WO2019098203A1 - 積層フィルム及び半導体素子の製造方法 - Google Patents

積層フィルム及び半導体素子の製造方法 Download PDF

Info

Publication number
WO2019098203A1
WO2019098203A1 PCT/JP2018/042015 JP2018042015W WO2019098203A1 WO 2019098203 A1 WO2019098203 A1 WO 2019098203A1 JP 2018042015 W JP2018042015 W JP 2018042015W WO 2019098203 A1 WO2019098203 A1 WO 2019098203A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
laminated film
layer
mold
Prior art date
Application number
PCT/JP2018/042015
Other languages
English (en)
French (fr)
Inventor
省吾 小寺
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020207008669A priority Critical patent/KR102537658B1/ko
Priority to SG11202004352PA priority patent/SG11202004352PA/en
Priority to CN201880074248.9A priority patent/CN111712385A/zh
Priority to DE112018005759.3T priority patent/DE112018005759T5/de
Priority to JP2019554235A priority patent/JP7151720B2/ja
Publication of WO2019098203A1 publication Critical patent/WO2019098203A1/ja
Priority to US16/822,110 priority patent/US11318641B2/en
Priority to PH12020550135A priority patent/PH12020550135A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • B29C37/0075Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other using release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14819Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a laminated film and a method of manufacturing a semiconductor device.
  • the semiconductor chip is usually housed (sealed) in a container called a package for shielding and protecting it from the outside air, and is regarded as a semiconductor element.
  • a molded body made of a cured product of a curable resin for example, a thermosetting resin such as an epoxy resin
  • a method of manufacturing a semiconductor element for example, a so-called transfer molding method or compression molding in which a semiconductor chip or the like is disposed so as to be positioned at a predetermined place in a mold, and a curable resin is filled in the mold and cured. The law is known.
  • a mold release film may be disposed on the cavity surface of the mold. After the release film is inserted into the mold, it is drawn along the cavity surface by vacuum suction to be in close contact with the cavity surface. At this time, the release film may be in close contact with the cavity surface in a state where air between the release film and the cavity surface is not completely removed, and wrinkles may be generated in the release film. When the release film has wrinkles, the shape of the wrinkles of the release film is transferred to the surface of the package to cause appearance defects, and the yield decreases.
  • a release film for sealing a semiconductor chip in which a fluorine resin film is laminated on at least one surface of a stretched polyester resin film (Patent Document 1).
  • Patent Document 1 A surface layer containing a 4-methyl-1-pentene copolymer and having a storage modulus E 'at 45 ° C of 45 to 105 MPa, and a heat resistant resin layer having a storage modulus E' at 100 ° C of 100 to 250 MPa
  • the mold release film for semiconductor sealing processes containing (patent document 2).
  • a mold release film is brought into close contact with the surface (cavity surface) of the recess provided in the lower mold, a curable resin is disposed thereon, and the lower mold and the upper mold are clamped.
  • the bottom of the recess (the bottom of the cavity) is raised, and the depth of the recess is adjusted to the thickness of the molded body (package or the like).
  • the depth of the recess of the lower mold when the release film is in close contact is, for example, about several times the thickness of the formed body to be formed.
  • the stretched release film shrinks accordingly. However, at this time, the release film may not shrink sufficiently and a film may be generated to be wrinkled.
  • the film residue is likely to occur when the thickness of the formed body is thin (for example, 0.1 to 0.7 mm), that is, when the amount of stretched release film is small.
  • the release films of Patent Documents 1 to 4 have insufficient effect of suppressing such wrinkles.
  • An object of the present invention is a laminated film capable of suppressing both the generation of wrinkles when bringing a release film into close contact with a cavity surface in compression molding, and the generation of wrinkles when raising the bottom of the cavity to which the release film makes contact. It is an offer of the manufacturing method of the semiconductor device using this lamination film.
  • the present invention provides a method for producing a laminated film and a semiconductor device, having the following constitutions [1] to [15].
  • Storage elastic modulus E 'at 180 ° C. is 70 MPa or more, and thermal shrinkage at 180 ° C. for 30 minutes is 3% or more based on 20 ° C. in each of machine direction (MD) and transverse direction (TD)
  • a laminated film comprising: a shrinkable film layer; and a fluorine resin layer present on one side or both sides of the shrinkable film layer, wherein at least one side is a surface of the fluorine resin layer.
  • the storage elastic modulus E ′ at 180 ° C. of the laminated film is 70 MPa or more, and the thermal contraction rate at 180 ° C.
  • the shrinkable film is a shrinkable film composed of at least one resin selected from the group consisting of polyamide resin, polyester resin, polystyrene resin, and bio-based resin, [1] to [5] One of the laminated film.
  • the laminated film according to any one of [1] to [7], wherein the fluorine resin is a fluorine resin comprising a fluoroolefin polymer.
  • the laminated film of [8], wherein the fluoroolefin polymer is an ethylene-tetrafluoroethylene copolymer.
  • a semiconductor element comprising a substrate, a semiconductor chip, a connection terminal, and a resin sealing portion made of a cured product of a curable resin is manufactured by using a compression molding apparatus having an upper mold and a lower mold.
  • a structure having a substrate, a semiconductor chip and a connection terminal is disposed in one of the upper mold and the lower mold;
  • a laminated film according to any one of claims 1 to 12 as a mold release film, and a fluorine resin layer surface is a mold so as to cover a recess provided on the other of the upper mold and the lower mold.
  • a curable resin is disposed between the upper mold and the lower mold, the upper mold and the lower mold are clamped, and the bottom of the recess is moved to compress the curable resin.
  • the depth of the recess when bringing the laminated film into close contact with the surface of the recess is 0.125 to 1.1 mm deeper than the thickness of the resin sealing portion, [13] or [14] ] The manufacturing method of the semiconductor element of].
  • the laminated film of the present invention it is possible to suppress both the generation of wrinkles when bringing the release film into close contact with the cavity surface in compression molding and the generation of wrinkles when raising the bottom of the cavity to which the release film makes contact.
  • the method of manufacturing a semiconductor device of the present invention both generation of wrinkles during adhesion of the release film to the cavity surface in compression molding and generation of wrinkles when raising the bottom of the cavity to which the release film is adhered It is possible to obtain a semiconductor device which can be suppressed and which has an excellent appearance.
  • FIG. 7 is a cross-sectional view for schematically illustrating Steps 1 to 3 in the embodiment of the method for manufacturing a semiconductor device of the present invention. It is sectional drawing which demonstrates typically process 4 in one Embodiment of the manufacturing method of the semiconductor element of this invention. It is sectional drawing which illustrates typically the process 5 in one Embodiment of the manufacturing method of the semiconductor element of this invention.
  • the meanings of the following terms in the present specification are as follows.
  • the “thickness” of the film is measured with a contact-type thickness gauge OG-525H (manufactured by Ono Sokki Co., Ltd.) using a gauge head AA-026 ( ⁇ 10 mm SR7).
  • the "storage modulus E '" (tensile storage modulus) is measured using a dynamic viscoelasticity measuring device.
  • the sample measurement size is 5 mm in width, the chuck length is 20 mm, the frequency is 10 Hz, the temperature is increased at a rate of 20 ° C. to 2 ° C./min, and the E ′ measured at 180 ° C. is stored at 180 ° C.
  • the elastic modulus (hereinafter, also referred to as “storage elastic modulus (180 ° C.)”) is used.
  • the storage modulus E ′ (180 ° C.) of the film is the average value of the storage modulus E ′ (180 ° C.) of the MD of the film and the storage modulus E ′ (180 ° C.) of the TD of the film.
  • the "heat shrinkage rate” is-( ⁇ L).
  • ⁇ L is a dimensional change rate (%) obtained by the following method. Draw a straight line of 10 cm in length on the laminated film of 12 cm x 12 cm at the reference temperature, one each along the MD (Machine Direction) and TD (Transverse Direction) directions, and each straight line Let the distance between the end points of the initial length L 0 . Then, the laminated film was heat-treated under predetermined conditions, after cooling to the reference temperature, the linear distance L 1 between the end points of drawn on the laminated film linear measures, dimensional change rate [Delta] L (% by the following formula 1 Ask for).
  • thermal contraction rate (180 ° C.) (L 1 / L 0 ⁇ 1) ⁇ 100 formula 1
  • the thermal contraction rate of MD is obtained from ⁇ L determined for the straight line along MD
  • the thermal contraction rate of TD is obtained from ⁇ L determined for the straight line along TD.
  • the thermal contraction rate determined based on a reference temperature of 20 ° C. and heat treatment conditions of 180 ° C. for 30 minutes is also referred to as “thermal contraction rate at 180 ° C. for 30 minutes based on 20 ° C.” (hereinafter, “thermal contraction rate (180 ° C.) Note.)
  • melting point is meant the temperature corresponding to the maximum of the melting peak as measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the “unit” in the resin consisting of a polymer shows the structural unit (monomer unit) which comprises a polymer.
  • (Meth) acrylate” is a generic term for acrylate and methacrylate. The dimensional ratios in FIGS. 1 to 6 are different from actual ones for the convenience of explanation.
  • the laminated film of the present invention (hereinafter, also referred to as "the present laminated film”) includes a layer of a shrinkable film and a fluorine resin layer present on one side or both sides of the layer of the shrinkable film. It is characterized in that it is the surface of the resin layer. Therefore, the present laminated film has a configuration in which the fluorine resin layer and the layer of the shrinkable film exist in this order from the first surface side of the present laminated film, or the layer of the fluorine resin layer and the shrinkable film and the fluorine resin layer It has the structure which exists in this order.
  • the fluorine resin layer located on the first surface side of the layer of the shrinkable film is also referred to as the "first fluorine resin layer”.
  • the fluorine resin layer positioned on the second surface side opposite to the first surface with respect to the layer of the shrinkable film is also referred to as "second fluorine resin layer”.
  • At least one surface of the laminated film is the surface of the fluororesin layer, and hereinafter, the surface of the essential fluororesin layer is referred to as the first surface. That is, the present laminated film has the first fluororesin layer as the outermost layer on the first surface side.
  • the present laminated film may or may not have the second fluororesin layer.
  • the second fluororesin layer may be present as the outermost layer on the second surface side of the present laminated film, or may be present as an inner layer on the second surface side.
  • the second fluororesin layer is an inner layer, it has another layer described later on the second surface side.
  • the second surface side of the present laminated film may be the surface of the shrinkable film layer, and the second surface side may have another layer described later.
  • This laminated film may further include another layer between the layer of the shrinkable film and the fluorocarbon resin layer (the first fluorocarbon resin layer, the second fluorocarbon resin layer), if necessary.
  • Other layers include an adhesive layer, an antistatic layer, a conductive layer, a gas absorbing layer, a colored layer and the like.
  • the present laminated film preferably has an adhesive layer.
  • another layer such as the antistatic layer may be present on the second surface side of the second fluororesin layer. .
  • FIG. 1 is a schematic cross-sectional view showing an example of the present laminated film.
  • the laminated film 1 of this example is composed of a layer 3 of a shrinkable film and a fluorine resin layer 5 (a first fluorine resin layer and a second fluorine resin layer) present on both sides of the layer 3 of the shrinkable film.
  • FIG. 2 is a schematic cross-sectional view showing another example of the present laminated film.
  • the laminated film 2 of this example comprises a layer 3 of a shrinkable film and a fluorine resin layer 5 (first fluorine resin layer) present on one side of the layer 3 of a shrinkable film.
  • an adhesive layer (not shown) is preferably present between the layer 3 of the shrinkable film and the fluorine resin layer 5.
  • the layer of the shrinkable film in the present laminated film is a layer formed of a shrinkable film having the storage elastic modulus of 70 MPa or more and the thermal shrinkage of the MD and the thermal shrinkage of the TD of 3% or more. is there.
  • a shrinkable film is a resin film having a property (hereinafter, also referred to as “shrinkage property”) that shrinks its dimensions when heated to room temperature or higher.
  • the shrinking property of the shrinkable film is due to the residual stress, and the heating relieves the residual stress and the film shrinks.
  • a film having a residual strain at the time of film formation, or a film subjected to stress by biaxial stretching or blow molding is used without being subjected to a residual stress relaxation process such as heat setting. .
  • polyvinyl chloride PVC
  • polyester resin polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.
  • polyolefin resin polyethylene, polypropylene, etc.
  • polyamide resin PA6, PA66
  • PPS polyphenylene sulfide
  • bio-based resins polylactic acid, resins mainly composed of cellulose, chitin, chitosan, kenaf etc.
  • the resin constituting the shrinkable film may be one type or two or more types.
  • At least one selected from the group consisting of polyamide resins, polyester resins, polystyrene resins, and bio-derived resins is preferable in terms of excellent mechanical strength and film moldability, and it is easy to impart shrinkage property.
  • polyamide resins are particularly preferred.
  • the melting point of the resin is preferably 200 ° C. or higher, and particularly preferably 220 to 300 ° C. If the melting point of the resin is 200 ° C. or higher, a phase change such as melting occurs at a standard curing temperature (170 to 180 ° C.) of an epoxy molding compound (EMC) generally used as a curable resin in the manufacture of semiconductor devices. Hateful.
  • EMC epoxy molding compound
  • the shrinkable film may further contain an additive as required.
  • the additive include a coloring component, an antioxidant, a thermal deterioration inhibitor, a stabilizer and the like.
  • a biaxially stretched film is preferable in that control of residual strain of the film is easy.
  • a general biaxially stretched film is a film with high dimensional stability, in which a heat treatment operation for relaxing residual stress is performed after the film is formed and biaxially stretched.
  • these dimensionally stable films are not suitable for the present invention.
  • a biaxially stretched polyamide resin film for example, Emblem (registered trademark) MS and Emblem NK manufactured by Unitika Co., Ltd.
  • a biaxially stretched polystyrene resin film for example, DXL manufactured by Mitsubishi Chemical Co., Ltd. Registered film
  • biaxially stretched polyester resin film for example, Hishipet (registered trademark) manufactured by Mitsubishi Chemical Co., Ltd.
  • biaxially stretched biological resin film for example, PLABIO (registered trademark) manufactured by Mitsubishi Chemical Co., Ltd.
  • multilayered is a hybrid stretched film (for example, Hybrex DL (registered trademark) manufactured by Mitsubishi Chemical Corporation).
  • a biaxially stretched film made of a resin having a melting point of 200 ° C. or more is preferable, and a biaxially stretched polyamide resin film is particularly preferable.
  • the heat shrinkage ratio (180 ° C.) of MD of the shrinkable film is 3% or more, preferably 3 to 30%, and particularly preferably 3 to 25%.
  • the thermal contraction rate (180 ° C.) of TD of the shrinkable film is 3% or more, preferably 3 to 30%, and particularly preferably 3 to 25%. If the thermal contraction rate (180 ° C.) of each of MD and TD of the shrinkable film is equal to or more than the lower limit value, it is possible to suppress the generation of wrinkles when raising the bottom of the cavity to which the laminated film adheres. If the thermal contraction rate (180 ° C.) of each of MD and TD is equal to or less than the upper limit value, the film shape after thermal contraction is maintained, and the film flatness is good.
  • the storage elastic modulus (180 ° C.) of the shrinkable film is 70 MPa or more, preferably 100 to 500 MPa, and particularly preferably 200 to 350 MPa. If the storage elastic modulus (180 ° C.) of the shrinkable film is equal to or more than the lower limit value, generation of wrinkles can be suppressed when the laminated film is brought into close contact with the cavity surface. When the storage elastic modulus (180 ° C.) is equal to or less than the upper limit value, the followability to the mold is good. The storage modulus (180 ° C.) can be adjusted by the material constituting the shrinkable film.
  • the thickness of the shrinkable film is preferably 10 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, and particularly preferably 10 to 40 ⁇ m. If the thickness of the shrinkable film is not less than the lower limit value, the mechanical properties are excellent. When the thickness of the shrinkable film is equal to or less than the upper limit value, the flexibility is excellent, and as a result, the followability to the shape of the mold is more excellent.
  • Fluororesin layer As a fluorine resin which comprises a fluorine resin layer, the fluorine resin which consists of a fluoro olefin type polymer from a releasability and a heat resistant point is preferable.
  • Fluoroolefin polymers are polymers having units based on fluoroolefins. Examples of fluoroolefins include tetrafluoroethylene (hereinafter also referred to as "TFE"), vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene, chlorotrifluoroethylene and the like.
  • fluoroolefins may be used alone, or two or more thereof may be used in combination.
  • the fluoroolefin polymer may further have a unit based on a monomer other than fluoroolefin.
  • monomers other than fluoroolefins include ethylene and a third monomer described later.
  • an ethylene-TFE copolymer (hereinafter also referred to as “ETFE”), polytetrafluoroethylene, and a perfluoro (alkyl vinyl ether) -TFE copolymer are preferable.
  • ETFE ethylene-TFE copolymer
  • polytetrafluoroethylene polytetrafluoroethylene
  • perfluoro (alkyl vinyl ether) -TFE copolymer ethylene-TFE copolymer
  • One of these fluoroolefin polymers may be used alone, or two or more thereof may be used in combination.
  • the “system” in the ETFE and perfluoro (alkyl vinyl ether) -TFE copolymer indicates that it may further have a unit based on another monomer.
  • ETFE is preferable in terms of large elongation at high temperature.
  • ETFE is a copolymer having a unit based on ethylene (hereinafter also referred to as "E unit”) and a unit based on TFE (hereinafter also referred to as “TFE unit”).
  • E unit ethylene
  • TFE unit a copolymer having an E unit, a TFE unit, and a unit based on ethylene and a monomer other than TFE (hereinafter, also referred to as “third monomer”) is preferable.
  • a 3rd monomer the monomer which has a fluorine atom, and the monomer which does not have a fluorine atom are mentioned.
  • the monomer having a fluorine atom the following monomers (a1) to (a5) may, for example, be mentioned.
  • Monomer (a1) a fluoroolefin having 3 or less carbon atoms (but excluding TFE).
  • Monomer (a3) fluorovinyl ether.
  • Monomer (a5) a fluorine-containing monomer having an aliphatic ring structure.
  • fluoroethylene trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene etc.
  • fluoropropylene hexafluoropropylene (hereinafter also referred to as "HFP"), 2- And hydropentafluoropropylene etc.
  • monomers in which n is an integer of 2 to 6 are preferable, and monomers in which n is an integer of 2 to 4 are particularly preferable.
  • a monomer in which X 1 is a fluorine atom and X 2 is a hydrogen atom, that is, (perfluoroalkyl) ethylene is particularly preferable.
  • CF 3 CF 2 CH CH 2
  • CF 3 CF 2 CF 2 CF 2 CH CH 2 ((perfluorobutyl) ethylene, hereinafter also referred to as “PFBE”)
  • PFBE perfluorobutyl ethylene
  • monomers which are dienes are monomers which can be cyclopolymerized.
  • Examples of the monomer having no fluorine atom include the following monomers (b1) to (b4).
  • Monomer (b1) an olefin (except ethylene).
  • Monomer (b2) vinyl ester.
  • Monomer (b3) vinyl ether.
  • Monomer (b4) unsaturated acid anhydride.
  • the monomer (b1) include propylene and isobutene.
  • Specific examples of the monomer (b2) include vinyl acetate and the like.
  • Specific examples of the monomer (b3) include ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether and the like.
  • Specific examples of the monomer (b4) include maleic anhydride, itaconic anhydride, citraconic anhydride, hymic acid anhydride (5-norbornene-2,3-dicarboxylic acid anhydride) and the like.
  • the third monomer may be used alone or in combination of two or more.
  • the monomer having a fluorine atom can be high temperature Monomer (a2), HFP, PPVE, and vinyl acetate are preferable, and HFP, PPVE, CF 3 CF 2 CHCHCH 2 , and PFBE are more preferable, from the viewpoint of excellent tensile strength and elongation at, for example, about 180 ° C.
  • PFBE is particularly preferred. That is, as ETFE, a copolymer having an E unit, a TFE unit, and a unit based on PFBE is particularly preferable.
  • the molar ratio of TFE units to E units is preferably 40/60 to 80/20, more preferably 45/55 to 70/30, especially 50/50 to 65/35. preferable. If the TFE unit / E unit is in the above range, the heat resistance and mechanical properties of ETFE are more excellent.
  • the proportion of units based on the third monomer in ETFE is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, based on the total amount (100 mol%) of all units constituting ETFE. Is more preferable, and 0.20 to 10 mol% is particularly preferable. If the proportion of units based on the third monomer is within the above range, the heat resistance and mechanical physical properties of ETFE are more excellent.
  • the proportion of the unit based on PFBE is 0.5 to 4.0 based on the total amount (100 mol%) of all the units constituting ETFE.
  • the mole percent is preferred, 0.7 to 3.6 mole percent is more preferred, and 1.0 to 3.6 mole percent is particularly preferred. If the proportion of units based on PFBE is within the above range, the heat resistance of the fluororesin layer is more excellent. Moreover, the tensile strength at high temperature (for example, around 180 ° C.) is more excellent.
  • the melt flow rate (MFR) of ETFE is preferably 2 to 40 g / 10 min, more preferably 5 to 30 g / 10 min, and particularly preferably 10 to 20 g / 10 min. If MFR is in the said range, the moldability of ETFE will improve and the mechanical property of a fluorine resin layer will be excellent.
  • the MFR of ETFE is a value measured at a load of 49 N at 297 ° C. in accordance with ASTM D3159.
  • the fluorine resin of the fluorine resin layer may contain an additive, if necessary.
  • the additive include coloring agents, ultraviolet absorbers, inorganic fillers, thermal antiaging agents, antioxidants, and organic fillers such as resins other than fluororesins.
  • the thickness of the fluorine resin layer is preferably 5 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m. If the thickness of the fluorine resin layer is not less than the lower limit value, the releasability is more excellent. If the thickness of the fluorine resin layer is equal to or less than the upper limit value, the overall flexibility is more excellent.
  • the adhesive layer includes, for example, a layer formed of an adhesive.
  • the adhesive may be, for example, an adhesive known as an adhesive for dry lamination.
  • Adhesive copolymer with methyl methacrylate, acrylonitrile, styrene etc.
  • cyanoacrylate adhesive ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic) From ethylene copolymer based adhesives, such as copolymers with acid, methacrylic acid, etc., cellulose based adhesives, polyester based adhesives, polyamide based adhesives, polyimide based adhesives, urea resin or melamine resin etc.
  • Amino resin adhesives phenol resin adhesives, epoxy adhesives, polyols (polyether Polyurethane-based adhesives composed of a combination of a polyester polyol, polyester polyol, etc.) and a reaction product thereof (isocyanate group-containing polyurethane prepolymer, etc.), reactive (meth) acrylic adhesives, chloroprene rubber, nitrile rubber And rubber-based adhesives made of styrene-butadiene rubber and the like, silicone-based adhesives, inorganic adhesives made of alkali metal silicate, low melting point glass and the like, and the like.
  • the thickness of the adhesive layer may be, for example, 0.1 to 5 g / m 2 as the dry coating amount of the adhesive.
  • the heat shrinkage ratio (180 ° C.) of the MD of the present laminated film is preferably 2% or more, more preferably 2 to 15%, and particularly preferably 2 to 10%.
  • the heat shrinkage ratio (180 ° C.) of the present laminated film is preferably 2% or more, preferably 2 to 15%, and particularly preferably 2 to 10%. If the thermal contraction rate (180 ° C.) of each of MD and TD of the laminated film is equal to or more than the lower limit value, generation of wrinkles when raising the bottom of the cavity to which the laminated film adheres can be suppressed more effectively.
  • the heat shrinkage ratio (180 ° C.) of each of MD and TD of the laminated film is adjusted by the heat shrinkage ratio (180 ° C.) of each of MD and TD of the shrinkable film, the thickness ratio of the fluoroplastic layer and the shrink film, etc. it can.
  • the storage elastic modulus (180 ° C.) of the present laminated film is preferably 70 MPa or more, more preferably 100 to 350 MPa, and particularly preferably 200 to 350 MPa. If the storage elastic modulus (180 ° C.) of the present laminated film is equal to or more than the lower limit value, the occurrence of wrinkles when bringing the laminated film into close contact with the cavity surface can be suppressed more effectively. When the storage elastic modulus (180 ° C.) is equal to or less than the upper limit value, flexibility is excellent, and mold followability is good.
  • the storage elastic modulus (180 ° C.) of the present laminated film can be adjusted by the 180 ° C. storage elastic modulus (180 ° C.) of each of the shrinkable film and the fluorine resin layer, the thickness ratio of the fluorine resin layer and the contraction film, and the like.
  • the thickness of the laminated film is preferably 25 to 100 ⁇ m, more preferably 25 to 60 ⁇ m, and particularly preferably 25 to 50 ⁇ m. If the thickness of the present laminated film is equal to or more than the lower limit value, the occurrence of wrinkles when the present laminated film is in close contact with the cavity surface can be more effectively suppressed. Moreover, the handling of the present laminated film is easy. When the thickness of the present laminated film is equal to or less than the upper limit value, the present laminated film can be easily deformed, and the followability to the cavity surface of the mold is excellent.
  • the present laminated film can be produced, for example, by the following method A or method B.
  • the method of producing the present laminated film is not limited to these methods.
  • Method A A method of forming a fluororesin layer by laminating a fluororesin film on one side or both sides of a shrinkable film.
  • Method B A method of applying a coating solution containing a fluorocarbon resin and a liquid medium to one side or both sides of a shrinkable film and evaporating and removing the liquid medium to form a fluorocarbon resin layer.
  • Method A As a method for producing the present laminated film, method A is preferable in terms of excellent economy.
  • Method A as a method of laminating each film, a known laminating method can be adopted. Specifically, an extrusion laminating method, a dry laminating method, a thermal laminating method and the like can be mentioned.
  • the dry lamination method each resin film is laminated using an adhesive. Specific examples of the adhesive for dry lamination are as described above.
  • Each of the shrinkable film and the fluorine resin film may be a commercially available one, or may be one produced by a known production method. These films may be subjected to surface treatment such as corona treatment, plasma treatment and primer coating treatment.
  • a layer of a shrinkable film having a storage elastic modulus (180 ° C.) of 70 MPa or more and a thermal contraction rate (180 ° C.) of each of MD and TD of 3% or more Since it includes a fluorine resin layer present on one side or both sides of the layer of the film, the generation of wrinkles when bringing the release film into close contact with the cavity surface in compression molding and the rise of the bottom of the cavity to which the release film makes contact. Both the occurrence of wrinkles can be suppressed.
  • a molded body resin sealing portion or the like
  • the mold release film is brought into close contact with the concave surface (cavity surface) of the lower mold while being drawn by vacuum suction.
  • a curable resin is placed on the release film, the lower mold and the upper mold are clamped, the cavity surface is raised and these molds are heated, and the heat is applied to the curable resin. Cure.
  • the present laminated film is also heated. The heat shrinks the shrinkable film, and the fluoroplastic layer also shrinks following the layer of the shrinkable film, and the entire laminated film shrinks.
  • the thermal contraction rate (180 ° C.) of the shrinkable film is at least the lower limit value, the amount of shrinkage of the present laminated film is large, and no film surplus occurs due to the rise of the cavity surface, and curing is performed without wrinkles due to the film surplus. Resin can be cured.
  • the storage elastic modulus (180 ° C.) of the shrinkable film is not less than the lower limit value, the stiffness of the present laminated film is sufficiently strong, and the present laminated film becomes wrinkled when the present laminated film adheres to the cavity surface. Hateful.
  • both the generation of wrinkles when the release film is in close contact with the cavity surface and the generation of wrinkles when the bottom of the cavity to which the release film is in contact are raised are suppressed. it can.
  • the absence of wrinkles in the release film makes it possible to suppress appearance defects due to the shape of the wrinkles of the release film being transferred to the surface of the molded article.
  • the present laminated film is useful as a release film.
  • it is useful as a mold release film used for semiconductor element manufacture by the compression molding method or the transfer molding method.
  • it is particularly useful as a release film used for manufacturing a semiconductor device by a compression molding method as described later, which is likely to cause appearance defects due to wrinkles.
  • the application of the present laminated film is not limited to the release film, and can be used for other applications.
  • Specific examples of the other uses include food containers, medicine containers, drug outer packaging members such as PTP, shrink tapes, and tube coverings with a shrinking function by being wound around a tube and the like.
  • a semiconductor device manufactured by the method for manufacturing a semiconductor device described later using the laminated film includes a substrate, a semiconductor chip, a connection terminal, and a resin sealing portion (package), and may further include other members as necessary.
  • the resin sealing portion is made of a cured product of a curable resin.
  • the curable resin may be a thermosetting resin, such as an epoxy resin or a silicone resin. Among these, epoxy resins are preferred.
  • the curable resin may include carbon black, fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride and the like.
  • Examples of the semiconductor element include integrated circuits in which semiconductor elements such as transistors and diodes are integrated, and light emitting diodes having light emitting elements.
  • the element shape of the integrated circuit may cover the entire integrated circuit, or may cover a part of the integrated circuit (exposed part of the integrated circuit).
  • Examples of the device shape include a ball grid array (BGA), a quad flat non-leaded package (QFN), and a small outline non-leaded package (SON).
  • BGA ball grid array
  • QFN quad flat non-leaded package
  • SON small outline non-leaded package
  • the semiconductor element is preferably manufactured by batch sealing and singulation from the viewpoint of productivity, and for example, the sealing method is MAP (Molded Array Packaging) method or WL (Wafer Lebel packaging) method An integrated circuit is mentioned.
  • FIG. 3 is a schematic cross-sectional view showing an example of the semiconductor device.
  • the semiconductor element 110 of this example is formed on the substrate 10, the semiconductor chip 12 mounted on the substrate 10, the resin sealing portion 14 sealing the semiconductor chip 12, and the upper surface 14 a of the resin sealing portion 14. And an ink layer 16.
  • the semiconductor chip 12 has a surface electrode (not shown).
  • the substrate 10 has a substrate electrode (not shown) corresponding to the surface electrode of the semiconductor chip 12.
  • the surface electrode and the substrate electrode are electrically connected by a bonding wire 18 (connection terminal).
  • the thickness of the resin sealing portion of the semiconductor element is preferably 0.1 to 0.7 mm, and particularly preferably 0.1 to 0.5 mm.
  • the thickness of the resin sealing portion is the maximum thickness of the resin sealing portion in the thickness direction of the substrate.
  • the shortest distance from the surface of the substrate 10 on which the semiconductor chip 12 is installed to the top surface 14 a of the resin sealing portion 14 is the thickness of the resin sealing portion 14.
  • a release film is brought into close contact with the surface (cavity surface) of a recess provided in the lower mold, a curable resin is disposed thereon, and the lower mold and the upper mold are clamped. After that, raise the bottom of the recess.
  • the depth of the concave portion of the lower mold at the time of bringing the release film into close contact is, for example, about several times the thickness of the resin sealing portion.
  • the stretched release film shrinks accordingly.
  • the thickness of the resin sealing portion to be formed is thin, that is, the amount of the release film stretched is small, the release film does not shrink sufficiently and a film residue is easily generated to be wrinkled. .
  • the present laminated film hardly causes wrinkles when the bottom surface of the concave portion ascends. Therefore, the present laminated film is particularly useful when the thickness of the resin sealing portion is thin.
  • the thickness of the resin sealing portion is 0.1 mm or more, the resin filling property is good.
  • a method of manufacturing a semiconductor device is a compression molding apparatus including a semiconductor element including an upper mold and a lower mold, the semiconductor element including a substrate, a semiconductor chip, a connection terminal, and a resin sealing portion made of a cured product of a curable resin Manufacturing method using
  • a structure having a substrate, a semiconductor chip and a connection terminal is disposed in one of the upper mold and the lower mold.
  • the present laminated film as a mold release film is disposed so as to cover the recess provided in the other of the upper mold and the lower mold and so that the surface of the fluorocarbon resin layer faces the molding space of the mold; In close contact with the surface of the A curable resin is disposed between the upper mold and the lower mold, the upper mold and the lower mold are clamped, and the bottom of the recess is moved to compress the curable resin. And heat curing the curable resin to form a resin sealing portion.
  • the production conditions can also be the same as the conditions in the known method for producing a semiconductor device, except that the present laminated film is used as the release film.
  • FIGS. 4 to 6 a structure having a substrate, a semiconductor chip, and a connection terminal is disposed in the upper mold, and the laminated film is disposed so as to cover the recess provided in the lower mold, and compression molding is performed. It is an example.
  • This embodiment manufactures the semiconductor element 110 shown in FIG. 3 using the laminated film 1 shown in FIG. 1 as the mold release film using the compression molding apparatus provided with the cavity bottom surface member 22 and the frame-like member 24 as the lower mold.
  • a structure having a substrate, a semiconductor chip, and a connection terminal is disposed in the lower mold, and the laminated film is disposed so as to cover the recess provided in the upper mold to perform compression molding. went. Also in the compression molding method of the embodiment, the semiconductor element can be manufactured in the same manner as the compression molding method shown in FIGS.
  • the compression molding apparatus in the present embodiment includes an upper mold 20 and a lower mold 21 as shown in FIG.
  • the lower mold 21 includes a cavity bottom surface member 22 and a frame-shaped member 24 disposed around the periphery of the cavity bottom surface member 22.
  • the upper mold 20 is provided with a vacuum vent (not shown) for adsorbing the substrate 10 to the upper mold 20 by sucking air between the substrate 10 and the upper mold 20.
  • the cavity bottom member 22 has a vacuum vent (not shown) for adsorbing the release film to the cavity bottom member 22 by sucking the air between the release film (laminated film 1) and the cavity bottom member 22. It is formed.
  • the cavity bottom surface member 22 is disposed such that the top surface (cavity bottom surface) is positioned below the upper edge of the inner peripheral surface of the frame-like member 24.
  • the recess 26 is formed, with the top surface of the cavity bottom surface member 22 as the bottom surface and the inner peripheral surface of the frame-like member 24 as the side surface.
  • the cavity bottom surface member 22 is movable relative to the frame-like member 24 in the vertical direction. The depth of the recess 26 can be changed by moving the cavity bottom surface member 22 in the vertical direction relative to the frame-like member 24.
  • the cavity surface is a general term for the surface of the recess 26, that is, the upper surface of the cavity bottom member 22 and the inner peripheral surface of the frame-shaped member 24 forming the recess 26.
  • the method of manufacturing a semiconductor device of the present embodiment includes the following steps 1 to 8.
  • Step 1 A structure including a substrate 10, a plurality of semiconductor chips 12 disposed on the substrate, and bonding wires 18 (connection terminals) for connecting the semiconductor chips 12 and the substrate 10 to the upper mold 20 Placing at a predetermined position (FIG. 4).
  • Step 2 The laminated film 1 is disposed as a release film, the concave part 26 of the lower mold 21 is covered on the lower mold 21 so that the laminated film 1 covers, and the laminated film 1 is vacuum suctioned to the bottom side of the concave part 26 A step of bringing into close contact with the surface of the recess 26 (FIG. 4).
  • Step 3 A step of arranging the curable resin 40 in the recess 26 whose surface is covered with the laminated film 1 (FIG. 4).
  • Step 4 With the curable resin 40 disposed on the laminated film 1 in the recess 26, the cavity bottom member 22 and the frame member 24 are raised and clamped to form the upper mold 20 and the lower mold 21. Forming a molding space between the two (FIG. 5).
  • Step 5 A step of raising only the cavity bottom surface member 22 and heating the upper mold 20 and the lower mold 21 to melt and thermally cure the curable resin 40 to form the resin sealing portion 14 (FIG. 6). By this step, a batch sealing body having the structure and the resin sealing portion 14 for sealing the plurality of semiconductor chips 12 of the structure at once is obtained.
  • Step 6 A step of opening the upper mold 20 and the lower mold 21 and taking out the collective sealing body.
  • Step 7 A step of cutting the substrate 10 and the resin sealing portion 14 of the collective sealing body so that the plurality of semiconductor chips 12 are separated. By this process, a singulated seal having the substrate 10, the at least one semiconductor chip 12, the bonding wire 18, and the resin sealing portion 14 is obtained.
  • Step 8 A step of forming an ink layer 16 on the upper surface 14a of the resin sealing portion 14 of the singulated sealing body using an ink to obtain a semiconductor element 110.
  • the depth of the recess 6 at the time of bringing the laminated film 1 into close contact with the surface of the recess 26 is set according to the thickness of the resin sealing portion 14 (thickness of resin sealing portion 14 + 0.025 mm) (The thickness of the resin sealing portion 14 +0.4 mm) is preferable, and (the thickness of the resin sealing portion 14 +0.05 mm) to (the thickness of the resin sealing portion 14 +0.2 mm) is more preferable.
  • the thickness of the resin sealing portion 14 is 0.1 to 0.7 mm
  • the depth of the recess 6 is preferably 0.125 to 1.1 mm.
  • the depth of the recess 6 is preferably 0.125 to 0.9 mm.
  • the heating temperature in step 5 is typically 100 to 185 ° C., more typically 150 to 180 ° C.
  • the thickness of the resin sealing portion 19 formed in step 5 is the height from the top surface of the cavity bottom surface member 22 after raising the cavity bottom surface member 22 to the upper edge of the inner peripheral surface of the frame-like member Same as the depth of
  • step 7 and step 8 are performed in this order after step 6, but step 7 and step 8 may be performed in the reverse order. That is, an ink layer may be formed on the surface of the resin sealing portion of the collective sealing body using ink, and then the substrate 10 and the resin sealing portion 14 of the collective sealing body may be cut. Either of the steps 1 and 2 may be performed first.
  • the distance between each of the plurality of semiconductor chips 12 to be collectively sealed may be uniform or nonuniform. It is preferable that the distance between each of the plurality of semiconductor chips 12 be uniform in that the sealing can be made uniform and the load applied to each of the plurality of semiconductor chips 12 becomes uniform (the load is minimized).
  • the release film used in the method for producing a semiconductor device of the present invention may be any laminated film, and is not limited to the laminated film 1.
  • the laminated film 2 may be used as a release film.
  • the laminated film is made so that the shrinkable film layer 3 side faces the lower mold side. It is placed on the lower mold. Thereby, the fluorine resin layer 5 which functions as a release layer is in contact with the curable resin 40.
  • the upper mold and the lower mold used in the method of manufacturing a semiconductor device of the present invention are not limited to those shown in FIGS.
  • the curable resin used in the method for producing a semiconductor device of the present invention is not limited to a solid one, and may be a liquid curable resin.
  • the semiconductor device manufactured by the method for manufacturing a semiconductor device of the present invention is not limited to the semiconductor device 110. Steps 7 and 8 in the above embodiment may not be performed depending on the semiconductor device to be manufactured.
  • the shape of the resin sealing portion is not limited to that shown in FIG. 3 and may have a step or the like.
  • One or more semiconductor elements may be sealed in the resin sealing portion.
  • the ink layer is not essential. When a light emitting diode is manufactured as a semiconductor element, an ink layer is not usually formed on the surface of the resin sealing portion because the resin sealing portion also functions as a lens portion.
  • various resin shapes such as a substantially hemispherical shape, a shell type, a Fresnel lens type, a wedge type, and a substantially hemispherical lens array type can be adopted as the shape of the resin sealing portion.
  • Examples 1 to 6 are Examples, and Examples 7 to 15 are Comparative Examples.
  • the measurement or evaluation method used in each example and the materials are shown below.
  • the thickness of the film was measured with a contact type thickness gauge OG-525H (manufactured by Ono Sokki Co., Ltd.) using a measuring element AA-026 ( ⁇ 10 mm SR7).
  • ⁇ Storage elastic modulus (180 ° C.)> The film was cut into a length of 5 mm and a width of 5 mm to prepare a sample. Two types of samples, Sample 1 with the MD of the film in the length direction and Sample 2 with the TD of the film in the length direction, were prepared.
  • the storage elastic modulus E ′ was measured using a dynamic viscoelasticity measurement apparatus DVA-200 (manufactured by IT Measurement Instruments Co., Ltd.). The distance between chucks was 20 mm, the frequency was 10 Hz, and the temperature was increased at a rate of 20 ° C. to 2 ° C./min to make E ′ measured at a value of 180 ° C. a storage elastic modulus (180 ° C.).
  • the average value of the storage modulus (180 ° C.) (MD storage modulus) measured for sample 1 and the storage modulus (180 ° C.) (TD storage modulus) measured for sample 2 is the storage modulus of the film. Rate (180.degree. C.).
  • ⁇ Heat shrinkage (180 ° C)> A straight line of 10 cm in length is drawn one by one along the directions of MD and TD on a 12 cm ⁇ 12 cm laminated film at 20 ° C., and the distance between the end points of each straight line is taken as the initial length L 0 .
  • the laminated film is heat-treated at 180 ° C. for 30 minutes and cooled to 20 ° C. After that, the linear distance L 1 between the end points of the straight line drawn on the laminated film is measured. The rate ⁇ L (%) was determined, and ⁇ ( ⁇ L) was taken as the thermal contraction rate (180 ° C.).
  • the thermal contraction rate of MD was obtained from ⁇ L determined for the straight line along MD, and the thermal contraction rate of TD was obtained from ⁇ L determined for the straight line along TD.
  • Dimensional change rate ⁇ L (%) (L 1 / L 0 ⁇ 1) ⁇ 100 formula 1
  • a resin-sealed product was manufactured in the following procedure.
  • a semiconductor sealing compression molding die designed to perform compression molding with a cavity depth of 0.65 mm for a chip substrate with a width of 70 mm and a length of 230 mm using an automatic molding apparatus MSL-06M manufactured by Apic Yamada Co., Ltd. did.
  • the apparatus has a film unwinding and winding mechanism to which a 140 mm wide release film can be attached continuously.
  • this device is a hybrid type device that can be used for transfer molding in addition to compression molding, the structure is the reverse of the general compression molding device described in FIGS.
  • the film was subjected to an unwinding and winding operation at the beginning of a series of operations, and a new portion unwound from the film original film roll was made to be inserted between the molds as a forming start point.
  • the film position is brought relatively close to the mold surface so as to contact the upper mold while drawing air from the air outlet provided in the upper mold, and finally It was made to adsorb to the upper mold (state A).
  • a structure obtained by mounting a semiconductor chip on a copper plate having a thickness of 200 ⁇ m was placed in the lower mold, and a predetermined amount of powdered epoxy material (EME-G600 manufactured by Sumitomo Bakelite Co., Ltd.) was dispersed thereon.
  • ETFE-1 ETFE film with a thickness of 12 ⁇ m.
  • ETFE-2 A 20 ⁇ m thick ETFE film.
  • ETFE-3 50 ⁇ m thick ETFE film.
  • Each of these ETFE films was prepared using an extruder equipped with a T-die whose lip opening was adjusted so that the film thickness of the ETFE obtained in the following Production Example 1 was 12 ⁇ m, 20 ⁇ m or 50 ⁇ m. The melt extrusion was carried out in the above, and it manufactured by adjusting a model roll, film forming speed, and a nip pressure.
  • the temperature in the polymerization tank was lowered to room temperature and the pressure in the polymerization tank was purged to normal pressure. Thereafter, the obtained slurry was suction filtered with a glass filter, the solid content was recovered, and dried at 150 ° C. for 15 hours to obtain 105 g of ETFE-1.
  • Polyamide-1 2 axis-stretched nylon film, manufactured by Unitika, trade name Emblem MS (BC), thickness 15 ⁇ m.
  • Polyamide-2 Biaxially stretched nylon film, manufactured by Unitika, trade name Emblem NK (BC), thickness 15 ⁇ m.
  • Polyamide-3 Biaxially stretched nylon film, manufactured by Unitika, trade name Emblem ON (BC), thickness 15 ⁇ m.
  • Polyamide-4 Non-oriented nylon film, manufactured by Mitsubishi Chemical Co., Ltd., trade name: Diamilon (registered trademark) C-Z, thickness 20 ⁇ m.
  • Polyamide-5 Biaxially stretched nylon film, manufactured by Toyobo Co., Ltd., trade name Harden (registered trademark) N1100, thickness 12 ⁇ m.
  • Polyester-1 2 axis-oriented PET film, manufactured by Teijin Ltd., trade name Tetron (registered trademark) G2, thickness 12 ⁇ m.
  • Polyester-2 Biaxially oriented PET film, manufactured by Teijin, trade name Tetron NS, thickness 12 ⁇ m.
  • Polyester-3 biaxially stretched PET film, manufactured by Mitsubishi Chemical Co., Ltd., trade name Diafoil (registered trademark) H500, thickness 25 ⁇ m.
  • Polyester-4 Biaxially oriented PET film, manufactured by Teijin DuPont Films, trade name: TEFLEX (registered trademark) FT3PE, thickness 25 ⁇ m.
  • Polyolefin Biaxially oriented polypropylene film, manufactured by Mitsui Chemicals Toshiro, trade name OP U-1 # 20, thickness 20 ⁇ m.
  • urethane-based adhesive A was used as an adhesive for dry lamination to bond the respective films.
  • the main agent and the curing agent were mixed such that the mass ratio (main agent: curing agent) in solid content was 10: 1, and ethyl acetate was used as a diluent.
  • "Urethane adhesive A” Main agent: Klisbon (registered trademark) NT-258 (manufactured by DIC).
  • Curing agent Coronate 2096 (manufactured by Nippon Polyurethane Industry Co., Ltd.).
  • Example 1 The following three films A1, A2 and A3 were dry laminated in the following procedure to obtain a laminated film in which A1, A2 and A3 were laminated in this order.
  • A1 ETFE-1.
  • A2 Polyamide-1
  • A3 ETFE-1.
  • a urethane-based adhesive A was applied to the A2 side surface (a second surface of A2) of this laminate, and dried at 60 ° C.
  • A3 was accumulated on this coated surface, and it roll-pressed on 60 degreeC and 1 m / min conditions. Thereafter, it was aged at 40 ° C. for 96 hours to obtain a laminated film.
  • the coating amount of the urethane adhesive A is a dry coating amount.
  • Examples 2 to 6, Examples 8 to 15 A laminated film was obtained in the same manner as in Example 1 except that the type of film to be dry laminated was changed as described in Tables 1 and 2.
  • Example 7 ETFE-3 was used as it was as the film of Example 7.
  • Tables 1 to 2 show the overall thickness of the laminated film or single layer film (hereinafter referred to as "product film") of each example, the storage elastic modulus (180 ° C) of the product film and the used substrate, and The thermal contraction rate (180 ° C.) and the evaluation results are shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

圧縮成形において離型フィルムをキャビティ面に吸着させる際のシワの発生、及び離型フィルムが吸着したキャビティ底面を上昇させる際のシワの発生の両方を抑制できるフィルム、及びこれを用いた半導体素子の製造方法の提供。 積層フィルム1は、180℃における貯蔵弾性率E'が70MPa以上で、機械方向(MD)横断方向(TD)の各々の20℃を基準とした180℃30分間における熱収縮率が3%以上である収縮性フィルムの層3と、収縮性フィルムの層3の片面又は両面に存在するフッ素樹脂層5とを含む。

Description

積層フィルム及び半導体素子の製造方法
 本発明は、積層フィルム及び半導体素子の製造方法に関する。
 半導体チップは通常、外気からの遮断・保護のため、パッケージと呼ばれる容器に収容(封止)され、半導体素子とされる。パッケージとしては、硬化性樹脂(例えばエポキシ樹脂等の熱硬化性樹脂)の硬化物からなる成形体が用いられる。半導体素子の製造方法としては、例えば、半導体チップ等を金型内の所定の場所に位置するように配置し、金型内に硬化性樹脂を充填して硬化させる、いわゆるトランスファ成形法又は圧縮成形法が知られる。
 半導体素子の製造工程では、金型のキャビティ面に離型フィルムを配置する場合がある。離型フィルムは、金型内に挿入された後、真空吸引によりキャビティ面に沿って引き延ばされ、キャビティ面に密着した状態とされる。このとき、離型フィルムとキャビティ面との間の空気が完全に抜けない状態で離型フィルムがキャビティ面に密着し、離型フィルムにシワが発生することがある。離型フィルムにシワがあると、パッケージの表面に離型フィルムのシワの形状が転写されて外観不良となり、歩留まりが低下する。
 このような問題に対し、以下の離型フィルムが提案される。
 ・延伸ポリエステル樹脂フィルムの少なくとも片面にフッ素樹脂フィルムが積層されてなる半導体チップ封止用離型フィルム(特許文献1)。
 ・4-メチル-1-ペンテン共重合体を含み、175℃における貯蔵弾性率E’が45~105MPaである表面層と、175℃における貯蔵弾性率E’が100~250MPaである耐熱樹脂層とを含む半導体封止プロセス用離型フィルム(特許文献2)。
 ・厚さが5~30μmで、フッ素樹脂及び融点が200℃以上のポリオレフィンからなる群から選択される少なくとも1種から構成される第1の層と、厚さが38~100μmで、180℃における引張貯蔵弾性率と厚さとの積が18,000MPa・μm以下、180℃における引張破断応力と厚さとの積が2,000MPa・μm以上である第2の層とを有する離型フィルム(特許文献3)。
 ・水に対する接触角が90~130°である離型層と、耐熱樹脂層とを含み、TD(横断方向)の23℃から120℃までの熱寸法変化率が3%以下である、プロセス用離型フィルム(特許文献4)。
特開2006-49850号公報 特開2010-208104号公報 国際公開第2015/133634号 国際公開第2017/094871号
 圧縮成形工程では一般に、下金型に設けられた凹部の表面(キャビティ面)に離型フィルムを密着させ、その上に硬化性樹脂を配置し、この下金型と上金型とを型締めした後、凹部の底面(キャビティ底面)を上昇させ、凹部の深さを成形体(パッケージ等)の厚さにあわせる。離型フィルムを密着させる際の下金型の凹部の深さは、例えば、形成する成形体の厚さに対して数倍程度である。
 凹部底面が上昇すると、それに合わせて、引き伸ばされた離型フィルムが収縮する。しかし、このとき、離型フィルムが充分に収縮せず、フィルム余りが生じてシワになることがある。本発明者らの検討によれば、フィルム余りは、形成する成形体の厚さが薄い(例えば0.1~0.7mm)場合、つまり離型フィルムの引き伸ばされる量が少ない場合に生じやすい。特許文献1~4の離型フィルムは、このようなシワに対する抑制効果が不充分である。
 本発明の目的は、圧縮成形において離型フィルムをキャビティ面に密着させる際のシワの発生、及び離型フィルムが密着したキャビティ底面を上昇させる際のシワの発生の両方を抑制できる積層フィルム、及びこの積層フィルムを用いた半導体素子の製造方法の提供である。
 本発明は、以下の[1]~[15]の構成を有する、積層フィルム及び半導体素子の製造方法を提供する。
 [1]180℃における貯蔵弾性率E’が70MPa以上で、機械方向(MD)及び横断方向(TD)の各々の20℃を基準とした180℃30分間における熱収縮率が3%以上である収縮性フィルムの層と、前記収縮性フィルムの層の片面又は両面に存在するフッ素樹脂層とを含み、少なくとも片面が前記フッ素樹脂層の表面であることを特徴とする積層フィルム。
 [2]前記積層フィルムの180℃における貯蔵弾性率E’が70MPa以上で、前記積層フィルムのMD及びTD各々の20℃を基準とした180℃30分間における熱収縮率が2%以上である、[1]の積層フィルム。
 [3]前記収縮性フィルムの層の両面に前記フッ素樹脂層が存在する、[1]又は[2]の積層フィルム。
 [4]さらに、前記収縮性フィルムの層と前記フッ素樹脂層の間に接着層が存在する、[1]~[3]のいずれかの積層フィルム。
 [5]前記収縮性フィルムが2軸延伸フィルムである、[1]~[4]のいずれかの積層フィルム。
 [6]前記収縮性フィルムが、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、及び生物由来樹脂からなる群から選ばれる少なくとも1種の樹脂から構成された収縮性フィルムである、[1]~[5]のいずれかの積層フィルム。
 [7]前記収縮性フィルムが2軸延伸ポリアミド樹脂フィルムである、[1]~[6]のいずれかの積層フィルム。
 [8]前記フッ素樹脂が、フルオロオレフィン系重合体からなるフッ素樹脂である、[1]~[7]のいずれかの積層フィルム。
 [9]前記フルオロオレフィン系重合体が、エチレン-テトラフルオロエチレン系共重合体である、[8]の積層フィルム。
 [10]前記フッ素樹脂層が、フッ素樹脂フィルムの層である、[1]~[9]のいずれかの積層フィルム。
 [11]離型フィルムとして用いられる、[1]~[10]のいずれかの積層フィルム。
 [12]前記離型フィルムが、半導体素子製造における樹脂封止の工程において、金型の凹部に配置されて封止用樹脂に接する、離型フィルムである、[11]の積層フィルム。
 [13]基板と半導体チップと接続端子と硬化性樹脂の硬化物からなる樹脂封止部とを備える半導体素子を、上金型と下金型とを備える圧縮成形装置を用いて製造する方法であって、
 基板と半導体チップと接続端子とを有する構造体を、前記上金型と下金型の一方に配置し、
 離型フィルムとして請求項1~12のいずれか一項に記載の積層フィルムを、前記上金型と下金型の他方に設けられた凹部を覆うようにかつフッ素樹脂層表面が金型の成形空間に面するように配置して、前記凹部の表面に密着させ、
 前記上金型と下金型との間に硬化性樹脂を配置して、前記上金型と下金型とを型締めし、前記凹部の底面を移動させて前記硬化性樹脂を圧縮するとともに、前記硬化性樹脂を熱硬化させて樹脂封止部を形成することを特徴とする半導体素子の製造方法。
 [14]前記樹脂封止部の厚さが0.1~0.7mmである、[13]の半導体素子の製造方法。
 [15]前記積層フィルムを前記凹部の表面に密着させる際の前記凹部の深さが、前記樹脂封止部の厚さよりも深くかつ0.125~1.1mmである、[13]又は[14]の半導体素子の製造方法。
 本発明の積層フィルムによれば、圧縮成形において離型フィルムをキャビティ面に密着させる際のシワの発生、及び離型フィルムが密着したキャビティ底面を上昇させる際のシワの発生の両方を抑制できる。
 本発明の半導体素子の製造方法によれば、圧縮成形において離型フィルムをキャビティ面に密着させる際のシワの発生、及び離型フィルムが密着したキャビティ底面を上昇させる際のシワの発生の両方を抑制でき、外観に優れた半導体素子が得られる。
本発明の積層フィルムの一例を示す模式断面図である。 本発明の積層フィルムの他の例を示す模式断面図である。 本発明の半導体素子の製造方法により製造する半導体素子の一例を示す模式断面図である。 本発明の半導体素子の製造方法の一実施形態における工程1~3を模式的に説明する断面図である。 本発明の半導体素子の製造方法の一実施形態における工程4を模式的に説明する断面図である。 本発明の半導体素子の製造方法の一実施形態における工程5を模式的に説明する断面図である。
 本明細書における以下の用語の意味は、以下の通りである。
 フィルムの「厚さ」は、接触式厚み計OG-525H(小野測器社製)にて、測定子AA-026(φ10mm SR7)を使用して測定される。
 「貯蔵弾性率E’」(引張貯蔵弾性率)は、動的粘弾性測定装置を用いて測定される。サンプル測定サイズは幅5mm、チャック間長さは20mm、周波数は10Hzとし、温度を20℃から2℃/分の速度で上昇させて、180℃の値において測定したE’ を、180℃における貯蔵弾性率(以下、「貯蔵弾性率(180℃)とも記す。)とする。
 フィルムの貯蔵弾性率E’(180℃)は、フィルムのMDの貯蔵弾性率E’(180℃)と、フィルムのTDの貯蔵弾性率E’(180℃)との平均値である。
 「熱収縮率」は、-(ΔL)である。ΔLは、下記の方法で求められる寸法変化率(%)である。
 基準温度において、12cm×12cmの積層フィルムに、10cmの長さの直線を、MD(機械方向:Machine Direction)及びTD(横断方向:Transverse Direction)それぞれの方向に沿って1本ずつ描き、各直線の端点間距離を初期長Lとする。次いで、前記積層フィルムを所定の条件で熱処理し、基準温度まで冷却した後、積層フィルム上に描かれた直線の端点間の直線距離Lを測定し、下式1により寸法変化率ΔL(%)を求める。
 寸法変化率ΔL(%)=(L/L-1)×100  ・・・式1
 MDに沿った直線について求めたΔLからMDの熱収縮率を得て、TDに沿った直線について求めたΔLからTDの熱収縮率を得る。
 基準温度を20℃、熱処理条件を180℃、30分間として求めた熱収縮率を、「20℃を基準とした180℃30分間における熱収縮率」(以下、「熱収縮率(180℃)とも記す。)とする。
 「融点」とは、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度を意味する。
 重合体からなる樹脂における「単位」とは、重合体を構成する構成単位(単量体単位)を示す。
 「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称である。
 図1~図6における寸法比は、説明の便宜上、実際のものとは異なったものである。
〔積層フィルム〕
 本発明の積層フィルム(以下、「本積層フィルム」とも記す。)は、収縮性フィルムの層と、収縮性フィルムの層の片面又は両面に存在するフッ素樹脂層とを含み、少なくとも片面が前記フッ素樹脂層の表面であることを特徴とする。
 したがって、本積層フィルムは、本積層フィルムの第1面側から、フッ素樹脂層と収縮性フィルムの層とがこの順に存在する構成、又はフッ素樹脂層と収縮性フィルムの層とフッ素樹脂層とがこの順に存在する構成を有する。
 以下、収縮性フィルムの層よりも第1面側に位置するフッ素樹脂層を「第1のフッ素樹脂層」とも記す。また、収縮性フィルムの層よりも第1面とは反対側の第2面側に位置するフッ素樹脂層を「第2のフッ素樹脂層」とも記す。
 本積層フィルムは少なくとも片面がフッ素樹脂層の表面であり、以下、必須のフッ素樹脂層表面を第1面とする。すなわち、本積層フィルムは、第1面側の最表層として第1のフッ素樹脂層を有する。
 本積層フィルムは、第2のフッ素樹脂層を有していてもよく、有していなくてもよい。第2のフッ素樹脂層を有する場合、第2のフッ素樹脂層は、本積層フィルムの第2面側の最表層として存在してもよく、第2面側の内部層として存在してもよい。第2のフッ素樹脂層が内部層である場合は、第2面側に後述の他の層を有する。第2のフッ素樹脂層が存在しない場合、本積層フィルムの第2面側は収縮性フィルム層の表面であってもよく、第2面側に後述の他の層を有していてもよい。
 本積層フィルムは、必要に応じて、収縮性フィルムの層とフッ素樹脂層(第1のフッ素樹脂層、第2のフッ素樹脂層)との間に他の層をさらに含んでいてもよい。他の層としては、接着層、帯電防止層、導電層、ガス吸収層、着色層等が挙げられる。本積層フィルムは、特に、接着層を有することが好ましい。
 本積層フィルムが第1のフッ素樹脂層と第2のフッ素樹脂層を有する場合、第2のフッ素樹脂層の第2面側には上記帯電防止層等の他の層が存在していてもよい。
 図1は、本積層フィルムの一例を示す模式断面図である。この例の積層フィルム1は、収縮性フィルムの層3と、収縮性フィルムの層3の両面に存在するフッ素樹脂層5(第1のフッ素樹脂層及び第2のフッ素樹脂層)とからなる。
 図2は、本積層フィルムの他の例を示す模式断面図である。この例の積層フィルム2は、収縮性フィルムの層3と、収縮性フィルムの層3の片面に存在するフッ素樹脂層5(第1のフッ素樹脂層)とからなる。
 積層フィルム1及び積層フィルム2において、収縮性フィルムの層3とフッ素樹脂層5との間には、図示していない接着層が存在することが好ましい。
(収縮性フィルム)
 本積層フィルムにおける収縮性フィルムの層は、前記貯蔵弾性率が70MPa以上で、前記MDの熱収縮率、前記TDの熱収縮率の各々が3%以上である収縮性フィルムから形成された層である。
 収縮性フィルムは、室温以上に加熱すると、その寸法を収縮させる特性(以下、「収縮特性」とも記す。)をもつ樹脂フィルムである。
 収縮性フィルムの収縮特性は残留応力に起因し、加熱によって残留応力が緩和してフィルムが収縮する。収縮性フィルムとしては、例えば、フィルム成形時の残留歪をもつフィルムや、2軸延伸処理やブロー成形等によって応力を与えたフィルムが、ヒートセット等の残留応力緩和処理を施さずに使用される。
 収縮性フィルムを構成する樹脂としては、ポリ塩化ビニル(PVC)、ポリエステル樹脂(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、ポリアミド樹脂(PA6、PA66、PA11、PA12、PAMDX6等)、ポリフェニレンサルファイド(PPS)、生物由来樹脂(ポリ乳酸、セルロース、キチン、キトサン、ケナフ等を主成分とする樹脂)等が挙げられる。収縮性フィルムを構成する樹脂は1種でもよく2種以上でもよい。
 これらの中でも、優れた機械強度とフィルム成形性の点で、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、及び生物由来樹脂からなる群から選ばれる少なくとも1種が好ましく、収縮性の付与のしやすさの点で、ポリアミド樹脂が特に好ましい。
 樹脂の融点は、200℃以上が好ましく、220~300℃が特に好ましい。樹脂の融点が200℃以上であれば、半導体素子の製造において硬化性樹脂として汎用されているエポキシモールディングコンパウンド(EMC)の標準的な硬化温度(170~180℃)において溶融等の相変化が生じにくい。
 収縮性フィルムは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、着色成分、酸化防止剤、熱劣化防止剤、安定剤等が挙げられる。
 収縮性フィルムとしては、フィルムの残留歪の制御が容易である点で、2軸延伸フィルムが好ましい。
 なお、一般の2軸延伸フィルムは、フィルムを成形し、2軸延伸処理したのちに、残留応力を緩和させるような熱処理操作が施された、寸法安定性の高いフィルムである。しかし、本発明にはこれら寸法安定性の高いフィルムは適さない。
 2軸延伸フィルムである収縮性フィルムとしては、2軸延伸ポリアミド樹脂フィルム(例えば、ユニチカ社製エンブレム(登録商標) MS及びエンブレム NK)、2軸延伸ポリスチレン樹脂フィルム(例えば、三菱ケミカル社製DXL(登録商標)フィルム)、2軸延伸ポリエステル樹脂フィルム(例えば、三菱ケミカル社製ヒシペット(登録商標))、2軸延伸生物由来樹脂フィルム(例えば、三菱ケミカル社製PLABIO(登録商標))、多層化されたハイブリッド延伸フィルム(例えば、三菱ケミカル社製HybrexDL(登録商標))等が例示される。
 これらの中でも、融点が200℃以上である樹脂からなる2軸延伸フィルムが好ましく、2軸延伸ポリアミド樹脂フィルムが特に好ましい。
 収縮性フィルムのMDの熱収縮率(180℃)は、3%以上であり、3~30%が好ましく、3~25%が特に好ましい。
 収縮性フィルムのTDの熱収縮率(180℃)は、3%以上であり、3~30%が好ましく、3~25%が特に好ましい。
 収縮性フィルムのMD及びTD各々の熱収縮率(180℃)が前記下限値以上であれば、積層フィルムが密着したキャビティ底面を上昇させる際のシワの発生を抑制できる。MD及びTD各々の熱収縮率(180℃)が前記上限値以下であれば、熱収縮後のフィルム形態が保持され、フィルム平坦性が良好である。
 収縮性フィルムの貯蔵弾性率(180℃)は、70MPa以上であり、100~500MPaが好ましく、200~350MPaが特に好ましい。収縮性フィルムの貯蔵弾性率(180℃)が前記下限値以上であれば、積層フィルムをキャビティ面に密着させる際のシワの発生を抑制できる。貯蔵弾性率(180℃)が前記上限値以下であれば、金型への追随性が良好である。
 貯蔵弾性率(180℃)は、収縮性フィルムを構成する材料によって調整できる。
 収縮性フィルムの厚さは、10~100μmが好ましく、10~50μmがより好ましく、10~40μmが特に好ましい。収縮性フィルムの厚さが前記下限値以上であれば、機械特性に優れる。収縮性フィルムの厚さが前記上限値以下であれば、可とう性に優れ、その結果、金型形状への追随性がより優れる。
(フッ素樹脂層)
 フッ素樹脂層を構成するフッ素樹脂としては、離型性及び耐熱性の点から、フルオロオレフィン系重合体からなるフッ素樹脂が好ましい。フルオロオレフィン系重合体は、フルオロオレフィンに基づく単位を有する重合体である。
 フルオロオレフィンとしては、テトラフルオロエチレン(以下、「TFE」とも記す。)、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等が挙げられる。これらのフルオロオレフィンはいずれか1種を単独で用いてもよく2種以上を併用してもよい。
 フルオロオレフィン系重合体は、フルオロオレフィン以外の単量体に基づく単位をさらに有してもよい。フルオロオレフィン以外の単量体としては、エチレン、後述する第3の単量体等が挙げられる。
 フルオロオレフィン系重合体としては、エチレン-TFE系共重合体(以下、「ETFE」とも記す。)、ポリテトラフルオロエチレン、ペルフルオロ(アルキルビニルエーテル)-TFE系共重合体が好ましい。これらのフルオロオレフィン系重合体はいずれか1種を単独で用いてもよく2種以上を併用してもよい。
 なお、ETFE及びペルフルオロ(アルキルビニルエーテル)-TFE系共重合体における「系」は、他の単量体に基づく単位をさらに有していてもよいことを示す。
 フルオロオレフィン系重合体の中でも、高温での伸びが大きい点から、ETFEが好ましい。ETFEは、エチレンに基づく単位(以下、「E単位」とも記す。)とTFEに基づく単位(以下、「TFE単位」とも記す。)とを有する共重合体である。
 ETFEとしては、E単位と、TFE単位と、エチレン及びTFE以外の単量体(以下、「第3の単量体」とも記す。)に基づく単位とを有する共重合体が好ましい。第3の単量体に基づく単位の種類や含有量によってETFEの結晶化度、ひいてはフッ素樹脂層の貯蔵弾性率E’を調整しやすい。また、第3の単量体、特にフッ素原子を有する単量体に基づく単位を有することで、高温(例えば180℃前後)における引張強伸度が向上する。
 第3の単量体としては、フッ素原子を有する単量体及びフッ素原子を有しない単量体が挙げられる。
 フッ素原子を有する単量体としては、下記の単量体(a1)~(a5)等が挙げられる。
 単量体(a1):炭素数3以下のフルオロオレフィン(ただしTFEを除く)。
 単量体(a2):X(CFCX=CH(ここで、X及びXはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)で表されるポリフルオロアルキルエチレン。
 単量体(a3):フルオロビニルエーテル。
 単量体(a4):官能基含有フルオロビニルエーテル。
 単量体(a5):脂肪族環構造を有する含フッ素単量体。
 単量体(a1)としては、フルオロエチレン(トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、クロロトリフルオロエチレン等)、フルオロプロピレン(ヘキサフルオロプロピレン(以下、「HFP」とも記す。)、2-ヒドロペンタフルオロプロピレン等)等が挙げられる。
 単量体(a2)としては、nが2~6の整数である単量体が好ましく、nが2~4の整数である単量体が特に好ましい。また、Xがフッ素原子、Xが水素原子である単量体、すなわち(ペルフルオロアルキル)エチレンが特に好ましい。
 単量体(a2)としては、CFCFCH=CH、CFCFCFCFCH=CH((ペルフルオロブチル)エチレン。以下、「PFBE」とも記す。)、CFCFCFCFCF=CH、CFHCFCFCF=CH、CFHCFCFCFCF=CH等が挙げられる。
 単量体(a3)としては、CF=CFOCF、CF=CFOCFCF、CF=CFO(CFCF(ペルフルオロ(プロピルビニルエーテル)。以下、「PPVE」とも記す。)、CF=CFOCFCF(CF)O(CFCF、CF=CFO(CFO(CFCF、CF=CFO(CFCF(CF)O)(CFCF、CF=CFOCFCF(CF)O(CFCF、CF=CFOCFCF=CF、CF=CFO(CFCF=CF等が挙げられる。なお、これらのうちジエンである単量体は環化重合し得る単量体である。
 単量体(a4)としては、CF=CFO(CFCOCH、CF=CFOCFCF(CF)O(CFCOCH、CF=CFOCFCF(CF)O(CFSOF等が挙げられる。
 単量体(a5)としては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等が挙げられる。
 フッ素原子を有しない単量体としては、下記の単量体(b1)~(b4)等が挙げられる。
 単量体(b1):オレフィン(ただし、エチレンを除く。)。
 単量体(b2):ビニルエステル。
 単量体(b3):ビニルエーテル。
 単量体(b4):不飽和酸無水物。
 単量体(b1)の具体例としては、プロピレン、イソブテン等が挙げられる。
 単量体(b2)の具体例としては、酢酸ビニル等が挙げられる。
 単量体(b3)の具体例としては、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等が挙げられる。
 単量体(b4)の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸(5-ノルボルネン-2,3-ジカルボン酸無水物)等が挙げられる。
 第3の単量体はいずれか1種を単独で用いてもよく、2種以上を併用してもよい。
 第3の単量体としては、結晶化度の調整すなわち貯蔵弾性率E’の調整がしやすい点、第3の単量体、特にフッ素原子を有する単量体に基づく単位を有することで高温(例えば180℃前後)における引張強伸度に優れる点から、単量体(a2)、HFP、PPVE、酢酸ビニルが好ましく、HFP、PPVE、CFCFCH=CH、PFBEがより好ましく、PFBEが特に好ましい。すなわち、ETFEとしては、E単位と、TFE単位と、PFBEに基づく単位とを有する共重合体が特に好ましい。
 ETFEにおいて、TFE単位のE単位に対するモル比(TFE単位/E単位)は、40/60~80/20が好ましく、45/55~70/30がより好ましく、50/50~65/35が特に好ましい。TFE単位/E単位が前記範囲内であれば、ETFEの耐熱性及び機械的物性がより優れる。
 ETFE中の第3の単量体に基づく単位の割合は、ETFEを構成する全単位の合計量(100モル%)に対し、0.01~20モル%が好ましく、0.10~15モル%がより好ましく、0.20~10モル%が特に好ましい。第3の単量体に基づく単位の割合が前記範囲内であれば、ETFEの耐熱性及び機械的物性がより優れる。
 第3の単量体に基づく単位がPFBEに基づく単位を含む場合、PFBEに基づく単位の割合は、ETFEを構成する全単位の合計量(100モル%)に対し、0.5~4.0モル%が好ましく、0.7~3.6モル%がより好ましく、1.0~3.6モル%が特に好ましい。PFBEに基づく単位の割合が前記範囲内であれば、フッ素樹脂層の耐熱性がより優れる。また、高温(例えば180℃前後)における引張強伸度がより優れる。
 ETFEの溶融流れ速度(MFR)は、2~40g/10分が好ましく、5~30g/10分がより好ましく、10~20g/10分が特に好ましい。MFRが前記範囲内であれば、ETFEの成形性が向上し、フッ素樹脂層の機械特性が優れる。
 ETFEのMFRは、ASTM D3159に準拠して、荷重49N、297℃にて測定される値である。
 フッ素樹脂層のフッ素樹脂は、必要に応じて、添加剤を含んでいてもよい。添加剤としては、着色剤、紫外線吸収剤、無機物フィラー、熱老化防止剤、酸化防止剤、フッ素樹脂以外の樹脂等の有機フィラー等が挙げられる。
 フッ素樹脂層の厚さは、5~50μmが好ましく、5~30μmがより好ましく、5~20μmが特に好ましい。フッ素樹脂層の厚さが前記下限値以上であれば、離型性がより優れる。フッ素樹脂層の厚さが前記上限値以下であれば、全体の可とう性がより優れる。
(接着層)
 接着層としては、例えば、接着剤から形成された層が挙げられる。
 接着剤は、例えばドライラミネート用の接着剤として公知の接着剤であってよい。接着剤としては、ポリ酢酸ビニル系接着剤、アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、又はアクリル酸エステルと他の単量体(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤、シアノアクリレ-ト系接着剤、エチレンと他の単量体(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤、セルロ-ス系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、尿素樹脂又はメラミン樹脂等からなるアミノ樹脂系接着剤、フェノ-ル樹脂系接着剤、エポキシ系接着剤、ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とポリイソシアネートとの組合せやそれらの反応生成物(イソシアネート基含有ポリウレタンプレポリマー等)等からなるポリウレタン系接着剤、反応型(メタ)アクリル系接着剤、クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤、シリコーン系接着剤、アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤等が挙げられる。
 接着層の厚さは、例えば、接着剤の乾燥塗工量として0.1~5g/mであってよい。
(積層フィルムの特性)
 本積層フィルムのMDの熱収縮率(180℃)は、2%以上が好ましく、2~15%がより好ましく、2~10%が特に好ましい。
 本積層フィルムのTDの熱収縮率(180℃)は、2%以上が好ましく、2~15%が好ましく、2~10%が特に好ましい。
 本積層フィルムのMD及びTD各々の熱収縮率(180℃)が前記下限値以上であれば、積層フィルムが密着したキャビティ底面を上昇させる際のシワの発生をより効果的に抑制できる。MD及びTD各々の熱収縮率(180℃)が前記上限値以下であれば、金型追随性が良好である。
 本積層フィルムのMD及びTD各々の熱収縮率(180℃)は、収縮性フィルムのMD及びTD各々の熱収縮率(180℃)、フッ素樹脂層と収縮フィルムの層の厚み構成比等によって調整できる。
 本積層フィルムの貯蔵弾性率(180℃)は、70MPa以上が好ましく、100~350MPaがより好ましく、200~350MPaが特に好ましい。本積層フィルムの貯蔵弾性率(180℃)が前記下限値以上であれば、積層フィルムをキャビティ面に密着させる際のシワの発生をより効果的に抑制できる。貯蔵弾性率(180℃)が前記上限値以下であれば、可とう性に優れ、金型追随性が良好である。
 本積層フィルムの貯蔵弾性率(180℃)は、収縮性フィルム及びフッ素樹脂層各々の180℃貯蔵弾性率(180℃)、フッ素樹脂層と収縮フィルムの層の厚み構成比等によって調整できる。
 本積層フィルムの厚さは、25~100μmが好ましく、25~60μmがより好ましく、25~50μmが特に好ましい。本積層フィルムの厚さが前記下限値以上であれば、本積層フィルムをキャビティ面に密着させる際のシワの発生をより効果的に抑制できる。また、本積層フィルムの取り扱いが容易である。本積層フィルムの厚さが前記上限値以下であれば、本積層フィルムが容易に変形可能で、金型のキャビティ面への追従性に優れる。
(積層フィルムの製造方法)
 本積層フィルムは、例えば、下記の方法A又は方法Bにより製造できる。ただし、本積層フィルムの製造方法はこれらの方法に限定されるものではない。
 方法A:収縮性フィルムの片面又は両面に、フッ素樹脂のフィルムをラミネートしてフッ素樹脂層を形成する方法。
 方法B:収縮性フィルムの片面又は両面に、フッ素樹脂及び液状媒体を含む塗液を塗布し、液状媒体を蒸発除去してフッ素樹脂層を形成する方法。
 本積層フィルムの製造方法としては、経済性に優れる点で、方法Aが好ましい。
 方法Aにおいて、各フィルムをラミネートする方法としては、公知のラミネート方法を採用できる。具体的には、押出ラミネート法、ドライラミネート法、熱ラミネート法等が挙げられる。ドライラミネート法では、接着剤を用いて各樹脂フィルムを積層する。ドライラミネート用の接着剤の具体例は前記のとおりである。
 収縮性フィルム、フッ素樹脂フィルムはそれぞれ、市販のものを用いてもよく、公知の製造方法により製造したものを用いてもよい。これらのフィルムには、コロナ処理、プラズマ処理、プライマー塗工処理等の表面処理が施されてもよい。
 以上説明した本積層フィルムにあっては、貯蔵弾性率(180℃)が70MPa以上で、MD及びTD各々の熱収縮率(180℃)が3%以上である収縮性フィルムの層と、収縮性フィルムの層の片面又は両面に存在するフッ素樹脂層とを含むため、圧縮成形において離型フィルムをキャビティ面に密着させる際のシワの発生、及び離型フィルムが密着したキャビティ底面を上昇させる際のシワの発生の両方を抑制できる。
 半導体素子等の製造においては、以下のようにして、成形体(樹脂封止部等)を圧縮成形することがある。まず、下金型の凹部表面(キャビティ面)に離型フィルムを、真空吸引により引き伸ばしながら密着させる。その後、離型フィルムの上に硬化性樹脂を配置し、下金型と上金型とを型締めした後、キャビティ面を上昇させるとともにこれらの金型を加熱し、その熱によって硬化性樹脂を硬化させる。
 下金型が加熱されると、本積層フィルムも加熱される。この熱によって収縮性フィルムが収縮し、フッ素樹脂層も収縮性フィルムの層に追従して収縮し、本積層フィルム全体が収縮する。収縮性フィルムの熱収縮率(180℃)が前記下限値以上であるために本積層フィルムの収縮量が多く、キャビティ面の上昇によるフィルム余りが発生せず、フィルム余りによるシワがない状態で硬化性樹脂を硬化できる。また、収縮性フィルムの貯蔵弾性率(180℃)が前記下限値以上であるため、本積層フィルムのコシが充分に強く、本積層フィルムをキャビティ面に密着させる際に本積層フィルムがシワになりにくい。
 したがって、離型フィルムとして本積層フィルムを用いることで、離型フィルムをキャビティ面に密着させる際のシワの発生、及び離型フィルムが密着したキャビティ底面を上昇させる際のシワの発生の両方を抑制できる。離型フィルムにシワがないことで、成形体の表面に離型フィルムのシワの形状が転写されることによる外観不良を抑制できる。
 上記効果を奏することから、本積層フィルムは、離型フィルムとして有用である。特に、圧縮成形法やトランスファ成形法による半導体素子製造に使用される離型フィルムとして有用である。そのうちでも、シワ発生による外観不良が生じやすい、後述するような圧縮成形法による半導体素子製造に使用される離型フィルムとして特に有用である。
 ただし、本積層フィルムの用途は離型フィルムに限定されるものではなく、その他の用途に使用できる。他の用途として具体的には、食品容器、薬品容器、PTP等の薬外装部材、収縮テープ、チューブへ巻きつけて収縮させることによる収縮機能つきチューブ被覆材等が挙げられる。
〔半導体素子〕
 本積層フィルムを用いて、後述の半導体素子の製造方法により製造される半導体素子は、基板と半導体チップと接続端子と樹脂封止部(パッケージ)とを備え、必要に応じて他の部材をさらに備える。
 樹脂封止部は、硬化性樹脂の硬化物からなる。硬化性樹脂としては、熱硬化可能であればよく、エポキシ樹脂、シリコーン樹脂等が例示できる。これらの中でもエポキシ樹脂が好ましい。硬化性樹脂には、カーボンブラック、熔融シリカ、結晶シリカ、アルミナ、窒化ケイ素、窒化アルミニウム等が含まれてもよい。
 半導体素子としては、トランジスタ、ダイオード等の半導体素子を集積した集積回路、発光素子を有する発光ダイオード等が挙げられる。
 集積回路の素子形状としては、集積回路全体を覆うものでもよく、集積回路の一部を覆う(集積回路の一部を露出させる)ものでもよい。素子形状としては例えば、BGA(Ball Grid Array)、QFN(Quad Flat Non-leaded package)、SON(Small Outline Non-leaded package)が挙げられる。
 半導体素子としては、生産性の点から、一括封止及びシンギュレーションを経て製造されるものが好ましく、例えば、封止方式がMAP(Moldied Array Packaging)方式、又はWL(Wafer Lebel packaging)方式である集積回路が挙げられる。
 図3は、半導体素子の一例を示す模式断面図である。
 この例の半導体素子110は、基板10と、基板10上に実装された半導体チップ12と、半導体チップ12を封止する樹脂封止部14と、樹脂封止部14の上面14aに形成されたインク層16とを有する。
 半導体チップ12は、表面電極(図示略)を有する。基板10は、半導体チップ12の表面電極に対応する基板電極(図示略)を有する。表面電極と基板電極とはボンディングワイヤ18(接続端子)によって電気的に接続されている。
 半導体素子の樹脂封止部の厚さは、0.1~0.7mmが好ましく、0.1~0.5mmが特に好ましい。
 樹脂封止部の厚さは、基板の厚さ方向における樹脂封止部の最大厚さである。例えば半導体素子110の場合、基板10の半導体チップ12設置面から樹脂封止部14の上面14aまでの最短距離が樹脂封止部14の厚さである。
 圧縮成形法では、例えば、下金型に設けられた凹部の表面(キャビティ面)に離型フィルムを密着させ、その上に硬化性樹脂を配置し、下金型と上金型とを型締めした後、凹部の底面を上昇させる。離型フィルムを密着させる際の下金型の凹部の深さは、例えば、樹脂封止部の厚さに対して数倍程度である。凹部底面が上昇すると、それに合わせて、引き伸ばされていた離型フィルムが収縮する。従来の離型フィルムは、形成する樹脂封止部の厚さが薄い、つまり離型フィルムの引き伸ばされる量が少ないと、離型フィルムが充分に収縮せず、フィルム余りが生じてシワになりやすい。本積層フィルムは、樹脂封止部の厚さが0.7mm以下と薄い場合でも、凹部底面の上昇時にシワが生じにくい。そのため本積層フィルムは、樹脂封止部の厚さが薄い場合に特に有用である。
 一方、樹脂封止部の厚さが0.1mm以上であれば、樹脂充てん性が良好である。
〔半導体素子の製造方法〕
 本発明の半導体素子の製造方法は、基板と半導体チップと接続端子と硬化性樹脂の硬化物からなる樹脂封止部とを備える半導体素子を、上金型と下金型とを備える圧縮成形装置を用いて製造する方法である。
 本発明の半導体素子の製造方法では、基板と半導体チップと接続端子とを有する構造体を、前記上金型と下金型の一方に配置し、
 離型フィルムとして本積層フィルムを、前記上金型と下金型の他方に設けられた凹部を覆うようにかつフッ素樹脂層表面が金型の成形空間に面するように配置して、前記凹部の表面に密着させ、
 前記上金型と下金型との間に硬化性樹脂を配置して、前記上金型と下金型とを型締めし、前記凹部の底面を移動させて前記硬化性樹脂を圧縮するとともに、前記硬化性樹脂を熱硬化させて樹脂封止部を形成する。
 本発明の半導体素子の製造方法に使用する圧縮成形装置に特に制限はない。製造条件も、離型フィルムとして本積層フィルムを用いること以外は、公知の半導体素子の製造方法における条件と同じ条件とすることができる。
 以下、図4~6を用いて、本発明の半導体素子の製造方法の一実施形態を説明する。図4~6は、基板と半導体チップと接続端子とを有する構造体を上金型に配置し、本積層フィルムを下金型に設けられた凹部を覆うように配置して、圧縮成形を行う例である。
 本実施形態は、下金型としてキャビティ底面部材22及び枠状部材24を備える圧縮成形装置を用い、離型フィルムとして図1に示す積層フィルム1を用い、図3に示した半導体素子110を製造する例である。
 なお、後述実施例では、基板と半導体チップと接続端子とを有する構造体を下金型に配置し、本積層フィルムを上金型に設けられた凹部を覆うように配置して、圧縮成形を行った。実施例の圧縮成形法においても図4~6に示す圧縮成形法と同様に半導体素子の製造を行うことができる。
 圧縮成形装置:
 本実施形態における圧縮成形装置は、図4に示すように、上金型20と下金型21とを備える。下金型21は、キャビティ底面部材22と、キャビティ底面部材22の周縁に配置された枠状部材24とを備える。
 上金型20には、基板10と上金型20との間の空気を吸引することによって基板10を上金型20に吸着するための真空ベント(図示略)が形成されている。
 キャビティ底面部材22には、離型フィルム(積層フィルム1)とキャビティ底面部材22との間の空気を吸引することによって離型フィルムをキャビティ底面部材22に吸着するための真空ベント(図示略)が形成されている。
 キャビティ底面部材22は、その上面(キャビティ底面)が、枠状部材24の内周面の上縁よりも下方に位置するように配置されている。これにより、キャビティ底面部材22の上面を底面、枠状部材24の内周面を側面とする凹部26が形成されている。キャビティ底面部材22は、枠状部材24に対して相対的に上下方向に移動可能とされている。キャビティ底面部材22を、枠状部材24に対して相対的に上下方向に移動させることにより、凹部26の深さを変えることができる。
 本実施形態においてキャビティ面とは、凹部26の表面、つまり凹部26を形成している、キャビティ底面部材22の上面及び枠状部材24の内周面の総称である。
 本実施形態の半導体素子の製造方法は下記の工程1~8を含む。
 工程1:基板10と、基板上に配置された複数の半導体チップ12と、各半導体チップ12と基板10とを接続するボンディングワイヤ18(接続端子)とを備える構造体を、上金型20の所定の位置に配置する工程(図4)。
 工程2:離型フィルムとして積層フィルム1を、下金型21上に、下金型21の凹部26を積層フィルム1が覆うように配置し、積層フィルム1を凹部26底面側に真空吸引し、凹部26表面に密着させる工程(図4)。
 工程3:積層フィルム1で表面が覆われた凹部26内に硬化性樹脂40を配置する工程(図4)。
 工程4:凹部26内の積層フィルム1の上に硬化性樹脂40が配置された状態で、キャビティ底面部材22及び枠状部材24を上昇させて型締めし、上金型20と下金型21との間に成形空間を形成する工程(図5)。
 工程5:キャビティ底面部材22のみ上昇させるとともに上金型20及び下金型21を加熱し、硬化性樹脂40を溶融及び熱硬化させ、樹脂封止部14を形成する工程(図6)。本工程により、前記構造体と、前記構造体の複数の半導体チップ12を一括封止する樹脂封止部14とを有する一括封止体が得られる。
 工程6:上金型20及び下金型21を型開きし、前記一括封止体を取り出す工程。
 工程7:前記複数の半導体チップ12が分離するように、前記一括封止体の基板10及び樹脂封止部14を切断する工程。本工程により、基板10と少なくとも1つの半導体チップ12とボンディングワイヤ18と樹脂封止部14とを有する個片化封止体が得られる。
 工程8:前記個片化封止体の樹脂封止部14の上面14aに、インクを用いてインク層16を形成し、半導体素子110を得る工程。
 工程2において、積層フィルム1を凹部26表面に密着させる際の凹部6の深さは、樹脂封止部14の厚さに応じて設定され、(樹脂封止部14の厚さ+0.025mm)~(樹脂封止部14の厚さ+0.4mm)が好ましく、(樹脂封止部14の厚さ+0.05mm)~(樹脂封止部14の厚さ+0.2mm)がより好ましい。樹脂封止部14の厚さが0.1~0.7mmである場合、凹部6の深さは0.125~1.1mmが好ましい。樹脂封止部14の厚さが0.1~0.5mmである場合、凹部6の深さは0.125~0.9mmが好ましい。
 工程5における加熱温度は、典型的には100~185℃であり、より典型的には150~180℃である。
 工程5で形成される樹脂封止部19の厚さは、キャビティ底面部材22を上昇させた後のキャビティ底面部材22の上面から枠状部材24の内周面の上縁までの高さ(凹部の深さ)と同じである。
 以上、本発明の半導体素子の製造方法について、実施形態を示して説明したが、本発明は前記実施形態に限定されない。前記実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
 第1実施形態においては、工程6の後、工程7、工程8をこの順で行う例を示したが、工程7、工程8を逆の順番で行ってもよい。すなわち、一括封止体の樹脂封止部の表面に、インクを用いてインク層を形成し、その後、一括封止体の基板10及び樹脂封止部14を切断してもよい。
 工程1及び工程2は、どちらの工程を先に行ってもよい。
 一括封止する複数の半導体チップ12各々の間の距離は均一でも不均一でもよい。封止を均質にでき、複数の半導体チップ12各々にかかる負荷が均一になる(負荷が最も小さくなる)点から、複数の半導体チップ12各々の間の距離は均一であることが好ましい。
 本発明の半導体素子の製造方法で使用する離型フィルムは、本積層フィルムであればよく、積層フィルム1に限定されない。例えば積層フィルム2を離型フィルムとして用いてもよい。
 本積層フィルムとして、積層フィルム2のように、基材の片面にフッ素樹脂層が積層された積層フィルムを用いる場合、積層フィルムは、収縮性フィルムの層3側を下金型側を向くように下金型上に配置される。これにより、離型層として機能するフッ素樹脂層5が硬化性樹脂40と接する。
 本発明の半導体素子の製造方法で使用する上金型及び下金型は、図4~6に示す構成のものに限定されない。
 本発明の半導体素子の製造方法で使用する硬化性樹脂は、固体のものに限定されず、液状の硬化性樹脂であってもよい。
 本発明の半導体素子の製造方法により製造する半導体素子は、半導体素子110に限定されない。製造する半導体素子によっては、前記実施形態における工程7及び工程8は行わなくてもよい。
 例えば、樹脂封止部の形状は、図3に示すものに限定されず、段差等があってもよい。樹脂封止部に封止される半導体素子は1つでも複数でもよい。インク層は必須ではない。半導体素子として発光ダイオードを製造する場合、樹脂封止部はレンズ部としても機能するため、通常、樹脂封止部の表面にはインク層は形成されない。レンズ部である場合、樹脂封止部の形状は、略半球型、砲弾型、フレネルレンズ型、蒲鉾型、略半球レンズアレイ型等の各種のレンズ形状が採用できる。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 例1~6は実施例であり、例7~15は比較例である。
 各例で使用した測定又は評価方法、及び材料を以下に示す。
(評価方法)
<厚さ>
 接触式厚み計OG-525H(小野測器社製)にて、測定子AA-026(φ10mm SR7)を使用して、フィルムの厚さを測定した。
<貯蔵弾性率(180℃)>
 フィルムを長さ5mm、幅5mmに切り出してサンプルを作製した。サンプルは、フィルムのMDを長さ方向としたサンプル1と、フィルムのTDを長さ方向としたサンプル2の2種を作製した。
 動的粘弾性測定装置DVA-200(IT計測機器社製)を用い、貯蔵弾性率E’を測定した。チャック間長さを20mm、周波数を10Hzとし、温度を20℃から2℃/分の速度で上昇させて、180℃の値において測定したE’を貯蔵弾性率(180℃)とした。
 サンプル1について測定した貯蔵弾性率(180℃)(MDの貯蔵弾性率)と、サンプル2について測定した貯蔵弾性率(180℃)(TDの貯蔵弾性率)との平均値を、フィルムの貯蔵弾性率(180℃)とした。
<熱収縮率(180℃)>
 20℃において、12cm×12cmの積層フィルムに、10cmの長さの直線を、MD及びTDそれぞれの方向に沿って1本ずつ描き、各直線の端点間距離を初期長Lとする。次いで、前記積層フィルムを180℃、30分間の条件で熱処理し、20℃まで冷却した後、積層フィルム上に描かれた直線の端点間の直線距離Lを測定し、下式1により寸法変化率ΔL(%)を求め、-(ΔL)を熱収縮率(180℃)とした。MDに沿った直線について求めたΔLからMDの熱収縮率を得て、TDに沿った直線について求めたΔLからTDの熱収縮率を得た。
 寸法変化率ΔL(%)=(L/L-1)×100  ・・・式1
<圧縮成形法による樹脂封止品の製造>
 各例の積層フィルム(又は単層のフィルム)を離型フィルムとして用い、以下の手順で樹脂封止品を製造した。
 アピックヤマダ社製オートモールド装置MSL-06Mを用い、幅70mm、長さ230mmのチップ基板に対し、キャビティ深さ0.65mmで圧縮成形を行うように設計された半導体封止圧縮成形用金型を準備した。前記装置は、140mm幅の離型フィルムが連続的に装着可能なフィルム巻出し及び巻き取り機構を有する。また、本装置は、圧縮成形型に加えて、トランスファ成形にも使用を可能なハイブリッド型装置であることから、図4~6で説明した一般的な圧縮成形装置とは上下が逆の構造を有する。本発明において、フィルムの離型性の評価を行ううえで、本装置を用いても図4~6に示す圧縮成形装置での挙動と何ら変わりがなかった。
 本実施例においては、すべて、長さ20m以上のフィルムロールを準備し、それを前記装置に装着して、一連の評価を行った。なお、フィルムは毎秒20cmの速さで、送り出し及び巻き取りがなされ、半導体チップを封止するたびに新しいフィルム面が、上金型内部に送り出されるようなフィルム繰り出し及び巻き取り操作を行った。このときのフィルム送り張力及び静止時張力は、ともに8Nであった。フィルムは、一連の操作の最初に、巻き出し及び巻き取り操作を実施し、フィルム原反ロールから巻き出された新しい部分が、金型間に挿入された状態を成形開始点とした。
 成形開始点から1秒後に、上金型に具備された空気排出口より、空気を吸引しながら、上金型に接触するようにフィルム位置を相対的に金型表面に近接せしめ、最終的に上金型に吸着させた(状態A)。
 次に、厚さ200μmの銅プレート上に半導体チップを実装した構造体を下金型に配置し、その上に、粉末状エポキシ材料(住友ベークライト社製 EME-G600)を所定量散布した。その後、上金型及び下金型を200kNで型締めし、次いで上金型内部上面を下降させて下部圧縮Chaseを30kNにて圧縮成形を行うことによって平面上に腑型した。圧縮状態を150秒間保持したのち、金型を開放し、樹脂封止品を取り出した(状態B)。
<キャビティ面密着時のシワの発生の有無>
 状態Aにおいて、金型を開放した状態で、その下方よりフィルムの吸着状態を観察し、キャビティ面密着時の離型フィルムのシワの発生の有無を評価した。
<キャビティ底面上昇時のシワの発生の有無>
 状態Bにおいて、得られた樹脂封止品表面に転写したフィルムの形状を観察し、離形フィルムのキャビティ底面上昇時、すなわち、キャビティ底面上昇時(EMC封止時)の離型フィルムのシワの発生の有無を評価した。
<樹脂封止品外観>
 前記樹脂封止品の外観を目視で観察し、離型フィルムのシワに起因する未充填部分が発生するか否かを評価した。前記未充填部分が発生していない場合を「良好」、前記未充填部分が発生している場合を「不良」とした。
(使用材料)
<フッ素樹脂フィルム>
 ETFE-1:厚さ12μmのETFEフィルム。
 ETFE-2:厚さ20μmのETFEフィルム。
 ETFE-3:厚さ50μmのETFEフィルム。
 これらのETFEフィルムはそれぞれ、下記の製造例1で得たETFEを、フィルムの厚さが12μm、20μm又は50μmとなるように、リップ開度を調整したTダイを設置した押出機により、320℃で溶融押出をし、元型ロール、製膜速度、ニップ圧力を調整して製造した。
<製造例1:ETFE-1の製造>
 内容積が1.3Lの撹持機付き重合槽を脱気して、1-ヒドロトリデカフルオロヘキサンの881.99g、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(商品名AK225cb、旭硝子社製)(以下、「AK225cb」と記す。)の335.5g、PFBEの7.0gを仕込み、TFEの165.2g、エチレン(以下、「E」と記す。)の9.8gを圧入し、重合槽内を66℃に昇温し、重合開始剤溶液としてターシャリーブチルパーオキシピバレート(以下、「PBPV」と記す。)の1質量%のAK225cb溶液の7.7mLを仕込み、重合を開始させた。
 重合中、圧力が一定になるようにTFE/E=54/46のモル比の単量体混合ガスを連続的に仕込んだ。また、単量体混合ガスの仕込みに合わせて、TFEとEとの合計モル数に対して1.4モル%に相当する量のPFBEを連続的に仕込んだ。重合開始から2.9時間後、単量体混合ガスの100gを仕込んだ時点で、重合槽内温を室温まで降温するとともに重合槽の圧力を常圧までパージした。その後、得られたスラリをガラスフィルタで吸引ろ過し、固形分を回収し、150℃で15時間乾燥することにより、ETFE-1の105gを得た。得られたETFEは、TFE単位/E単位/PFBE単位=52.5/46.3/1.2(モル比)の共重合体であり、MFRが12g/10分であった。
<基材(収縮性フィルム及び比較品)>
 ポリアミド-1:2軸延伸ナイロンフィルム、ユニチカ社製、商品名エンブレム MS(BC)、厚さ15μm。
 ポリアミド-2:2軸延伸ナイロンフィルム、ユニチカ社製、商品名エンブレム NK(BC)、厚さ15μm。
 ポリアミド-3:2軸延伸ナイロンフィルム、ユニチカ社製、商品名エンブレム ON(BC)、厚さ15μm。
 ポリアミド-4:無延伸ナイロンフィルム、三菱ケミカル社製、商品名ダイアミロン(登録商標) C-Z、厚さ20μm。
 ポリアミド-5:2軸延伸ナイロンフィルム、東洋紡社製、商品名ハーデン(登録商標) N1100、厚さ12μm。
 ポリエステル-1:2軸延伸PETフィルム、テイジン社製、商品名テトロン(登録商標) G2、厚さ12μm。
 ポリエステル-2:2軸延伸PETフィルム、テイジン社製、商品名テトロン NS、厚さ12μm。
 ポリエステル-3:2軸延伸PETフィルム、三菱ケミカル社製、商品名ダイアホイル(登録商標) H500、厚さ25μm。
 ポリエステル-4:2軸延伸PETフィルム、帝人デュポンフィルム社製、商品名テフレックス(登録商標) FT3PE、厚さ25μm。
 ポリオレフィン:2軸延伸ポリプロピレンフィルム、三井化学東セロ社製、商品名OP
 U-1#20、厚さ20μm。
<接着剤>
 各フィルムを貼り合わせるドライラミネート用の接着剤として、以下のウレタン系接着剤Aを用いた。主剤と硬化剤とを、固形分での質量比(主剤:硬化剤)が10:1となるように混合し、希釈剤として酢酸エチルを用いた。
 「ウレタン系接着剤A」
 主剤:クリスボン(登録商標)NT-258(DIC社製)。
 硬化剤:コロネート2096(日本ポリウレタン工業社製)。
(例1)
 以下のA1、A2、A3の3枚のフィルムを以下の手順でドライラミネートして、A1とA2とA3とがこの順に積層した積層フィルムを得た。
 A1:ETFE-1。
 A2:ポリアミド-1。
 A3:ETFE-1。
 ドライラミネート手順:A2の第1面にグラビアロールを用いてウレタン系接着剤Aを0.7g/m塗工し、60℃で乾燥させた。この塗工面にA1を重ね、60℃、1m/minの条件でロールプレスし、A2とA1との積層体を得た。この積層体のA2側の面(A2の第2面)に、ウレタン系接着剤Aを0.7g/m塗工し、60℃で乾燥させた。この塗工面にA3を重ね、60℃、1m/minの条件でロールプレスした。その後、40℃で96時間養生して積層フィルムを得た。ウレタン系接着剤Aの塗工量は、乾燥塗工量である。
(例2~6、例8~15)
 ドライラミネートするフィルムの種類を表1~表2に記載のように変更した以外は例1と同様にして積層フィルムを得た。
(例7)
 ETFE-3をそのまま例7のフィルムとした。
 表1~表2に、各例の積層フィルム又は単層のフィルム(以下、「製品フィルム」とも記す。)の全体の厚さ、製品フィルム及び使用した基材の貯蔵弾性率(180℃)及び熱収縮率(180℃)、並びに評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記のとおり、例1~6の積層フィルムを離型フィルムとして用いることで、キャビティ面密着時及びキャビティ底面上昇時の両方で、シワの発生を抑制できた。そのため、外観に優れた樹脂封止品が得られた。
 これに対し、例7のフィルムでは、収縮性フィルムを含まないため、キャビティ面密着時及びキャビティ底面上昇時の両方で、シワが発生した。
 例8~14の積層フィルムでは、収縮性フィルムのMD及びTDのいずれかの熱収縮率(180℃)が3%未満であるため、キャビティ面密着時にシワが発生した。
 例15の積層フィルムでは、収縮性フィルムの貯蔵弾性率(180℃)が70MPa未満であるため、キャビティ底面上昇時にシワが発生した。キャビティ底面上昇時の追加のシワ発生は見られなかった。
 なお2017年11月17日に出願された日本特許出願2017-222227号の明細書、特許請求の範囲、要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 積層フィルム、2 積層フィルム、3 収縮性フィルムの層、5 フッ素樹脂層、10 基板、12 半導体チップ、14 樹脂封止部、14a 樹脂封止部14の上面、16 インク層、18 ボンディングワイヤ(接続端子)、20 上金型、21 下金型、22 キャビティ底面部材、24 枠状部材、26 凹部、40 硬化性樹脂、110 半導体素子

Claims (15)

  1.  180℃における貯蔵弾性率E’が70MPa以上で、機械方向(MD)及び横断方向(TD)の各々の20℃を基準とした180℃30分間における熱収縮率が3%以上である収縮性フィルムの層と、前記収縮性フィルムの層の片面又は両面に存在するフッ素樹脂層とを含み、少なくとも片面が前記フッ素樹脂層の表面であることを特徴とする積層フィルム。
  2.  前記積層フィルムの180℃における貯蔵弾性率E’が70MPa以上で、前記積層フィルムのMD及びTD各々の20℃を基準とした180℃30分間における熱収縮率が2%以上である、請求項1に記載の積層フィルム。
  3.  前記収縮性フィルムの層の両面に前記フッ素樹脂層が存在する、請求項1又は2に記載の積層フィルム。
  4.  さらに、前記収縮性フィルムの層と前記フッ素樹脂層の間に接着層が存在する、請求項1~3のいずれか一項に記載の積層フィルム。
  5.  前記収縮性フィルムが2軸延伸フィルムである、請求項1~4のいずれか一項に記載の積層フィルム。
  6.  前記収縮性フィルムが、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、及び生物由来樹脂からなる群から選ばれる少なくとも1種の樹脂から構成された収縮性フィルムである、請求項1~5のいずれか一項に記載の積層フィルム。
  7.  前記収縮性フィルムが2軸延伸ポリアミド樹脂フィルムである、請求項1~6のいずれか一項に記載の積層フィルム。
  8.  前記フッ素樹脂が、フルオロオレフィン系重合体からなるフッ素樹脂である、請求項1~7のいずれか一項に記載の積層フィルム。
  9.  前記フルオロオレフィン系重合体が、エチレン-テトラフルオロエチレン系共重合体である、請求項8に記載の積層フィルム。
  10.  前記フッ素樹脂層が、フッ素樹脂フィルムの層である、請求項1~9のいずれか一項に記載の積層フィルム。
  11.  離型フィルムとして用いられる、請求項1~10のいずれか一項に記載の積層フィルム。
  12.  前記離型フィルムが、半導体素子製造における樹脂封止の工程において、金型の凹部に配置されて封止用樹脂に接する、離型フィルムである、請求項11に記載の積層フィルム。
  13.  基板と半導体チップと接続端子と硬化性樹脂の硬化物からなる樹脂封止部とを備える半導体素子を、上金型と下金型とを備える圧縮成形装置を用いて製造する方法であって、
     基板と半導体チップと接続端子とを有する構造体を、前記上金型と下金型の一方に配置し、
     離型フィルムとして請求項1~12のいずれか一項に記載の積層フィルムを、前記上金型と下金型の他方に設けられた凹部を覆うようにかつフッ素樹脂層表面が金型の成形空間に面するように配置して、前記凹部の表面に密着させ、
     前記上金型と下金型との間に硬化性樹脂を配置して、前記上金型と下金型とを型締めし、前記凹部の底面を移動させて前記硬化性樹脂を圧縮するとともに、前記硬化性樹脂を熱硬化させて樹脂封止部を形成することを特徴とする半導体素子の製造方法。
  14.  前記樹脂封止部の厚さが0.1~0.7mmである、請求項13に記載の半導体素子の製造方法。
  15.  前記積層フィルムを前記凹部の表面に密着させる際の前記凹部の深さが、前記樹脂封止部の厚さよりも深くかつ0.125~1.1mmである、請求項13又は14に記載の半導体素子の製造方法。
PCT/JP2018/042015 2017-11-17 2018-11-13 積層フィルム及び半導体素子の製造方法 WO2019098203A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207008669A KR102537658B1 (ko) 2017-11-17 2018-11-13 적층 필름 및 반도체 소자의 제조 방법
SG11202004352PA SG11202004352PA (en) 2017-11-17 2018-11-13 Laminated film and method for producing semiconductor element
CN201880074248.9A CN111712385A (zh) 2017-11-17 2018-11-13 层叠膜以及半导体元件的制造方法
DE112018005759.3T DE112018005759T5 (de) 2017-11-17 2018-11-13 Laminierte Folie und Verfahren zur Herstellung eines Halbleiterelements
JP2019554235A JP7151720B2 (ja) 2017-11-17 2018-11-13 積層フィルム及び半導体素子の製造方法
US16/822,110 US11318641B2 (en) 2017-11-17 2020-03-18 Laminated film and method for producing semiconductor element
PH12020550135A PH12020550135A1 (en) 2017-11-17 2020-03-25 Laminated film and method for producing semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222227 2017-11-17
JP2017222227 2017-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/822,110 Continuation US11318641B2 (en) 2017-11-17 2020-03-18 Laminated film and method for producing semiconductor element

Publications (1)

Publication Number Publication Date
WO2019098203A1 true WO2019098203A1 (ja) 2019-05-23

Family

ID=66539663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042015 WO2019098203A1 (ja) 2017-11-17 2018-11-13 積層フィルム及び半導体素子の製造方法

Country Status (9)

Country Link
US (1) US11318641B2 (ja)
JP (1) JP7151720B2 (ja)
KR (1) KR102537658B1 (ja)
CN (1) CN111712385A (ja)
DE (1) DE112018005759T5 (ja)
PH (1) PH12020550135A1 (ja)
SG (1) SG11202004352PA (ja)
TW (1) TWI774877B (ja)
WO (1) WO2019098203A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019263A (ja) * 2018-08-03 2020-02-06 三井化学東セロ株式会社 圧縮成形法による樹脂封止プロセス用離型フィルム
JP2020019264A (ja) * 2018-08-03 2020-02-06 三井化学東セロ株式会社 樹脂モールド成形品の製造方法、樹脂モールド成形品、及びその用途。
JP2021160288A (ja) * 2020-03-31 2021-10-11 三菱ケミカル株式会社 積層ポリエステルフィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037426A1 (ja) * 2013-09-10 2015-03-19 旭化成ケミカルズ株式会社 離型フィルム、成型体の製造方法、半導体部品及びリフレクター部品
WO2015133634A1 (ja) * 2014-03-07 2015-09-11 旭硝子株式会社 離型フィルム、および封止体の製造方法
WO2015133630A1 (ja) * 2014-03-07 2015-09-11 旭硝子株式会社 離型フィルム、その製造方法、および半導体パッケージの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049850A (ja) 2004-06-29 2006-02-16 Asahi Glass Co Ltd 半導体チップ封止用離型フィルム
WO2008001682A1 (fr) * 2006-06-27 2008-01-03 Mitsui Chemicals, Inc. Film et film de démoulage
KR20090023679A (ko) * 2006-06-30 2009-03-05 미쓰비시 쥬시 가부시끼가이샤 열 수축성 적층 필름 및 상기 필름을 이용한 성형품, 열 수축성 라벨 및 용기
JP2008095084A (ja) * 2006-09-13 2008-04-24 Toyobo Co Ltd 成型用ポリエステルフィルム
JP5297233B2 (ja) 2009-03-09 2013-09-25 三井化学株式会社 半導体封止プロセス用離型フィルム、およびそれを用いた樹脂封止半導体の製造方法
WO2013027547A1 (ja) * 2011-08-25 2013-02-28 東レ株式会社 成型用フィルムおよびそれを用いた成型転写箔
KR102172867B1 (ko) 2015-12-03 2020-11-02 미쓰이 가가쿠 토세로 가부시키가이샤 공정용 이형 필름, 그 용도 및 이를 이용한 수지 밀봉 반도체의 제조 방법
JP2017222227A (ja) 2016-06-14 2017-12-21 三菱重工業株式会社 ツインスケグ船

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037426A1 (ja) * 2013-09-10 2015-03-19 旭化成ケミカルズ株式会社 離型フィルム、成型体の製造方法、半導体部品及びリフレクター部品
WO2015133634A1 (ja) * 2014-03-07 2015-09-11 旭硝子株式会社 離型フィルム、および封止体の製造方法
WO2015133630A1 (ja) * 2014-03-07 2015-09-11 旭硝子株式会社 離型フィルム、その製造方法、および半導体パッケージの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019263A (ja) * 2018-08-03 2020-02-06 三井化学東セロ株式会社 圧縮成形法による樹脂封止プロセス用離型フィルム
JP2020019264A (ja) * 2018-08-03 2020-02-06 三井化学東セロ株式会社 樹脂モールド成形品の製造方法、樹脂モールド成形品、及びその用途。
JP7177622B2 (ja) 2018-08-03 2022-11-24 三井化学東セロ株式会社 圧縮成形法による樹脂封止プロセス用離型フィルム
JP7177623B2 (ja) 2018-08-03 2022-11-24 三井化学東セロ株式会社 樹脂モールド成形品の製造方法、樹脂モールド成形品、及びその用途。
JP2023001351A (ja) * 2018-08-03 2023-01-04 三井化学東セロ株式会社 圧縮成形法による樹脂封止プロセス用離型フィルム
JP7463478B2 (ja) 2018-08-03 2024-04-08 三井化学東セロ株式会社 圧縮成形法による樹脂封止プロセス用離型フィルム
JP2021160288A (ja) * 2020-03-31 2021-10-11 三菱ケミカル株式会社 積層ポリエステルフィルム
JP7516822B2 (ja) 2020-03-31 2024-07-17 三菱ケミカル株式会社 積層ポリエステルフィルム

Also Published As

Publication number Publication date
KR20200078485A (ko) 2020-07-01
TW201924932A (zh) 2019-07-01
SG11202004352PA (en) 2020-06-29
TWI774877B (zh) 2022-08-21
DE112018005759T5 (de) 2020-07-16
JP7151720B2 (ja) 2022-10-12
US11318641B2 (en) 2022-05-03
CN111712385A (zh) 2020-09-25
PH12020550135A1 (en) 2021-02-08
US20200215728A1 (en) 2020-07-09
KR102537658B1 (ko) 2023-05-26
JPWO2019098203A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
TWI707758B (zh) 脫模膜、其製造方法及半導體封裝件之製造方法
US10913183B2 (en) Process for producing package for mounting a semiconductor element and mold release film
JP6375546B2 (ja) 離型フィルム、および封止体の製造方法
US9613832B2 (en) Mold release film and process for producing semiconductor package
US9306135B2 (en) Mold release film and method of process for producing a semiconductor device using the same
KR102208014B1 (ko) 이형 필름, 및 반도체 패키지의 제조 방법
US11318641B2 (en) Laminated film and method for producing semiconductor element
US10699916B2 (en) Mold release film, process for its production, and process for producing semiconductor package
WO2018008562A1 (ja) エチレン-テトラフルオロエチレン系共重合体フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554235

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18878955

Country of ref document: EP

Kind code of ref document: A1