, high conversion efficiency, linearity, and adjustable conversion band.
  • the conversion efficiency of the up-conversion device which is not surface-optimized can reach 1.5%, and the surface optimization means that the surface of the light-emitting layer is subjected to a process such as a surface roughening technique.
  • Figure 2A shows a plot of excitation spectral power versus emission spectral power. As shown in FIG. 2A, the relationship between the emission spectral power and the excitation spectral power is obvious, and it is easy to return. If segmented, it has a more pronounced linear relationship in the range of more than 10 mW/cm2. Therefore, by controlling the excitation spectral power of the up-conversion device, the power of the emission spectrum can be conveniently controlled.
  • Figure 2B shows a plot of response speed versus fluorescence decay for an upconversion device.
  • the response speed of the up-conversion device is about 20 ns.
  • the upconversion device basically no longer emits the spectrum at 47 ns, which is much smaller than the ⁇ s-ms that can be achieved by the prior art, that is, has a faster corresponding speed.
  • the photon capture layer may include one photon capture subunit, and may also include a plurality of photon capture subunits.
  • the use of a plurality of photon capture sub-units is capable of absorbing and converting photons of different spectral ranges, improving energy conversion efficiency, and providing sufficient photovoltage for the photo-emitting layer to emit photons.
  • the photon capture layer further includes a tunneling junction for connecting adjacent photon capture subunits such that circuit matching between the plurality of photon capture subunits can be achieved and can be made Maximize photoelectric conversion efficiency.
  • the light emitting layer includes a distributed Bragg reflection layer which is alternately arranged by two materials of different refractive indices to form a periodic structure, for example, In 0.5 Al 0.5 P and In 0.5 Al 0.25 Ga 0.25 P alternately arranged to form a periodic structure.
  • a distributed Bragg reflection layer is used to increase the emission efficiency of the luminescent layer.
  • forming a closed loop of the photon trap layer and the light emitting layer includes growing a negative electrode of the light emitting layer on a negative side of the photon trap layer, a negative electrode of the photon trap layer, and a light emitting layer
  • the negative electrode may be composed of an n-type doped semiconductor material.
  • the negative side of the photon trap layer is an n+InGaP window layer, and an n+GaAs electrode layer of the light emitting layer is deposited on the surface of the n+InGaP window layer.
  • a positive electrode of the light-emitting layer and a positive electrode of the photon-trapping layer are connected by a conductive medium, for example, a positive electrode of the light-emitting layer and a positive electrode of the photon-trapping layer are connected by a metal.
  • FIG. 3 schematically shows a schematic diagram of an up-conversion device in accordance with an embodiment of the present disclosure.
  • the up-conversion device includes a light-emitting layer 310, a photon-trapping layer 320, and a metal layer 330 that turns on the light-emitting layer 310 and the photon-trapping layer 320.
  • the photon capture layer 320 captures photons and converts the captured photon energy into electrical energy.
  • the photon capture layer 320 captures IR photons, converts the captured IR photon energy into electrical energy, and drives illumination through a closed loop formed by the metal layer 330.
  • Layer 310 emits visible light.
  • FIG. 4A schematically illustrates a cross-sectional view of an up-conversion device in accordance with an embodiment of the present disclosure.
  • the up-conversion device includes a light-emitting layer 310 and a photon-trapping layer 320.
  • the photon capture layer 320 as shown in FIG. 4A may include one photon capture subunit, and may also include a plurality of photon capture subunits.
  • a cross-sectional view of a photon capture layer 320 comprising a plurality of photon capture subunits is shown in Figure 4B.
  • FIG. 4B schematically illustrates a cross-sectional view of a photon capture layer in accordance with another embodiment of the present disclosure.
  • the photon capture layer 320 includes a first photon capture sub-unit 321 and a second photon capture sub-unit 323 and a tunnel junction 322.
  • the tunneling junction 322 is located between the first photon capturing sub-unit 321 and the second photon capturing sub-unit 323.
  • the photon capture layer includes at least one photon capture subunit.
  • the use of a plurality of photon capture sub-units is capable of absorbing and converting photons of different spectral ranges, improving energy conversion efficiency, and providing sufficient photovoltage for the photo-emitting layer to emit photons.
  • the required voltage for driving the luminescent layer to emit photons is 1.8V
  • a photon trapping layer is made of a low bandgap semiconductor material, providing a voltage of 1.2V, so a photon capture subunit can be added to compensate for 0.6V. The voltage difference.
  • the photon capture layer comprises a plurality of photon capture subunits
  • the photon capture layer further comprises a tunneling junction, the tunneling junction connection, maximizing current matching and conversion efficiency.
  • FIG. 4C schematically illustrates a cross-sectional view of a light emitting layer in accordance with an embodiment of the present disclosure.
  • the light emitting layer 310 further includes a distributed Bragg reflection layer 311.
  • the different structures of the above-mentioned light-emitting layer 310 and the photon-trapping layer 320 can be arbitrarily combined, and the photon-trapping layer 320 can be any number of photon-trapping layers.
  • the present disclosure is only a schematic representation, but is not limited thereto.
  • FIG. 4D schematically illustrates a working principle diagram of an up-conversion device in accordance with an embodiment of the present disclosure.
  • the photon trapping layer 320 captures the IR photon driving luminescent layer 310 to emit red visible light.
  • FIG. 4D is only a schematic representation.
  • a light-emitting layer of different materials may be selected to emit photons satisfying the condition, for example, a gallium nitride (GaN) semiconductor material is selected, and the light-emitting layer emits blue light.
  • GaN gallium nitride
  • the photon trap layer is, for example, a structure including a plurality of n-type and p-type semiconductor materials, constituting a PN junction to achieve photoelectric conversion.
  • the n-type semiconductor material serves as a negative electrode of the photon trap layer
  • the p-type semiconductor material is a positive electrode of the photon trap layer.
  • the p-type semiconductor material of the photon trap layer is connected to the p-type semiconductor material of the light-emitting layer through a conductive medium, so that the positive electrode of the light-emitting layer is connected to the positive electrode of the photon-trapping layer to form a closed loop, and the light-emitting layer is driven to complete the electronic conversion.
  • the conductive medium can be, for example, a metal.
  • a method of fabricating an up-conversion device includes preparing a light-emitting layer and a photon trap layer, and Connecting the light-emitting layer to the corresponding electrode on the photon trap layer forms a closed loop.
  • the photon capture layer includes at least one photon capture subunit, and in the case where the material includes a plurality of photon capture subunits, the photon capture layer further includes a tunneling junction connecting adjacent photon capture subunits, To achieve circuit matching between multiple photon capture sub-units and to maximize photoelectric conversion efficiency.
  • the photon capture layer includes a photon capture subunit, such as the material and structure shown in Table 1, as a photon capture layer.
  • the photon trap layer when the photon trap layer includes a photon trap subunit, the photon trap layer further includes an n+ type GaAs electrode layer, an n+ type InGaP window layer, an n+ type GaAs emissive layer, a p-type GaAs base layer, and a p+ type Al0. 3Ga0.7As back reflection field and p+ type GaAs electrode layer.
  • the n+ type GaAs electrode layer serves as a negative electrode having a thickness of 700 nm, and the dopant Si concentration is 6e18 cm -3 , wherein 6e18 represents 6 ⁇ 10 18 , and the expressions of the same forms below are understood in the same manner.
  • the thickness of the n+ type InGaP window layer is 30 nm, the concentration of the dopant Si is 2e18 cm -3 , the thickness of the n + type GaAs emitting layer is 100 nm, and the concentration of the dopant Si is 2e18 cm -3 .
  • the p-type GaAs base layer has a thickness of 450 nm and the dopant Zn has a concentration of 1e17 cm -3 .
  • the thickness of the back reflection field of p+ type Al 0.3 Ga 0.7 As is 100 nm, the concentration of dopant Mg is 5e18 cm -3 , the p + type GaAs electrode layer is used as a positive electrode, the thickness thereof is 1000 nm, and the concentration of dopant Mg is 5e18 cm -3 . .
  • the material structure shown in Table 1 can be sequentially grown from bottom to top in the order shown in Table 1 by epitaxial growth, for example, epitaxial growth of p+ type Al 0.3 Ga 0.7 As in the p + -type GaAs electrode layer.
  • a field, a p-type GaAs base layer, and then an n+ type GaAs emission layer, an n+ type InGaP window layer, and an n+ type GaAs electrode layer are sequentially grown on the p-type GaAs base layer.
  • the photon capture layer may further include a plurality of photon capture subunits, for example, including 2 photon capture subunits, and the materials and structures thereof are prepared as shown in Table 2.
  • the n+ type GaAs electrode layer, the n+ type InGaP window layer, the n+ type GaAs emitting layer, the p-type GaAs base layer and the p+ type Al 0.3 Ga 0.7 As back reflection field constitute a first photon trap subunit
  • n+ type Al 0.3 Ga 0.7 As window layer n+ type GaAs emission layer, p-type GaAs base layer, p+ type InGaP back reflection field and p+ type GaAs electrode layer constitute second photon capture subunit
  • p++ type GaAs tunnel junction and n++ type GaAs tunnel junction are tunneling Junctions connect adjacent photon capture subunits to achieve circuit matching between multiple photon capture subunits and maximize photoelectric conversion efficiency.
  • the materials and structures shown in Table 2 can be sequentially grown
  • photon trapping layers composed of the material structures of Tables 1 and 2 above are merely exemplary representations.
  • different materials and structures may be selected to form photon trapping layers, for example, GaInPAs, Si, organic
  • the material and structure of the photon trap layer may be any combination of materials and structures that can convert light energy into electrical energy.
  • the material and structure of the light-emitting layer such as the materials and structures shown in Table 3, can be used as the light-emitting layer.
  • the light-emitting layer further includes a p++ type GaP electrode layer, a p+GaP window layer, a p-type InAlP layer, an InAlP/InGaP light-emitting layer, an n-type InAlP layer, and an n+-type GaAs electrode layer.
  • the p++ type GaP electrode layer is used as the positive electrode of the light emitting layer
  • the n+ type GaP electrode layer is used as the negative electrode of the light emitting layer
  • the material structure shown in Table 3 can be sequentially performed from the bottom to the top in the order shown in Table 3 by the epitaxial growth method. Grow each material shown.
  • the light emitting layer may further include a distributed Bragg reflection layer.
  • a distributed Bragg reflection layer For example, in the material and structure shown in Table 4, In 0.5 Al 0.5 P/In 0.5 Al 0.25 Ga 0.25 P constitutes a distributed Bragg reflection layer.
  • the material and structure of the light-emitting layer are not limited herein, and materials and structures that can be converted into light energy by those skilled in the art can be used as the composition of the light-emitting layer.
  • the preparing the light emitting layer and the photon trap layer includes preparing a light emitting layer and a photon trap layer on the first substrate by epitaxial growth, wherein the positive electrode of the light emitting layer and the photon trap layer The positive electrode is opposite, or the negative electrode of the light-emitting layer is opposite to the negative electrode of the photon trap layer.
  • FIGS. 5-9 illustrate schematic diagrams of various stages of preparing an upconversion device in accordance with an embodiment of the present disclosure.
  • a first substrate 1000 such as a GaAs substrate
  • the photon trap layer 1001 and the light emitting layer 1002 are sequentially formed, for example, by epitaxial growth.
  • the photon trap layer 1001 and the table 3 or the table 4 light emitting layer 1002 shown in Table 1 or Table 2 are sequentially formed on the first substrate 1000, and the first substrate 1000, such as a GaAs substrate, may further include
  • the first sacrificial layer for example, the first sacrificial layer may be composed of Al 0.95 Ga 0.05 As, and since the Al 0.95 Ga 0.05 As may be dissolved by HF, the first sacrificial layer is capable of separating the first substrate from the photon trap layer.
  • the material structure of the photon trap layer and the light emitting layer prepared by the above method is shown, for example, in Table 5.
  • An Al 0.95 Ga 0.05 As sacrificial layer is grown on the GaAs substrate, and a photon trap layer is grown on the surface of the sacrificial layer.
  • the photon trap layer is made of the material and structure shown in Table 2, wherein the n+ type GaAs electrode layer is a photon trap layer and emits light.
  • the common electrode of the layer serves as both the negative electrode of the photon trap layer and the negative electrode of the light emitting layer. Therefore, the negative electrode of the light emitting layer faces the negative electrode of the photon trap layer.
  • an In 0.5 Al 0.5 P/In 0.5 Al 0.25 Ga 0.2 5P distributed Bragg reflection layer, an n-type InAlP layer, an InAlP/InGaP light-emitting layer, a p-type InAlP layer, and a light-emitting layer are sequentially grown on the common n + -type GaAs electrode layer.
  • a p+ type GaP window layer and a p++ type GaP electrode layer are sequentially grown on the common n + -type GaAs electrode layer.
  • Tables 1-5 are only for explaining the preparation method of the photon trap layer and the light emitting layer.
  • the above materials and structures can be changed as needed.
  • the material n+ type InGaP of the n+ type InGaP window layer can be replaced with a composition such as InP or GaInPAs capable of providing band gap energy.
  • the connecting the light emitting layer and the corresponding electrode on the photon trap layer to form a closed loop includes etching the light emitting layer and the photon trap layer to make the first An electrode connected to the substrate is exposed, a metal is deposited on the electrode farthest from the first substrate and an electrode connected to the first substrate in the light-emitting layer or the photon-trapping layer, and the two electrodes are connected, Form a closed loop.
  • the luminescent layer is etched.
  • the luminescent layer 1002 may be etched according to design requirements such as shape, size, and the like.
  • the photon trap layer 1001 is exposed.
  • the etched photon trap layer as shown in FIG. 7, etches the exposed photon trap layer 1001 such that the photon trap layer 1001 is exposed to the electrode of the first substrate 1000.
  • the surface farthest from the first substrate 1000 i.e., the upper electrode surface of the photodiode 1002 shown in FIG. 8 and the first substrate 1000 are according to an embodiment of the present disclosure.
  • a metal electrode is deposited on the connected electrode surface (ie, the lower electrode surface of the photon trap layer 1001 shown in FIG. 8) to optimize the bare electrode, such as the material and structure of the up-conversion device shown in Table 5,
  • the surface farthest from the substrate is the positive electrode of the light-emitting layer 1002 (p++ type GaP electrode layer), and the electrode connected to the first substrate is the positive electrode (p+ type GaAs electrode layer) of the exposed photon trap layer 1001.
  • a metal is deposited on the surface to optimize the above positive electrode, and then the positive electrode of the optimized luminescent layer and the positive electrode of the photon trap layer are connected, as shown in FIGS. 9A and 9B.
  • the light-emitting layer and the photon-trapping layer may be packaged before the two electrodes are connected to avoid leakage.
  • the light emitting layer and the photon trap layer are prepared by epitaxial growth on the first substrate, and the positive electrode of the light emitting layer may be opposite to the positive electrode of the photon trap layer, that is, by deposition.
  • the order of the materials is different, and the electrode opposite to the photon trap layer is changed.
  • the photon trap layer first deposits an n-type semiconductor material, then grows the p-type semiconductor material, and then deposits light on the p-type semiconductor material of the photon trap layer.
  • the light emitting layer and the negative electrode of the photon trap layer may be optimized and connected to the negative electrode.
  • FIGS. 10A and 10B schematically illustrate schematic views of preparing an up-converting device light-emitting layer and a photon-trapping layer, according to another embodiment of the present disclosure.
  • the light emitting layer and the photon trap layer of the up-conversion device may be separated.
  • a second substrate 2000 and a third substrate 3000 are provided, for example, the second substrate 2000 and the third substrate 3000 may be two different substrates composed of GaAs.
  • the light-emitting layer 2001 is epitaxially grown on the substrate 2000
  • the photon-trapping layer 3001 is epitaxially grown on the third substrate 3000.
  • the luminescent layer may be a composition shown in Table 3 or Table 4
  • the photon trap layer may be a composition shown in Table 1 or Table 2.
  • the second substrate 2000 may include a second sacrificial layer for separating the second substrate 2000, that is, separating the light emitting layer 2001 from the second substrate 2000;
  • the third substrate 3000 may include a third sacrificial layer for separating the third The substrate 3000, that is, separates the photon trap layer 3001 from the third substrate 3000.
  • 11A and 11B schematically illustrate schematic views of etching the light-emitting layer and photon trap layer of an up-conversion device in accordance with another embodiment of the present disclosure.
  • the light-emitting layer 2001 grown on the second substrate 2000 is etched such that the surface of the electrode adjacent to the second substrate 2000 is exposed, for example, as shown in Table 3,
  • the etched light-emitting layer 2001 exposes the electrode surface (n+-type GaAs electrode layer) close to the second substrate 2000.
  • the photon trap layer 3001 grown on the third substrate 3000 is etched such that the electrode surface adjacent to the third substrate 3000 is exposed.
  • FIGS. 12A and 12B schematically illustrate schematic views of preparing a deposition metal of an up-conversion device in accordance with another embodiment of the present disclosure.
  • the electrode surfaces on the light-emitting layer 2001 and the photon trap layer 3001 are optimized for the positive and negative electrodes.
  • the positive electrode (p+-type GaAs electrode layer) is optimized on the surface of the light-emitting layer
  • the negative electrode (n+-type GaAs electrode layer) is optimized on the exposed surface of the exposed portion.
  • the surface of the photon trap layer 3001 shown in Table 1 is optimized for the negative electrode (n+ type GaAs electrode layer), and the positive electrode (p+ type GaAs electrode layer) is optimized on the exposed exposed surface.
  • the positive electrode connecting the light-emitting layer and the positive electrode of the photon-trapping layer and the negative electrode connecting the light-emitting layer and the negative electrode of the photon-trapping layer form a closed loop.
  • the photon trap layer may include a plurality of photon trap subunits, wherein the plurality of photon trap subunits may be grown on different substrates and connected to corresponding electrodes to form a separated photon trap layer .
  • the steps of the above-mentioned FIGS. 10A, 10B, 11A, 11B, 12A, and 12B and the positive electrode of the light-emitting layer and the positive electrode of the photon-trapping layer and the negative electrode connecting the light-emitting layer are connected.
  • a schematic diagram of the up-conversion device formed after the negative electrode of the photon trap layer is shown in FIG.
  • FIG. 13 schematically shows a schematic diagram of an up-conversion device in accordance with another embodiment of the present disclosure.
  • the up-conversion device includes a photon capture layer and a light-emitting layer, wherein the photon capture layer includes a plurality of photon capture subunits.
  • the photon trapping layer and the luminescent layer form a closed loop forming a separate upconversion device.
  • the different substrates may include the same or different sacrificial layers, and each sacrificial layer may be composed of, for example, Al 0.95 Ga 0.05 As, since Al 0.95 Ga 0.05 As may be dissolved by HF, so that the sacrificial layer enables
  • the substrate is separated from the other layers by which the photon trap layer or the luminescent layer can be transferred to another substrate, for example, onto a polyimide film, which can miniaturize the up-conversion device.
  • a method of fabricating an up-conversion device further includes anchoring the closed loop such that the up-conversion device is a separate device and making the above structure more stable.
  • a method of fabricating an up-conversion device further includes detaching a fixed up-conversion device from a substrate through any one of the sacrificial layers described above, then transferring to a fourth substrate, and packaging the closed loop and the fourth Substrate.
  • the fourth substrate is different from the first substrate, the second substrate and the third substrate described above.
  • the first substrate, the second substrate, and the third substrate are substrates made of GaAs
  • the fourth substrate is a polyimide film.
  • an up-conversion material includes a light-emitting layer and a photon-trapping layer for capturing photons to drive the light-emitting layer to emit photons, wherein the energy of the captured photons is lower than the energy of the emitted photons.
  • the luminescent layer and the photon trapping layer have different energies of emitted photons and captured photons depending on the material selected. For example, the material shown in Table 5, the photon trap layer can capture infrared photons having a wavelength of 810 nm, and the light emitting layer can emit red light having a wavelength of 630 nm.

Abstract

一种上转换光电子器件及其制造方法,上转换光电子器件包括,发光层(110),和光子捕获层(120),与发光层(110)形成闭合回路,用于捕获光子,以驱动发光层(110)发射光子,其中,被捕获的光子的能量低于发射的光子的能量。同时,可拓展到下转换形式,捕获高能量的光子,进而转换为低能量。

Description

上转换器件和材料及其制造方法 技术领域
本公开涉及光电子器件设计技术领域,具体涉及一种微纳米级的上转换器件。
背景技术
光子上转换(Upconversion,UC)是将多个低能光子转换成高能量的光子的过程,即所谓的反斯托克斯(anti-Stokes)发射,该方法在包括生物成像、太阳能收集、红外感应、显示和固态冷却等许多领域中具有广阔的应用场景,因此制备性能良好的上转换发光材料及器件有着十分重大的意义。
目前,最普遍的上转换技术通常依赖于采用稀土元素等所制备的上转换材料。然而,这个过程通常是非线性的,需要高相干性和高激发功率激发光源(通常为激光)激发,发射光的光谱为窄带和多色光谱发射,较低的转换效率(0.001%–1%)和慢响应速度(μs–ms)。此外,基于三重态湮灭机制的上转换材料虽然有着较高的量子产率(>1%),但是通常易受外接条件影响(例如,氧气等),并且产生反斯托克斯位移具有一定的局限性。另外,其他一些上转换的方法,例如采用物理连接或结合的光电探测器和发光器件,通常采用外部电路或电源来补偿缺少能量差从而获得高增益实现上转换过程。这种设备方案对进一步微型化芯片和电路带来了挑战。
发明内容
本公开的一个方面提供了一种上转换器件,包括,发光层,和光子捕获层,与所述发光层形成闭合回路,用于捕获光子,以驱动所述发光层发射光子,其中,被捕获的光子的能量低于发射的光子的能量。
可选地,所述光子捕获层包括至少两个光子捕获子单元,以及在所述光子捕获层包括多个光子捕获子单元的结构情况下,所述光子捕获层还包括隧穿结,用于连接相邻的光子捕获子单元。
可选地,所述发光层包括分布式布拉格反射层。
可选地,所述光子捕获层与所述发光层形成闭合回路包括,所述发光层的负极生长于所述光子捕获层的负极一侧,所述发光层的正极与所述光子捕获层的正极通过导电介质连接。
本公开的另一个方面提供了一种上转换器件的制造方法,包括,制备发光层和光子捕获层,以及连接所述发光层与所述光子捕获层上相对应的电极,形成闭合回路。
可选地,所述光子捕获层包括至少两个光子捕获子单元,以及在所述光子捕获层包括多个光子捕获子单元的结构情况下,所述光子捕获层还包括隧穿结设计,用于连接相邻的光子捕获子单元。
可选地,所述发光层包括分布式布拉格反射层。
可选地,所述制备发光层和光子捕获层包括,在第一基底上以外延生长的方式,制备发光层和光子捕获层,其中,所述发光层的正极与所述光子捕获层的正极相对,或者,所述发光层的负极与所述光子捕获层的负极相对。
可选地,所述连接所述发光层与所述光子捕获层上相对应的电极,形成闭合回路包括,刻蚀所述发光层和光子捕获层,使与所述第一基底相连的电极裸露,以及在所述发光层或所述光子捕获层中与所述第一基底距离最远的电极和与所述第一基底相连的电极上沉积金属,并连接该两个电极,形成闭合回路。
可选地,所述第一基底包括第一牺牲层,用于分离所述第一基底。
可选地,所述制备发光层和光子捕获层包括,在第二基底层上外延生长发光层,以及在第三基底层上外延生长光子捕获层。
可选地,所述第二基底包括有第二牺牲层,用于分离所述第二基底,以及/或者所述第三基底包括层第三牺牲层,用于分离所述第三基底。
可选地,所述的制造方法还包括,锚固所述闭合回路。
可选地,所述的制造方法,还包括,将所述闭合回路转印到第四基底,以及封装所述闭合回路和所述第四基底。
本公开的另一个方面提供了一种上转换材料,包括,发光层和光子捕获层,用于捕获光子,以驱动所述发光层发射光子,其中,被捕获的光子的能量低于发射的光子的能量。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1A示出了根据本公开实施例上转换器件的截面图;
图1B和图1C示出了根据本公开另一实施例上转换器件的截面图;
图2A示出了激发光谱功率与发射光谱功率的关系图;
图2B示出了上转换器件的响应速度与荧光衰减的关系图;
图3示意性示出了根据本公开实施例的上转换器件的示意图;
图4A示意性示出了根据本公开实施例的上转换器件的截面图;
图4B示意性示出了根据本公开实施例的光子捕获层截面图;
图4C示意性示出了根据本公开实施例的发光层的截面图;
图4D示意性示出了根据本公开实施例的上转换器件的工作原理图;
图5-8示出了根据本公开实施例的制备上转换器件的多个阶段的示意图;
图9A和图9B示出了根据本公开实施例的制备上转换器件形成闭合回路的示意图;
图10A和图10B示意性示出了根据本公开另一实施例的制备上转换器件发光层和光子捕获层的示意图;
图11A和图11B示意性示出了根据本公开另一实施例的制备上转换器件的刻蚀所述发光层和光子捕获层的示意图;
图12A和图12B示意性示出了根据本公开另一实施例的制备上转换器件沉积金属的示意图;以及
图13示意性示出了根据本公开另一实施例的上转换器件的示意图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。此外,在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
根据本公开的实施例,提供了一种上转换器件,包括,发光层以及光子捕获层,与所述发光层形成闭合回路,用于捕获光子,以驱动所述发光层发射光子,其中,被捕获的光子的能量低于发射的光子的能量。
所述上转换器件可以是集成的上转换器件也可是分离的上转换器件。如图1A以及图1B、图1C所示。
图1A示意性示出了根据本公开实施例的上转换器件的截面图。
如图1A所示,上转换器件包括发光层110和光子捕获层120。所述上转换器件是集成的,即发光层110和光子捕获层120至少一侧是相互接触的,例如通过外延生长的方式在光子捕获层120的一侧生长发光层110。
根据本公开实施例,所述光子捕获层120与发光层110形成闭合回路,例如将图1A中所示意的发光层110的上表面的电极和光子捕获层120下表面的电极相连接,形成闭合回路。闭合回路能够导通光子捕获层120与发光层110,使得光子捕获层120为发光层110提供足够的电压,以使发光层110发射光子。
图1B和图1C示意性示出了根据本公开另一实施例的上转换器件的截面图。
如图1B和图1C所示,上转换器件包括发光层110和光子捕获层120,所述上转换器件的发光层110和光子捕获层120是独立存在的。
根据本公开实施例,所述光子捕获层120与发光层110形成闭合回路,例如将图1B中所示意的发光层110的两个电极与图1C中所示意的光子捕获层120的两个电极对应连接,形成闭合回路。闭合回路能够导通光子捕获层120与发光层110,使得光子捕获层120为发光层110提供足够的电压,以使发光层110发射光子。
根据本公开实施例,所述上转换器件捕获的光子的能量低于发射的光子的能量,即捕获的光子的波长大于发射的光子的波长。上转换器件可以根据应用场景的不同需求,设计不同的材料及结构以捕获符合应用场景需求的波长的光子,并将捕获的光子转换成比捕获的光子的波长小的光子,所述应用场景的不同需求,例如应用在红外探测中,可能需要将红外光转换为可见光,而在医学中,可能需要将可见光转换为紫外光。
根据本公开实施例,所述发光层可以由任何能够将电能转化成光能的材料构成,例如半导体材料,根据半导体材料的不同,发光层发射不同的颜色。例如,含有半导体材料磷化镓铟(InGaP)的发光层发红光,含有半导体材料氮化镓(GaN)的发光层发蓝光。光子捕获层由能够捕获光子的材料构成,例如砷化镓(GaAs)、磷化铟(InP),并且与所述发光层形成闭合回路,例如通过金属导通所述光子捕获层与所述发光层。所述能够捕获光子的半导体材料将捕获的光子的能量转化为电能并通过所形成的闭合回路驱动发光层发射光子。其中,捕获的光子的能量低于发射的光子的能量,即捕获的光子的波长大于发射光子的波长。例如,光子捕获层捕获红外(IR)光子,其波长为810nm,并将IR光子转化为电能,使得发光层导通以发射红色可见光,红色可见光的波长为630nm。又例如,光子捕获层捕获长波长1200nm 的光子,发光层发射波长1000nm光子。
这种上转换器件具有独立微型化、转换单色性好、快速响应、转换高效、线性以及转换波段可调的特性。实验显示,未经表面优化的上转换器件的转换效率可以达到1.5%,所述表面优化是指,对发光层的表面进行例如表面粗化技术等工艺处理。
图2A示出了激发光谱功率与发射光谱功率的关系图。如图2A所示,发射光谱功率与激发光谱功率的关系规律明显,易于回归。若分段处理,在大于10mW/cm2的范围内,具有较为明显的线性关系。因此,通过控制该上转换器件的激发光谱功率,能够方便地控制发射光谱的功率。
图2B示出了上转换器件的响应速度与荧光衰减的关系图。如图2B所示,当激发光入射时,该上转换器件的响应速度约为20ns。当激发光停止照射后该上转换器件的在47ns时基本不再发射光谱,远小于现有技术能够达到的μs–ms,即具有更快的相应速度。
根据本公开实施例,所述光子捕获层可以包括一个光子捕获子单元,也可以包括多个光子捕获子单元。根据本公开另一些实施例,采用多个光子捕获子单元能够吸收和转换不同光谱范围的光子,提高能量转换效率,为发光层发射光子提供足够的光电压。在多个光子捕获子单元的情况下,所述光子捕获层还包括隧穿结,用于连接相邻的光子捕获子单元,这样可以实现多个光子捕获子单元之间的电路匹配并且可以使得光电转换效率最大化。
根据本公开实施例,发光层包括分布式布拉格反射层,所述分布式布拉格反射层由两种不同折射率的材料交替排列组成周期结构,例如,In0.5Al0.5P与In0.5Al0.25Ga0.25P交替排列组成周期结构。分布式布拉格反射层用于提高所述发光层的发射效率。
根据本公开实施例,所述光子捕获层与所述发光层形成闭合回路包括,在所述光子捕获层的负极一侧生长所述发光层的负极,所述光子捕获层的负极和发光层的负极可以由n型掺杂的半导体材料组成。例如光子捕获层的负极一侧为n+InGaP窗口层,在n+InGaP窗口层表面沉积发光层的n+GaAs电极层。此外,所述发光层的正极与所述光子捕获层的正极通过导电介质连接,例如通过金属连接所述发光层的正极与所述光子捕获层的正极。该方法能够使上转换器件独立,减少外部电路。
本公开可以各种形式呈现,以下将描述其中一些示例。图3示意性示出了根据本公开实施例的上转换器件的示意图。如图3所示,该上转换器件包括发光层310、光子捕获层320,以及导通发光层310和光子捕获层320的金属层330。所述光子捕获层320捕获光子,并将捕获的光子能量转化成电能,例如,光子捕获层320捕获IR光子,将捕获的IR光子能量转化成电能,通过借助金属层330形成的闭合回路驱动发光层310发射可见光。
下面结合图4A和4B说明图3所示的上转换器件的内部结构及工作原理。
图4A示意性示出了根据本公开实施例的上转换器件的截面图。
如图4A所示,该上转换器件包括发光层310和光子捕获层320。
如图4A所示的光子捕获层320可以包括一个光子捕获子单元,也可以包括多个光子捕获子单元。包括多个光子捕获子单元的光子捕获层320的截面图,如图4B所示。
图4B示意性示出了根据本公开另一实施例的光子捕获层截面图。
如图4B所示,该光子捕获层320包括第一光子捕获子单元321和第二光子捕获子单元323以及隧穿结322。
其中,隧穿结322位于第一光子捕获子单元321和第二光子捕获子单元323之间。
根据本公开实施例,所述光子捕获层包括至少一个光子捕获子单元。根据本公开另一些实施例,采用多个光子捕获子单元能够吸收和转换不同光谱范围的光子,提高能量转换效率,为发光层发射光子提供足够的光电压。例如驱动发光层以发射光子的所需电压为1.8V,而一个光子捕获层由低带隙的半导体材料制成,所提供的电压为1.2V,因此可以增加一个光子捕获子单元以补偿0.6V的电压差。
在所述光子捕获层包括多个光子捕获子单元的情况下,所述光子捕获层还包括隧穿结,通过隧穿结连接,实现电流匹配和转换效率的最大化。
图4C示意性示出了根据本公开实施例的发光层的截面图。
如图4C所示,发光层310还包括分布式布拉格反射层311。
可以理解的是,上述发光层310和光子捕获层320的不同结构可以任意组合,且光子捕获层320可以为任意节数的光子捕获层,本公开仅为示意性表示,但不限于此。
图4D示意性示出了根据本公开实施例的上转换器件的工作原理图。
如图4D所示,光子捕获层320捕获IR光子驱动发光层310发射出红色可见光。
需要注意的是,图4D仅为示意性表示,在实际中,可以根据需要选择不同材料的发光层发射满足条件的光子,例如选择氮化镓(GaN)半导体材料,使发光层发射蓝光。
根据本公开实施例,光子捕获层例如是包括多种n型和p型半导体材料的结构,构成PN结,以实现光电转换。其中n型半导体材料作为光子捕获层的负极,p型半导体材料为光子捕获层的正极。在光子捕获层的n型半导体材料生长发光层的n型半导体材料,则所述发光层的负极生长于所述光子捕获层的负极一侧,即所述发光层的负极与所述光子捕获层的负极相连。光子捕获层的p型半导体材料与发光层的p型半导体材料通过导电介质连接,实现发光层的正极与所述光子捕获层的正极连接,以形成闭合回路,驱动所述发光层完成电子转换成光子。其中,所述导电介质例如可以是金属。
根据本公开实施例,上转换器件的制造方法,包括,制备发光层和光子捕获层,以及连 接所述发光层与所述光子捕获层上相对应的电极,形成闭合回路。
所述光子捕获层包括,至少一个光子捕获子单元,以及在所述材料包括多个光子捕获子单元的情况下,所述光子捕获层还包括隧穿结,连接相邻的光子捕获子单元,以实现多个光子捕获子单元之间的电路匹配并且可以使得光电转换效率最大化。
根据本公开实施例,光子捕获层包括一个光子捕获子单元,例如表1所示的材料及结构可以作为光子捕获层。
表1
Figure PCTCN2017113106-appb-000001
如表1所示,光子捕获层包括一个光子捕获子单元时,光子捕获层进一步包括n+型GaAs电极层、n+型InGaP窗口层、n+型GaAs发射层、p-型GaAs基层、p+型Al0.3Ga0.7As背面反射场和p+型GaAs电极层。
其中n+型GaAs电极层作为负电极,其厚度为700nm,掺杂物Si的浓度为6e18cm-3,其中,6e18表示6×1018,以下相同形式的表达方式按照同样的方式理解。n+型InGaP窗口层的厚度为30nm,掺杂物Si的浓度为2e18cm-3,n+型GaAs发射层的厚度为100nm,掺杂物Si的浓度为2e18cm-3。p-型GaAs基层的厚度为450nm,掺杂物Zn的浓度为1e17cm-3。p+型Al0.3Ga0.7As背面反射场的厚度为100nm,掺杂物Mg的浓度为5e18cm-3,p+型GaAs电极层作为正电极,其厚度为1000nm,掺杂物Mg的浓度为5e18cm-3
表1所示的材料结构可以利用外延生长的方法按照表1所示的顺序从下到上依次生长所示各材料,例如在p+型GaAs电极层依次外延生长p+型Al0.3Ga0.7As背面反射场、p-型GaAs基层,然后在p-型GaAs基层依次生长n+型GaAs发射层、n+型InGaP窗口层以及n+型GaAs电极层。
根据本公开实施例,光子捕获层还可以包括多个光子捕获子单元,例如包括2个光子捕获子单元,其制备的材料及结构如表2所示。其中,n+型GaAs电极层、n+型InGaP窗口层、n+型GaAs发射层、p-型GaAs基层和p+型Al0.3Ga0.7As背面反射场构成第一光子捕 获子单元,n+型Al0.3Ga0.7As窗口层、n+型GaAs发射层、p-型GaAs基层、p+型InGaP背面反射场和p+型GaAs电极层构成第二光子捕获子单元,p++型GaAs tunnel junction和n++型GaAs tunnel junction为隧穿结,连接相邻的光子捕获子单元,以实现多个光子捕获子单元之间的电路匹配并且使光电转换效率最大化。表2中所示的材料及结构可以利用外延生长的方法按照表2所示的顺序从下到上依次生长所示各材料。
表2
Figure PCTCN2017113106-appb-000002
需要理解的是,上述表1和表2的材料结构组成的光子捕获层仅为示例性表示,在实际中,可以根据需要选择不同的材料与结构组成光子捕获层,例如选择GaInPAs、Si、有机半导体等材料,所述光子捕获层的材料及结构可以是任何可以实现将光能转换成电能的材料及结构的组合。
发光层的材料与结构,例如表3所示的材料与结构可以作为发光层。
表3
Figure PCTCN2017113106-appb-000003
Figure PCTCN2017113106-appb-000004
如表3所示,发光层进一步包括p++型GaP电极层、p+GaP窗口层、p型InAlP层、InAlP/InGaP发光层、n型InAlP层以及n+型GaAs电极层。其中,p++型GaP电极层作为发光层的正极,n+型GaP电极层作为发光层的负极,表3中所示的材料结构可以利用外延生长的方法按照表3所示的顺序从下到上依次生长所示各材料。
根据本公开另一实施例,发光层还可以包括分布式布拉格反射层,例如,表4所示的材料及结构中In0.5Al0.5P/In0.5Al0.25Ga0.25P构成分布式布拉格反射层。
表4
Figure PCTCN2017113106-appb-000005
同样可以理解的是,发光层的材料与结构在此也不做限定,本领域技术人员可以实现的将电能转换成光能的材料与结构均可以作为发光层的组成。
根据本公开实施例,所述制备发光层和光子捕获层包括,在第一基底上以外延生长的方式,制备发光层和光子捕获层,其中,所述发光层的正极与所述光子捕获层的正极相对,或者,所述发光层的负极与所述光子捕获层的负极相对。
下面结合图5-9,以所述发光层的负极与所述光子捕获层的负极相对为例,详细介绍制备上转换器件的方法。图5-9示出了根据本公开实施例的制备上转换器件的多个阶段的示意图。
如图5所示,提供第一基底1000,例如GaAs基底。在该示例中,在第一基底1000上,例如利用外延生长依次形成光子捕获层1001和发光层1002。
根据本公开实施例,在所述第一基底1000依次形成表1或表2所示的光子捕获层1001和表3或表4发光层1002,所述第一基底1000例如GaAs基底,还可以包括第一牺牲层,例 如第一牺牲层可以由Al0.95Ga0.05As组成,由于Al0.95Ga0.05As可以被HF溶解,因此该第一牺牲层能够使第一基底与所述光子捕获层分离。
由上述方法制备的光子捕获层和发光层的材料结构,例如表5所示。在GaAs基底上生长Al0.95Ga0.05As牺牲层,在牺牲层表面生长光子捕获层,所述光子捕获层采用表2所示的材料及结构,其中,n+型GaAs电极层为光子捕获层和发光层的共用电极,既作为光子捕获层的负极,也作为发光层的负极,因此,所述发光层的负极与所述光子捕获层的负极相对。然后,在共用的n+型GaAs电极层依次生长发光层的In0.5Al0.5P/In0.5Al0.25Ga0.25P分布式布拉格反射层、n型InAlP层、InAlP/InGaP发光层、p型InAlP层、p+型GaP窗口层以及p++型GaP电极层。
表5
Figure PCTCN2017113106-appb-000006
Figure PCTCN2017113106-appb-000007
可以理解的是,表1-5仅为了具体说明所述光子捕获层和所述发光层的制备方法,在实际中,可以根据需要改变上述材料及结构。例如n+型InGaP window层的材料n+型InGaP可以更换为能够提供带隙能量的InP、GaInPAs等组合物。
接下来,根据本公开实施例,所述连接所述发光层与所述光子捕获层上相对应的电极,形成闭合回路包括,刻蚀所述发光层和光子捕获层,使与所述第一基底相连的电极裸露,在所述发光层或所述光子捕获层中与所述第一基底距离最远的电极和与所述第一基底相连的电极上沉积金属,并连接该两个电极,形成闭合回路。
在图5所示意的实施例的上转换器件中,所述刻蚀所述发光层,如图6所示,根据本公开实施例,可以根据形状、大小等设计要求,刻蚀发光层1002,使光子捕获层1001裸露。所述刻蚀光子捕获层,如图7所示,刻蚀裸露出的光子捕获层1001,使得光子捕获层1001与所述第一基底1000相连的电极裸露。
然后,如图8所示,根据本公开实施例,与所述第一基底1000距离最远的表面(即图8中所示的光电二极管1002的上电极表面)和与所述第一基底1000相连的电极表面(即图8中所示的光子捕获层1001的下电极表面)沉积金属,以优化所述裸露的电极,例如表5所示的上转换器件的材料及结构,与所述第一基底距离最远的表面为发光层1002的正极(p++型GaP电极层),与所述第一基底相连的电极为裸露出的光子捕获层1001的正极(p+型GaAs电极层),在其表面沉积金属以优化上述正极,然后连接所述优化的发光层的正极和光子捕获层的正极,如图9A和图9B所示。
这里需要指出的是,在图9B的连接方式中,在电极制备完成后,连接所述两个电极前,可以在对所述发光层和所述光子捕获层进行封装,以避免漏电现象。
根据本公开另一实施例,在第一基底上以外延生长的方式,制备发光层和光子捕获层,还可以是,所述发光层的正极与所述光子捕获层的正极相对,即通过沉积材料的先后顺序的不同,改变发光层与光子捕获层相对的电极,例如光子捕获层首先沉积n型半导体材料,然后在生长p型半导体材料,然后在光子捕获层的p型半导体材料上沉积发光层的p型半导体材料,最后生长发光层的n型半导体材料。在后续的工艺中,可以优化所述发光层和所述光子捕获层的负极,并连接所述负极。
图10A和图10B示意性示出了根据本公开另一实施例的制备上转换器件发光层和光子捕获层的示意图。
根据本公开实施例,上转换器件的发光层和光子捕获层可以是分离的。所述光子捕获层 在包含多个光子捕获子单元的情况下,其多个光子捕获子单元也可以是分离的。
如图10A和图10B所示,提供第二基底2000和第三基底3000,例如第二基底2000和第三基底3000可以是两个不同的由GaAs组成的基底。在基底2000外延生长发光层2001,在第三基底3000外延生长光子捕获层3001。所述发光层可以是表3或表4所示的组成结构,所述光子捕获层可以是表1或表2所示的组成结构。
所述第二基底2000可以包括第二牺牲层,用于分离第二基底2000,即,将发光层2001与第二基底2000分离;第三基底3000可以包括第三牺牲层,用于分离第三基底3000,即,将光子捕获层3001与第三基底3000分离。
图11A和图11B示意性示出了根据本公开另一实施例的制备上转换器件的刻蚀所述发光层和光子捕获层的示意图。
如图11A和图11B所示,刻蚀所述生长在所述第二基底2000上的发光层2001,使得靠近第二基底2000的电极表面裸露,例如,如表3所示的结构,则刻蚀发光层2001,使靠近第二基底2000的电极表面(n+型GaAs电极层)裸露。同样的,刻蚀生长在所述第三基底3000上的光子捕获层3001,使得靠近第三基底3000的电极表面裸露。
图12A和图12B示意性示出了根据本公开另一实施例的制备上转换器件沉积金属的示意图。
如图12A和图12B所示,在发光层2001和光子捕获层3001上的电极表面优化正负极。例如,如表3所示的发光层结构,在所述发光层表面优化正极(p+型GaAs电极层),在经过刻蚀的裸露出的表面优化负极(n+型GaAs电极层)。例如,表1所示的光子捕获层3001的表面优化负极(n+型GaAs电极层),在经过刻蚀的裸露出的表面优化正极(p+型GaAs电极层)。
之后,连接所述发光层的正极与光子捕获层的正极和连接所述发光层的负极与光子捕获层的负极,形成闭合回路。
根据本公开实施例,光子捕获层可以包括多个光子捕获子单元,其中,该多个光子捕获子单元可以在不同的基底上生长而成,并连接相对应的电极,形成分离的光子捕获层。本公开实施例中,在经过上述图10A、图10B、图11A、图11B、图12A和图12B的步骤以及连接所述发光层的正极与光子捕获层的正极和连接所述发光层的负极与光子捕获层的负极之后形成的上转换器件的示意图如图13所示。
图13示意性示出了根据本公开另一实施例的上转换器件的示意图。
如图13所示,上转换器件包括光子捕获层和发光层,其中,光子捕获层包括多个光子捕获子单元。所述光子捕获层和发光层形成闭合回路,构成分离的上转换器件。
根据本公开实施例,所述不同的基底可以包括相同或不同的牺牲层,每个牺牲层例如可以由Al0.95Ga0.05As组成,由于Al0.95Ga0.05As可以被HF溶解,从而牺牲层能够使基底与其他层分离,利用该方法可以将所述光子捕获层或发光层转印到另外的基底上,例如转印到聚酰亚胺薄膜上,这样可以使得所述上转换器件微型化。
根据本公开实施例,上转换器件的制造方法还包括,锚固定所述闭合回路,使得上转换器件为独立器件,并使得上述结构更加稳定。
根据本公开实施例,上转换器件的制造方法还包括,将固定的上转换器件通过上述任一组牺牲层与基底脱离,然后转印到第四基底以及封装所述闭合回路和所述第四基底。其中第四基底与上述第一基底、第二基底和第三基底不同。例如第一基底、第二基底和第三基底是GaAs构成的基底,而第四基底为聚酰亚胺薄膜。通过该方法,可以改变上转换器件的基底,以满足各种需求,例如可以用于降低基底的厚度,实现上转换器件的微型化。
根据本公开实施例,一种上转换材料包括,发光层和光子捕获层,用于捕获光子,以驱动所述发光层发射光子,其中,被捕获的光子的能量低于发射的光子的能量。所述发光层和光子捕获层分别根据选择材料的不同,发射的光子和捕获的光子的能量不同。例如表5所示的材料,光子捕获层可以捕获波长为810nm的红外光子,发光层可以发射波长为630nm的红色光。
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围内。

Claims (15)

  1. 一种上转换器件,包括:
    发光层;和
    光子捕获层,与所述发光层形成闭合回路,用于捕获光子,以驱动所述发光层发射光子,其中,被捕获的光子的能量低于发射的光子的能量。
  2. 根据权利要求1所述的器件,其中,
    所述光子捕获层包括至少两个光子捕获子单元;以及
    在所述光子捕获层包括多个光子捕获子单元的结构情况下,所述光子捕获层还包括隧穿结,用于连接相邻的光子捕获子单元。
  3. 根据权利要求1所述的器件,其中,所述发光层包括分布式布拉格反射层。
  4. 根据权利要求1所述的器件,其中,所述光子捕获层与所述发光层形成闭合回路包括,所述发光层的负极生长于所述光子捕获层的负极一侧,所述发光层的正极与所述光子捕获层的正极通过导电介质连接。
  5. 一种上转换器件的制造方法,包括:
    制备发光层和光子捕获层;以及
    连接所述发光层与所述光子捕获层上相对应的电极,形成闭合回路。
  6. 根据权利要求5所述的制造方法,其中,所述光子捕获层包括至少两个光子捕获子单元;以及在所述光子捕获层包括多个光子捕获子单元的结构情况下,所述光子捕获层还包括隧穿结设计,用于连接相邻的光子捕获子单元。
  7. 根据权利要求5所述的制造方法,其中,所述发光层包括分布式布拉格反射层。
  8. 根据权利要求5所述的制造方法,其中,所述制备发光层和光子捕获层包括:
    在第一基底上以外延生长的方式,制备发光层和光子捕获层,其中,所述发光层的正极与所述光子捕获层的正极相对,或者,所述发光层的负极与所述光子捕获层的负极相对。
  9. 根据权利要求8所述的方法,其中,所述连接所述发光层与所述光子捕获层上相对应的电极,形成闭合回路包括:
    刻蚀所述发光层和光子捕获层,使与所述第一基底相连的电极层裸露;以及在所述发光层或所述光子捕获层中与所述第一基底距离最远的电极和与所述第一基底相连的电极上沉积金属,并连接该两个电极,形成闭合回路。
  10. 根据权利要求8所述的方法,其中,所述第一基底包括第一牺牲层,用于分离所述第一基底。
  11. 根据权利要求5所述的方法,其中,所述制备发光层和光子捕获层包括:
    在第二基底层上外延生长发光层;以及
    在第三基底层上外延生长光子捕获层。
  12. 根据权利要求11所述的制造方法,其中,
    所述第二基底包括有第二牺牲层,用于分离所述第二基底;以及/或者
    所述第三基底包括第三牺牲层,用于分离所述第三基底。
  13. 根据权利要求8-12所述的制造方法,还包括:
    锚固定所述闭合回路。
  14. 根据权利要求13所述的制造方法,还包括:
    将所述闭合回路转印到第四基底;以及
    封装所述闭合回路和所述第四基底。
  15. 一种上转换材料,包括:
    发光层;和
    光子捕获层,用于捕获光子,以驱动所述发光层发射光子,其中,被捕获的光子的能量低于发射的光子的能量。
PCT/CN2017/113106 2017-11-27 2017-11-27 上转换器件和材料及其制造方法 WO2019100380A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113106 WO2019100380A1 (zh) 2017-11-27 2017-11-27 上转换器件和材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113106 WO2019100380A1 (zh) 2017-11-27 2017-11-27 上转换器件和材料及其制造方法

Publications (1)

Publication Number Publication Date
WO2019100380A1 true WO2019100380A1 (zh) 2019-05-31

Family

ID=66631775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113106 WO2019100380A1 (zh) 2017-11-27 2017-11-27 上转换器件和材料及其制造方法

Country Status (1)

Country Link
WO (1) WO2019100380A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299434A (zh) * 2008-06-19 2008-11-05 上海交通大学 双光子无源红外上转换成像器件制造方法
CN102646747A (zh) * 2012-04-23 2012-08-22 上海交通大学 红外上转换成像或探测器件及其实现方法
CN102820344A (zh) * 2012-08-06 2012-12-12 厦门理工学院 镓砷磷/磷化镓黄光窄带探测器及其制造方法
CN103178076A (zh) * 2013-04-07 2013-06-26 云南大学 红外光与可见光转换器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299434A (zh) * 2008-06-19 2008-11-05 上海交通大学 双光子无源红外上转换成像器件制造方法
CN102646747A (zh) * 2012-04-23 2012-08-22 上海交通大学 红外上转换成像或探测器件及其实现方法
CN102820344A (zh) * 2012-08-06 2012-12-12 厦门理工学院 镓砷磷/磷化镓黄光窄带探测器及其制造方法
CN103178076A (zh) * 2013-04-07 2013-06-26 云南大学 红外光与可见光转换器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YANG, Y. ET AL.: "Semiconductor Infrared Up-conversion Devices", PROGRESS IN QUANTUM ELECTRONICS, vol. 35, 27 May 2011 (2011-05-27), pages 77 - 108, XP028243457, ISSN: 0079-6727 *
YU , HYEONGGEUN ET AL.: "High-gain Infrared-to-visible Upconversion Light-emitting Phototransistors", NATURE PHOTONICS, vol. 10, 18 January 2016 (2016-01-18), pages 129 - 135, XP055575038, ISSN: 1749-4885 *
ZHAO, LAI ET AL.: "Two-photon Passive Electro-optic Upconversion in a GaAs/AlGaAs Heterostructure Device", APPLIED PHYSICS LETTERS, vol. 90, 23 March 2007 (2007-03-23), pages 121132 - 1 121132-3, XP012093684, ISSN: 0003-6951 *

Similar Documents

Publication Publication Date Title
US6538191B1 (en) Photocell with fluorescent conversion layer
TWI255569B (en) White-light emitting device and method for manufacturing the same
US8163581B1 (en) Semiconductor and optoelectronic devices
US8283215B2 (en) Semiconductor and optoelectronic devices
JP3270476B2 (ja) オーミックコンタクト及びii−vi族化合物半導体素子並びにこれらの製造方法
US20140077240A1 (en) Iv material photonic device on dbr
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
CN105814698A (zh) 具有内部限制的电流注入区域的led
KR20090101604A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
KR102559993B1 (ko) 반도체 소자
TW201320321A (zh) 一種半導體變壓結構和具有其的晶片
CN105405938A (zh) 可见光通信用单芯片白光led及其制备方法
CN110010744A (zh) 通过在发射结构上添置转换结构的光电设备的制造方法
CN108011017B (zh) 上转换器件和材料及其制造方法
CN110880522B (zh) 基于极性面和非极性面生长的微型led集成全色显示芯片及其制备方法
JP2014060382A (ja) 光電変換素子、光電変換システムおよび光電変換素子の製造方法
US20120091474A1 (en) Novel semiconductor and optoelectronic devices
CN109690783A (zh) 形成发光器件的p型层的方法
WO2019100380A1 (zh) 上转换器件和材料及其制造方法
CN103779450A (zh) 增大led发光功率的集成方法
JP2002222991A (ja) 半導体発光素子
CN105655454B (zh) 高调制发光二极管及其制备方法
JP2000269542A (ja) 半導体装置
CN105226150A (zh) 一种N-B双掺SiC衬底的GaN基无荧光粉的高效白光LED结构及其制备方法和应用
CN111739881B (zh) 一种基于mems热电堆的可见光收发集成器件及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932648

Country of ref document: EP

Kind code of ref document: A1