WO2019098759A2 - 형질전환된 인간세포 및 이의 용도 - Google Patents

형질전환된 인간세포 및 이의 용도 Download PDF

Info

Publication number
WO2019098759A2
WO2019098759A2 PCT/KR2018/014112 KR2018014112W WO2019098759A2 WO 2019098759 A2 WO2019098759 A2 WO 2019098759A2 KR 2018014112 W KR2018014112 W KR 2018014112W WO 2019098759 A2 WO2019098759 A2 WO 2019098759A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
hla
cells
cell
mhc
Prior art date
Application number
PCT/KR2018/014112
Other languages
English (en)
French (fr)
Other versions
WO2019098759A3 (ko
Inventor
임옥재
김문경
이윤정
이지원
양우석
김유영
권영은
최승현
Original Assignee
재단법인 목암생명과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020527057A priority Critical patent/JP2021503284A/ja
Priority to MX2020005235A priority patent/MX2020005235A/es
Priority to CN201880074666.8A priority patent/CN111742049A/zh
Priority to EP18877963.1A priority patent/EP3712268A4/en
Priority to SG11202004529XA priority patent/SG11202004529XA/en
Priority to KR1020207011903A priority patent/KR20200074954A/ko
Application filed by 재단법인 목암생명과학연구소 filed Critical 재단법인 목암생명과학연구소
Priority to CA3082331A priority patent/CA3082331A1/en
Priority to US16/764,664 priority patent/US20200407713A1/en
Priority to AU2018367792A priority patent/AU2018367792A1/en
Publication of WO2019098759A2 publication Critical patent/WO2019098759A2/ko
Publication of WO2019098759A3 publication Critical patent/WO2019098759A3/ko
Priority to IL274691A priority patent/IL274691A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0637Immunosuppressive T lymphocytes, e.g. regulatory T cells or Treg
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to transformed human cells and their uses, and more particularly to human cells transformed through guide RNAs and their uses.
  • Immunotherapy means treatment of diseases through interaction of immune cells such as NK cells, T cells, dendritic cells and the like.
  • immune cells such as NK cells, T cells, dendritic cells and the like.
  • immunotherapy using genetically modified T cells expressing an antigen-specific chimeric antigen receptor is emerging.
  • NK cells having high cytotoxicity through activation of NK cells in vitro have an excellent therapeutic effect on blood cancer such as leukemia (Blood Cells Molecules & Disease, 33: p261-266, 2004).
  • the inventors synthesized a guide RNA targeting a MHC I cell membrane receptor and a MHC II cell membrane receptor-encoding gene.
  • cells expressing the MHC I cell membrane receptor and the MHC II cell membrane receptor were inhibited by using the composition for inhibiting gene expression comprising the guide RNA and RNA-induced endonuclease as an active ingredient, HLA-E can be introduced to prevent in vivo immunological removal reactions.
  • the present invention provides a guide RNA complementarily binding to a nucleic acid sequence encoding ⁇ 2-microglobulin (B2M), wherein the guide RNA comprises a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 26; < / RTI > wherein the guide RNA comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: A guide RNA complementarily binding to a nucleic acid sequence encoding HLA-DQ, wherein the guide RNA comprises any one of the nucleotide sequences selected from the group consisting of SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 87 and SEQ ID NO: 90 Provide the guide RNA that is to do; Wherein the guide RNA comprises a nucleic acid sequence of SEQ ID NO: 123 or SEQ ID NO: 129, wherein the guide RNA is complementary to a nucleic acid
  • the present invention provides a composition for inhibiting gene expression, which comprises a guide RNA or a guide RNA encoding nucleotide and an RNA-inducing endonuclease or an RNA-induced endonuclease encoding nucleotide as an active ingredient.
  • the present invention also provides transformed cells in which expression of MHC I cell membrane receptor and MHC II cell membrane receptor is inhibited.
  • the present invention also provides a pharmaceutical composition for treating cancer, an infectious disease, a degenerative disease, a genetic disease or an immunological disease comprising the transformed cell as an active ingredient, and a method for treating cancer, infectious disease, Degenerative diseases, hereditary diseases or immune diseases.
  • the present invention also provides a method for inhibiting the expression of MHC I cell membrane receptors and MHC II cell membrane receptors and expressing a peptide antigen bound to a modified MHC I cell membrane receptor, for example, a G-peptide on the cell membrane surface Cancer, infectious disease, degenerative disease, hereditary disease or immune disease.
  • a modified MHC I cell membrane receptor for example, a G-peptide on the cell membrane surface Cancer, infectious disease, degenerative disease, hereditary disease or immune disease.
  • the MHC I cell membrane receptor and the MHC II cell membrane receptor-encoding gene-modified cell using the system for inhibiting gene expression using the guide RNA according to the present invention can be produced.
  • HLA-E conjugated with a peptide antigen for example, a G-peptide, may be introduced into the cell.
  • Such transformed cells can effectively exert the therapeutic effect of cells even in vivo, and can not be removed by an in vivo immune response. Therefore, it is expected that the composition containing the cell as an active ingredient may be useful for the treatment of cancer, infectious disease, degenerative disease, hereditary disease or immune disease.
  • FIG. 1 shows the results of HLA-ABC negative cells analyzed by flow cytometry in cells prepared using B2M target gRNA.
  • FIG. 2 is a result of analysis of HLA-DR-negative cells in cells prepared using HLA-DRA target gRNA by a flow cytometer.
  • FIG. 3 shows HLA-DQ negative cells analyzed by flow cytometry in cells prepared using HLA-DQA target gRNA.
  • FIG. 4 shows the results of HLA-DP negative cells analyzed by flow cytometry in cells prepared using HLA-DPA target gRNA.
  • Figure 5 shows the production rate of HLA-ABC negative cell line according to B2M target gRNA.
  • FIG. 6 shows the production rate of HLA-DR negative cell line according to DRA target gRNA.
  • FIG. 7 shows the production rate of HLA-DQ negative cell line according to DQA target gRNA.
  • Figure 8 shows the production rate of HLA-DP negative cell line according to DPA target gRNA.
  • FIG. 9 shows the variation of the nucleic acid encoding B2M in the cell line prepared with B2M target gRNA.
  • FIG. 10 shows the mutation of the nucleic acid encoding HLA-DRA in the cell line prepared with the HLA-DRA target gRNA.
  • Fig. 11 shows the mutation of the nucleic acid encoding HLA-DQA in the cell line prepared with the HLA-DQA target gRNA.
  • Fig. 12 shows the mutation of the nucleic acid encoding HLA-DPA in the cell line prepared with the HLA-DPA target gRNA.
  • FIG. 13 shows HLA-I positive NK-92MI cell line and HLA-I negative NK-92MI cell line after cell separation.
  • Fig. 14 shows the results of evaluating the cytotoxicity of HLA-I positive NK-92MI cell line and HLA-I negative NK-92MI cell line.
  • FIG. 15 shows the results of analysis of CD4 T cells, CD8 T cells and NK cells using gRNA, followed by analysis with a flow cytometer.
  • FIG. 16 shows the efficiency of deletion of the target in cells transformed with a single gRNA and cells transformed with a complex gRNA.
  • FIG. 19 shows the cytokine production potencies of HLA-I positive NK cells and HLA-I negative NK cells.
  • 21 shows the HLA-E schematic diagram of the G-peptide loaded and the structure of the protein for expressing it.
  • FIG. 23 shows the results of evaluating the cytotoxicity of NK cells against K562 cell line (K562 G-B2M-HLA-E) expressing HLA-E and control K562 cell line (K562).
  • the term " B2M" means a b2-microglobulin protein, which is a component of MHC I.
  • the B2M is essential for the MHC I cell membrane receptor to be expressed on the cell surface, and when the B2M is removed or modified, the MHC I cell membrane receptor is hardly expressed on the cell surface. Therefore, the function of the MHC I cell membrane receptor can be removed by modifying the B2M gene.
  • the guide RNA complementarily binding to the nucleic acid sequence encoding B2M may be any one selected from the group consisting of SEQ ID NOS: 1 to 58, and specifically includes SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 26. ≪ / RTI >
  • One aspect of the present invention is a guide RNA complementarily binding to a nucleic acid sequence encoding HLA-DQ, wherein the guide RNA is selected from the group consisting of SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 87 and SEQ ID NO: 90 Wherein the nucleotide sequence of any one of SEQ ID NOs: 1, 2, 3,
  • HLA refers to a human leukocyte antigen, which is the product of the MHC gene.
  • said HLA consists of HLA I and HLA II wherein said HLA I comprises HLA-A, HLA-B and HLA-C, said HLA II comprising HLA-DQ, HLA-DP and HLA-DR have.
  • HLA-DQ refers to an alpha beta heterodimer that constitutes MHC II.
  • the DQ is composed of HLA-DQA1 and HLA-DQB1, the alpha subunit is encoded by the HLA-DQA1 gene, and the beta subunit is encoded by the HLA-DQB1 gene.
  • Another aspect of the present invention provides a guide RNA complementary to a nucleic acid sequence encoding HLA-DP, wherein the guide RNA comprises a nucleic acid sequence of SEQ ID NO: 123 or SEQ ID NO: 129.
  • HLA-DP is a MHC II cell surface receptor that is encoded, consisting of a DP alpha subunit and a DP beta subunit.
  • the DPa is encoded by HLA-DPA1 and the DP beta is encoded by HLA-DPB1.
  • the guide RNA complementarily binding to the nucleic acid sequence encoding the DP may be any one selected from the group consisting of SEQ ID NOs: 117 to 175, and specifically may be SEQ ID NO: 123 or SEQ ID NO:
  • HLA-DR refers to an alpha beta heterodimer that constitutes an MHC II cell surface receptor.
  • Each subunit of HLA-DR contains two extracellular domains, a membrane-spanning domain and a cytoplasmic tail.
  • the DR gene may be modified to inhibit MHC II cell membrane receptor expression.
  • the guide RNA complementarily binding to the DR-encoding nucleic acid sequence may be any one selected from the group consisting of SEQ ID NOs: 176 to 234, preferably, SEQ ID NO: 186, SEQ ID NO: 188 and SEQ ID NO: 225 . ≪ / RTI >
  • gRNA guide RNA
  • the guide RNA may be a guide RNA derived from a clustered regularly interspaced short palindromic repeats (CRISPR) system.
  • CRISPR clustered regularly interspaced short palindromic repeats
  • the guide RNA may comprise a non-naturally occurring chimeric crRNA sequence, wherein the crRNA may comprise a variable targeting domain capable of hybridizing to the target sequence.
  • the guide RNA contains complementary sequences for B2M, HLA-DQ, HLA-DP and HLA-DR genes. Which can be delivered into a cell and then recognize the target sequence and form a complex with an RNA-inducing endonuclease.
  • compositions for suppressing gene expression comprising the guide RNA or the guide RNA encoding nucleotide and an RNA-inducing endonuclease or an RNA-induced endonuclease encoding nucleotide as an active ingredient.
  • RNA-inducing endonuclease may be delivered in mRNA form or protein form, or may be transferred to a target cell by transformation with a vector carrying DNA encoding the same.
  • an endonuclease When an endonuclease is used in the form of a protein, it can function as an RNP complex in complex with the guide RNA.
  • RNP complex is intended to include the guide RNA and RNA-inducing endonuclease as an active ingredient, wherein the complex recognizes and binds the target sequence, Can be cut.
  • the RNA complex may be, for example, a Cas9-gRNA complex, but is not limited thereto.
  • the RNA-induced endonucleases are selected from the group consisting of Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cas12a, Cas12b, Cas12c, 13a, Cas 13b, Cas 13c, Cas 13d, Cpf1, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, , Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3 and Csf4.
  • One aspect of the present invention provides transformed cells in which expression of MHC I cell membrane receptor and MHC II cell membrane receptor is inhibited.
  • expression inhibition refers to a modification of a nucleotide sequence that results in the degradation of a target gene, and preferably means that the target gene expression is undetectable or non-existent.
  • the transformed cells can express the peptide antigen on the cell membrane surface.
  • the peptide antigen includes, for example, but not limited to, HLA-A, HLA-B, HLA-C, and HLA-G signal peptides. Specifically, it is a signal peptide of HLA-G (G-peptide).
  • the peptide antigen may be bound to a modified MHC I cell membrane receptor.
  • the modified MHC I cell membrane receptor has a structure in which HLA-E and B2M are linked to each other. Specifically, the modified MHC I cell membrane receptor binds to the N- The C-terminus may be connected through the first linker, and the C-terminus of the G-peptide may be connected to the N-terminus of the B2M through the second linker.
  • the modified MHC I cell membrane receptor may have a structure in which HLA-G and B2M are linked.
  • the G-peptide may have the sequence of SEQ ID NO: 236, the HLA-E may have the sequence of SEQ ID NO: 240, the B2M may have the sequence of SEQ ID NO: 237 ,
  • the first linker may be (G 4 S) n (n is an integer of 1 to 5), and in one embodiment may have the sequence of SEQ ID NO: 238.
  • the second linker may be (G 4 S) n (n is an integer of 2 to 6) and may have the sequence of SEQ ID NO: 241.
  • the modification of the gene encoding the MHC I cell membrane receptor comprises a guide RNA complementarily binding to the B2M-encoding nucleic acid sequence (for example, SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 17 or SEQ ID NO: 26).
  • modification of the MHC I can be performed by single deletion using a single guide RNA.
  • the modification of the DQ, DP and DR genes encoding MHC II cell membrane receptors comprises a guide RNA complementarily binding to the DQ-encoding nucleic acid sequence (e.g., SEQ ID NO: 64, (For example, SEQ ID NO: 123 or SEQ ID NO: 129) complementary to the nucleic acid sequence encoding the DP, and a nucleic acid sequence complementary to the DR-encoding nucleic acid sequence (For example, SEQ ID NO: 186, SEQ ID NO: 188 or SEQ ID NO: 225).
  • SEQ ID NO: 64 (For example, SEQ ID NO: 123 or SEQ ID NO: 129) complementary to the nucleic acid sequence encoding the DP
  • a nucleic acid sequence complementary to the DR-encoding nucleic acid sequence (For example, SEQ ID NO: 186, SEQ ID NO: 188 or SEQ ID NO: 225).
  • Modifications of the MHC II are performed with modification of MHC I, which is accomplished by complex deletion using a complex guide RNA (e.g., including SEQ ID NO: 1, SEQ ID NO: 64, SEQ ID NO: 129 and SEQ ID NO: 188) .
  • a complex guide RNA e.g., including SEQ ID NO: 1, SEQ ID NO: 64, SEQ ID NO: 129 and SEQ ID NO: 1878 .
  • the transformed cell may be an allogeneic cell for treatment.
  • allogeneic cell for treatment means allogeneic cells that are injected into a subject for the purpose of inhibiting the progression of the disease, treating or alleviating the symptoms, including immune cells and stem cells , But is not limited thereto.
  • immune cell means a cell involved in the immune response of the human body and includes NK cells, T cells, B cells, dendritic cells, macrophages.
  • the immune cell may be an NK cell or a T cell
  • stem cell refers to a cell capable of differentiating into various cells capable of differentiating.
  • the stem cells may include human embryonic stem cells, bone marrow stem cells, mesenchymal stem cells, human neural stem cells, oral mucosa cells, and the like.
  • the stem cells may be mesenchymal stem cells.
  • one aspect of the present invention provides a pharmaceutical composition for treating cancer, infectious disease, degenerative disease, hereditary disease or immune disease comprising the transformed cells as an active ingredient.
  • the cancer is selected from the group consisting of chronic lymphocytic leukemia (CLL), B cell acute lymphoblastic leukemia (B-ALL), acute lymphocytic leukemia, acute myelogenous leukemia, lymphoma,
  • a cancer selected from the group consisting of multiple myeloma, blood cancer, stomach cancer, liver cancer, pancreatic cancer, colon cancer, lung cancer, breast cancer, ovarian cancer, skin cancer, melanoma, sarcoma, prostate cancer, esophageal cancer, hepatocellular carcinoma, astrocytoma, mesothelioma, head and neck cancer, . ≪ / RTI >
  • the infectious disease is selected from the group consisting of hepatitis B, hepatitis C, human papillomavirus (HPV) infection, cytomegalovirus infection, Epstein Barr virus (EBV) infection, viral respiratory disease ≪ / RTI > and influenza.
  • degenerative disease refers to a pathological condition in which the tissue has lost its original function due to irreversible quantitative loss of tissue.
  • degenerative diseases include, but are not limited to, cranial nerve diseases, ischemic diseases, skin injuries, bone diseases, degenerative arthritis, and the like.
  • hereditary disease refers to a pathological condition resulting from a mutation that is deleterious to a gene or a chromosome.
  • hereditary diseases include, but are not limited to, for example, haemophilia, albinism, fabry disease, Hunter syndrome, glycogen storage disorder.
  • immune disease refers to any pathological condition in which tissue is damaged due to an excessive, undesired immune response.
  • immunological disease has the same meaning as " immunological disorder ", and " composition for preventing or treating immune disease " has the same meaning as " immunosuppressive agent ".
  • Such immune disorders include, but are not limited to, graft versus host disease, graft rejection, chronic inflammatory disease, inflammatory pain, neuropathic pain, chronic obstructive pulmonary disease (COPD) and autoimmune disease .
  • COPD chronic obstructive pulmonary disease
  • autoimmune disease means a pathological condition that occurs when immune cells attack themselves without distinguishing themselves from external substances.
  • the autoimmune diseases include rheumatoid arthritis, systemic lupus erythematosis, Hashimoto's thyroiditis, Grave's disease, multiple sclerosis, scleroderma, Myasthenia gravis, type I diabetes, allergic encephalomyelitis, glomerulonephritis, vitiligo, Becet's disease, Crohn's disease Ankylosing spondylitis, thrombocytopenic purpura, pemphigus vulgaris, autoimmune anemia, adrenoleukodystrophy (ALD), and systemic lupus erythematosus (systemic lupus erythematosus) lupus erythematosus, SLE). < / RTI >
  • One aspect of the present invention provides a method of treating cancer, infectious disease, degenerative disease, hereditary disease or immune disease comprising administering the pharmaceutical composition to a subject.
  • the administration route is any one selected from the group consisting of intravenous, intramuscular, intradermal, subcutaneous, intraperitoneal, intraarterial, intracerebral, intralesional, Lt; / RTI >
  • Another aspect of the present invention is to provide a method for inhibiting MHC I cell membrane receptor and MHC II cell membrane receptor expression and inhibiting the expression of G-peptide bound to a modified MHC I cell membrane receptor on cancer cell surface, Diseases, hereditary diseases or immune diseases.
  • Another aspect of the invention is a method for the genetic modification of MHC I cell membrane receptors and MHC II cell membrane receptors comprising the said guide RNA or guide RNA encoding nucleotides and an RNA-inducing endonuclease or an RNA-induced endonuclease encoding nucleotide Provide a kit.
  • Example 1.1 gRNA sequence search and synthesis
  • the complete nucleotide sequence of the gene provided by NCBI was used to search the gRNA sequence.
  • the gRNA design tools include the web-based system CHOPCHOP (http://chopchop.cbu.uib.no/), E-CRISP (http://www.e-crisp.org/E-CRISP/designcrispr.html), CRISPR -ERA (http://crispr-era.stanford.edu/), and the RGEN tool (http://www.rgenome.net/cas-designer/).
  • CHOPCHOP http://chopchop.cbu.uib.no/
  • E-CRISP http://www.e-crisp.org/E-CRISP/designcrispr.html
  • CRISPR -ERA http://crispr-era.stanford.edu/
  • RGEN tool http://www.rgenome.net/cas-designer/.
  • GnaArt Precision gRNA Synthesis Kit was used to
  • PCR reactions were performed with a thermal cycler (FlexCycler2, Analytik Jena). PCR was performed by pre-denaturation at 98 ° C for 10 seconds, followed by denaturation and annealing for 32 cycles at 98 ° C for 5 seconds and at 55 ° C for 15 seconds. Lt; 0 > C for 1 min. The obtained PCR product was used as a template and the in vitro transcription reaction was performed at 37 ⁇ for 4 hours, followed by purification to obtain gRNA.
  • gRNA sequences for HLA-ABC B2M
  • gRNA sequences for HLA-DQ are shown in Table 2
  • gRNA sequences for HLA-DP are shown in Table 3 below
  • gRNA sequences for HLA-DR are shown in Table 4 below.
  • HLA-DQ gRNA sequence SEQ ID NO: DQA-08 UUAGGAUCAUCCUCUUCCCA SEQ ID NO: 59 DQA-09 AACUCUACCGCUGCUACCAA SEQ ID NO: 60 DQA-10 ACAAUGUCUUCACCUCCACA SEQ ID NO: 61 DQA-11 ACCACCGUGAUGAGCCCCUG SEQ ID NO: 62 DQA-12 ACCCAGUGUCACGGGAGACU SEQ ID NO: 63 DQA-14 ACCUCCACAGGGGCUCAUCA SEQ ID NO: 64 DQA-15 CAAUGUCUUCACCUCCACAG SEQ ID NO: 65 DQA-16 CACAAUGUCUUCACCUCCAC SEQ ID NO: 66 DQA-17 CAGUACACCCAUGAAUUUGA SEQ ID NO: 67 DQA-18 CUCUGUGAGCUCUGACAUAG SEQ ID NO: 68 DQA-19 CUGUGGAGGUGAAGACAUUG SEQ ID NO: 69 DQA-20 GGCUGGAAUCUCAGGCUCUG SEQ ID
  • HLA-DR gRNA sequence SEQ ID NO: DRA-08 AAGAAGAAAAUGGCCAUAAG SEQ ID NO: 176 DRA-09 AAUCAUGGGCUAUCAAAGGU SEQ ID NO: 177 DRA-10 AGCUGUGCUGAUGAGCGCUC SEQ ID NO: 178 DRA-11 AUAAGUGGAGUCCCUGUGCU SEQ ID NO: 179 DRA-12 ACUUAUGGCCAUUUUCUUCU SEQ ID NO: 180 DRA-13 AUGAUGAAAAAUCCUAGCAC SEQ ID NO: 181 DRA-14 CAGAGCGCCCAAGAAGAAAA SEQ ID NO: 182 DRA-15 CAGGAAUCAUGGGCUAUCAA SEQ ID NO: 183 DRA-16 CUUAUGGCCAUUUUCUU SEQ ID NO: 184 DRA-17 GACUGUCUCUGACACUCCUG SEQ ID NO: 185 DRA-18 GAGCCUCUUCUCAAGACACUG SEQ ID NO: 186 DRA-19 GAUAGUGGAACU
  • Example 1.2 Screening of gRNA by transfection into Raji cell line
  • 7.5 g of the obtained gRNA was incubated at 65 DEG C for 10 minutes to obtain a single strand. Then, 7.5 g of Cas9 protein (Toolgen, TGEN_CP3 or Clontech, M0646T) was added and cultured at 25 DEG C for 10 minutes to obtain Cas9-gRNA complex (RNP complex) .
  • the RNP complexes were transfected into 4D-Nucleofector TM X Unit (Lonza , AAF-1002X) using the SG Cell Line 4D-Nucleofector® X Kit S (Lonza, V4XC-3032) to 4x10 5 Raji cell line. Transfected cells were cultured for 7 days, and the amount of HLA expression on the cell surface and the genomic DNA mutation were confirmed.
  • Example 1.3 Determination of expression level of HLA using flow cytometry analyzer
  • the Raji cell line transfected with the RNP complex and 2x10 5 control Raji cell lines were suspended in 100 ⁇ L of FACS buffer (1% FBS / sheath buffer) and prepared in 5 mL tubes. After treatment with the antibody, light was blocked for 30 minutes and cultured at 4 ° C.
  • Antibodies were PE anti-HLA-ABC (Miltenyi Biotec, 130-101-448), PE anti HLA-DR (Biolegend, 361605), PE anti-HLA-DQ (Biolegend, 318106) Leinco Technologies, H130). Subsequently, 3 mL of FACS buffer was added and the mixture was centrifuged at 2,000 rpm for 3 minutes at 4 ° C.
  • gRNAs capable of effectively reducing the expression of each HLA gene were identified as 13 kinds of gRNAs in total of 2 to 4 types per target (HLA-ABC, HLA-DQ, HLA-DP and HLA-DR) Respectively.
  • genomic DNA was analyzed using the guide-it mutation detection kit (Clontech, 631443) according to the manufacturer's instructions.
  • the PCR reaction was carried out by pre-denaturing at 98 ° C for 2 minutes, followed by 35 cycles at 98 ° C for 10 seconds, 60 ° C for 15 seconds, and 68 ° C for 1 minute to denature and bind at 68 ° C
  • the PCR product was produced by elongation for 5 minutes.
  • 5 ⁇ L of pure water for PCR was added to 10 ⁇ L of the PCR product.
  • the temperature was changed from 95 ° C to 85 ° C by 2 ° C per second and from 85 ° C to 25 ° C by 0.1 ° C per second.
  • 1 ⁇ l of Guide-it Resolvase was added and incubated at 37 ° C. for 30 minutes.
  • the result of electrophoresis on 1.5% agarose gel is shown in FIG. 9 to FIG.
  • gRNAs were selected which can efficiently reduce the expression of each HLA through transfection in Raji cells.
  • the transformed NK cells were prepared using the selected gRNA, and the efficacy was confirmed.
  • the Cas9-gRNA complex was prepared by culturing 37.5 B2 of B2M-01 gRNA at 65 ⁇ for 10 minutes to make single strands, adding 37.5 Cas Cas9 protein (Toolgen, TGEN_CP3) and culturing at 25 ⁇ for 10 minutes.
  • the RNP complex was transfected into 2x10 6 NK-92MI cell lines with Nucleofector 2b (Lonza, AAB-1001) using Cell Line nucleofector Kit R (Lonza, VCA-1001). Transfected cells were cultured for 3 days and cell separation was performed using a cell separator.
  • the NK-92MI cell line transfected with the B2M-01 RNP complex was transferred to a 5 mL tube and treated with PE anti-HLA-ABC (Miltenyi biotec, 130-101-448) and 7-AAD (Beckman Coulter, A07704) After incubation at 4 ° C for 30 min, the cells were blocked with light. The stained cells were filtered using a filter top FACS tube (Falcon, 352235), and the result of separating HLA-I positive cells and HLA-I negative cells using FACS Aria II (BD) is shown in FIG. The purity of HLA-I negative cells was 95.9% and the purity of HLA-I positive cells was 97.2%.
  • HLA-I positive cells and HLA-I negative cells cultured for 4 days were used to compare the cytotoxicity against K562 cell lines.
  • the K562 cell line was stained with 30 ⁇ M Calcein-AM (Invitrogen, C3099) according to the manufacturer's instructions and the ratio of E: T was changed to 10: 1, 3: 1, 1: 1 and 0.3: 1 with NK- U-bottom plate.
  • 100 ⁇ L of the culture solution was taken out and the amount of calcein-AM secreted by apoptosis was measured with a fluorescence meter (VictorTMX3, PerkinElmer).
  • a fluorescence meter VectorTMX3, PerkinElmer
  • PBMC peripheral blood mononuclear cells
  • Cells were resuspended in culture media (CellGro SCGM + 10 ng / mL OKT3 + 500 IU / mL IL-2 + 5% Human plasma) at a concentration of 1x10 6 cells / mL and cultured in Culture Bag (NIPRO, 87-352 ), Cultured in a CO 2 incubator at 37 ° C for 24 hours, and then transfected.
  • culture media CellGro SCGM + 10 ng / mL OKT3 + 500 IU / mL IL-2 + 5% Human plasma
  • PBMC peripheral blood mononuclear cells
  • the medium for the T-cell concentration in culture of 1x10 6 cells / mL cell (X-VIVO15 (Lonza, BE02-060Q ) + 40 ⁇ L / mL Dynabeads Human T-Activator CD3 / CD28 (gibco, 111.31D) + 200 IU / mL IL-2 + 5% human plasma), cultured in a Culture Bag (NIPRO, 87-352), incubated in a CO 2 incubator at 37 ° C for 24 hours and then transfected.
  • Example 3.3 Production of HLA-deficient NK cells and T cells using selected gRNA
  • the Cas9-gRNA complex was prepared by culturing 37.5 ⁇ of gRNA at 65 ⁇ ⁇ for 10 minutes to make a single strand, then adding 37.5 ⁇ ⁇ Cas9 protein (Clontech, M0646T) and culturing at 25 ⁇ ⁇ for 10 minutes. For multiplex deletion, the sum of each gRNA was 37.5 ⁇ g.
  • the RNP complex was transfected into 2 x 10 6 cells with 4D-Nucleofector X Unit (Lonza, AAF-1002X) using P3 Primary Cell 4D-Nucleofector® X Kit L (Lonza, V4XP-3024). The transfected cells were cultured for 3 days and cytokine production was observed. After 14 days of culture, the decrease of HLA expression was confirmed by flow cytometry.
  • RNP complexes and control cells (2x10 5 ) were suspended in 100 ⁇ L of FACS buffer (1% FBS / sheath buffer) and prepared in 5 mL tubes.
  • the cells were stained with anti-HLA-DP (abcam, ab20897) for primary staining, PE Goat anti-mouse IgG (eBioscience, 12-4010-82) for secondary staining, (BD, 560345), APC-Cy7 anti-CD8 (BD, 557834), BV510 anti-HLA-ABC (Biolegend, 311436), PE-Cy7 anti-HLA-DR (eBioscience, 25-9952 -42) and Alexa647 anti-HLA-DQ (BD, 564806).
  • BV421 anti-CD56 (Biolegend, 318328) was used instead of V450 anti-CD4. After each treatment, the antibody was treated, followed by blocking the light for 30 minutes and culturing at 4 ° C. Then, 3 mL of FACS buffer was added and the supernatant was removed by centrifugation at 2,000 rpm for 3 minutes at 4 ° C. After all stained samples were obtained and analyzed by LSR Fortessa, the results are shown in FIGS. 15-17.
  • the results shown in FIG. 15 show that the gRNA transfection efficiency of at least 70% to 99% at the time of transfection of single gRNA Confirming deletion of the target HLA. From the results of FIG. 16, it was confirmed that the efficiency of the complex deletion did not decrease significantly when compared with the efficiency of single deletion. When comparing the efficiency of multiple deletions for a single deletion, the value obtained by dividing the '% negative' value of a single deletion by the '% negative' value of the composite deletion was multiplied by 100. In addition, in the result of Fig. 17, the 14-day incubation rate in the cells transfected with the RNP complex was similar to that of the control cells. In particular, it was confirmed that there was no difference in the culturing speed of cells transfected with single gRNA (DPA-13) transfected with complex gRNA.
  • DPA-13 single gRNA
  • Example 3.5 Analysis of HLA-deleted T cells and NK cell activity
  • the cells were stained with PerCP-Cy5.5 anti-CD3 (Tonbo, 65-0038-T100), BV421 anti-CD56 (Biolegend, 318328), FITC anti-B2M (Biolegend, 316304), APC- After treatment with PE anti-HLA-DR / DP / DQ (Miltenyi Biotec, 130-104-827) for 30 min, the cells were incubated at 4 ° C for surface staining.
  • FIG. 18 it was confirmed that the amounts of TNF-a, IFN-y, and CD107a secreted when T cells were activated did not differ from HLA-positive cells even when HLA was deleted.
  • FIG. 19 also shows that the amounts of TNF- ⁇ , IFN- ⁇ and CD107 ⁇ secreted when NK cells were activated did not differ from HLA-positive cells even when HLA was deleted. Thus, it was confirmed that the activity of NK cells was maintained even when HLA-I and HLA-II were deleted.
  • Example 4.1 Evaluation of cytotoxic activity of NK cells on HLA-I-deficient Raji cell line
  • Raji cell line was transfected with B2M-01 RNP complex and HLA-I positive cells and HLA-I negative cells . Each cell was stained with Calcein-AM according to the manufacturer's instructions, and then 1x10 4 cells were incubated with NK-92MI cell line at a ratio of E: T of 10: 1, 3: 1, 1: bottom plate. After 5 hours, the amount of calcein-AM secreted by apoptosis was measured with a fluorescence meter. As shown in FIG. 20, it was confirmed that the cell killing ability of NK cells was increased in HLA-I negative cells compared with HLA-I positive cells.
  • an HLA-E vector for introducing HLA-E into cells was synthesized in order to avoid NK cell killing after transfection of B2M RNP complex into cells and deletion of HLA-I . That is, B2M (SEQ ID NO: 237) is linked to three G 4 S first linkers (SEQ ID NO: 238) to G-peptide (SEQ ID NO: 236) connected to B2M signal peptide (B2M SS; SEQ ID NO: 235) (G-B2M-HLA-E) linked to HLA-E (SEQ ID NO: 240) with this HA tag (SEQ ID NO: 239) linked by four G 4 S second linkers (SEQ ID NO: 241) Respectively.
  • the respective sequences are shown in Table 6 below.
  • the synthesized transformed HLA-E was cloned into the pLVX-EF1 ⁇ -IRES-Puro Vector (Clontech, 631988) and the structure thereof is shown in FIG.
  • the transfected HLA-E-inserted pLVX-EF1 ⁇ -IRES-Puro Vector was transfected with a lenti viral packaging vector in a 293T cell line, and after 3 days, the lentivirus supernatant was obtained through a 0.45 ⁇ m filter.
  • the lentivirus supernatant was treated with K562 cell line and centrifuged at 3200C for 3 hours at 3,000 rpm. 3 days after the cell surface staining 1x10 6 cells transferred to a 5 mL tube PE-Cy7 anti-HLA-E (Biolegend, 342608) and APC anti-B2M (Biolegend, 316312 ) was carried out for 30 minutes.
  • HLA-E and B2M were expressed at high levels in the transformed HLA-E expressing K562 cell line.
  • the K562 cell line expressing the transformed HLA-E and the control K562 cell line were stained with Calcein-AM according to the manufacturer's instructions, and 1x10 4 cells were treated with NK cells at a ratio of E: T of 10: 1, 3: 1 , 1: 1 and 0.3: 1 on U-bottom plates. After 5 hours, 100 ⁇ L of the culture was taken out and the amount of calcein-AM secreted by apoptosis was measured with a fluorescence meter (VictorTMX3, PerkinElmer).
  • HLA-E conjugated with G-peptide was introduced into the NK cells prepared in Example 3 using the HLA-E vector prepared as described in Example 4.2 above, to which HLA-I and HLA-II were deleted, Transformed NK cells were prepared.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 형질전환된 인간세포 및 이의 용도에 관한 것으로, 보다 구체적으로 가이드 RNA를 이용한 유전자 발현 억제용 시스템을 이용한 MHC I 세포막 수용체 및 MHC II 세포막 수용체를 코딩하는 유전자가 변형된 세포 및 이의 용도에 관한 것이다. 상기와 같은 형질전환 세포는 생체 내에서도 세포의 치료 효능을 효과적으로 발휘할 수 있으며, 생체 내 면역반응에 의해 제거되지 않는다. 따라서, 상기 면역세포를 유효성분으로 포함하는 조성물은 암, 감염성 질환, 퇴행성 질환 또는 면역 질환 치료에 유용하게 활용될 수 있을 것으로 기대된다.

Description

형질전환된 인간세포 및 이의 용도
본 발명은 형질전환된 인간세포 및 이의 용도에 관한 것으로, 보다 구체적으로는 가이드 RNA를 통해 형질전환된 인간세포 및 이의 용도에 관한 것이다.
암 또는 감염성 질환의 치료를 위한 방법으로서 환자의 면역기능을 이용한 면역치료법이 관심을 받고 있다. 면역치료법이란 NK 세포, T 세포, 수지상세포 등과 같은 면역세포들의 상호작용을 통해 질환을 치료하는 치료법을 의미한다. 이중, 항원에 특정한 키메릭 항원 수용체를 발현하는 유전자 변형 T 세포를 이용한 면역치료법이 대두되고 있다. 또한, 체외에서 NK 세포의 활성화를 통해 높은 세포독성을 갖는 NK 세포는 백혈병과 같은 혈액암에 대해 우수한 치료 효과를 갖는다고 보고되었다(Blood Cells Molecules & Disease, 33: p261-266, 2004).
한편, 상기와 같은 면역세포의 암 또는 감염성 질환에 대한 치료제로서의 가능성에도 불구하고, 환자의 생체 내에 존재하는 면역세포는 건강한 개체의 면역세포에 비해 그 기능 및 개수가 현저히 떨어진다. 따라서, 자가 면역세포를 이용하는 것보다 동종이계(allogenic) 면역세포의 이식을 활용하는 것이 보다 효과적이다. 그러나, 동종이계 면역세포를 이식할 경우, 이식거부 반응이 일어나거나 생체 내에서 비자기(non-self) 인식을 통한 면역학적 제거 반응이 일어나는 등 여러 문제점을 야기할 수 있다. 이에 따라, 이러한 단점을 극복하기 위해 동종이계 면역세포를 자기(self)로 인식할 수 있도록 세포주화하는 대안이 필요하다.
이와 같은 문제점을 해결하기 위해, 본 발명자들은 세포의 MHC I 세포막 수용체 및 MHC II 세포막 수용체를 코딩하는 유전자를 표적으로 하는 가이드 RNA를 합성하였다. 또한, 상기 가이드 RNA 및 RNA-유도 엔도뉴클레아제를 유효성분으로 포함하는 유전자 발현 억제용 조성물을 이용하여 MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제된 세포를 제조하였고, 상기 세포에 대한 생체 내 면역학적 제거 반응을 방지할 수 있도록 HLA-E를 도입시킬 수 있다.
따라서, 본 발명은 MHC I 세포막 수용체 및 MHC II 세포막 수용체를 코딩하는 유전자를 표적으로 하는 가이드 RNA를 제공하고, 상기 가이드 RNA를 이용하여 형질전환된 세포를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 β2-마이크로글로불린(B2M)을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 1, 서열번호 6, 서열번호 17 및 서열번호 26으로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA를 제공하고; HLA-DQ를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 64, 서열번호 65, 서열번호 87 및 서열번호 90으로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA를 제공하고; HLA-DP를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 123 또는 서열번호 129의 핵산 서열을 포함하는 것인 가이드 RNA를 제공하며; HLA-DR을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 186, 서열번호 188 및 서열번호 225로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA를 제공한다.
또한, 본 발명은 가이드 RNA 또는 가이드 RNA 인코딩 뉴클레오타이드 및 RNA-유도 엔도뉴클레아제 또는 RNA-유도 엔도뉴클레아제 인코딩 뉴클레오타이드를 유효성분으로 포함하는 유전자 발현 억제용 조성물을 제공한다.
또한, 본 발명은 MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제된 형질전환된 세포를 제공한다.
또한, 본 발명은 상기 형질전환된 세포를 유효성분으로 포함하는 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환 치료용 약학 조성물 및 상기 조성물을 개체에 투여하는 단계를 포함하는 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환을 치료하는 방법을 제공한다.
또한, 본 발명은 MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제되고, 변형된 MHC I 세포막 수용체에 결합된 펩타이드 항원, 예를 들어 G-펩타이드를 세포막 표면에 발현하는 것인 형질전환된 세포의 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환 치료 용도를 제공한다.
본 발명에 따른 가이드 RNA를 이용한 유전자 발현 억제용 시스템을 이용한 MHC I 세포막 수용체 및 MHC II 세포막 수용체를 코딩하는 유전자가 변형된 세포를 제조할 수 있다. 또한, 상기 세포에 추가적으로 펩타이드 항원, 예를 들어 G-펩타이드가 결합된 HLA-E를 도입시킬 수 있다. 상기와 같은 형질전환된 세포는 생체 내에서도 세포의 치료 효능을 효과적으로 발휘할 수 있으며, 생체 내 면역반응에 의해 제거되지 않는다. 따라서, 상기 세포를 유효성분으로 포함하는 조성물은 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환 치료에 유용하게 활용될 수 있을 것으로 기대된다.
도 1은 B2M 표적 gRNA를 이용해 제조한 세포에서 HLA-ABC 음성 세포를 유세포 분석기로 분석한 결과이다.
도 2는 HLA-DRA 표적 gRNA를 이용해 제조한 세포에서 HLA-DR 음성 세포를 유세포 분석기로 분석한 결과이다.
도 3은 HLA-DQA 표적 gRNA를 이용해 제조한 세포에서 HLA-DQ 음성 세포를 유세포 분석기로 분석한 결과이다.
도 4는 HLA-DPA 표적 gRNA를 이용해 제조한 세포에서 HLA-DP 음성 세포를 유세포 분석기로 분석한 결과이다.
도 5는 B2M 표적 gRNA에 따른 HLA-ABC 음성 세포주의 생성 비율을 나타낸 것이다.
도 6은 DRA 표적 gRNA에 따른 HLA-DR 음성 세포주의 생성 비율을 나타낸 것이다.
도 7은 DQA 표적 gRNA에 따른 HLA-DQ 음성 세포주의 생성 비율을 나타낸 것이다.
도 8은 DPA 표적 gRNA에 따른 HLA-DP 음성 세포주의 생성 비율을 나타낸 것이다.
도 9는 B2M 표적 gRNA로 제조한 세포주에서 B2M을 코딩하는 핵산의 변이를 확인한 것이다.
도 10은 HLA-DRA 표적 gRNA로 제조한 세포주에서 HLA-DRA를 코딩하는 핵산의 변이를 확인한 것이다.
도 11은 HLA-DQA 표적 gRNA로 제조한 세포주에서 HLA-DQA를 코딩하는 핵산의 변이를 확인한 것이다.
도 12는 HLA-DPA 표적 gRNA로 제조한 세포주에서 HLA-DPA를 코딩하는 핵산의 변이를 확인한 것이다.
도 13은 세포분리 후 HLA-I 양성 NK-92MI 세포주 및 HLA-I 음성 NK-92MI 세포주를 나타낸 것이다.
도 14는 HLA-I 양성 NK-92MI 세포주 및 HLA-I 음성 NK-92MI 세포주의 세포살해능을 평가한 결과를 나타낸 것이다.
도 15는 gRNA를 이용해 CD4 T 세포, CD8 T 세포 및 NK 세포를 형질전환시킨 후, 유세포 분석기로 분석한 결과이다.
도 16은 단일 gRNA로 형질전환시킨 세포와 복합 gRNA로 형질전환시킨 세포에서 표적에 대한 결실 효율을 나타낸 것이다.
도 17은 단일 gRNA로 형질전환시킨 세포, 복합 gRNA로 형질전환시킨 세포 및 대조군 세포의 세포 성장 속도를 비교한 것이다.
도 18은 HLA-I 양성 T 세포 및 HLA-I 음성 T 세포의 사이토카인 생성능을 비교한 결과이다.
도 19는 HLA-I 양성 NK 세포 및 HLA-I 음성 NK 세포의 사이토카인 생성능을 비교한 결과이다.
도 20은 HLA-I 양성 Raji 세포주 및 HLA-I 음성 Raji 세포주에 대한 NK 세포의 세포살해능을 평가한 결과이다.
도 21은 G-펩타이드가 적재된 HLA-E 모식도 및 이를 발현시키기 위한 단백질의 구조를 나타낸 것이다.
도 22는 형질도입을 통해 K562 세포주에 발현된 HLA-E를 분석한 결과이다.
도 23은 HLA-E를 발현시킨 K562 세포주(K562 G-B2M-HLA-E) 및 대조군 K562 세포주(K562)에 대한 NK 세포의 세포살해능을 평가한 결과이다.
본 발명의 일 측면은 β2-마이크로글로불린(B2M)을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 1, 서열번호 6, 서열번호 17 및 서열번호 26으로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA를 제공한다.
본 명세서에서 사용된 용어 "B2M"이란, MHC I의 구성성분인 β2-마이크로글로불린 단백질을 의미한다. 상기 B2M은 MHC I 세포막 수용체가 세포 표면에 발현하는데 필수적이며, B2M이 제거되거나 변형된 경우에는 세포 표면 상에 MHC I 세포막 수용체가 발현되기 어렵다. 따라서, 상기 B2M 유전자를 변형시킴으로써 MHC I 세포막 수용체의 기능을 제거할 수 있다.
상기 B2M을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA는 서열번호 1 내지 58로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 구체적으로는 서열번호 1, 서열번호 6, 서열번호 17 및 서열번호 26으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
또한, 본 발명의 일 측면은 HLA-DQ를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 64, 서열번호 65, 서열번호 87 및 서열번호 90으로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA를 제공한다.
본 명세서에서 사용된 용어 "HLA"란, MHC 유전자의 산물인 인간백혈구항원을 의미한다. 상기 HLA는 HLA I 및 HLA II로 구성되며, 상기 HLA I은 HLA-A, HLA-B, HLA-C를 포함하고, 상기 HLA II는 HLA-DQ, HLA-DP 및 HLA-DR을 포함할 수 있다.
본 명세서에서 사용된 용어 "HLA-DQ"란, MHC II를 구성하는 αβ 헤테로다이머를 지칭한다. 상기 DQ는 HLA-DQA1 및 HLA-DQB1로 구성되고, 상기 α 서브유닛은 HLA-DQA1 유전자에 의해 코딩되며, 상기 β 서브유닛은 HLA-DQB1 유전자에 의해 코딩된다. 상기 DQ 유전자를 변형시킴으로써 MHC II 세포막 수용체의 발현을 저해시킬 수 있다.
상기 DQ를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA는 서열번호 59 내지 116으로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 구체적으로는 서열번호 64, 서열번호 65, 서열번호 87 및 서열번호 90으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 발명의 다른 측면은 HLA-DP를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 123 또는 서열번호 129의 핵산 서열을 포함하는 것인 가이드 RNA를 제공한다.
본 명세서에서 사용된 용어 "HLA-DP"란, 코딩되는 MHC II 세포 표면 수용체로서, DPα 서브유닛 및 DPβ 서브유닛으로 구성된다. 상기 DPα는 HLA-DPA1에 의해 코딩되며, 상기 DPβ는 HLA-DPB1에 의해 코딩된다. 상기 DP 유전자를 변형시킴으로써 MHC II 세포막 수용체의 발현을 저해시킬 수 있다.
상기 DP를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA는 서열번호 117 내지 175로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 구체적으로는 서열번호 123 또는 서열번호 129일 수 있다.
또한, 본 발명의 다른 측면은 HLA-DR을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서, 상기 가이드 RNA는 서열번호 186, 서열번호 188 및 서열번호 225로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA를 제공한다.
본 명세서에서 사용된 용어 "HLA-DR"이란, MHC II 세포 표면 수용체로서 이를 구성하는 αβ 헤테로다이머를 지칭한다. HLA-DR의 각각의 서브 유닛은 두 개의 세포외 도메인으로서 막-스패닝 도메인(membrane-spanning domain) 및 세포질내 미부(cytoplasmic tail)를 포함한다. 상기 DR 유전자를 변형시킴으로써 MHC II 세포막 수용체의 발현을 저해시킬 수 있다.
상기 DR을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA는 서열번호 176 내지 234로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 바람직하게는 서열번호 186, 서열번호 188 및 서열번호 225로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 명세서에서 사용된 용어 "가이드 RNA(gRNA)"란 표적 DNA를 특이적으로 인식하여 뉴클레아제와 복합체를 형성함으로써 뉴클레아제를 표적 DNA로 유도(guiding)하는 RNA 분자를 의미한다.
상기 가이드 RNA는 원핵생물의 크리스퍼(CRISPR, clustered regularly interspaced short palindromic repeats) 시스템에서 유래한 가이드 RNA일 수 있다.
상기 가이드 RNA는 자연 발생적이지 않은 키메라 crRNA 서열을 포함할 수 있으며, 상기 crRNA는 표적 서열에 혼성화될 수 있는 가변 표적화 도메인을 포함할 수 있다.
또한, 상기 가이드 RNA는 B2M, HLA-DQ, HLA-DP 및 HLA-DR 유전자에 대한 상보적인 서열을 포함하고 있다. 이는 세포 내로 전달된 후 상기 표적 서열을 인식하고 RNA-유도 엔도뉴클레아제와 복합체를 형성할 수 있다.
본 발명의 또 다른 측면은 상기 가이드 RNA 또는 가이드 RNA 인코딩 뉴클레오타이드 및 RNA-유도 엔도뉴클레아제 또는 RNA-유도 엔도뉴클레아제 인코딩 뉴클레오타이드를 유효성분으로 포함하는 유전자 발현 억제용 조성물을 제공한다.
상기 RNA-유도 엔도뉴클레아제는 mRNA 형태 또는 단백질 형태로 전달될 수도 있고, 이를 코딩하는 DNA가 탑재된 벡터로 형질전환함으로써 목적 세포에 전달될 수도 있다. 단백질 형태의 엔도뉴클레아제가 이용될 경우, 가이드 RNA와 복합체를 이루는 RNP 복합체로서 기능할 수 있다.
본 명세서에서 사용된 용어 "RNP 복합체"란, 상기 가이드 RNA 및 RNA-유도 엔도뉴클레아제를 유효성분으로 포함하는 것으로, 상기 복합체는 표적 서열을 인식하여 결합하고, 이를 선택적으로 니킹(nicking) 또는 절단할 수 있다. 상기 RNA 복합체는 예를 들어, Cas9-gRNA 복합체일 수 있으나, 이에 제한되지는 않는다.
본 발명의 일 구체예에서, 상기 RNA-유도 엔도뉴클레아제는 Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cas12a, Cas12b, Cas12c, Cas12d, Cas12e, Cas 13a, Cas 13b, Cas 13c, Cas 13d, Cpf1, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3 및 Csf4로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 구체적으로 Cas9일 수 있다.
본 발명의 일 측면은 MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제된 형질전환된 세포를 제공한다.
본 명세서에서 용어 "발현 억제"란 표적 유전자의 기능 저하를 야기하는 뉴클레오타이드 서열상의 변형을 의미하며, 바람직하게는 이에 의해 표적 유전자 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 것을 의미한다.
본 발명의 일 구체예에서, 상기 형질전환된 세포는 펩타이드 항원을 세포막 표면에 발현할 수 있다. 상기 펩타이드 항원은 예를 들어 HLA-A, HLA-B, HLA-C, HLA-G의 시그널 펩타이드를 포함하나 이에 제한되는 것은 아니며, 구체적으로는 HLA-G의 시그널 펩타이드(G-펩타이드)이다. 상기 펩타이드 항원은 변형된 MHC I 세포막 수용체에 결합될 수 있다.
본 발명의 일 구체예에서, 상기 변형된 MHC I 세포막 수용체는 HLA-E와 B2M이 연결된 구조를 갖는 것이며, 구체적으로 상기 변형된 MHC I 세포막 수용체는 상기 HLA-E의 α1의 N 말단에 B2M의 C 말단이 제1 링커를 통해 연결되고, 상기 B2M의 N 말단에 상기 G-펩타이드의 C 말단이 제2 링커를 통해 연결될 수 있다. 상기 변형된 MHC I 세포막 수용체는 HLA-G와 B2M이 연결된 구조를 갖는 것일 수도 있다.
본 발명의 일 구체예에서, 상기 G-펩타이드는 서열번호 236의 서열을 가질 수 있고, 상기 HLA-E는 서열번호 240의 서열을 가질 수 있으며, 상기 B2M은 서열번호 237의 서열을 가질 수 있고, 상기 제1 링커는 (G4S)n(n은 1 내지 5의 정수)일 수 있으며, 일 실시예로 서열번호 238의 서열을 가질 수 있다. 상기 제2 링커는 (G4S)n(n은 2 내지 6의 정수)일 수 있으며, 서열번호 241의 서열을 가질 수 있다.
본 발명의 일 구체예에서, 상기 MHC I 세포막 수용체를 코딩하는 유전자의 변형은 상기 B2M을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA(예를 들어, 서열번호 1, 서열번호 6, 서열번호 17 또는 서열번호 26)를 이용해 수행될 수 있다. 구체적으로, 상기 MHC I의 변형은 단일 가이드 RNA를 이용한 단일결실에 의해 수행될 수 있다.
본 발명의 일 구체예에서, 상기 MHC II 세포막 수용체를 코딩하는 DQ, DP 및 DR 유전자의 변형은 상기 DQ를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA(예를 들어, 서열번호 64, 서열번호 65, 서열번호 87 또는 서열번호 90), 상기 DP를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA(예를 들어, 서열번호 123 또는 서열번호 129) 및 상기 DR를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA(예를 들어, 서열번호 186, 서열번호 188 또는 서열번호 225)를 이용해 수행될 수 있다. 상기 MHC II의 변형은 MHC I의 변형과 함께 수행되며, 이는 복합 가이드 RNA(예를 들어, 서열번호 1, 서열번호 64, 서열번호 129 및 서열번호 188을 모두 포함)를 이용한 복합결실에 의해 수행될 수 있다.
본 발명의 일 구체예에서, 상기 형질전환된 세포는 치료용 동종세포(allogeneic cell)일 수 있다. 본 명세서에서 사용된 용어 "치료용 동종세포"란, 질환의 진행 억제, 치료, 증상의 경감을 목적으로 대상체에 주입되는 비자가 동종세포를 의미하며, 예를 들어 면역세포 및 줄기세포를 포함하나, 이에 제한되는 것은 아니다.
본 명세서에서 사용된 용어 "면역세포"란, 인체의 면역반응에 관여하는 세포를 의미하며, NK 세포, T 세포, B 세포, 수지상세포, 대식세포를 포함한다.
본 발명의 일 구체예에서, 상기 면역세포는 NK 세포 또는 T 세포일 수 있다
본 명세서에서 사용된 용어 "줄기세포(stem cell)"란, 다양한 세포로 분화가 가능한 전분화능을 갖는 세포를 의미한다. 상기 줄기세포는 인간배아줄기세포, 골수줄기세포, 중간엽줄기세포, 인간신경줄기세포, 경구막점막세포 등을 포함할 수 있다. 구체적으로, 상기 줄기세포는 중간엽줄기세포일 수 있다.
또한, 본 발명의 일 측면은 상기 형질전환된 세포를 유효성분으로 포함하는 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환의 치료용 약학 조성물을 제공한다.
본 발명의 일 구체예에서, 상기 암은 만성 림프구성 백혈병(CLL), B 세포 급성 림프구성 백혈병(B-ALL), 급성 림프아구성 백혈병, 급성 골수성 백혈병, 림프종, 비호지킨 림프종(NHL), 다발성 골수종, 혈액암, 위암, 간암, 췌장암, 대장암, 폐암, 유방암, 난소암, 피부암, 흑색종, 육종, 전립선암, 식도암, 간세포 암종, 성상세포종, 중피종, 두경부암 및 수아세포종으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 발명의 일 구체예에서, 상기 감염성 질환은 B형 간염, C형 간염, 인간 파필로마 바이러스(HPV) 감염, 사이토메갈로바이러스(Cytomegalovirus) 감염, 엡스타인바 바이러스(EBV)감염, 바이러스성 호흡기 질환 및 인플루엔자로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 명세서에서 사용된 용어 "퇴행성 질환"이란, 조직의 비가역적인 양적 소실로 인하여 해당 조직이 원래의 기능을 상실하는 병적 상태를 의미한다. 상기 퇴행성 질환은 뇌신경질환, 허혈성 질환, 피부손상, 골질환, 퇴행성 관절염 등을 포함하나, 이에 제한되는 것은 아니다.
본 명세서에서 사용된 용어 "유전성 질환"이란, 유전자나 염색체에 해로운 변이로 인해 발생하는 병적 상태를 의미한다. 상기 유전성 질환은 예를 들어 혈우병, 백색증, 파브리병(fabry disease), 헌터증후군(Hunter syndrome), 글리코겐 축적 이상증(glycogen storage disorder)을 포함하나, 이에 제한되는 것은 아니다.
본 명세서에서 사용된 용어 "면역 질환"은 과도하거나(excessive), 원치않는(undesired) 면역반응을 원인으로 조직이 손상되는 모든 병적 상태를 의미한다. 따라서, 상기 용어 "면역 질환"은 "면역과다 질환"과 동일한 의미를 가지며, "면역 질환의 예방 또는 치료용 조성물"은 "면역 억제제"와 동일한 의미를 가진다.
상기 면역 질환은 이식편대 숙주질환, 이식편 거부반응, 만성 염증성 질환, 염증성 통증, 신경병성 통증, 만성 폐색성 호흡기 질환(chronic obstructive pulmonary disease, COPD) 및 자가면역 질환을 포함하나, 이에 제한되는 것은 아니다.
상기 용어 "자가면역 질환"은 면역 세포가 자신과 외부물질을 구별하지 못하고 자신을 공격하여 발생하는 병적 상태를 의미한다. 상기 자가면역 질환은 류마티스 관절염(rheumatoid arthritis), 전신성홍반성낭창(systemic lupus erythematosis), 하시모토씨 갑상선염(Hashimoto's thyroiditis), 그레브스 병(Grave's disease), 다발성경화증(multiple sclerosis), 경피증(Scleroderma), 중증근무력증(myasthenia gravis), 제1형 당뇨(type I diabetes), 알레르기성 뇌척수염(allergic encephalomyelitis), 사구체신염(glomerulonephritis), 백반증(vitilligo), 베제트병(Becet's disease), 크론병(Crohn's disease), 강직성 척추염(ankylosing spondylitis), 혈소판 감소성 자반증(thrombocytopenic purpura), 심상성 천포창(pemphigus vulgaris), 자가면역성 용혈성 빈혈(autoimmune anemia), 부신백질이영양증(adrenoleukodystrophy, ALD) 및 전신성 홍반성 낭창(systemic lupus erythematosus, SLE)을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 측면은 상기 약학 조성물을 개체에 투여하는 단계를 포함하는 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환을 치료하는 방법을 제공한다.
본 발명의 일 구체예에서, 상기 투여 경로는 정맥내, 근육내, 피내, 피하, 복강내, 소동맥내, 심실내, 병변내, 척추강내, 국소 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 발명의 다른 측면은 MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제되고, 변형된 MHC I 세포막 수용체에 결합된 G-펩타이드를 세포막 표면에 발현하는 형질전환된 세포의 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환의 치료 용도를 제공한다.
본 발명의 또 다른 측면은 상기 가이드 RNA 또는 가이드 RNA 인코딩 뉴클레오타이드 및 RNA-유도 엔도뉴클레아제 또는 RNA-유도 엔도뉴클레아제 인코딩 뉴클레오타이드를 포함하는 MHC I 세포막 수용체 및 MHC II 세포막 수용체의 유전자 변형을 위한 키트를 제공한다.
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1. HLA를 표적으로 하는 gRNA의 합성 및 선별
실시예 1.1. gRNA 서열 탐색 및 합성
gRNA 서열을 탐색하기 위해 NCBI(https://www.ncbi.nlm.nih.gov/)에서 제공하는 유전자의 완전 뉴클레오티드 서열(complete nucleotide sequence)을 사용하였다. gRNA 디자인 도구로 웹 기반 시스템인 CHOPCHOP(http://chopchop.cbu.uib.no/), E-CRISP(http://www.e-crisp.org/E-CRISP/designcrispr.html), CRISPR-ERA(http://crispr-era.stanford.edu/), RGEN tool(http://www.rgenome.net/cas-designer/)을 사용하였다. 디자인된 gRNA 중 유전자 녹-아웃에 가장 적합한 gRNA를 목적하는 표적 당 약 60종씩 도출하고, 이 서열을 바탕으로 GeneArt Precision gRNA Synthesis Kit(Thermo Fisher Scientific, A29377)를 이용해 제조업자의 지시에 따라 gRNA를 합성하였다.
즉, gRNA를 코딩하는 DNA 템플릿을 합성하기 위해 필요한 정방향 및 역방향의 올리고 뉴클레오티드 프라이머를 합성한 후, 합성한 프라이머와 GeneArt Precision gRNA Synthesis Kit(Thermo Fisher Scientific, A29377)에 포함된 Tracr Fragment + T7 Primer Mix를 사용하여 PCR thermal cycler(FlexCycler2, Analytik Jena)로 PCR 반응을 수행하였다. PCR 반응은 98℃에서 10초간 전-변성(pre-denaturation)을 수행한 후, 98℃에서 5초 및 55℃에서 15초 조건으로 32 사이클을 반복하여 변성과 결합(annealing)을 진행하고, 72℃에서 1분간 최종 신장(final extension)을 수행하였다. 수득한 PCR 생성물을 템플릿으로 하여 시험관내 전사 반응을 37℃에서 4시간 동안 수행한 후 정제 과정을 거쳐 gRNA를 수득하였다.
수득한 gRNA를 하기 표 1 내지 4에 나타내었다. 구체적으로, HLA-ABC(B2M)에 대한 gRNA 서열을 하기 표 1에 나타내었고, HLA-DQ에 대한 gRNA 서열을 하기 표 2에 나타내었으며, HLA-DP에 대한 gRNA 서열을 하기 표 3에 나타내었고, HLA-DR에 대한 gRNA 서열을 하기 표 4에 나타내었다.
HLA-ABC gRNA 서열 서열번호
B2M-01 GAGUAGCGCGAGCACAGCUA 서열번호 1
B2M-03 CUCGCGCUACUCUCUCUUUC 서열번호 2
B2M-04 GCAUACUCAUCUUUUUCAGU 서열번호 3
B2M-05 GCUACUCUCUCUUUCUGGCC 서열번호 4
B2M-06 GGCAUACUCAUCUUUUUCAG 서열번호 5
B2M-07 GGCCACGGAGCGAGACAUCU 서열번호 6
B2M-08 GGCCGAGAUGUCUCGCUCCG 서열번호 7
B2M-09 UCACGUCAUCCAGCAGAGAA 서열번호 8
B2M-10 ACAAAGUCACAUGGUUCACA 서열번호 9
B2M-11 AGUCACAUGGUUCACACGGC 서열번호 10
B2M-12 AAGUCAACUUCAAUGUCGGA 서열번호 11
B2M-13 CAUACUCAUCUUUUUCAGUG 서열번호 12
B2M-14 UCCUGAAUUGCUAUGUGUCU 서열번호 13
B2M-15 CGUGAGUAAACCUGAAUCUU 서열번호 14
B2M-16 UUGGAGUACCUGAGGAAUAU 서열번호 15
B2M-17 AGGGUAGGAGAGACUCACGC 서열번호 16
B2M-18 ACAGCCCAAGAUAGUUAAGU 서열번호 17
B2M-19 AUACUCAUCUUUUUCAGUGG 서열번호 18
B2M-20 UGGAGUACCUGAGGAAUAUC 서열번호 19
B2M-21 AAGAAAAGGAAACUGAAAAC 서열번호 20
B2M-22 AAGAAGGCAUGCACUAGACU 서열번호 21
B2M-23 ACAUGUAAGCAGCAUCAUGG 서열번호 22
B2M-24 ACCCAGACACAUAGCAAUUC 서열번호 23
B2M-25 ACUUGUCUUUCAGCAAGGAC 서열번호 24
B2M-26 CAAGCCAGCGACGCAGUGCC 서열번호 25
B2M-27 CACAGCCCAAGAUAGUUAAG 서열번호 26
B2M-29 CAUCACGAGACUCUAAGAAA 서열번호 27
B2M-30 CGCAGUGCCAGGUUAGAGAG 서열번호 28
B2M-31 CUAACCUGGCACUGCGUCGC 서열번호 29
B2M-32 GAAAGUCCCUCUCUCUAACC 서열번호 30
B2M-33 GAGACAUGUAAGCAGCAUCA 서열번호 31
B2M-34 GAGUCUCGUGAUGUUUAAGA 서열번호 32
B2M-35 GCAGUGCCAGGUUAGAGAGA 서열번호 33
B2M-36 UAAGAAGGCAUGCACUAGAC 서열번호 34
B2M-37 UCGAUCUAUGAAAAAGACAG 서열번호 35
B2M-39 UUCAGACUUGUCUUUCAGCA 서열번호 36
B2M-40 UUCCUGAAUUGCUAUGUGUC 서열번호 37
B2M-41 UAAGAAAAGGAAACUGAAAA 서열번호 38
B2M-42 CUGGCACUGCGUCGCUGGCU 서열번호 39
B2M-43 UGCGUCGCUGGCUUGGAGAC 서열번호 40
B2M-44 GCUGGCUUGGAGACAGGUGA 서열번호 41
B2M-45 AGACAGGUGACGGUCCCUGC 서열번호 42
B2M-46 CAAUCAGGACAAGGCCCGCA 서열번호 43
B2M-47 CCUGCGGGCCUUGUCCUGAU 서열번호 44
B2M-48 CCAAUCAGGACAAGGCCCGC 서열번호 45
B2M-49 CGGGCCUUGUCCUGAUUGGC 서열번호 46
B2M-50 GGGCCUUGUCCUGAUUGGCU 서열번호 47
B2M-51 GUGCCCAGCCAAUCAGGACA 서열번호 48
B2M-52 AAACGCGUGCCCAGCCAAUC 서열번호 49
B2M-53 GGGCACGCGUUUAAUAUAAG 서열번호 50
B2M-54 CACGCGUUUAAUAUAAGUGG 서열번호 51
B2M-55 UAUAAGUGGAGGCGUCGCGC 서열번호 52
B2M-56 AAGUGGAGGCGUCGCGCUGG 서열번호 53
B2M-57 AGUGGAGGCGUCGCGCUGGC 서열번호 54
B2M-58 UUCCUGAAGCUGACAGCAUU 서열번호 55
B2M-59 UCCUGAAGCUGACAGCAUUC 서열번호 56
B2M-60 UGGGCUGUGACAAAGUCACA 서열번호 57
B2M-61 ACUCUCUCUUUCUGGCCUGG 서열번호 58
HLA-DQ gRNA 서열 서열번호
DQA-08 UUAGGAUCAUCCUCUUCCCA 서열번호 59
DQA-09 AACUCUACCGCUGCUACCAA 서열번호 60
DQA-10 ACAAUGUCUUCACCUCCACA 서열번호 61
DQA-11 ACCACCGUGAUGAGCCCCUG 서열번호 62
DQA-12 ACCCAGUGUCACGGGAGACU 서열번호 63
DQA-14 ACCUCCACAGGGGCUCAUCA 서열번호 64
DQA-15 CAAUGUCUUCACCUCCACAG 서열번호 65
DQA-16 CACAAUGUCUUCACCUCCAC 서열번호 66
DQA-17 CAGUACACCCAUGAAUUUGA 서열번호 67
DQA-18 CUCUGUGAGCUCUGACAUAG 서열번호 68
DQA-19 CUGUGGAGGUGAAGACAUUG 서열번호 69
DQA-20 GGCUGGAAUCUCAGGCUCUG 서열번호 70
DQA-21 GUUGGGCUGACCCAGUGUCA 서열번호 71
DQA-22 UCAUGGGUGUACUGGCCAGA 서열번호 72
DQA-23 UCCAAGUCUCCCGUGACACU 서열번호 73
DQA-24 UCCACAGGGGCUCAUCACGG 서열번호 74
DQA-25 UGUGGAGGUGAAGACAUUGU 서열번호 75
DQA-26 UUCCAAGUCUCCCGUGACAC 서열번호 76
DQA-27 UUGGGCUGACCCAGUGUCAC 서열번호 77
DQA-28 AACAUCACAUGGCUGAGCAA 서열번호 78
DQA-29 ACAUCACAUGGCUGAGCAAU 서열번호 79
DQA-30 AGCCAUGUGAUGUUGACCAC 서열번호 80
DQA-31 AGGAAUGAUCACUCUUGGAG 서열번호 81
DQA-32 AUCACUCUUGGAGAGGAAGC 서열번호 82
DQA-33 AUGACUGCAAGGUGGAGCAC 서열번호 83
DQA-34 CAAGGUGGAGCACUGGGGCC 서열번호 84
DQA-35 CAUCAAAUUCAUGGGUGUAC 서열번호 85
DQA-36 CAUGUGAUGUUGACCACAGG 서열번호 86
DQA-37 CCUCACCACAGAGGUUCCUG 서열번호 87
DQA-38 CUCAUCUCCAUCAAAUUCAU 서열번호 88
DQA-39 CUCCUGUGGUCAACAUCACA 서열번호 89
DQA-40 GAAGAAGGAAUGAUCACUCU 서열번호 90
DQA-41 GACUGCAAGGUGGAGCACUG 서열번호 91
DQA-42 GAGGUAACUGAUCUUGAAGA 서열번호 92
DQA-43 GGACAACAUCUUUCCUCCUG 서열번호 93
DQA-44 GUGCUGUUUCCUCACCACAG 서열번호 94
DQA-45 UCUUCUGAAACACUGGGGUA 서열번호 95
DQA-47 UUCAUGGGUGUACUGGCCAG 서열번호 96
DQA-48 AGAGACUGUGGUCUGCGCCC 서열번호 97
DQA-49 GACAUAGGGGCUGGAAUCUC 서열번호 98
DQA-50 GAGACUGUGGUCUGCGCCCU 서열번호 99
DQA-51 GGCCUCGUGGGCAUUGUGGU 서열번호 100
DQA-52 GGGCCUCGUGGGCAUUGUGG 서열번호 101
DQA-53 GUCAGAGCUCACAGAGACUG 서열번호 102
DQA-54 GUCUCUGUGAGCUCUGACAU 서열번호 103
DQA-55 GUGAGCUCUGACAUAGGGGC 서열번호 104
DQA-56 GUUGGUGCUUCCAGACACCA 서열번호 105
DQA-57 UCUCUGUGAGCUCUGACAUA 서열번호 106
DQA-58 UGACUGCAAGGUGGAGCACU 서열번호 107
DQA-59 UGCCCACCACAAUGCCCACG 서열번호 108
DQA-60 UGGAAGCACCAACUGAACGC 서열번호 109
DQA-61 UGUGGGCCUCGUGGGCAUUG 서열번호 110
DQA-62 UUACCCCAGUGUUUCAGAAG 서열번호 111
DQA-63 UUGGAAAACACUGUGACCUC 서열번호 112
DQA-64 UUGGUGCUUCCAGACACCAA 서열번호 113
DQA-65 AAACAAAGCUCUGCUGCUGG 서열번호 114
DQA-66 AAAUCUCAUCAGCAGAAGGG 서열번호 115
DQA-67 CUAAACAAAGCUCUGCUGCU 서열번호 116
Figure PCTKR2018014112-appb-T000001
Figure PCTKR2018014112-appb-I000001
Figure PCTKR2018014112-appb-I000002
Figure PCTKR2018014112-appb-I000003
HLA-DR gRNA 서열 서열번호
DRA-08 AAGAAGAAAAUGGCCAUAAG 서열번호 176
DRA-09 AAUCAUGGGCUAUCAAAGGU 서열번호 177
DRA-10 AGCUGUGCUGAUGAGCGCUC 서열번호 178
DRA-11 AUAAGUGGAGUCCCUGUGCU 서열번호 179
DRA-12 ACUUAUGGCCAUUUUCUUCU 서열번호 180
DRA-13 AUGAUGAAAAAUCCUAGCAC 서열번호 181
DRA-14 CAGAGCGCCCAAGAAGAAAA 서열번호 182
DRA-15 CAGGAAUCAUGGGCUAUCAA 서열번호 183
DRA-16 CUUAUGGCCAUUUUCUUCUU 서열번호 184
DRA-17 GACUGUCUCUGACACUCCUG 서열번호 185
DRA-18 GAGCCUCUUCUCAAGCACUG 서열번호 186
DRA-19 GAUAGUGGAACUUGCGGAAA 서열번호 187
DRA-20 GAUGAGCGCUCAGGAAUCAU 서열번호 188
DRA-21 GCUAUCAAAGGUAGGUGCUG 서열번호 189
DRA-22 GUUACCUCUGGAGGUACUGG 서열번호 190
DRA-23 UAGCACAGGGACUCCACUUA 서열번호 191
DRA-24 UGAUGAAAAAUCCUAGCACA 서열번호 192
DRA-25 UGAUGAGCGCUCAGGAAUCA 서열번호 193
DRA-27 UUUGCCAGCUUUGAGGCUCA 서열번호 194
DRA-28 AACUAUACUCCGAUCACCAA 서열번호 195
DRA-29 AGAAGAACAUGUGAUCAUCC 서열번호 196
DRA-30 AGCAGAGAGGGAGGUACCAU 서열번호 197
DRA-31 AGCGCUUUGUCAUGAUUUCC 서열번호 198
DRA-32 AGCUGUGGACAAAGCCAACC 서열번호 199
DRA-33 AGGGAGGUACCAUUGGUGAU 서열번호 200
DRA-34 AUAAACUCGCCUGAUUGGUC 서열번호 201
DRA-35 AUUGGUGAUCGGAGUAUAGU 서열번호 202
DRA-36 CCAUGUGGAUAUGGCAAAGA 서열번호 203
DRA-37 CUUUGAGGCUCAAGGUGCAU 서열번호 204
DRA-38 CUUUGUCAUGAUUUCCAGGU 서열번호 205
DRA-39 GGAUAUGGCAAAGAAGGAGA 서열번호 206
DRA-40 UAUCUGAAUCCUGACCAAUC 서열번호 207
DRA-41 UGAGAUUUUCCAUGUGGAUA 서열번호 208
DRA-42 UGAUCACAUGUUCUUCUGAA 서열번호 209
DRA-43 UGCACCUUGAGCCUCAAAGC 서열번호 210
DRA-44 UGCAUUGGCCAACAUAGCUG 서열번호 211
DRA-45 UGGACGAUUUGCCAGCUUUG 서열번호 212
DRA-46 UGGCAAAGAAGGAGACGGUC 서열번호 213
DRA-47 UGGUGAUGAGAUUUUCCAUG 서열번호 214
DRA-48 AAUGUCACGUGGCUUCGAAA 서열번호 215
DRA-49 AGACAAGUUCACCCCACCAG 서열번호 216
DRA-50 CAAUCCCUUGAUGAUGAAGA 서열번호 217
DRA-51 GAACGCAGGGGGCCUCUGUA 서열번호 218
DRA-52 CUGAGGACGUUUACGACUGC 서열번호 219
DRA-53 GCGGAAAAGGUGGUCUUCCC 서열번호 220
DRA-54 GGACGUUUACGACUGCAGGG 서열번호 221
DRA-55 GUCGUAAACGUCCUCAGUUG 서열번호 222
DRA-56 GUGAGCACAGUUACCUCUGG 서열번호 223
DRA-57 GUGUCCCCCAGUACCUCCAG 서열번호 224
DRA-58 UGAGGACGUUUACGACUGCA 서열번호 225
DRA-59 AAUGGAAAACCUGUCACCAC 서열번호 226
DRA-60 AGUGGAACUUGCGGAAAAGG 서열번호 227
DRA-61 AUGAAACAGAUGAGGACGUU 서열번호 228
DRA-62 CAGAGACAGUCUUCCUGCCC 서열번호 229
DRA-63 CGUGACAUUGACCACUGGUG 서열번호 230
DRA-64 UAUGAAACAGAUGAGGACGU 서열번호 231
DRA-65 UCUGACACUCCUGUGGUGAC 서열번호 232
DRA-66 AAACGUCCUCAGUUGAGGGC 서열번호 233
DRA-67 UCGUAAACGUCCUCAGUUGA 서열번호 234
실시예 1.2. Raji 세포주에 형질감염을 통한 gRNA 선별
수득한 gRNA 7.5 ㎍을 65℃에서 10분간 배양하여 단일가닥으로 만든 후 7.5 ㎍ Cas9 단백질(Toolgen, TGEN_CP3 또는 Clontech, M0646T)을 첨가하고 25℃에서 10분간 배양하여 Cas9-gRNA 복합체(RNP 복합체)를 제조하였다. 상기 RNP 복합체를 4x105개의 Raji 세포주에 SG Cell Line 4D-Nucleofector® X Kit S(Lonza, V4XC-3032)를 사용하여 4D-Nucleofector™ X Unit(Lonza, AAF-1002X)으로 형질감염하였다. 형질감염된 세포를 7일간 배양한 후 세포 표면의 HLA 발현량 및 유전체(genomic) DNA 돌연변이의 여부를 확인하였다.
실시예 1.3. 유세포 분석기를 이용한 HLA의 발현량 확인
RNP 복합체를 형질감염한 Raji 세포주 및 대조군 Raji 세포주 2x105개를 100 μL의 FACS 버퍼(1% FBS/sheath buffer)에 현탁하여 5 mL 튜브에 준비하였다. 여기에 항체를 처리한 후, 30분간 빛을 차단하고 4℃에서 배양하였다. 항체로는 PE anti-HLA-ABC(Miltenyi Biotec, 130-101-448), PE anti HLA-DR(Biolegend, 361605), PE anti-HLA-DQ(Biolegend, 318106) 및 PE anti-HLA-DP(Leinco Technologies, H130)를 사용하였다. 이후에, 3 mL FACS 버퍼를 넣어주고 4℃에서 2,000 rpm으로 3분간 원심분리한 다음 상층액을 제거하고 시료를 수득하여 LSR Fortessa로 분석하였다. 총 60종의 gRNA를 3번에 나누어 20종씩 테스트하였고 각 gRNA의 '% HLA 음성' 값에서 대조군의 '% HLA 음성' 값을 뺀 수치(정규화 % HLA 음성)를 계산한 결과를 도 1 내지 도 4에 나타내었다. 또한, 그 수치가 10 이상인 gRNA(단, B2M 표적 gRNA의 경우 수치가 1 이상인 gRNA)를 대상으로 한꺼번에 재실험을 수행한 결과를 도 5 내지 도 8에 나타내었다.
도 5 내지 도 8의 결과에서 각 HLA의 발현을 효율적으로 감소시킬 수 있는 gRNA를 표적(HLA-ABC, HLA-DQ, HLA-DP 및 HLA-DR)당 2 내지 4종씩 총 13종의 gRNA를 선별하였다. 구체적으로, HLA-ABC의 경우 B2M-01, B2M-07, B2M-18 및 B2M-27 gRNA, HLA-DQ의 경우 DQA-14, DQA-15, DQA-37 및 DQA-40, HLA-DP의 경우 DPA-07 및 DPA-13, HLA-DR의 경우 DRA-18, DRA-20 및 DRA-58을 선별하였다.
실시예 1.4. 표적 유전자의 유전체 DNA 돌연변이 확인
유세포 분석기를 이용해 선별한 HLA 표적 gRNA가 유전체 DNA에 돌연변이를 일으키는지 확인하기 위해 Guide-it mutation detection kit(Clontech, 631443)를 사용하여 제조업자의 지시에 따라 유전체 DNA를 분석하였다.
즉, RNP 복합체를 형질감염한 Raji 세포주 및 대조군 Raji 세포주 5x105개를 1,200 rpm으로 5분간 원심분리한 후 상층액을 제거하였다. 그 다음 Guide-it mutation detection kit(Clontech, 631443)에 포함된 추출버퍼 1을 90 μL 넣고 95℃에서 10분간 배양한 후, Guide-it mutation detection kit(Clontech, 631443)에 포함된 추출버퍼 2를 10 μL 넣고 파이펫팅(pipetting)하여 얻은 DNA 용해물을 PCR용 순수에 1 : 8의 비율로 희석하였다. 희석한 DNA 용해물과 하기 표 5에 나타낸 선별된 gRNA 및 표적 유전체 DNA에 대한 분석용 PCR 프라이머를 사용하여 PCR thermal cycler(FlexCycler2, Analytik Jena)로 PCR 반응을 수행하였다.
PCR 반응은 98℃에서 2분간 전-변성을 수행한 후, 98℃에서 10초, 60℃에서 15초 및 68℃에서 1분 조건으로 35 사이클을 반복하여 변성과 결합을 진행하고, 68℃에서 5분간 신장시키는 과정을 통해 PCR 생성물을 생산하였다. 수득한 PCR 생성물을 변성 및 재혼성화하기 위해 PCR 생성물 10 μL에 PCR용 순수 5 μL를 첨가하였다. 이어서, 95℃에서 5분 배양한 후, 95℃에서 85℃까지 초당 2℃씩 감소하고, 85℃에서 25℃까지 초당 0.1℃씩 감소하는 조건으로 온도 변화를 주었다. 마지막으로 Guide-it Resolvase 1 μL 넣고 37℃에서 30분간 배양시킨 뒤 1.5% 아가로스 겔에 전기영동한 결과를 도 9 내지 도 12에 나타내었다.
HLA 표적 gRNA를 형질감염한 세포의 PCR 생성물에서 Guide-it resolvase에 의해 절단된 DNA 조각을 전기영동 결과에서 확인하였다. 이 결과를 통해 상기 선별한 13종의 HLA 표적 gRNA가 표적 유전체 DNA에 대해 돌연변이를 유도한다는 사실을 확인하였다.
Figure PCTKR2018014112-appb-T000002
이와 같이, Raji 세포에서의 형질감염을 통해 각 HLA의 발현을 효율적으로 감소시킬 수 있는 gRNA를 선별하였다. 하기 실시예 2 및 3에서는 상기 선별된 gRNA를 이용하여 형질전환된 NK 세포를 제조한 후 효능을 확인하였다.
실시예 2. HLA-I이 결실된 세포의 제조 및 확인
실시예 2.1. NK-92MI 세포주의 HLA-I 결실
B2M-01 gRNA 37.5 ㎍을 65℃에서 10분간 배양하여 단일가닥으로 만든 후 37.5 ㎍ Cas9 단백질(Toolgen, TGEN_CP3)을 첨가하고 25℃에서 10분간 배양하여 Cas9-gRNA 복합체(RNP 복합체)를 제조하였다. 상기 RNP 복합체를 2x106개의 NK-92MI 세포주에 Cell Line nucleofector Kit R(Lonza, VCA-1001)을 사용하여 Nucleofector™ 2b(Lonza, AAB-1001)로 형질감염하였다. 형질감염된 세포를 3일간 배양한 후 세포분리기를 사용하여 세포분리를 수행하였다.
실시예 2.2. HLA I 음성 세포의 분리
B2M-01 RNP 복합체를 형질감염한 NK-92MI 세포주를 5 mL 튜브로 옮긴 후, PE anti-HLA-ABC(Miltenyi biotec, 130-101-448) 및 7-AAD(Beckman Coulter, A07704)를 처리한 후, 30분간 빛을 차단하고 4℃에서 배양하였다. 염색된 세포를 filter top FACS tube(Falcon, 352235)를 이용해 거른 후 FACS Aria II(BD)를 이용하여 HLA-I 양성 세포와 HLA-I 음성 세포를 분리한 결과를 도 13에 나타내었다. HLA-I 음성 세포의 순도는 95.9% 및 HLA-I 양성 세포의 순도는 97.2%로 확인하였다.
실시예 2.3. HLA-I 결실 NK-92MI 세포주의 세포살해능 평가
세포를 분리한 후 4일간 배양한 HLA-I 양성 세포 및 HLA-I 음성 세포를 이용하여 K562 세포주에 대한 세포살해능을 비교하였다. K562 세포주를 제조업자의 지시에 따라 30 μM Calcein-AM(Invitrogen, C3099)으로 염색한 후 NK-92MI 세포주와 함께 E : T의 비율을 10 : 1, 3 : 1, 1 : 1 및 0.3 : 1로 U-bottom 플레이트에 배양하였다. 4시간 후 배양액을 100 μL씩 덜어내어 세포사멸에 의해 분비된 Calcein-AM 양을 형광측정기(VictorTMX3, PerkinElmer)로 측정하였다. 그 결과, 도 14와 같이 HLA-I 양성 세포와 HLA-I 음성 세포의 K562 세포주에 대한 세포살해능이 동등한 것을 확인하였다. 이를 통해, HLA-I의 결실은 세포살해능에 영향을 미치지 않는다는 것을 확인하였다.
실시예 3. HLA-I 및 HLA-II 결실 세포의 제조 및 확인
실시예 3.1. NK 세포의 준비 및 배양
냉동보존된(Cryopreserved) 말초혈액단핵세포(PBMC, peripheral blood mononuclear cell)를 37℃ 수조에서 신속하게 녹인 후, 50 mL 코니컬 튜브(conical tube)로 옮겼다. 상기 튜브를 흔들어주면서 해동 배지(thawing media)(RPMI, 11875-093 + 10% FBS + 55 μM β-ME)를 한 방울씩 점적하여 혼합하였다. 이어서, 1,200 rpm으로 4℃에서 10분간 원심분리하여 상층액을 제거하고 10 mL의 CellGro SCGM(CELLGENIX, 2001) 배지에 재현탁시킨 후 세포수를 정량하였다. 세포를 1x106 cells/mL의 농도로 배양용 배지(CellGro SCGM + 10 ng/mL OKT3 + 500 IU/mL IL-2 + 5% Human plasma)에 재현탁시킨 후, Culture Bag(NIPRO, 87-352)에 넣고 37℃의 CO2 인큐베이터에서 24시간 배양한 후 형질감염을 수행하였다.
실시예 3.2. T 세포의 준비 및 배양 방법
냉동보존된(Cryopreserved) 말초혈액단핵세포(PBMC)를 37℃ 수조에서 신속하게 녹인 후, 50 mL 코니컬 튜브(conical tube)로 옮겼다. 상기 튜브를 흔들어주면서 해동 배지(thawing media)(RPMI, 11875-093 + 10% FBS + 55 μM β-ME)를 한 방울씩 점적하여 혼합하였다. 이어서, 1,200 rpm으로 4℃에서 10분간 원심분리하여 상층액을 제거하고 40 mL의 MACS 버퍼(PBS + 0.5% FBS + 2mM EDTA)에 재현탁시킨 후 세포수를 정량하였다. 세포 107개 당 20 μL의 CD3 microbeads(Miltenyi Biotec, 130-050-101)를 처리한 후, 15분간 빛을 차단하고 4℃에서 배양하였다. 이어서, 1,350 rpm으로 4℃에서 8분간 원심분리하여 상층액을 제거하고 500 μL의 MACS 버퍼에 재현탁시킨 후, QuadroMACS separator(Miltenyi Biotec, 130-090-976)에 장착된 LS 컬럼(Miltenyi Biotec, 130-042-401)에 로딩하였다. LS 컬럼을 MACS 버퍼로 3회 세척하고 QuadroMACS 분리기에서 제거한 후 플런저(plunger)로 눌러 CD3 양성 세포를 수득하였다. 세포를 1x106 cells/mL의 농도로 T 세포 배양용 배지(X-VIVO15(Lonza, BE02-060Q) + 40 μL/mL Dynabeads Human T-Activator CD3/CD28(gibco, 111.31D) + 200 IU/mL IL-2 + 5% Human plasma)에 재현탁시킨 후, Culture Bag(NIPRO, 87-352)에 넣고 37℃의 CO2 인큐베이터에서 24시간 배양한 후 형질감염을 수행하였다.
실시예 3.3. 선별한 gRNA를 이용한 HLA 결실 NK 세포 및 T 세포 제조
gRNA 37.5 ㎍을 65℃에서 10분간 배양하여 단일가닥으로 만든 후 37.5 ㎍ Cas9 단백질(Clontech, M0646T)을 첨가하고 25℃에서 10분간 배양하여 Cas9-gRNA 복합체(RNP 복합체)를 제조하였다. 복합결실(multiplex deletion)의 경우, 각 gRNA의 합이 37.5 ㎍이 되게 하였다. 상기 RNP 복합체를 2x106개의 세포에 P3 Primary Cell 4D-Nucleofector® X Kit L(Lonza, V4XP-3024)을 사용하여 4D-Nucleofector™ X Unit(Lonza, AAF-1002X)으로 형질감염하였다. 형질감염된 세포를 3일간 배양한 후 사이토카인의 생성을 관찰하였고, 14일간 배양한 후 HLA 발현 감소 여부를 유세포 분석기로 확인하였다.
실시예 3.4. 유세포 분석기를 이용한 HLA 발현 감소 확인
RNP 복합체를 형질감염한 세포 및 대조군 세포 2x105개를 100 μL의 FACS 버퍼(1% FBS/sheath buffer)에 현탁하여 5 mL 튜브에 준비하였다. 세포 염색을 3차에 걸쳐 진행하였으며, 1차 염색으로는 anti-HLA-DP(abcam, ab20897), 2차 염색으로는 PE Goat anti-mouse IgG(eBioscience, 12-4010-82) 및 3차 염색으로는 V450 anti-CD4(BD, 560345), APC-Cy7 anti-CD8(BD, 557834), BV510 anti-HLA-ABC(Biolegend, 311436), PE-Cy7 anti-HLA-DR(eBioscience, 25-9952-42), Alexa647 anti-HLA-DQ(BD, 564806)를 사용하였다. 한편, NK 세포의 경우 V450 anti-CD4 대신에 BV421 anti CD56(Biolegend, 318328)을 사용하였다. 매 차마다 항체를 처리한 다음 30분간 빛을 차단하고 4℃에서 배양하였다. 이후, 3 mL의 FACS 버퍼를 넣고 2,000 rpm으로 4℃에서 3분간 원심분리하여 상층액을 제거하였다. 모든 염색을 마친 시료를 수득한 후 LSR Fortessa로 분석한 결과를 도 15 내지 도 17에 나타내었다.
각각의 HLA를 결실시키기 위해 사용한 gRNA로는 B2M-01, DRA-20, DQA-14, DPA-13을 사용하였으며, 도 15의 결과에서 단일 gRNA 형질감염 시 최소 70%에서 최대 99%의 높은 효율로 표적 HLA를 결실시키는 것을 확인하였다. 도 16의 결과에서 단일결실의 효율과 비교하였을 때, 복합결실의 효율이 크게 감소하지 않는다는 것을 확인하였다. 단일결실에 대한 복합결실의 효율을 비교한 경우, 복합결실의 '% 음성' 값에서 단일결실의 '% 음성' 값을 나눈 수치에 100을 곱하여 표현하였다. 또한, 도 17의 결과에서 RNP 복합체를 형질감염한 세포에서의 14일 간 배양 속도가 대조군 세포와 비슷한 수준으로 나타났다. 특히, 단일 gRNA(DPA-13)가 형질감염된 세포와 복합 gRNA가 형질감염된 세포의 배양 속도에 차이가 없음을 확인하였다.
실시예 3.5. HLA 결실된 T 세포 및 NK 세포 활성 분석
RNP 복합체를 형질감염한 세포 및 대조군 세포 1x106개에 PMA, 이오노마이신(Cell Stimulation Cocktail, eBioscience, 00-4970-03) 및 APC anti-CD107α(BD, 560664)를 처리한 후 배양하거나, APC anti-CD107α 및 K562 세포 2x105개와 함께 배양하였다. 5시간 후 PerCP-Cy5.5 anti-CD3(Tonbo, 65-0038-T100), BV421 anti-CD56(Biolegend, 318328), FITC anti-B2M(Biolegend, 316304), APC-Cy7 anti-HLA-ABC(Biolegend, 311426) 및 PE anti-HLA-DR/DP/DQ(Miltenyi Biotec, 130-104-827)를 처리한 후, 30분간 빛을 차단하고 4℃에서 배양하여 표면 염색을 실시하였다.
이후, 3 mL의 FACS 버퍼를 넣고 2,000 rpm으로 4℃에서 3분간 원심분리하여 상층액을 제거한 후, BD Cytofix/Cytoperm™ 버퍼(BD, 554722)를 이용하여 고정 및 투과화를 30분 동안 진행하였다. 1X Perm/Wash 버퍼(BD, 554723)를 이용하여 2회 세척한 후, PE-Cy7 anti-TNF-α(eBioscience, 25-7349-82) 및 V500 anti-IFN-γ(BD, 554701)를 처리하였고, 30분간 빛을 차단하고 4℃에서 배양하여 세포내 염색을 수행하였다. 이어서, 3 mL의 FACS 버퍼를 넣고 2,000 rpm으로 4℃에서 3분간 원심분리하여 상층액을 제거한 후, 1X Perm/Wash 버퍼를 이용하여 2회 세척하고 유세포 분석기로 T 세포 및 NK 세포의 사이토카인의 생성을 분석한 결과를 도 18 및 도 19에 나타내었다.
도 18에서, T 세포가 활성화되었을 때 분비되는 TNF-α, IFN-γ, CD107α의 양이 HLA가 결실된 경우에도 HLA 양성 세포와 차이가 없음을 확인하였다. 도 19에서 또한, NK 세포가 활성화되었을 때 분비되는 TNF-α, IFN-γ, CD107α의 양이 HLA가 결실된 경우에도 HLA 양성 세포와 차이가 없음을 확인하였다. 이를 통해, HLA-I 및 HLA-II가 결실되어도 NK 세포의 활성이 유지된다는 것을 확인하였다.
실시예 4. HLA-E 발현 벡터의 합성 및 발현 확인
실시예 4.1. HLA-I이 결실된 Raji 세포주에 대한 NK 세포의 세포살해능 평가
NK 세포에 의한 세포살해능이 HLA-I이 결실된 세포에서 증가하는지 확인하기 위해, Raji 세포주에 B2M-01 RNP 복합체를 형질감염하고, 세포분리기를 사용하여 HLA-I 양성 세포 및 HLA-I 음성 세포를 분리하였다. 각 세포를 제조업자의 지시에 따라 Calcein-AM으로 염색한 후 1x104개의 세포를 NK-92MI 세포주와 함께 E : T의 비율을 10 : 1, 3 : 1, 1 : 1 및 0.3 : 1로 U-bottom 플레이트에 배양하였다. 5시간 후 세포사멸에 의해 분비된 Calcein-AM의 양을 형광측정기로 측정하였다. 도 20과 같이 HLA-I 양성 세포에 비하여 HLA-I 음성 세포에서 NK 세포에 의한 세포살해능이 증가한 것을 확인하였다.
실시예 4.2. HLA-E 벡터의 합성
상기 실시예 4.1.과 같이, 세포에 B2M RNP 복합체를 형질감염시켜 HLA-I을 결실시킨 후 발생하는 NK 세포살해 현상을 피하기 위해, 세포에 HLA-E를 도입시키기 위한 HLA-E 벡터를 합성하였다. 즉, B2M 신호 펩타이드(B2M SS; 서열번호 235)에 연결된 G-펩타이드(서열번호 236)에 B2M(서열번호 237)이 3개의 G4S 제1 링커(서열번호 238)로 연결되어 있고, B2M이 HA tag(서열번호 239)가 붙은 HLA-E(서열번호 240)에 4개의 G4S 제2 링커(서열번호 241)로 연결된 형질전환 HLA-E(G-B2M-HLA-E)를 합성하였다. 각각의 서열을 하기 표 6에 나타내었다. 합성된 형질전환 HLA-E를 pLVX-EF1α-IRES-Puro Vector(Clontech, 631988)에 삽입하여 클로닝하였으며 구조는 도 21과 같다.
형질전환 HLA-E 아미노산 서열
B2M SS MSRSVALAVLALLSLSGLEA(서열번호 235)
G-펩타이드 VMAPRTLFL(서열번호 236)
B2M IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM(서열번호 237)
제1 링커(G4S 링커 1) GGGGSGGGGSGGGGS(서열번호 238)
HA tag YPYDVPDYA(서열번호 239)
HLA-E GSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEYWDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQFAYDGKDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETLLHLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKPASQPTIPIVGIIAGLVLLGSVVSGAVVAAVIWRKKSSGGKGGSYSKAEWSDSAQGSESHSL(서열번호 240)
제2 링커(G4S 링커 2) GGGGSGGGGSGGGGSGGGGS(서열번호 241)
실시예 4.3. K562 세포주에 형질도입을 통한 HLA-E의 발현 및 확인
형질전환 HLA-E가 삽입된 pLVX-EF1α-IRES-Puro Vector를 lenti viral packaging vector와 함께 293T 세포주에 형질감염하고 3일 후 렌티바이러스 상층액을 0.45 μm 필터를 통하여 수득하였다. 렌티바이러스 상층액을 K562 세포주에 처리하고 32℃에서 3,000 rpm으로 1시간 동안 원심분리하였다. 3일 후 1x106개의 세포를 5 mL 튜브로 옮기고 PE-Cy7 anti-HLA-E(Biolegend, 342608) 및 APC anti-B2M(Biolegend, 316312)으로 세포 표면 염색을 30분 동안 진행하였다. FACS 버퍼로 세척한 후, 유세포 분석기를 이용하여 HLA-E 및 B2M의 발현을 확인하였다. 도 22와 같이 형질전환 HLA-E를 발현시킨 K562 세포주에서 HLA-E와 B2M이 높은 수준으로 발현하는 것을 확인하였다.
실시예 4.4. HLA-E 도입 세포의 세포살해능 평가
형질전환 HLA-E를 발현시킨 K562 세포주와 대조군 K562 세포주를 제조업자의 지시에 따라 Calcein-AM으로 염색한 후, 1x104개 세포를 NK 세포와 함께 E : T의 비율을 10 : 1, 3 : 1, 1 : 1 및 0.3 : 1로 U-bottom 플레이트에 배양하였다. 5시간 후 배양액을 100 μL씩 덜어내어 세포사멸에 의해 분비된 Calcein-AM 양을 형광측정기(VictorTMX3, PerkinElmer)로 측정하였다.
도 23과 같이 NK 세포에 의한 세포살해 현상이 형질전환 HLA-E를 발현시킨 K562 세포주(K562 G-B2M-HLA-E)의 경우 대조군 K562 세포주(K562)에 비하여 유의하게 감소하는 것을 확인하였다. 이를 통해, HLA-E의 발현이 NK 세포에 의한 세포사멸을 방지할 수 있다는 것을 확인하였다.
실시예 5. HLA-I 및 HLA-II가 결실된 NK 세포에 대한 HLA-E의 도입
상기 실시예 3에서 제조한 HLA-I 및 HLA-II가 결실된 NK 세포에 상기 실시예 4.2와 같이 제조한 HLA-E 벡터를 이용하여, 상기 세포에 G-펩타이드가 결합된 HLA-E가 도입된 형질전환 NK 세포를 제조하였다.

Claims (28)

  1. β2-마이크로글로불린(B2M)을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서,
    상기 가이드 RNA는 서열번호 1, 서열번호 6, 서열번호 17 및 서열번호 26으로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA.
  2. HLA-DQ를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서,
    상기 가이드 RNA는 서열번호 64, 서열번호 65, 서열번호 87 및 서열번호 90으로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA.
  3. HLA-DP를 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서,
    상기 가이드 RNA는 서열번호 123 또는 서열번호 129의 핵산 서열을 포함하는 것인 가이드 RNA.
  4. HLA-DR을 코딩하는 핵산 서열에 상보적으로 결합하는 가이드 RNA로서,
    상기 가이드 RNA는 서열번호 186, 서열번호 188 및 서열번호 225로 이루어진 군으로부터 선택되는 어느 하나의 핵산 서열을 포함하는 것인 가이드 RNA.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 가이드 RNA 또는 가이드 RNA 인코딩 뉴클레오타이드 및 RNA-유도 엔도뉴클레아제 또는 RNA-유도 엔도뉴클레아제 인코딩 뉴클레오타이드를 유효성분으로 포함하는 유전자 발현 억제용 조성물.
  6. 제5항에 있어서,
    상기 RNA-유도 엔도뉴클레아제는 Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cas12a, Cas12b, Cas12c, Cas12d, Cas12e, Cas 13a, Cas 13b, Cas 13c, Cas 13d, Cpf1, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3 및 Csf4로 이루어진 군으로부터 선택되는 어느 하나인, 유전자 발현 억제용 조성물.
  7. MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제된 형질전환된 세포.
  8. 제7항에 있어서,
    상기 형질전환된 세포는 펩타이드 항원을 세포막 표면에 발현하는 것인, 형질전환된 세포.
  9. 제8항에 있어서,
    상기 펩타이드 항원은 G-펩타이드인, 형질전환된 세포.
  10. 제9항에 있어서,
    상기 G-펩타이드는 변형된 MHC I 세포막 수용체에 결합된 것인, 형질전환된 세포.
  11. 제10항에 있어서,
    상기 변형된 MHC I 세포막 수용체는 HLA-E와 B2M이 연결된 구조를 갖는 것인, 형질전환된 세포.
  12. 제11항에 있어서,
    상기 변형된 MHC I 세포막 수용체는 상기 HLA-E의 α1의 N 말단에 B2M의 C 말단이 제1 링커를 통해 연결되고,
    상기 B2M의 N 말단에 상기 G-펩타이드의 C 말단이 제2 링커를 통해 연결된 것인, 형질전환된 세포.
  13. 제12항에 있어서,
    상기 G-펩타이드는 서열번호 236의 서열을 가지는 것인, 형질전환된 세포.
  14. 제12항에 있어서,
    상기 HLA-E는 서열번호 240의 서열을 가지는 것인, 형질전환된 세포.
  15. 제12항에 있어서,
    상기 B2M은 서열번호 237의 서열을 가지는 것인, 형질전환된 세포.
  16. 제12항에 있어서,
    상기 제1 링커는 서열번호 238의 서열을 가지는 것인, 형질전환된 세포.
  17. 제12항에 있어서,
    상기 제2 링커는 서열번호 241의 서열을 가지는 것인, 형질전환된 세포.
  18. 제7항에 있어서,
    MHC I 세포막 수용체를 코딩하는 유전자의 변형은 제1항의 가이드 RNA를 이용해 수행되는 것인, 형질전환된 세포.
  19. 제7항에 있어서,
    MHC II 세포막 수용체를 코딩하는 DQ, DP 및 DR 유전자의 변형은 각각 제2항, 제3항 및 제4항의 가이드 RNA를 이용해 수행되는 것인, 형질전환된 세포.
  20. 제7항에 있어서,
    상기 형질전환된 세포는 치료용 동종세포(allogeneic cell)인 것인, 형질전환된 세포.
  21. 제20항에 있어서,
    상기 치료용 동종세포는 면역세포 또는 줄기세포인, 형질전환된 세포.
  22. 제21항에 있어서,
    상기 면역세포는 NK 세포 또는 T 세포인 것인, 형질전환된 세포.
  23. 제7항에 따른 형질전환된 세포를 유효성분으로 포함하는 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환 치료용 약학 조성물.
  24. 제23항에 있어서,
    상기 암은 만성 림프구성 백혈병(CLL), B 세포 급성 림프구성 백혈병(B-ALL), 급성 림프아구성 백혈병, 급성 골수성 백혈병, 림프종, 비호지킨 림프종(NHL), 다발성 골수종, 혈액암, 위암, 간암, 췌장암, 대장암, 폐암, 유방암, 난소암, 피부암, 흑색종, 육종, 전립선암, 식도암, 간세포 암종, 성상세포종, 중피종, 두경부암 및 수아세포종으로 이루어진 군으로부터 선택되는 어느 하나인, 약학 조성물.
  25. 제23항에 있어서,
    상기 감염성 질환은 B형 간염, C형 간염, 인간 파필로마 바이러스(HPV) 감염, 사이토메갈로바이러스(Cytomegalovirus) 감염, 엡스타인바 바이러스(EBV)감염, 바이러스성 호흡기 질환 및 인플루엔자로 이루어진 군으로부터 선택되는 어느 하나인, 약학 조성물.
  26. 제23항 내지 제25항 중 어느 한 항에 따른 약학 조성물을 개체에 투여하는 단계를 포함하는 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환을 치료하는 방법.
  27. 제26항에 있어서,
    상기 투여 경로는 정맥내, 근육내, 피내, 피하, 복강내, 소동맥내, 심실내, 병변내, 척추강내, 국소 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인, 방법.
  28. MHC I 세포막 수용체 및 MHC II 세포막 수용체의 발현이 억제되고,
    변형된 MHC I 세포막 수용체에 결합된 펩타이드 항원을 세포막 표면에 발현하는 형질전환된 세포의 암, 감염성 질환, 퇴행성 질환, 유전성 질환 또는 면역 질환 치료 용도.
PCT/KR2018/014112 2017-11-16 2018-11-16 형질전환된 인간세포 및 이의 용도 WO2019098759A2 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX2020005235A MX2020005235A (es) 2017-11-16 2018-11-16 Celula humana transformada y uso de la misma.
CN201880074666.8A CN111742049A (zh) 2017-11-16 2018-11-16 转化的人细胞及其用途
EP18877963.1A EP3712268A4 (en) 2017-11-16 2018-11-16 TRANSFORMED HUMAN CELL AND ITS USE
SG11202004529XA SG11202004529XA (en) 2017-11-16 2018-11-16 Transformed human cell and use thereof
KR1020207011903A KR20200074954A (ko) 2017-11-16 2018-11-16 형질전환된 인간세포 및 이의 용도
JP2020527057A JP2021503284A (ja) 2017-11-16 2018-11-16 形質転換ヒト細胞およびその使用
CA3082331A CA3082331A1 (en) 2017-11-16 2018-11-16 Transformed human cell and use thereof
US16/764,664 US20200407713A1 (en) 2017-11-16 2018-11-16 Transformed human cell and use thereof
AU2018367792A AU2018367792A1 (en) 2017-11-16 2018-11-16 Transformed human cell and use thereof
IL274691A IL274691A (en) 2017-11-16 2020-05-14 Transformed human cells inhibited for expression of mhc i and mhc ii cell membrane receptors and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762587068P 2017-11-16 2017-11-16
US62/587,068 2017-11-16

Publications (2)

Publication Number Publication Date
WO2019098759A2 true WO2019098759A2 (ko) 2019-05-23
WO2019098759A3 WO2019098759A3 (ko) 2019-07-18

Family

ID=66537875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014112 WO2019098759A2 (ko) 2017-11-16 2018-11-16 형질전환된 인간세포 및 이의 용도

Country Status (11)

Country Link
US (1) US20200407713A1 (ko)
EP (1) EP3712268A4 (ko)
JP (1) JP2021503284A (ko)
KR (1) KR20200074954A (ko)
CN (1) CN111742049A (ko)
AU (1) AU2018367792A1 (ko)
CA (1) CA3082331A1 (ko)
IL (1) IL274691A (ko)
MX (1) MX2020005235A (ko)
SG (1) SG11202004529XA (ko)
WO (1) WO2019098759A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005208A (ko) * 2020-07-06 2022-01-13 주식회사 지씨셀 면역원성이 감소된 신규한 이식용 세포
TW202237826A (zh) 2020-11-30 2022-10-01 瑞士商克里斯珀醫療股份公司 基因編輯的自然殺手細胞
CA3203392A1 (en) 2020-12-31 2022-07-07 Alireza Rezania Universal donor cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083487A (zh) * 2013-05-15 2023-05-09 桑格摩生物治疗股份有限公司 用于治疗遗传病状的方法和组合物
EP3194578B1 (en) * 2014-08-06 2021-03-10 College of Medicine Pochon Cha University Industry-Academic Cooperation Foundation Immune-compatible cells created by nuclease-mediated editing of genes encoding hla
EP3215623A4 (en) * 2014-11-06 2018-09-26 President and Fellows of Harvard College Cells lacking b2m surface expression and methods for allogeneic administration of such cells
SG11201803144WA (en) * 2015-11-04 2018-05-30 Fate Therapeutics Inc Genomic engineering of pluripotent cells
SG11201804373VA (en) * 2015-12-04 2018-06-28 Novartis Ag Compositions and methods for immunooncology
EA201891212A1 (ru) * 2015-12-18 2019-01-31 Сангамо Терапьютикс, Инк. Адресная дезорганизация клеточного рецептора гкгс
BR112018013065A2 (pt) * 2015-12-28 2018-12-11 Intellia Therapeutics Inc composições e métodos para o tratamento de hemoglobinopatias
WO2017143210A1 (en) * 2016-02-19 2017-08-24 The General Hospital Corporation Methods for generating universal and custom mhc/hla-compatible hematopoietic progenitor cells
WO2017152015A1 (en) * 2016-03-04 2017-09-08 Editas Medicine, Inc. Crispr-cpf1-related methods, compositions and components for cancer immunotherapy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BLOOD CELLS MOLECULES & DISEASE, vol. 33, 2004, pages 261 - 266

Also Published As

Publication number Publication date
CN111742049A (zh) 2020-10-02
SG11202004529XA (en) 2020-06-29
IL274691A (en) 2020-06-30
KR20200074954A (ko) 2020-06-25
WO2019098759A3 (ko) 2019-07-18
AU2018367792A1 (en) 2020-06-11
EP3712268A2 (en) 2020-09-23
MX2020005235A (es) 2020-08-24
CA3082331A1 (en) 2019-05-23
JP2021503284A (ja) 2021-02-12
US20200407713A1 (en) 2020-12-31
EP3712268A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
Sivori et al. NK cells and ILCs in tumor immunotherapy
Bleakley et al. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia
WO2019098759A2 (ko) 형질전환된 인간세포 및 이의 용도
US20210070832A1 (en) Antigen-specific helper t-cell receptor genes
Moretta et al. Human NK cells: From surface receptors to clinical applications
Hu et al. Identification of cross-reactive CD8+ T cell receptors with high functional avidity to a SARS-CoV-2 immunodominant epitope and its natural mutant variants
van den Elsen et al. Lack of CIITA expression is central to the absence of antigen presentation functions of trophoblast cells and is caused by methylation of the IFN-γ inducible promoter (PIV) of CIITA
JP2022523052A (ja) 変異型rasを標的とするための組成物および方法
JP2022546524A (ja) 腫瘍ネオアンチゲンペプチドを標的とする免疫療法
US20230210902A1 (en) Sars-cov-2-specific t cells
KR20240058915A (ko) 동종이계 인간 t 세포의 대체 생성
Isa et al. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors
Van Der Veken et al. HLA class II restricted T-cell receptor gene transfer generates CD4+ T cells with helper activity as well as cytotoxic capacity
KR102030364B1 (ko) 멀티플렉스 CRISPR-Cas9 시스템을 이용한 HLA 결핍 세포주로부터 제조된 인공항원제시세포 및 이의 용도
Kath et al. CAR NK-92 cell–mediated depletion of residual TCR+ cells for ultrapure allogeneic TCR-deleted CAR T-cell products
US20220363732A1 (en) Cd5 specific t cell receptor cell or gene therapy
EP4039808A1 (en) Guide rnas and uses thereof
Hashmi et al. T-Cell Therapeutics: Donor Lymphocyte Infusion, Cytotoxic T-Lymphocyte Infusion, and Other Non-CAR T-Cell Therapies
IL300524A (en) Allogeneic reactive immune cell exclusion device and its uses for protecting cells from a donor source from allogeneic rejection
Preece Harnessing CD4+ T cell effectors for lymphoma therapy
JP2022535731A (ja) 改変nk-92細胞、及びそれらの治療的及び診断的使用
Kundu et al. Tina Senff1, Christine Th ns1, Maureen Peters1, Norbert Scherbaum2, J rg Timm1
Rojas et al. Gamma‐Delta (γδ) T Cells and HIV‐1 Infection
Besser et al. Development of Allogeneic NK Cell Adoptive Transfer Therapy in
Nguyen Isolation and Characterization of T cell receptor Genes for Immunotherapy of Epstein-Barr-virus-associated Malignancies

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3082331

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020527057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018367792

Country of ref document: AU

Date of ref document: 20181116

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877963

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018877963

Country of ref document: EP

Effective date: 20200616