WO2019100309A1 - 一种耐老化抗冲击热塑性弹性体及其制造方法 - Google Patents

一种耐老化抗冲击热塑性弹性体及其制造方法 Download PDF

Info

Publication number
WO2019100309A1
WO2019100309A1 PCT/CN2017/112754 CN2017112754W WO2019100309A1 WO 2019100309 A1 WO2019100309 A1 WO 2019100309A1 CN 2017112754 W CN2017112754 W CN 2017112754W WO 2019100309 A1 WO2019100309 A1 WO 2019100309A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
shell
thermoplastic elastomer
emulsifier
aging
Prior art date
Application number
PCT/CN2017/112754
Other languages
English (en)
French (fr)
Inventor
张唯舟
汪济奎
陈银
Original Assignee
苏州康邦新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州康邦新材料有限公司 filed Critical 苏州康邦新材料有限公司
Priority to PCT/CN2017/112754 priority Critical patent/WO2019100309A1/zh
Publication of WO2019100309A1 publication Critical patent/WO2019100309A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to an ageing and impact resistant thermoplastic elastomer and a method of producing the same.
  • thermoplastic elastomer TPE is a material with high elasticity, high strength, high resilience and the characteristics of injection mold processing. It has environmental protection, non-toxic safety, wide hardness range, excellent coloring property, soft touch, weather resistance, fatigue resistance and temperature resistance. It has excellent processing performance, no need for vulcanization, and can be recycled to reduce costs. It can be used for double injection molding. It can be coated with a base material such as PP, PE, PC, PS or ABS, or it can be molded separately.
  • Thermoplastic elastomers have the physical and mechanical properties of vulcanized rubber and the processability of thermoplastics. Since there is no need for thermal vulcanization, the production of the product can be completed using general-purpose plastic processing equipment. This feature has shortened the production process of the rubber industry by 1/4, saved energy by 25% to 40%, and improved efficiency by 10 to 20 times. It is another revolution in materials and process technology in the rubber industry.
  • TPE/TPR elastomer refers to the alloy elastomer modified based on SEBS and SBS.
  • TPE the elastomer modified by SEBS
  • SBS base is modified.
  • the elastomer is called TPR.
  • SEBS is a polymer material with a saturated molecular structure, while the SBS molecular structural unit contains an unsaturated double bond.
  • the unsaturated double bond is chemically unstable, so in general, SEBS has more than SBS. Excellent chemical stability (such as aging resistance, UV resistance). Accordingly, TPE has better aging and UV resistance than TPR.
  • the TPE of the TPE.SEBS substrate which is usually selected from the SEBS substrate can generally achieve a UV resistance of 3.5.
  • a UV resistance for the aging resistance, some non-authoritative effects from some users indicate
  • the SEBS TPE can usually be used in conventional non-extreme outdoor conditions for about 6 months without yellowing (UV resistance), while the use of 12 months of material does not cause significant aging and performance degradation.
  • thermoplastic elastomer TPE For the manufacturing method of thermoplastic elastomer TPE, there are mainly the following patent documents in China:
  • Patent Publication No.: CN104045958A discloses a formulation of a thermoplastic elastomer material and a method of making the same.
  • the thermoplastic elastomer material is composed of the following raw material formula: 1) polypropylene 7%-15%; 2) ethylene propylene diene monomer 10%-20%; 3) hydrogenated styrene-butadiene- Styrene block copolymer 30%-50%; 4) white mineral oil 10%-30%; 5) ethylene-methyl acrylate copolymer 10%-25%; 6) copper resistant agent 0.01%-5%; 7) Processing aids.
  • the beneficial effects are as follows: 1. Excellent copper resistance. 2, excellent resistance to nitrogen oxides. However, this patent is primarily directed to the stated The thermoplastic elastomer is resistant to copper and nitrogen oxides.
  • an object of the present invention is to provide an aging resistant impact resistant thermoplastic elastomer which adopts a core-shell structure and which does not require a plasticizer (oil-filled); Powder thermoplastic elastomer, optical performance comparable to PMMA; fills the gaps in SEBS-based elastomers and EPDM-based elastomers, such as the use of high-transparent encapsulated PCs, concentrators, etc. It is a product connecting PMMA and SEBS elastomer with superior performance of PMMA and SEBS.
  • An aging resistant impact-resistant thermoplastic elastomer comprising butyl acrylate and an additive as a core, methyl methacrylate, a shell emulsifier and a shell cross-linking agent as shells, and the butyl acrylate is in parts by weight 40 to 50 parts, methyl methacrylate parts by weight: 1 to 5 parts, shell emulsifier: 1 to 5 parts, shell cross-linking agent: 1 to 5 parts, the additive includes the following parts by weight: heat Stabilizer: 1 to 5 parts, antioxidant: 1 to 5 parts, light stabilizer: 1 to 5 parts, toughening agent: 1 to 5 parts, nuclear emulsifier: 1 to 5 parts, nuclear crosslinking agent: 1 ⁇ 5 parts, processing aid: 1 ⁇ 5 parts, deionized water amount.
  • the butyl acrylate is 45 to 50 parts by weight
  • the methyl methacrylate is 3 to 5 parts by weight
  • the shell emulsifier is 2 to 5 parts
  • the shell crosslinking agent is 3 to 5 parts.
  • the additive comprises the following components by weight: heat stabilizer: 2 to 5 parts, antioxidant: 3 to 5 parts, light stabilizer: 2 to 5 parts, toughening agent: 1 to 4 parts, nuclear emulsifier: 2 ⁇ 5 parts, nuclear cross-linking agent: 2-5 parts, processing aid: 1-3 parts, deionized water amount;
  • the thermoplastic elastomer core-shell weight ratio is 8.5-9.5: 0.5-1.5.
  • the butyl acrylate parts by weight are: 45 parts, methyl methacrylate parts by weight: 5 parts, shell emulsifier: 2 parts, shell cross-linking agent: 4 parts, and the additives include the following parts by weight Ingredients: heat stabilizer: 3 parts, antioxidant: 4 parts, light stabilizer: 2 parts, toughening agent: 1 part, nuclear emulsifier: 3 parts, nuclear cross-linking agent: 2 parts, processing aid: 2 The amount of deionized water is appropriate; the thermoplastic elastomer core-shell weight ratio is 9.1:0.9.
  • the heat stabilizer is a calcium stearate or a calcium-zinc composite heat stabilizer
  • the core cross-linking agent and the shell cross-linking agent are polyethylene glycol diacrylate, ethylene glycol dimethacrylate or Triallyl isocyanurate.
  • the toughening agent is an acrylate rubber, a vinyl ester resin or a polyurethane resin.
  • the antioxidant is selected from an alkylphenylnaphthylamine, an alkyldiphenylamine or an alkylated phenol.
  • the light stabilizer is a benzotriazole, a hydroxybenzophenone light stabilizer or a hydroxybenzotriazole light stabilizer.
  • the shell emulsifier and the core emulsifier are sodium dodecyl sulfate, sodium dodecylbenzenesulfonate or sodium lauryl sulfate, respectively.
  • the processing aid is a fatty acid, a fatty acid salt, a fatty acid amide, a polyethylene wax or a polytetrafluoroethylene.
  • the present invention also provides a method for manufacturing an aging resistant impact resistant thermoplastic elastomer, comprising the steps of:
  • a heat stabilizer, an antioxidant, a light stabilizer, a toughening agent, a nuclear emulsifier, a processing aid and deionized water are added to the reactor, and a butyl acrylate monomer and a nuclear crosslinking agent are added. Disperse for 15-20 min at a stirring speed of 800 to 1000 r/min to obtain a butyl acrylate core emulsion;
  • methyl methacrylate, shell emulsifier and shell cross-linking agent are added, and dispersed at a stirring speed of 1000-1200 r/min for 20-30 min to obtain a methyl methacrylate shell emulsion;
  • the butyl acrylate core emulsion prepared in the step 1) is added dropwise to the methyl methacrylate shell emulsion obtained in the step 2), and the dropping time is 1.5 to 2.5 h.
  • the temperature is raised to 90 to 95 ° C, and the temperature is maintained. 2 to 3 hours, freeze, wash, suction filtration, and drying to obtain a powdery aging resistant impact resistant thermoplastic elastomer.
  • the aging resistant and impact-resistant thermoplastic elastomer is a novel powder elastomer obtained by emulsion polymerization using butyl acrylate as a core and methyl methacrylate as a shell; the core-shell ratio is 9.1:0.9, so it surpasses the foreign similar
  • the performance of the product; the acrylate elastomer main chain is a saturated CC structure, so the weather resistance and aging resistance far exceed the styrene and butadiene elastomer; the carboxylation of the side chain gives the product a wider range of use. It has good adsorption with inert fillers and has good compatibility with ABS/PVC/PA:
  • the ink has a strong adhesion (general ink can be used), and can be widely used in printing products, foods, and packaging.
  • polar materials can be very firmly encapsulated or overmolded on polar materials, such as PC, PMMA, transparent ABS, SAN, PVC, PVB and other polar polymers.
  • thermoplastic elastomer and polyvinyl chloride were measured by hot press molding at a mass ratio of 9:1, and the notched impact strength was 82.2 kgf ⁇ cm/cm 2 (that is, 807.204 J/m), and the notched impact was measured after 5 days. strength was 78.6kgf ⁇ cm / cm 2 (i.e. 771.852J / m), 10 days after the notched impact strength was measured 76.5kgf ⁇ cm / cm 2 (i.e.
  • a butyl acrylate core emulsion is obtained; according to the ratio, another reactor is taken, and 3 parts of methyl methacrylate, 3 parts of sodium dodecylbenzene sulfonate and 3 parts of ethylene glycol dimethacrylate are added, at 1000 ⁇ Disperse for 20-30 min at a stirring speed of 1200 r/min to obtain a methyl methacrylate shell emulsion; the obtained butyl acrylate emulsion is added dropwise to the methyl methacrylate shell emulsion, and the dropping time is 1.5 to 2.5 h.
  • thermoplastic elastomer and polyvinyl chloride were measured by hot press molding at a mass ratio of 9:1, and the notched impact strength was 76.3 kgf ⁇ cm/cm 2 (ie, 749.266 J/m), and the notched impact was measured after 5 days. strength was 73.3kgf ⁇ cm / cm 2 (i.e.
  • thermoplastic elastomer and polyvinyl chloride were measured by hot press molding at a mass ratio of 9:1, and the notched impact strength was 83.6 kgf ⁇ cm/cm 2 (ie, 820.952 J/m), and the notched impact was measured after 5 days. strength was 80.8kgf ⁇ cm / cm 2 (i.e.
  • thermoplastic elastomer and polyvinyl chloride were measured by hot press molding at a mass ratio of 9:1, and the notched impact strength was 78.7 kgf ⁇ cm/cm 2 (ie, 772.834 J/m), and the notched impact was measured after 5 days. strength was 76.7kgf ⁇ cm / cm 2 (i.e. 753.194J / m), 10 days after the notched impact strength was measured 74.5kgf ⁇ cm / cm 2 (i.e.
  • thermoplastic elastomer and polyvinyl chloride were measured by hot press molding at a mass ratio of 9:1, and the notched impact strength was 68.9 kgf ⁇ cm/cm 2 (ie, 676.598 J/m), and the notched impact was measured after 5 days.
  • the strength was 66.4 kgf ⁇ cm/cm 2 (ie 652.048 J/m), and the notched impact strength was measured to be 65.9 kgf ⁇ cm/cm 2 (ie, 647.138 J/m) after 10 days, and the notched impact strength was measured to be 64.5 kgf after 20 days. • cm/cm 2 (i.e., 633.39 J/m), and the notched impact strength was measured to be 64.1 kgf ⁇ cm/cm 2 (i.e., 629.462 J/m) after 30 days.
  • the invention provides an aging and impact resistant thermoplastic elastomer and a manufacturing method thereof, wherein the aging resistant and impact resistant thermoplastic elastomer is formed by emulsion polymerization using butyl acrylate as a core and methyl methacrylate as a shell.
  • the new powder elastomer; core-shell ratio is 8.5 ⁇ 9.5: 0.5 ⁇ 1.5 (preferably 9.1: 0.9), so beyond the performance of similar foreign products; acrylate elastomer backbone is saturated CC structure, so weather resistance, resistance The aging performance far exceeds that of styrene and butadiene elastomers; the carboxylation of the side chain gives the product a wider range of use, and it has good adsorption with inert fillers. It has a lot of ABS/PVC/PA. Good compatibility:
  • the ink has a strong adhesion (general ink can be used), and can be widely used in printing products, foods, and packaging.
  • polar materials can be very firmly encapsulated or overmolded on polar materials, such as PC, PMMA, transparent ABS, SAN, PVC, PVB and other polar polymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

一种耐老化抗冲击热塑性弹性体及其制造方法,所述热塑性弹性体采用核-壳结构,以丙烯酸丁酯及添加剂为核,以甲基丙烯酸甲酯、壳乳化剂及壳交联剂为壳。所述热塑性弹性体是透明的粉末粉热塑性弹性体,光学性能堪比PMMA,兼具PMMA及SEBS的优越性能。

Description

一种耐老化抗冲击热塑性弹性体及其制造方法 技术领域
本发明涉及一种耐老化抗冲击热塑性弹性体及其制造方法。
背景技术
热塑性弹性体TPE(Thermoplastic Elastomer)是一种具有橡胶的高弹性,高强度,高回弹性,又具有可注塑加工的特征的材料。具有环保无毒安全,硬度范围广,有优良的着色性,触感柔软,耐候性,抗疲劳性和耐温性,加工性能优越,无须硫化,可以循环使用降低成本,既可以二次注塑成型,与PP、PE、PC、PS、ABS等基体材料包覆粘合,也可以单独成型。
热塑性弹性体(TPE)具有硫化橡胶的物理机械性能和热塑性塑料的工艺加工性能。由于不需经过热硫化,使用通用的塑料加工设备即可完成产品生产。这一特点使橡胶工业生产流程缩短了1/4,节约能耗25%~40%,提高效率10倍~20倍,堪称橡胶工业又一次材料和工艺技术革命。
TPE/TPR弹性体指的是基于SEBS,SBS基础改性的合金弹性体.为便于理解沟通,本文沿用业内TPE生产企业的习惯,将SEBS基础改性的弹性体称TPE,将SBS基础改性的弹性体称TPR.SEBS为饱和分子结构的高分子材料,而SBS分子结构单元中含有不饱和双键.不饱和双键的化学性不稳定,因此,一般而言,SEBS比SBS具有更为优良的化学稳定性(如耐老化,抗紫外线UV性能)。相应地,TPE比TPR具有更为良好的耐老化抗UV性能。
在选择耐老化抗UV的弹性体时,通常选用SEBS基材的TPE.SEBS基材的TPE一般抗UV性能可以达到3.5级,对于耐老化性,一些非权威性的来自部分用户的使用效果表明,SEBS的TPE通常可以在常规非极端户外条件使用6个月左右不发生黄变(抗UV性能),而使用12个月材料不会发生明显的老化而导致性能下降。
对于热塑性弹性体TPE的制造方法,目前国内主要存在如下专利文献:
专利公开号:CN104045958A,公开了一种热塑性弹性体材料的配方及其制作方法。所述的热塑性弹性体材料由以下重量百分数计的原料配方构成:1)聚丙烯7%-15%;2)三元乙丙橡胶10%-20%;3)氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物30%-50%;4)白矿油10%-30%;5)乙烯-丙烯酸甲酯共聚物10%-25%;6)抗铜害剂0.01%-5%;7)加工助剂。其有益效果是:1、优异的抗铜害性。2、优异的抗氮氧化物性。然而,该专利主要针对的是所述 热塑性弹性体的抗铜害性及抗氮氧化物性。
发明内容
为解决上述存在的问题,本发明的目的在于提供一种耐老化抗冲击热塑性弹性体及其制造方法,所述热塑性弹性体采用核-壳结构,无需增塑剂(充油);是透明的粉末热塑性弹性体,光学性能堪比PMMA;填补了SEBS类弹性体及EPDM类弹性体的空缺,如高透明包胶PC的运用,聚光体等。是连接PMMA同SEBS弹性体之间的一种产品,具有PMMA及SEBS的优越性能。
为达到上述目的,本发明的技术方案是:
一种耐老化抗冲击热塑性弹性体,所述热塑性弹性体以丙烯酸丁酯及添加剂为核,以甲基丙烯酸甲酯、壳乳化剂及壳交联剂为壳,所述丙烯酸丁酯重量份为:40~50份,甲基丙烯酸甲酯重量份为:1~5份,壳乳化剂:1~5份,壳交联剂:1~5份,所述添加剂包括如下重量份的成分:热稳定剂:1~5份,抗氧剂:1~5份,光稳定剂:1~5份,增韧剂:1~5份,核乳化剂:1~5份,核交联剂:1~5份,加工助剂:1~5份,去离子水适量。
进一步,所述丙烯酸丁酯重量份为:45~50份,甲基丙烯酸甲酯重量份为:3~5份,壳乳化剂:2~5份,壳交联剂:3~5份,所述添加剂包括如下重量份的成分:热稳定剂:2~5份,抗氧剂:3~5份,光稳定剂:2~5份,增韧剂:1~4份,核乳化剂:2~5份,核交联剂:2~5份,加工助剂:1~3份,去离子水适量;所述热塑性弹性体核壳重量比为8.5~9.5:0.5~1.5。
优选地,所述丙烯酸丁酯重量份为:45份,甲基丙烯酸甲酯重量份为:5份,壳乳化剂:2份,壳交联剂:4份,所述添加剂包括如下重量份的成分:热稳定剂:3份,抗氧剂:4份,光稳定剂:2份,增韧剂:1份,核乳化剂:3份,核交联剂:2份,加工助剂:2份,去离子水适量;所述热塑性弹性体核壳重量比为9.1:0.9。
另,所述热稳定剂为硬脂酸钙或钙锌复合热稳定剂,所述核交联剂及壳交联剂分别为聚乙二醇二丙烯酸酯、二甲基丙烯酸乙二醇酯或异氰脲酸三烯丙酯。
另有,所述增韧剂为丙烯酸酯橡胶、乙烯基酯树脂或聚氨酯树脂。
再,所述抗氧剂选为烷基苯基萘胺、烷基二苯胺或烷基化苯酚。
再有,所述光稳定剂为苯并三唑、羟基二苯甲酮类光稳定剂或羟基苯并三唑类光稳定剂。
且,所述壳乳化剂及核乳化剂分别为十二烷基磺酸钠、十二烷基苯磺酸钠或十二烷基硫酸钠。
另,所述加工助剂为脂肪酸、脂肪酸盐、脂肪酸酰胺、聚乙烯蜡或聚四氟乙烯。
同时,本发明还提供一种耐老化抗冲击热塑性弹性体的制造方法,包括如下步骤:
1)核乳化
按照配比,向反应器内加入热稳定剂、抗氧剂、光稳定剂、增韧剂、核乳化剂、加工助剂及去离子水,加入丙烯酸丁酯单体及核交联剂,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;
2)壳乳化
按照配比,另取反应器,加入甲基丙烯酸甲酯、壳乳化剂及壳交联剂,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;
3)制备耐老化抗冲击热塑性弹性体
将步骤1)制得的丙烯酸丁酯核乳液滴加至步骤2)所得甲基丙烯酸甲酯壳乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。
本发明的有益效果在于:
所述的耐老化抗冲击热塑性弹性体,以丙烯酸丁酯为核,甲基丙烯酸甲酯为壳,通过乳液聚合而成的新型粉末弹性体;核壳比为9.1:0.9,所以超越了国外同类产品的性能;丙烯酸酯弹性体主链是饱和的C-C结构,所以耐候性能、耐老化性能远远超过苯乙烯类、丁二烯类的弹性体;侧链的羧基化赋予了产品使用范围更宽,可以与惰性填充物有很好的吸附性,跟ABS/PVC/PA有很好的相容性:
(1)可提升苯乙烯类弹性的耐候性、耐老化性、耐刮白性能;
(2)提高ABS、ABS/PC、阻燃ABS/PC的冲击性能和耐老化性能;
(3)提高PVC的耐低温、冲击性能,提高发泡PVC的加工性能;
(4)提高印刷性能,由于油墨着附力非常强(一般油墨就可以),可广泛运用于需喷涂印刷产品,食品类,包装类。
(5)提高与极性材料的包胶性能,可非常牢固地包胶或二次注塑于极性材料上面,如PC、PMMA,透明ABS、SAN、PVC、PVB等极性聚合物。
具体实施方式
实施例1
按照配比,向反应器内加入3份硬脂酸钙、4份烷基苯基萘胺、2份苯并三唑、1份丙烯酸酯橡胶、3份十二烷基磺酸钠、1份脂肪酸、1份脂肪酸盐及适量去离子水,加入45份丙烯 酸丁酯单体及2份聚乙二醇二丙烯酸酯,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;按照配比,另取反应器,加入5份甲基丙烯酸甲酯、2份十二烷基磺酸钠及4份聚乙二醇二丙烯酸酯,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;将制得的丙烯酸丁酯核乳液滴加至甲基丙烯酸甲酯壳乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。将得到的热塑性弹性体和聚氯乙烯按9:1的质量比共混热压成型后测得,缺口冲击强度82.2kgf·cm/cm2(即807.204J/m),5天后测得缺口冲击强度为78.6kgf·cm/cm2(即771.852J/m),10天后测得缺口冲击强度为76.5kgf·cm/cm2(即751.23J/m),20天后测得缺口冲击强度为74.8kgf·cm/cm2(即734.536J/m),30天后测得缺口冲击强度为73.7kgf·cm/cm2(即723.734J/m)。
实施例2
按照配比,向反应器内加入2份钙锌复合热稳定剂、3份烷基二苯胺、3份羟基二苯甲酮类光稳定剂、5份乙烯基酯树脂、2份十二烷基苯磺酸钠、1份脂肪酸酰胺及适量去离子水,加入43份丙烯酸丁酯单体及3份二甲基丙烯酸乙二醇酯,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;按照配比,另取反应器,加入3份甲基丙烯酸甲酯、3份十二烷基苯磺酸钠及3份二甲基丙烯酸乙二醇酯,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;将制得的丙烯酸丁酯核乳液滴加至甲基丙烯酸甲酯壳乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。将得到的热塑性弹性体和聚氯乙烯按9:1的质量比共混热压成型后测得,缺口冲击强度76.3kgf·cm/cm2(即749.266J/m),5天后测得缺口冲击强度为73.3kgf·cm/cm2(即719.806J/m),10天后测得缺口冲击强度为72.8kgf·cm/cm2(即714.896J/m),20天后测得缺口冲击强度为70.8kgf·cm/cm2(即695.256J/m),30天后测得缺口冲击强度为70.1kgf·cm/cm2(即688.382J/m)。
实施例3
按照配比,向反应器内加入4份硬脂酸钙、1份烷基化苯酚、4份羟基苯并三唑类光稳定剂、4份聚氨酯树脂、1份十二烷基硫酸钠、3份聚乙烯蜡、2份聚四氟乙烯及适量去离子水,加入50份丙烯酸丁酯单体及1份异氰脲酸三烯丙酯,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;按照配比,另取反应器,加入4份甲基丙烯酸甲酯、4份十二烷基硫酸钠及1份异氰脲酸三烯丙酯,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;将制得的丙烯酸丁酯核乳液滴加至甲基丙烯酸甲酯壳 乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。将得到的热塑性弹性体和聚氯乙烯按9:1的质量比共混热压成型后测得,缺口冲击强度83.6kgf·cm/cm2(即820.952J/m),5天后测得缺口冲击强度为80.8kgf·cm/cm2(即793.456J/m),10天后测得缺口冲击强度为79.2kgf·cm/cm2(即777.744J/m),20天后测得缺口冲击强度为78.8kgf·cm/cm2(即773.816J/m),30天后测得缺口冲击强度为78.5kgf·cm/cm2(即770.87J/m)。
实施例4
按照配比,向反应器内加入5份硬脂酸钙、2份烷基苯基萘胺、3份烷基二苯胺、1份羟基二苯甲酮类光稳定剂、2份聚氨酯树脂、5份十二烷基磺酸钠、4份聚乙烯蜡及适量去离子水,加入48份丙烯酸丁酯单体及核交联剂,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;按照配比,另取反应器,加入4份甲基丙烯酸甲酯、4份十二烷基硫酸钠及4份聚乙二醇二丙烯酸酯,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;将制得的丙烯酸丁酯核乳液滴加至甲基丙烯酸甲酯壳乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。将得到的热塑性弹性体和聚氯乙烯按9:1的质量比共混热压成型后测得,缺口冲击强度78.7kgf·cm/cm2(即772.834J/m),5天后测得缺口冲击强度为76.7kgf·cm/cm2(即753.194J/m),10天后测得缺口冲击强度为74.5kgf·cm/cm2(即731.59J/m),20天后测得缺口冲击强度为73.8kgf·cm/cm2(即724.716J/m),30天后测得缺口冲击强度为72.4kgf·cm/cm2(即710.968J/m)。
实施例5
按照配比,向反应器内加入1份硬脂酸钙、2份烷基二苯胺、5份苯并三唑、3份丙烯酸酯橡胶、2份十二烷基磺酸钠、2份十二烷基苯磺酸钠、3份聚乙烯蜡及适量去离子水,加入40份丙烯酸丁酯单体及5份异氰脲酸三烯丙酯,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;按照配比,另取反应器,加入1份甲基丙烯酸甲酯、5份十二烷基苯磺酸钠及5份异氰脲酸三烯丙酯,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;将制得的丙烯酸丁酯核乳液滴加至甲基丙烯酸甲酯壳乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。将得到的热塑性弹性体和聚氯乙烯按9:1的质量比共混热压成型后测得,缺口冲击强度68.9kgf·cm/cm2(即676.598J/m),5天后测得缺口冲击强度为66.4kgf·cm/cm2(即652.048J/m),10天后测得缺口冲击强度为65.9 kgf·cm/cm2(即647.138J/m),20天后测得缺口冲击强度为64.5kgf·cm/cm2(即633.39J/m),30天后测得缺口冲击强度为64.1kgf·cm/cm2(即629.462J/m)。
本发明所提供的一种耐老化抗冲击热塑性弹性体及其制造方法,所述的耐老化抗冲击热塑性弹性体,以丙烯酸丁酯为核,甲基丙烯酸甲酯为壳,通过乳液聚合而成的新型粉末弹性体;核壳比为8.5~9.5:0.5~1.5(优选9.1:0.9),所以超越了国外同类产品的性能;丙烯酸酯弹性体主链是饱和的C-C结构,所以耐候性能、耐老化性能远远超过苯乙烯类、丁二烯类的弹性体;侧链的羧基化赋予了产品使用范围更宽,可以与惰性填充物有很好的吸附性,跟ABS/PVC/PA有很好的相容性:
(1)可提升苯乙烯类弹性的耐候性、耐老化性、耐刮白性能;
(2)提高ABS、ABS/PC、阻燃ABS/PC的冲击性能和耐老化性能;
(3)提高PVC的耐低温、冲击性能,提高发泡PVC的加工性能;
(4)提高印刷性能,由于油墨着附力非常强(一般油墨就可以),可广泛运用于需喷涂印刷产品,食品类,包装类。
(5)提高与极性材料的包胶性能,可非常牢固地包胶或二次注塑于极性材料上面,如PC、PMMA,透明ABS、SAN、PVC、PVB等极性聚合物。
需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的范围,其均应涵盖在本发明的权利要求范围中。

Claims (10)

  1. 一种耐老化抗冲击热塑性弹性体,其特征在于,所述热塑性弹性体以丙烯酸丁酯及添加剂为核,以甲基丙烯酸甲酯、壳乳化剂及壳交联剂为壳,所述丙烯酸丁酯重量份为:40~50份,甲基丙烯酸甲酯重量份为:1~5份,壳乳化剂:1~5份,壳交联剂:1~5份,所述添加剂包括如下重量份的成分:热稳定剂:1~5份,抗氧剂:1~5份,光稳定剂:1~5份,增韧剂:1~5份,核乳化剂:1~5份,核交联剂:1~5份,加工助剂:1~5份,去离子水适量。
  2. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述丙烯酸丁酯重量份为:45~50份,甲基丙烯酸甲酯重量份为:3~5份,壳乳化剂:2~5份,壳交联剂:3~5份,所述添加剂包括如下重量份的成分:热稳定剂:2~5份,抗氧剂:3~5份,光稳定剂:2~5份,增韧剂:1~4份,核乳化剂:2~5份,核交联剂:2~5份,加工助剂:1~3份,去离子水适量;所述热塑性弹性体核壳重量比为8.5~9.5:0.5~1.5。
  3. 根据权利要求2所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述丙烯酸丁酯重量份为:45份,甲基丙烯酸甲酯重量份为:5份,壳乳化剂:2份,壳交联剂:4份,所述添加剂包括如下重量份的成分:热稳定剂:3份,抗氧剂:4份,光稳定剂:2份,增韧剂:1份,核乳化剂:3份,核交联剂:2份,加工助剂:2份,去离子水适量;所述热塑性弹性体核壳重量比为9.1:0.9。
  4. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述热稳定剂为硬脂酸钙或钙锌复合热稳定剂,所述核交联剂及壳交联剂分别为聚乙二醇二丙烯酸酯、二甲基丙烯酸乙二醇酯或异氰脲酸三烯丙酯。
  5. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述增韧剂为丙烯酸酯橡胶、乙烯基酯树脂或聚氨酯树脂。
  6. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述抗氧剂选为烷基苯基萘胺、烷基二苯胺或烷基化苯酚。
  7. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述光稳定剂为苯并三唑、羟基二苯甲酮类光稳定剂或羟基苯并三唑类光稳定剂。
  8. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述壳乳化剂及核乳化剂分别为十二烷基磺酸钠、十二烷基苯磺酸钠或十二烷基硫酸钠。
  9. 根据权利要求1所述的一种耐老化抗冲击热塑性弹性体,其特征在于,所述加工助剂为脂肪酸、脂肪酸盐、脂肪酸酰胺、聚乙烯蜡或聚四氟乙烯。
  10. 一种如权利要求1~9中任一项所述的耐老化抗冲击热塑性弹性体的制造方法,其特征在于,包括如下步骤:
    1)核乳化
    按照配比,向反应器内加入热稳定剂、抗氧剂、光稳定剂、增韧剂、核乳化剂、加工助剂及去离子水,加入丙烯酸丁酯单体及核交联剂,在800~1000r/min的搅拌转速下分散15~20min,得丙烯酸丁酯核乳液;
    2)壳乳化
    按照配比,另取反应器,加入甲基丙烯酸甲酯、壳乳化剂及壳交联剂,在1000~1200r/min的搅拌转速下分散20~30min,得甲基丙烯酸甲酯壳乳液;
    3)制备耐老化抗冲击热塑性弹性体
    将步骤1)制得的丙烯酸丁酯核乳液滴加至步骤2)所得甲基丙烯酸甲酯壳乳液内,滴加时间为1.5~2.5h,滴加完成后,升温至90~95℃,保温2~3h,冷冻、洗涤、抽滤、干燥,得粉末状的耐老化抗冲击热塑性弹性体。
PCT/CN2017/112754 2017-11-24 2017-11-24 一种耐老化抗冲击热塑性弹性体及其制造方法 WO2019100309A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112754 WO2019100309A1 (zh) 2017-11-24 2017-11-24 一种耐老化抗冲击热塑性弹性体及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112754 WO2019100309A1 (zh) 2017-11-24 2017-11-24 一种耐老化抗冲击热塑性弹性体及其制造方法

Publications (1)

Publication Number Publication Date
WO2019100309A1 true WO2019100309A1 (zh) 2019-05-31

Family

ID=66630413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112754 WO2019100309A1 (zh) 2017-11-24 2017-11-24 一种耐老化抗冲击热塑性弹性体及其制造方法

Country Status (1)

Country Link
WO (1) WO2019100309A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391140A (zh) * 2019-08-19 2021-02-23 佛山市莫斯卡有机硅实业有限公司 环保耐老化玻璃胶配方及制备方法
WO2023193399A1 (zh) * 2022-04-06 2023-10-12 深圳市德立新材料科技有限公司 核壳树脂材料以及制备方法、水性聚合物涂料、电池隔膜、二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418065A (zh) * 2007-10-23 2009-04-29 沂源瑞丰高分子材料有限公司 应用于pvc波纹管的抗冲改性剂
CN101864026A (zh) * 2010-07-08 2010-10-20 河北工业大学 尼龙6增韧用功能化丙烯酸酯共聚物乳液的制备方法
CN101870751A (zh) * 2010-07-08 2010-10-27 河北工业大学 一种尼龙6增韧用丙烯酸酯功能化共聚物的制备方法
CN105237675A (zh) * 2015-10-15 2016-01-13 三棵树涂料股份有限公司 一种具有核壳双交联结构的聚丙烯酸木器乳液及其制备方法
CN106188927A (zh) * 2016-08-10 2016-12-07 深圳毅彩鸿翔新材料科技有限公司 抗紫外耐候性asa树脂、共挤塑料制品、薄膜和制品
CN106987080A (zh) * 2017-04-20 2017-07-28 苏州康邦新材料有限公司 Tpe止血带及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418065A (zh) * 2007-10-23 2009-04-29 沂源瑞丰高分子材料有限公司 应用于pvc波纹管的抗冲改性剂
CN101864026A (zh) * 2010-07-08 2010-10-20 河北工业大学 尼龙6增韧用功能化丙烯酸酯共聚物乳液的制备方法
CN101870751A (zh) * 2010-07-08 2010-10-27 河北工业大学 一种尼龙6增韧用丙烯酸酯功能化共聚物的制备方法
CN105237675A (zh) * 2015-10-15 2016-01-13 三棵树涂料股份有限公司 一种具有核壳双交联结构的聚丙烯酸木器乳液及其制备方法
CN106188927A (zh) * 2016-08-10 2016-12-07 深圳毅彩鸿翔新材料科技有限公司 抗紫外耐候性asa树脂、共挤塑料制品、薄膜和制品
CN106987080A (zh) * 2017-04-20 2017-07-28 苏州康邦新材料有限公司 Tpe止血带及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391140A (zh) * 2019-08-19 2021-02-23 佛山市莫斯卡有机硅实业有限公司 环保耐老化玻璃胶配方及制备方法
WO2023193399A1 (zh) * 2022-04-06 2023-10-12 深圳市德立新材料科技有限公司 核壳树脂材料以及制备方法、水性聚合物涂料、电池隔膜、二次电池

Similar Documents

Publication Publication Date Title
TWI357417B (en) Acrylate-vinyl aromatic-unsaturated nitrile graft
CN103435869A (zh) 一种高丙烯腈含量的浅色nbr/pvc耐油橡胶材料
JP2007529571A (ja) トリブロックブロックコポリマーを含む架橋組成物と、その製造方法およびその使用
KR101956735B1 (ko) 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
KR101346824B1 (ko) 데브리스가 개선된 동적 가교형 열가소성 탄성체 조성물, 이의 제조방법 및 이를 이용하여 제조된 신발 겉창
KR20120059668A (ko) 내후성이 우수한 열가소성 수지 조성물 및 이를 이용한 열가소성 수지의 제조 방법
CN109486473A (zh) 一种多功能相变复合材料及其制备方法
KR20180107387A (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2019100309A1 (zh) 一种耐老化抗冲击热塑性弹性体及其制造方法
BR112017020954B1 (pt) Processos para formar um artigo a partir de uma borracha de dieno e artigo de borracha de dieno
KR101566118B1 (ko) 충격강도가 향상된 아크릴계 공중합체
KR20110079011A (ko) 내충격성 및 내후성이 우수한 열가소성 수지 조성물
CN107541004B (zh) 一种抗负荷耐疲劳型tpe热塑性弹性体及其制备方法
KR101756083B1 (ko) 투명성이 우수한 동적 가교형 열가소성 탄성체 조성물, 이의 제조방법 및 이를 이용하여 제조된 신발 겉창
KR102226064B1 (ko) 열가소성 수지 조성물
CN107383631B (zh) 一种优良加工性的高磁性橡胶密封条复合材料及其制备方法
CN104479222A (zh) 一种聚丙烯复合材料及其制备方法
KR101827613B1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
CN107828121A (zh) 一种动态硫化热塑性弹性体材料及其制备方法
KR102278034B1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
CN103059401A (zh) 一种耐油热塑性弹性体及其制备方法
KR101922525B1 (ko) 가공성, 기계적 강도, 영구압축변형률 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법
KR20200044570A (ko) 그라프트 공중합체 분말의 제조방법
KR20140046755A (ko) 충격강도가 우수한 알킬아크릴레이트-비닐방향족 화합물-비닐시안 화합물 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물
JPS62192440A (ja) 形状記憶性成形体およびその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933059

Country of ref document: EP

Kind code of ref document: A1