WO2019098200A1 - 非水系リチウム型蓄電素子 - Google Patents

非水系リチウム型蓄電素子 Download PDF

Info

Publication number
WO2019098200A1
WO2019098200A1 PCT/JP2018/042006 JP2018042006W WO2019098200A1 WO 2019098200 A1 WO2019098200 A1 WO 2019098200A1 JP 2018042006 W JP2018042006 W JP 2018042006W WO 2019098200 A1 WO2019098200 A1 WO 2019098200A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
negative electrode
electrode active
lithium
Prior art date
Application number
PCT/JP2018/042006
Other languages
English (en)
French (fr)
Inventor
維摩 木村
和照 梅津
雄一朗 平川
森田 均
宣宏 岡田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP18879358.2A priority Critical patent/EP3712915B1/en
Priority to US16/646,213 priority patent/US11824203B2/en
Priority to JP2019554233A priority patent/JP6997208B2/ja
Priority to CN201880058852.2A priority patent/CN111095453B/zh
Priority to KR1020207006910A priority patent/KR102389965B1/ko
Publication of WO2019098200A1 publication Critical patent/WO2019098200A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous lithium type storage element.
  • the first requirement of the batteries used in these storage systems is the high energy density. Lithium ion batteries have been vigorously developed as potential candidates for high energy density batteries capable of meeting such requirements.
  • the second requirement is high output characteristics. For example, in a combination of a high efficiency engine and a storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a storage system (for example, a fuel cell electric vehicle), high power discharge characteristics in the storage system are required during acceleration There is.
  • electric double layer capacitors, nickel hydrogen batteries and the like are being developed as high power storage devices.
  • the electric double layer capacitors one using activated carbon for the electrode has an output characteristic of about 0.5 to 1 kW / L.
  • This electric double layer capacitor is also high in durability (cycle characteristics and high temperature storage characteristics), and has been considered as an optimum device in the field where the high output is required.
  • its energy density is only about 1 to 5 Wh / L. Therefore, further improvement of energy density is necessary.
  • the nickel hydrogen battery currently adopted in the hybrid electric vehicle has the same high output as the electric double layer capacitor and has an energy density of about 160 Wh / L.
  • researches are being vigorously carried out to further enhance the energy density and the output as well as the durability (in particular, the stability at high temperatures).
  • lithium ion batteries have been developed which can provide a high output exceeding 3 kW / L at 50% of the discharge depth (a value indicating the percentage of the discharge capacity of the storage element discharged).
  • its energy density is 100 Wh / L or less, and it is designed to intentionally suppress the high energy density which is the most characteristic feature of a lithium ion battery.
  • lithium ion batteries have a depth of discharge of 0 to 100% in order to have practical durability because their durability (cycle characteristics and high temperature storage characteristics) are inferior to electric double layer capacitors. It will be used in a narrower range than the range. Since the capacity of the lithium ion battery that can actually be used is further reduced, researches are being actively conducted to further improve the durability.
  • a storage element having high energy density, high output characteristics, and durability.
  • the existing storage elements described above have advantages and disadvantages. Therefore, new storage elements that satisfy these technical requirements are required.
  • a storage element called a lithium ion capacitor is attracting attention and is actively developed.
  • the energy of the capacitor is represented by 1/2 ⁇ C ⁇ V 2 (where C is a capacitance and V is a voltage).
  • a lithium ion capacitor is a type of storage element (non-aqueous lithium type storage element) using a non-aqueous electrolytic solution containing a lithium salt, and adsorbs the same anion as the electric double layer capacitor at about 3 V or more at the positive electrode
  • a storage element that performs charge and discharge by non-Faraday reaction by desorption, and Faraday reaction by insertion and extraction of lithium ions similar to lithium ion batteries in the negative electrode.
  • lithium ion capacitors examples include railways, construction machines, storage batteries for automobiles, and the like.
  • lithium ion capacitors are used in a wide temperature environment from -30 ° C to 60 ° C, mainly for energy regeneration or motor assist.
  • the internal resistance of the battery is increased, lithium dendrite is deposited on the negative electrode interface by charging and discharging a large current, which may cause performance degradation and internal short circuit. Therefore, the safety and reliability of the storage element It is a big problem in terms of Therefore, there is a demand for a storage element that has low resistance and high output in a wide temperature environment.
  • Patent Document 1 a porous material in which a conductive polymer having nitrogen atoms is bonded to the surface and the pore volume of pores having a predetermined diameter is a specific ratio
  • Patent Document 2 energy is processed by using high-temperature treated carbon in a high magnetic field as a storage element to increase the pore area effective for increasing the capacitance and reducing the large groove that increases the volume. Techniques have been provided to improve density.
  • Patent Document 3 a storage element excellent in durability against high power and high voltage charging is formed by forming communicating macro pores in activated carbon and optimizing the pore size distribution, specific surface area, micro volume and micro pore width. It is disclosed.
  • Patent Document 4 a lithium compound other than the positive electrode active material is contained in the positive electrode, and the decomposition reaction of the lithium compound optimizes the pore size and pore distribution of the positive electrode active material layer to achieve high energy density and high concentration.
  • Non-aqueous lithium type storage element excellent in output characteristics and high load charge / discharge cycle durability.
  • the BJH method is proposed in Non-Patent Document 1
  • the MP method is “t- Non-patent document 3 describes a method of determining micropore volume, micropore area, and micropore distribution using “plot method” (non-patent document 2).
  • the problem to be solved by the present invention is to provide a non-aqueous lithium-type storage element capable of achieving both high energy density and high output while maintaining the characteristics thereof in a wide temperature environment. It is.
  • the present inventors made a positive electrode active material layer by making a positive electrode active material contain activated carbon in a non-aqueous lithium-type storage element, and forming an active point that reversibly interacts with Li ion in the positive electrode active material layer.
  • the inventors have found that the above problems can be solved by improving the capacity per unit mass of the positive electrode active material without impairing the Li ion diffusivity at the interface with the inside and the electrolyte solution.
  • the present invention has been made based on the above findings. That is, the present invention is as follows.
  • a non-aqueous lithium storage device comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolytic solution containing lithium ions
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material provided on one side or both sides of the negative electrode current collector, and the negative electrode active material occludes lithium ions.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer containing a positive electrode active material provided on one side or both sides of the positive electrode current collector, the positive electrode active material including activated carbon, And said positive electrode active material layer is in the range of -6 to -2.5 ppm with component A having a signal in the range of -2 to 2.5 ppm in the solid 7 Li-NMR spectrum of said positive electrode active material layer A non-aqueous lithium-type storage element comprising a component B having a signal, wherein the signal area ratio a / b is 1.5 to 20.0, where the signal areas of the components A and B are a and b, respectively.
  • the transition metal oxide has the following formula: Li x1 CoO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2. ⁇ , Li x1 NiO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x 1 Ni y M 1 (1-y) O 2 (wherein , M 1 is at least one element selected from the group consisting of Co, Mn, Al, Fe, Mg and Ti, and x 1 is 0 ⁇ x1 ⁇ 2 is satisfied, and y is 0.2 ⁇ y ⁇ 0.97.
  • Li x1 Ni 1/3 Co 1/3 Mn 1/3 O 2 (wherein, x1 satisfies 0 ⁇ x1 ⁇ 2).
  • Li x1 MnO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • ⁇ -Li x1 FeO 2 wherein , x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x1 VO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x1 CrO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x1 Mn 2 O 4 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x 1 M 2 y Mn (2-y) O 4 (wherein , M 2 is at least one element selected from the group consisting of Co, Ni, Al, Fe, Mg and Ti, and x 1 is 0 ⁇ x1 ⁇ 2 is satisfied, and y is 0.2 ⁇ y ⁇ 0.97.
  • the positive electrode contains a carbon material containing the activated carbon and the lithium transition metal oxide, and the mass ratio of the carbon material in the positive electrode active material layer is A 1, and the mass ratio of the lithium transition metal oxide is when the a 2, a 2 / a 1 is 0.1 or more and 2.5 or less, [2] to [4] the nonaqueous lithium-type storage element according to any one of.
  • the positive electrode contains one or more selected from the group consisting of lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate in an amount of 1% by mass to 50% by mass with respect to the total amount of the positive electrode active material.
  • the non-aqueous lithium type storage element according to any one of [1] to [5].
  • C 1 / C 2 is The nonaqueous lithium-type storage element according to any one of [1] to [9], which is 0.35 or more and 5.80 or less.
  • D 1 / D 2 is 0.30 or more.
  • the non-aqueous lithium-type storage element according to any one of [1] to [10], which is 00 or less.
  • the elemental concentration of sulfur (S) detected by X-ray photoelectron spectroscopy (XPS) of the surface of the negative electrode active material layer is 0.5 atomic% or more, and X-ray photoelectron spectroscopy of the surface of the positive electrode active material layer (
  • the nonaqueous lithium type storage element according to any one of [1] to [11], wherein the S2p spectrum obtained by XPS has a peak of 162 eV to 166 eV.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a formyl group, an acetyl group, a nitrile group, an acetyl group, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms 6 represents an alkoxy group of 6 or an alkyl ester having 1 to 6 carbon atoms.
  • R 25 to R 28 each represents at least one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, and a halogenated alkyl group having 1 to 12 carbon atoms And each n may be an integer of 0 to 3;
  • the concentration of at least one element selected from the group consisting of Ni, Mn, Fe, Co and Al contained in the non-aqueous electrolytic solution is 10 ppm or more and 1000 ppm or less in any of [1] to [13]
  • Nonaqueous lithium type electrical storage element as described in any one.
  • the positive electrode active material layer is provided with an active point that reversibly interacts with Li ions, whereby the positive electrode without impairing the Li ion diffusion in the positive electrode active material layer and at the interface with the electrolyte.
  • the capacity per unit mass of the active material can be improved, thereby achieving both high energy density and high output of the non-aqueous lithium-type storage element and maintaining their characteristics even in a wide temperature environment Can.
  • a non-aqueous lithium-type storage element mainly includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and an outer package.
  • an organic solvent in which a lithium salt is dissolved hereinafter, referred to as non-aqueous electrolytic solution is used.
  • the positive electrode has a positive electrode current collector and a positive electrode active material layer present on one side or both sides thereof. Moreover, it is preferable that a positive electrode contains a lithium compound as a positive electrode precursor before an electrical storage element assembly. As described later, in the present embodiment, it is preferable to pre-dope lithium ions on the negative electrode in the storage element assembly process, but as the pre-doping method, a positive electrode precursor containing a lithium compound, a negative electrode, a separator, an outer package, and It is preferable to apply a voltage between the positive electrode precursor and the negative electrode after assembling the storage element using the non-aqueous electrolytic solution.
  • the lithium compound is preferably contained in the positive electrode active material layer formed on the positive electrode current collector of the positive electrode precursor.
  • the lithium compound may be contained in any manner in the positive electrode precursor.
  • the lithium compound may be present between the positive electrode current collector and the positive electrode active material layer, or may be present on the surface of the positive electrode active material layer.
  • the positive electrode state before the lithium doping step is defined as a positive electrode precursor
  • the positive electrode state after the lithium doping step is defined as a positive electrode.
  • “non-porous positive electrode current collector” means that lithium ions pass through the positive electrode current collector at least in the coated region of the positive electrode active material layer, and lithium ions are formed on the front and back of the positive electrode.
  • the positive electrode current collector having no uniform degree of pores. Therefore, in the non-porous positive electrode current collector, the positive electrode current collector having extremely small diameter or a very small number of holes and the uncoated region of the positive electrode active material layer within the range where the effects of the present invention are exhibited. It does not exclude also the positive electrode collector which it has. Further, in the present embodiment, at least a region of the positive electrode current collector to which the positive electrode active material layer is applied is nonporous, and an excess portion of the positive electrode current collector to which the positive electrode active material is not applied is The holes may or may not be present.
  • the positive electrode active material layer contained in the positive electrode according to the present embodiment contains a positive electrode active material containing activated carbon.
  • the positive electrode active material layer preferably contains optional components such as a transition metal oxide, a conductive filler, a binder, and a dispersion stabilizer, as necessary, in addition to the positive electrode active material, and can occlude and release lithium ions It is more preferable to include a transition metal oxide.
  • lithium compounds other than a positive electrode active material contain in the positive electrode active material layer of a positive electrode precursor.
  • the positive electrode active material according to the present embodiment includes activated carbon.
  • activated carbon only activated carbon may be used, or it is preferable to add a transition metal oxide in addition to the activated carbon.
  • other carbon materials as described later may be used in combination with activated carbon.
  • this carbon material it is preferable to use a carbon nanotube, a conductive polymer, or a porous carbon material.
  • the type of activated carbon used as the positive electrode active material and the raw materials therefor there are no particular restrictions on the type of activated carbon used as the positive electrode active material and the raw materials therefor.
  • the amount of mesopores derived from pores with a diameter of 20 ⁇ or more and 500 ⁇ or less calculated by the BJH method is V1 (cc / g), and the amount of micropores derived from pores with a diameter of less than 20 ⁇ calculated by the MP method
  • V2 (cc / g) is satisfied, (1)
  • 0.3 ⁇ V1 ⁇ 0.8 and 0.5 ⁇ V2 ⁇ 1.0 are satisfied, and by the BET method
  • An activated carbon having a specific surface area to be measured of 1,500 m 2 / g or more and 3,000 m 2 / g or less (hereinafter also referred to as activated carbon 1) is preferable, and (2) to obtain a high energy density.
  • Activated carbon having a specific surface area of 2,300 m 2 / g or more and 4,200 m 2 / g or less measured by BET method, satisfying 8 ⁇ V1 ⁇ 2.5 and 0.8 ⁇ V2 ⁇ 3.0 Hereinafter, it is also referred to as activated carbon 2.).
  • activated carbon 2 Activated carbon having a specific surface area of 2,300 m 2 / g or more and 4,200 m 2 / g or less measured by BET method, satisfying 8 ⁇ V1 ⁇ 2.5 and 0.8 ⁇ V2 ⁇ 3.0
  • activated carbon 2 it is also referred to as activated carbon 2.
  • the amount of mesopores V1 of the activated carbon 1 is preferably a value larger than 0.3 cc / g in order to increase the input / output characteristics when incorporated into the storage element.
  • V1 is preferably 0.8 cc / g or less from the viewpoint of suppressing a decrease in bulk density of the positive electrode.
  • V1 is more preferably 0.35 cc / g or more and 0.7 cc / g or less, and further preferably 0.4 cc / g or more and 0.6 cc / g or less.
  • the micropore amount V2 of the activated carbon 1 is preferably 0.5 cc / g or more in order to increase the specific surface area of the activated carbon and to increase the capacity.
  • V2 is preferably 1.0 cc / g or less from the viewpoint of suppressing the bulk of activated carbon, increasing the density as an electrode and increasing the capacity per unit volume.
  • V2 is more preferably 0.6 cc / g or more and 1.0 cc / g or less, still more preferably 0.8 cc / g or more and 1.0 cc / g or less.
  • the combination of the lower limit and the upper limit can be arbitrary.
  • the ratio (V1 / V2) of the amount of mesopores V1 to the amount of micropores V2 is preferably in the range of 0.3 ⁇ V1 / V2 ⁇ 0.9. That is, in order to increase the ratio of the amount of mesopores to the amount of micropores to such an extent that a decrease in output characteristics can be suppressed while maintaining a high capacity, V1 / V2 is preferably 0.3 or more. On the other hand, V1 / V2 is preferably 0.9 or less from the viewpoint of increasing the ratio of the amount of micropores to the amount of mesopores to such an extent that the decrease in capacity can be suppressed while maintaining high output characteristics. .
  • V1 / V2 is 0.4 ⁇ V1 / V2 ⁇ 0.7
  • the more preferable range of V1 / V2 is 0.55 ⁇ V1 / V2 ⁇ 0.7.
  • the combination of the lower limit and the upper limit can be arbitrary.
  • the average pore diameter of the activated carbon 1 is preferably 17 ⁇ or more, more preferably 18 ⁇ or more, and most preferably 20 ⁇ or more from the viewpoint of maximizing the output of the obtained storage element. Further, in order to maximize the capacity, the average pore diameter of the activated carbon 1 is preferably 25 ⁇ or less.
  • BET specific surface area of the activated carbon 1 is preferably from 1,500 m 2 / g or more 3,000 m 2 / g, more preferably not more than 1,500 m 2 / g or more 2,500 m 2 / g.
  • the BET specific surface area is 1,500 m 2 / g or more, good energy density is easily obtained, while when the BET specific surface area is 3,000 m 2 / g or less, a binder is used to maintain the strength of the electrode.
  • the performance per electrode volume is increased because it is not necessary to put a large amount of.
  • the combination of the lower limit and the upper limit can be arbitrary.
  • the activated carbon 1 having the characteristics as described above can be obtained, for example, using the raw material and the treatment method described below.
  • the carbon source used as the raw material of the activated carbon 1 is not particularly limited.
  • plant materials such as wood, wood flour, coconut husk, pulp by-products, bagasse, waste molasses, etc .; peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar, etc.
  • Fossil materials Various synthetic resins such as phenol resin, vinyl chloride resin, vinyl acetate resin, melamine resin, urea resin, urea resin, resorcinol resin, celluloid, epoxy resin, polyurethane resin, polyester resin, polyamide resin, etc .; polybutylene, polybutadiene, polychloroprene etc. And other synthetic wood, synthetic pulp and the like, and carbides thereof.
  • plant-based raw materials such as coconut husk and wood flour, and their carbides are preferable, and coconut husk carbide is particularly preferable.
  • inert gases such as nitrogen, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, combustion exhaust gas, or other gases mainly composed of these inert gases
  • a method of baking using mixed gas at about 400 to 700 ° C. (preferably 450 to 600 ° C.) for about 30 minutes to 10 hours.
  • an activation method of the carbide obtained by the above carbonization method a gas activation method of firing using an activation gas such as water vapor, carbon dioxide, oxygen and the like is preferably used.
  • an activation gas such as water vapor, carbon dioxide, oxygen and the like
  • the method of using steam or carbon dioxide as the activation gas is preferable.
  • the above carbide is supplied for 3 to 12 hours (preferably 5 to 11) while supplying the activation gas at a rate of 0.5 to 3.0 kg / h (preferably 0.7 to 2.0 kg / h).
  • the temperature is raised to 800 ° C. to 1,000 ° C. over a period of time, more preferably 6 to 10 hours.
  • the above-mentioned carbides may be primary activated in advance.
  • a method in which a carbon material is fired at a temperature of less than 900 ° C. by using an activating gas such as water vapor, carbon dioxide, oxygen and the like can be preferably employed.
  • the activated carbon 1 having the above characteristics which can be used in the present embodiment, is produced by appropriately combining the firing temperature and the firing time in the above carbonization method with the activation gas supply amount, the temperature raising rate and the maximum activation temperature in the above activation method can do.
  • the average particle size of the activated carbon 1 is preferably 2 to 20 ⁇ m.
  • the average particle size is 2 ⁇ m or more, the density per unit volume of the active material layer tends to be high because the density of the active material layer is high.
  • the average particle size is small, the defect that the durability is low may be caused, but if the average particle size is 2 ⁇ m or more, such a defect hardly occurs.
  • the average particle diameter is 20 ⁇ m or less, it tends to be easily adapted to high-speed charge and discharge.
  • the average particle size is more preferably 2 to 15 ⁇ m, still more preferably 3 to 10 ⁇ m.
  • the upper limit and the lower limit of the range of the average particle diameter can be arbitrarily combined.
  • the amount of mesopores V1 of the activated carbon 2 is preferably a value larger than 0.8 cc / g from the viewpoint of increasing the output characteristics when incorporated into the storage element.
  • V1 is preferably 2.5 cc / g or less from the viewpoint of suppressing a decrease in capacity of the storage element.
  • V1 is more preferably 1.00 cc / g or more and 2.0 cc / g or less, still more preferably 1.2 cc / g or more and 1.8 cc / g or less.
  • the micropore amount V2 of the activated carbon 2 is preferably a value larger than 0.8 cc / g in order to increase the specific surface area of the activated carbon and to increase the capacity.
  • V2 is preferably 3.0 cc / g or less from the viewpoint of increasing the density of activated carbon as an electrode and increasing the capacity per unit volume.
  • V2 is more preferably 1.0 cc / g or more and 2.5 cc / g or less, and further preferably 1.5 cc / g or more and 2.5 cc / g or less.
  • the activated carbon 2 having the amount of mesopores and the amount of micropores described above has a BET specific surface area higher than that of the activated carbon used for conventional electric double layer capacitors or lithium ion capacitors.
  • the specific value of the BET specific surface area of the activated carbon 2 is preferably 2,300 m 2 / g or more and 4,200 m 2 / g or less.
  • the lower limit of the BET specific surface area is more preferably 3,000 m 2 / g or more, and still more preferably 3,200 m 2 / g or more.
  • the upper limit of the BET specific surface area is more preferably 3,800 m 2 / g or less.
  • the activated carbon 2 having the characteristics as described above can be obtained, for example, using a raw material and a treatment method as described below.
  • the carbon source used as the raw material of the activated carbon 2 is not particularly limited as long as it is a carbon source generally used as the activated carbon raw material, and for example, plant-based raw materials such as wood, wood flour, coconut shell; petroleum pitch, coke Etc .; various synthetic resins such as phenol resin, furan resin, vinyl chloride resin, vinyl acetate resin, melamine resin, urea resin, resorcinol resin and the like.
  • phenolic resins and furan resins are particularly suitable for producing activated carbon having a high specific surface area.
  • Examples of a method of carbonizing these raw materials or a heating method at the time of activation treatment include known methods such as a fixed bed method, a moving bed method, a fluidized bed method, a slurry method, and a rotary kiln method.
  • the atmosphere at the time of heating is an inert gas such as nitrogen, carbon dioxide, helium, argon or the like, or a mixed gas of these inert gases as main components with other gases.
  • the carbonization temperature is preferably about 400 to 700 ° C. (the lower limit is preferably 450 ° C. or more, more preferably 500 ° C. or more.
  • the upper limit is preferably 650 ° C. or less).
  • Examples of methods of activating carbides after the carbonization include gas activation methods in which firing is performed using an activation gas such as water vapor, carbon dioxide, oxygen, etc., and alkali metal activation methods in which heat treatment is performed after mixing with an alkali metal compound.
  • an alkali metal activation method is preferable.
  • the mass ratio of the carbide to the alkali metal compound such as KOH, NaOH, etc. is mixed so that it is 1: 1 or more (the amount of the alkali metal compound is equal to or larger than the amount of the carbide).
  • heating is carried out in an inert gas atmosphere at a range of 600 to 900 ° C. (preferably 650 ° C. to 850 ° C.) for 0.5 to 5 hours, after which the alkali metal compound is washed away with acid and water, and further dried. I do.
  • the mass ratio of carbide to alkali metal compound is preferably 1: 1 or more, but as the amount of alkali metal compound increases, the amount of mesopores increases, but the mass ratio 1: Since the amount of pores tends to increase rapidly at around 3.5, it is preferable that the mass ratio of alkali metal compound is larger than 1: 3, and it is preferable that the mass ratio is 1: 5.5 or less.
  • the mass ratio increases as the amount of the alkali metal compound increases, but the amount of pores increases. However, the above range is preferable in consideration of the processing efficiency of subsequent washing and the like.
  • the average particle size of the activated carbon 2 is preferably 2 ⁇ m to 20 ⁇ m, and more preferably 3 ⁇ m to 10 ⁇ m.
  • Each of the activated carbons 1 and 2 may be one type of activated carbon or a mixture of two or more types of activated carbon, and may indicate each characteristic value described above as a whole mixture.
  • the above activated carbons 1 and 2 may be used by selecting any one of them, or may be used by mixing both.
  • the positive electrode active material includes materials other than activated carbon 1 and 2 (for example, activated carbon not having the above-mentioned specific V 1 and / or V 2 , or materials other than activated carbon (for example, conductive polymer etc.) May be.
  • the content of the activated carbon 1 in the positive electrode active material layer, or the content of the activated carbon 2, or the total content of the active carbon 1 and 2, i.e. the weight ratio of the carbon material of the positive electrode active material layer A 1 and to time it is preferred that A 1 is not more than 15 mass% 65 mass% or more, more preferably 50 wt% or less than 20 wt%.
  • the transition metal oxide is preferably capable of absorbing and releasing lithium ions from the viewpoint of achieving both high energy density and high output and maintaining the characteristics thereof within a wide temperature range, and a layered structure, More preferably, it is a lithium transition metal oxide having an olivine structure or a spinel structure.
  • the transition metal oxide used as the positive electrode active material is not particularly limited.
  • the transition metal oxide includes, for example, at least one element selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), vanadium (V), and chromium (Cr). And oxides containing As used herein, the term "transition metal oxide” also includes transition metal phosphates.
  • Li x1 CoO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x1 NiO 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x 1 Ni y M 1 (1-y) O 2 (wherein , M 1 is at least one element selected from the group consisting of Co, Mn, Al, Fe, Mg and Ti, and x 1 is 0 ⁇ x1 ⁇ 2 is satisfied, and y is 0.2 ⁇ y ⁇ 0.97.
  • Li x1 Mn 2 O 4 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2.
  • Li x 1 M 2 y Mn (2-y) O 4 (wherein , M 2 is at least one element selected from the group consisting of Co, Ni, Al, Fe, Mg and Ti, and x 1 is 0 ⁇ x1 ⁇ 2 is satisfied, and y is 0.2 ⁇ y ⁇ 0.97.
  • Li x 1 Ni a Co b Al (1-a-b) O 2 ⁇ wherein, x1 satisfies 0 ⁇ x1 ⁇ 2, and a and b satisfy 0.2 ⁇ a ⁇ 0.97 and 0.s respectively.
  • Li x 2 FePO 4 ⁇ wherein, x2 satisfies 0.8 ⁇ x2 ⁇ 1.2. ⁇
  • Li x 2 CoPO 4 ⁇ wherein, x2 satisfies 0.8 ⁇ x2 ⁇ 1.2. ⁇
  • Li x2 MnPO 4 [wherein, x2 satisfies 0.8 ⁇ x2 ⁇ 1.2. ⁇ , At least one selected from the group consisting of
  • the average particle size of the lithium transition metal oxide is preferably 0.1 to 20 ⁇ m.
  • the average particle size is 0.1 ⁇ m or more, the capacity per electrode volume tends to be high because the density of the active material layer is high. There is a case that the durability decreases as the average particle diameter decreases, but such a defect hardly occurs if the average particle diameter is 0.1 ⁇ m or more.
  • the average particle diameter is 20 ⁇ m or less, it tends to be easy to adapt to high-speed charge and discharge.
  • the average particle size is more preferably 0.5 to 15 ⁇ m, still more preferably 1 to 10 ⁇ m.
  • the lithium transition metal oxide can be disposed in the voids formed of the carbon material having a large average particle size, It is preferable because the resistance can be reduced.
  • the lithium transition metal oxide may be of one type, or a mixture of two or more types of materials, and may indicate each characteristic value described above as a whole of the mixture.
  • the positive electrode active material may contain a material other than the above lithium transition metal oxide (for example, a conductive polymer).
  • G 1 when the content ratio of the lithium transition metal oxide is G 1 based on the total mass of the positive electrode active material layer, G 1 is 1.0% by mass or more and 50.0% by mass or less, and preferably Is 10.0 mass% or more and 45.0 mass% or less, more preferably 15.0 mass% or more and 40.0 mass% or less. If the content ratio of the transition metal oxide is 1.0% by mass or more, the energy density of the storage element can be further increased, and if the content rate is 50.0% by mass or less, the output of the storage element is increased. can do.
  • the mass ratio of the carbon material occupying the positive electrode active material layer and A 1, that the mass ratio of the lithium transition metal oxide when the A 2, A 2 / A 1 is 0.1 to 2.5 Is more preferably 0.2 or more and 2.0 or less, and still more preferably 0.3 or more and 1.2 or less. If A 2 / A 1 is 0.1 or more, the bulk density of the positive electrode active material layer can be increased, and the capacity can be increased. If A 2 / A 1 is 2.5 or less, the electron conduction between the activated carbons can be increased to reduce resistance, and the contact area between the activated carbon and the alkali metal compound can be increased to accelerate the decomposition of the alkali metal compounds.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 35% by mass or more and 95% by mass or less based on the total mass of the positive electrode active material layer in the positive electrode precursor.
  • the upper limit of the content of the positive electrode active material is more preferably 45% by mass or more, and still more preferably 55% by mass or more.
  • the lower limit of the content of the positive electrode active material is more preferably 90% by mass or less, and still more preferably 80% by mass or less.
  • the positive electrode active material layer of the positive electrode precursor of the present embodiment preferably contains a lithium compound other than the positive electrode active material.
  • the term "lithium compound” is different from lithium salts as electrolytes and the lithium transition metal oxides described above.
  • the lithium compound according to this embodiment includes lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, lithium oxide, lithium hydroxide, lithium fluoride, lithium chloride, lithium oxalate, lithium iodide, lithium nitride, One or more selected from lithium oxalate and lithium acetate are preferably used.
  • lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate are more preferable, and handling in air is possible, and lithium carbonate is more preferably used from the viewpoint of low hygroscopicity.
  • a lithium compound is decomposed by the application of voltage and functions as a lithium-doped dopant source to the negative electrode and also forms pores in the positive electrode active material layer, so it has excellent electrolyte retention and ion conductivity. It is possible to form a positive electrode excellent in As a non-aqueous electrolyte solution, in case of using an electrolytic solution obtained by previously dissolving a lithium salt such as LiPF 6 to be described later, it may be used lithium metal carbonate alone.
  • the lithium compound contained in the positive electrode precursor may be one type, may contain two or more types of lithium compounds, and may be used as a mixture of a lithium compound and another alkali metal carbonate.
  • the positive electrode precursor of the present embodiment only needs to contain at least one lithium compound, and in addition to the lithium compound, M in the following formula is one or more selected from Na, K, Rb, and Cs.
  • Oxides such as M 2 O, Hydroxides such as MOH, Halide such as MF or MCl M 2 (CO 2 ) 2 borate such as 2
  • One or more carboxylic acid salts such as RCOOM (wherein R is H, an alkyl group or an aryl group) may be contained.
  • metal halides, alkaline earth metal oxalate and alkaline earth metal carboxylate may be contained.
  • the positive electrode precursor such that the mass ratio of the lithium compound contained in the positive electrode precursor is 10% by mass to 50% by mass. If the mass ratio of the lithium compound is 10% by mass or more, a sufficient amount of lithium ions can be pre-doped to the negative electrode, and the capacity of the non-aqueous lithium-type storage element is increased. If the mass ratio of the lithium compound is 50% by mass or less, the electron conduction in the positive electrode precursor can be improved, so that the lithium compound can be decomposed efficiently.
  • the positive electrode precursor contains the above two or more alkali metal compounds or alkaline earth metal compounds in addition to the lithium metal compound, the total amount of the alkali metal compound and the alkaline earth metal compound is one side of the positive electrode precursor
  • the positive electrode precursor is preferably prepared so as to be contained in the positive electrode active material layer at a ratio of 1% by mass to 50% by mass.
  • the lithium compound is preferably in the form of particles.
  • the average particle diameter of the lithium compound contained in the positive electrode precursor is preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the upper limit of the average particle size of the lithium compound contained in the positive electrode precursor is more preferably 50 ⁇ m or less, still more preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • the lower limit of the average particle size of the lithium compound contained in the positive electrode precursor is more preferably 0.3 ⁇ m or more, still more preferably 0.5 ⁇ m or more.
  • the average particle size of the lithium compound is 0.1 ⁇ m or more, the pores remaining after the oxidation reaction of the lithium compound in the positive electrode have a volume sufficient to hold the electrolyte, so the high load charge / discharge characteristics are obtained. improves. If the average particle size of the lithium compound is 100 ⁇ m or less, the surface area of the lithium compound does not become excessively small, so the rate of the oxidation reaction of the lithium compound can be secured.
  • the upper limit and the lower limit of the range of the average particle size of the lithium compound can be arbitrarily combined.
  • any wet and / or dry grinder such as a ball mill, bead mill, ring mill, jet mill, rod mill, high pressure homogenizer, etc. can be used.
  • the lithium compound in which a lithium compound is dispersed in a dispersion medium and pulverized using the dispersion liquid, the lithium compound can be powdered by volatilizing the dispersion medium with a heating mixer or the like, if necessary, after pulverization.
  • a CVD method for the nuclear growth of lithium compounds, a CVD method; a PVD method using thermal plasma, laser absorption or the like; liquid phase processes such as precipitation, coprecipitation, precipitation, or precipitation can be used.
  • the positive electrode contains, when the average particle diameter of the lithium compound other than the positive electrode active material and X 1, is preferably a 0.1 ⁇ m ⁇ X 1 ⁇ 10.0 ⁇ m. A further preferable range of the average particle size of the lithium compound is 0.5 ⁇ m ⁇ X 1 ⁇ 5.0 ⁇ m.
  • X 1 is 0.1 ⁇ m or more, high load charge / discharge cycle characteristics are improved by adsorbing fluorine ions generated in high load charge / discharge cycles.
  • X 1 is 10.0 ⁇ m or less, the reaction area with the fluorine ions generated in the high load charge-discharge cycle is increased, so that the fluorine ions can be efficiently adsorbed.
  • the lithium compound other than the positive electrode active material contained in the positive electrode is preferably 1% by mass or more and 50% by mass or less, based on the total mass of the positive electrode active material layer in the positive electrode, and is 2.5% by mass or more and 25% by mass It is more preferable that When the amount of lithium compound is 1% by mass or more, lithium carbonate suppresses the decomposition reaction of the electrolyte solvent on the positive electrode under high temperature environment, the high temperature durability is improved, and the effect thereof is 2.5% by mass or more Becomes noticeable.
  • the amount of lithium compound is 50% by mass or less, the electron conductivity between the positive electrode active materials is relatively small to be inhibited by the lithium compound, so that high input / output characteristics are exhibited, and 35% by mass or less Particularly preferred from the viewpoint of input / output characteristics.
  • the combination of the lower limit and the upper limit can be arbitrary.
  • the identification method of the lithium compound contained in a positive electrode is not specifically limited, For example, it can identify by the following method.
  • identification is preferably made by combining a plurality of analysis methods described below.
  • SEM-EDX, Raman, or XPS described below disassemble the non-aqueous lithium-type storage element in an argon box, take out the positive electrode, and perform the measurement after cleaning the electrolyte attached to the positive electrode surface. Is preferred.
  • carbonate solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like can be suitably used.
  • the positive electrode is dipped in a diethyl carbonate solvent 50 to 100 times the weight of the positive electrode for 10 minutes or more, and then the solvent is changed and the positive electrode is dipped again. Thereafter, the positive electrode is taken out of diethyl carbonate and vacuum dried, and analysis of SEM-EDX, Raman spectroscopy and XPS is performed.
  • the conditions for vacuum drying are: temperature: 0 to 200 ° C., pressure: 0 to 20 kPa, and time: 1 to 40 hours, under which the residual amount of diethyl carbonate in the positive electrode is 1% by mass or less.
  • the residual amount of diethyl carbonate can be determined on the basis of a calibration curve prepared in advance by measuring the GC / MS of water after washing with distilled water to be described later and adjusting the liquid amount. In ion chromatography to be described later, anions can be identified by analyzing water after washing the positive electrode with distilled water.
  • lithium compound When a lithium compound can not be identified by an analysis method, solid-state 7 Li-NMR, XRD (X-ray diffraction), TOF-SIMS (time-of-flight secondary ion mass spectrometry), AES (Auger electron) as other analysis methods
  • a lithium compound can also be identified by using spectroscopy), TPD / MS (heating generated gas mass spectrometry), DSC (differential scanning calorimetry), and the like.
  • the lithium compound and the positive electrode active material can be identified by oxygen mapping using a SEM-EDX image of the surface of the positive electrode measured at an observation magnification of 1000 to 4000.
  • SEM-EDX image As an example of measurement of a SEM-EDX image, measurement can be made with an acceleration voltage of 10 kV, an emission current of 1 ⁇ A, a measurement pixel number of 256 ⁇ 256 pixels, and an integration number of 50 times.
  • gold, platinum, osmium or the like can also be surface-treated by a method such as vacuum deposition or sputtering.
  • the brightness and contrast it is preferable to adjust the brightness and contrast so that the brightness does not have pixels reaching the maximum brightness, and the average value of the brightness falls within the range of 40% to 60%.
  • binarizing is performed on the basis of the average value of brightness with respect to the obtained oxygen mapping, particles containing 50% or more of a bright part in area are regarded as lithium compounds.
  • the lithium carbonate and the positive electrode active material can be identified by Raman imaging of carbonate ions on the surface of the positive electrode precursor measured at an observation magnification of 1000 to 4000.
  • excitation light is 532 nm
  • excitation light intensity is 1%
  • long operation of objective lens is 50 times
  • diffraction grating is 1800 gr / mm
  • mapping method is point scanning (slit 65 mm, binning 5 pix), 1 mm step, It is possible to measure the exposure time per one point for 3 seconds, the integration number once, and the condition with the noise filter.
  • the bonding state of the lithium compound can be determined by analyzing the electronic state by XPS.
  • X-ray source is monochromized AlK ⁇
  • X-ray beam diameter is 100 ⁇ m ⁇ (25 W, 15 kV)
  • pass energy is narrow scan: 58.70 eV
  • charge neutralization is available
  • sweep number is narrow scan: 10 times
  • the energy step can be measured under the conditions of narrow scan: 0.25 eV (carbon, oxygen) 20 times (fluorine) 30 times (phosphorus) 40 times (lithium element) 50 times (silicon). It is preferable to clean the surface of the positive electrode by sputtering before the measurement of XPS.
  • the surface of the positive electrode can be cleaned under the conditions of an accelerating voltage of 1.0 kV and a range of 2 mm ⁇ 2 mm for 1 minute (1.25 nm / min in terms of SiO 2 ).
  • lithium compound can not be identified by the above method, solid 7 Li-NMR, XRD (X-ray diffraction), TOF-SIMS (time-of-flight secondary ion mass spectrometry), AES (Auger electron spectroscopy) can be used as other analytical methods
  • the lithium compound can also be identified by using TPD / MS (heating generated gas mass spectrometry), DSC (differential scanning calorimetry) or the like.
  • the method of quantifying the lithium compound contained in the positive electrode is described below.
  • the positive electrode is washed with an organic solvent and then washed with distilled water, and the lithium compound can be quantified from the change in mass of the positive electrode before and after washing with distilled water.
  • Area of measurement for the positive electrode is not particularly limited but is preferably from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less, more preferably 25 cm 2 or more 150 cm 2 or less. If the area is 5 cm 2 or more, the repeatability of the measurement is secured. If the area is 200 cm 2 or less, the sample handling is excellent.
  • the organic solvent is not particularly limited as long as it can remove the non-aqueous electrolytic solution decomposition product deposited on the positive electrode surface for washing with an organic solvent, but a lithium compound can be used by using an organic solvent having a lithium compound solubility of 2% or less It is preferable because the elution of For example, polar solvents such as methanol and acetone are suitably used.
  • the positive electrode is sufficiently immersed in a methanol solution 50 to 100 times the mass of the positive electrode for 3 days or more. At this time, it is preferable to take measures such as covering the container so that methanol does not evaporate. Thereafter, the positive electrode is taken out of methanol and dried under vacuum (temperature: 100 to 200 ° C., pressure: 0 to 10 kPa, time: 5 to 20 hours) such that methanol remains in the positive electrode at 1% by mass or less. The remaining amount of water can be determined by measuring GC / MS of water after washing with distilled water as described later, and quantitating based on a previously prepared calibration curve.) The mass of the positive electrode at that time is M 0 (g) I assume.
  • the positive electrode is sufficiently immersed in distilled water 100 times (100 M 0 (g)) of the mass of the positive electrode for 3 days or more. At this time, it is preferable to take measures such as covering the container so that the distilled water does not evaporate. After immersing for 3 days or more, take out the positive electrode from distilled water (if the above-mentioned ion chromatography is measured, adjust the amount of liquid so that the amount of distilled water is 100 M 0 (g)), as described above. Vacuum dry as for the methanol wash.
  • the mass of the positive electrode at this time is M 1 (g)
  • the lithium compound is filled in the gaps formed between the positive electrode active materials, so that the energy density can be increased while securing the electron conductivity between the positive electrode active materials.
  • the method of measuring X 1 and Y 1 is not particularly limited, but can be calculated from the SEM image of the positive electrode cross section and the SEM-EDX image.
  • As a method of forming the positive electrode cross section it is possible to use BIB processing in which an Ar beam is irradiated from the upper part of the positive electrode and a smooth cross section is produced along the end of the shielding plate installed right above the sample.
  • the distribution of carbonate ions can also be determined by measuring Raman imaging of the cross section of the positive electrode.
  • the lithium compound and the positive electrode active material can be identified by oxygen mapping using a SEM-EDX image of the positive electrode cross section measured at an observation magnification of 1000 to 4000.
  • oxygen mapping it is preferable to adjust the brightness and contrast so that the brightness does not have pixels reaching the maximum brightness, and the average value of the brightness falls within the range of 40% to 60%.
  • a particle including an area of 50% or more of a bright part binarized based on the average value of brightness is defined as a lithium compound.
  • X 1 and Y 1 can be determined by image analysis of an image obtained from the positive electrode cross section SEM-EDX measured in the same field of view as the positive electrode cross section SEM.
  • the particles X of the lithium compound identified in the SEM image of the positive electrode cross section and the particles other than the particles are regarded as particles Y of the positive electrode active material, and the cross section S for all particles X and Y observed in the cross sectional SEM image
  • X 0 (Y 0 ) ⁇ [4 / 3 ⁇ ⁇ (d / 2) 3 ⁇ d] / ⁇ [4 / 3 ⁇ ⁇ (d / 2) 3 ]
  • the field of view of the positive electrode cross section is changed, and measurement is made at five or more locations, and the average value of each of X 0 and Y 0 is taken as the average particle diameter X 1 and Y 1 .
  • the positive electrode active material layer in the present embodiment may optionally contain, in addition to the positive electrode active material and the lithium compound, optional components such as a conductive filler, a binder, and a dispersion stabilizer.
  • the conductive filler is not particularly limited, and, for example, acetylene black, ketjen black, vapor grown carbon fiber, graphite, carbon nanotube, a mixture thereof, and the like can be used.
  • the amount of the conductive filler used is preferably 0 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the amount of the conductive filler used is more than 30 parts by mass, the content ratio of the positive electrode active material in the positive electrode active material layer decreases, and the energy density per volume of the positive electrode active material layer is unfavorably reduced.
  • the binding agent is not particularly limited.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • polyimide latex
  • styrene-butadiene copolymer fluororubber
  • acrylic copolymer etc.
  • the amount of the binder used is preferably 1 to 30 parts by mass, more preferably 3 to 27 parts by mass, and still more preferably 5 to 25 parts by mass with respect to 100 parts by mass of the positive electrode active material. Part or less. When the amount of the binder used is 1 part by mass or more, sufficient electrode strength is developed. On the other hand, when the amount of the binder used is 30 parts by mass or less, high input / output characteristics are exhibited without inhibiting the entrance / exit and diffusion of ions to the positive electrode active material.
  • the dispersion stabilizer is not particularly limited, and for example, PVP (polyvinyl pyrrolidone), PVA (polyvinyl alcohol), a cellulose derivative and the like can be used.
  • the use amount of the dispersion stabilizer is preferably 0 parts by mass or 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When the use amount of the dispersion stabilizer is 10 parts by mass or less, high input / output characteristics are exhibited without inhibiting the movement of ions into and out of the positive electrode active material and diffusion.
  • the material constituting the positive electrode current collector in the present embodiment is not particularly limited as long as it is a material having high electron conductivity and which does not cause deterioration due to elution to the electrolytic solution and reaction with the electrolyte or ions. Foil is preferred.
  • An aluminum foil is more preferable as the positive electrode current collector in the non-aqueous lithium-type storage element of the present embodiment.
  • the metal foil may be a normal metal foil having no irregularities or through holes, or may be a metal foil having irregularities subjected to embossing, chemical etching, electrolytic deposition, blasting, etc., expanded metal, punching metal It may be a metal foil having through holes such as an etching foil.
  • the positive electrode current collector is preferably non-porous from the viewpoint of easiness of electrode preparation and high electron conductivity.
  • the thickness of the positive electrode current collector is not particularly limited as long as the shape and strength of the positive electrode can be sufficiently maintained, but preferably 1 to 100 ⁇ m, for example.
  • the positive electrode precursor to be the positive electrode of the non-aqueous lithium-type storage element can be manufactured by a known manufacturing technique of an electrode in a lithium ion battery, an electric double layer capacitor or the like.
  • a positive electrode active material, a lithium compound, and other optional components used as needed are dispersed or dissolved in water or an organic solvent to prepare a slurry-like coating liquid, and this coating liquid is collected as a positive electrode
  • the positive electrode precursor can be obtained by coating on one side or both sides on the current collector to form a coating and drying it. Furthermore, the obtained positive electrode precursor may be pressed to adjust the film thickness or bulk density of the positive electrode active material layer.
  • the coating liquid of the positive electrode precursor is obtained by dry blending a part or all of various material powders containing a positive electrode active material, and then water or an organic solvent, and / or a binder or a dispersion stabilizer dissolved or dispersed therein. It may be prepared by adding a liquid or slurry substance. In addition, even if a powder of various materials including a positive electrode active material is added to a liquid or slurry-like substance in which a binder or dispersion stabilizer is dissolved or dispersed in water or an organic solvent, a coating liquid may be prepared. Good.
  • the positive electrode active material and the lithium compound, and, if necessary, the conductive filler are premixed to make the lithium filler having a low conductivity be coated with the conductive filler. This may facilitate the decomposition of the lithium compound in the positive electrode precursor in the lithium doping step described later.
  • the coating liquid may be alkaline by the addition of the lithium compound, and a pH adjuster may be added as necessary.
  • the preparation of the coating solution for the positive electrode precursor is not particularly limited, but it is preferable to use a disperser such as a homodisper, a multiaxial disperser, a planetary mixer, or a thin film swirling type high speed mixer. it can.
  • a disperser such as a homodisper, a multiaxial disperser, a planetary mixer, or a thin film swirling type high speed mixer. it can.
  • the peripheral speed is 50 m / s or less, because various materials are not broken by heat or shear force caused by dispersion, and reaggregation does not occur.
  • the particle size measured by the particle gauge be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the particle size is more preferably 80 ⁇ m or less, and still more preferably 50 ⁇ m or less. If the particle size is less than 0.1 ⁇ m, the size is equal to or less than the particle diameter of various material powders including the positive electrode active material, which is not preferable because the material is crushed at the time of preparation of the coating liquid.
  • the coating can be stably performed without clogging at the time of discharge of the coating liquid, generation of streaks of the coating film, and the like.
  • the viscosity ( ⁇ b) of the coating liquid of the positive electrode precursor is preferably 1,000 mPa ⁇ s or more and 20,000 mPa ⁇ s or less, more preferably 1,500 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, further preferably 1, It is 700 mPa ⁇ s or more and 5,000 mPa ⁇ s or less. If the viscosity ( ⁇ b) is 1,000 mPa ⁇ s or more, dripping during coating film formation can be suppressed, and the coating film width and film thickness can be favorably controlled.
  • the viscosity ( ⁇ b) is 20,000 mPa ⁇ s or less
  • pressure loss in the flow path of the coating liquid when using the coating machine is small, and stable coating can be performed, and the desired coating thickness or less It can control.
  • the TI value (thixotropy index value) of the coating liquid is preferably 1.1 or more, more preferably 1.2 or more, and still more preferably 1.5 or more. If the TI value is 1.1 or more, the coating film width and the film thickness can be controlled well.
  • the formation of the coating film of the positive electrode precursor is not particularly limited, it is preferable to use a coater such as a die coater, a comma coater, a knife coater, or a gravure coater.
  • the coating film may be formed by single-layer coating, or may be formed by multilayer coating. In the case of multilayer coating, the composition of the coating liquid may be adjusted so that the content of the lithium compound in each coating layer is different.
  • the coating speed is preferably 0.1 m / min to 100 m / min, more preferably 0.5 m / min to 70 m / min, and still more preferably 1 m / min to 50 m / min. If the coating speed is 0.1 m / min or more, stable coating can be performed. On the other hand, if the coating speed is 100 m / min or less, sufficient coating accuracy can be ensured.
  • the drying of the coating film of the positive electrode precursor is not particularly limited, but a drying method such as hot air drying or infrared (IR) drying can be suitably used.
  • the coating may be dried at a single temperature, or may be dried by changing the temperature in multiple stages. Also, the coating may be dried by combining a plurality of drying methods.
  • the drying temperature is preferably 25 ° C. or more and 200 ° C. or less, more preferably 40 ° C. or more and 180 ° C. or less, and still more preferably 50 ° C. or more and 160 ° C. or less. If the drying temperature is 25 ° C. or more, the solvent in the coating can be sufficiently volatilized. On the other hand, if the drying temperature is 200 ° C. or less, it is possible to suppress uneven distribution of the binder due to cracking or migration of the coating film due to rapid evaporation of the solvent and oxidation of the positive electrode current collector or the positive electrode active material layer.
  • the press for the positive electrode precursor is not particularly limited, but preferably a press such as a hydraulic press or a vacuum press can be used.
  • the film thickness, bulk density, and electrode strength of the positive electrode active material layer can be adjusted by the press pressure, the gap, and the surface temperature of the press portion described later.
  • the pressing pressure is preferably 0.5 kN / cm to 20 kN / cm, more preferably 1 kN / cm to 10 kN / cm, and still more preferably 2 kN / cm to 7 kN / cm. If the pressing pressure is 0.5 kN / cm or more, the electrode strength can be sufficiently high.
  • the press pressure is 20 kN / cm or less, no deflection or wrinkles occur in the positive electrode precursor, and the thickness and bulk density of the desired positive electrode active material layer can be adjusted.
  • the gap between the press rolls can be set to any value according to the thickness of the positive electrode precursor after drying so as to obtain the desired thickness and bulk density of the positive electrode active material layer.
  • the pressing speed can be set to any speed that does not cause deflection or wrinkles in the positive electrode precursor.
  • the surface temperature of the press part may be room temperature, and the press part may be heated if necessary. The lower limit of the surface temperature of the press part in heating is preferably 60 ° C. or more, more preferably 45 ° C.
  • the upper limit of the surface temperature of the press part in heating is preferably the melting point of the binder to be used plus 50 ° C. or less, more preferably the melting point plus 30 ° C. or less, still more preferably the melting point plus 20 ° C. or less.
  • the surface of the press part is preferably heated to 90 ° C. or more and 200 ° C. or less, more preferably 105 ° C. or more and 180 ° C. or less
  • the surface of the press portion is heated to 120 ° C.
  • the surface of the press part is preferably heated to 40 ° C. or more and 150 ° C. or less, more preferably 55 ° C. or more and 130 ° C. or less It is heating the surface of a press part to 70 ° C or more and 120 ° C or less still more preferably.
  • the melting point of the binding agent can be determined at the endothermic peak position of DSC (Differential Scanning Calorimetry, differential scanning calorimetry). For example, 10 mg of the sample resin is set in the measurement cell using a differential scanning calorimeter “DSC 7” manufactured by Perkin Elmer, and the temperature is increased from 30 ° C. to 10 ° C./min up to 250 ° C. in a nitrogen gas atmosphere. The temperature is raised, and the endothermic peak temperature in the temperature raising process becomes the melting point. Moreover, you may implement a press in multiple times, changing conditions of the press pressure, a clearance gap, speed, and the surface temperature of a press part.
  • DSC Different Scanning Calorimetry, differential scanning calorimetry
  • the weight per unit area of the positive electrode active material layer is preferably 20 g ⁇ m ⁇ 2 or more and 150 g ⁇ m ⁇ 2 or less per side of the positive electrode current collector, and more preferably 25 g ⁇ m ⁇ 2 or more and 120 g ⁇ m ⁇ 2 or less per side. It is more preferably 30 g ⁇ m ⁇ 2 or more and 80 g ⁇ m ⁇ 2 or less.
  • the basis weight is 20 g ⁇ m ⁇ 2 or more, sufficient charge and discharge capacity can be expressed.
  • this basis weight is 150 g ⁇ m ⁇ 2 or less, the ion diffusion resistance in the electrode can be maintained low. Therefore, sufficient output characteristics can be obtained, and the cell volume can be reduced, whereby the energy density can be increased.
  • the upper limit and the lower limit of the weight range of the positive electrode active material layer can be arbitrarily combined.
  • the thickness of the positive electrode active material layer is preferably 20 ⁇ m to 200 ⁇ m per side of the positive electrode current collector, more preferably 25 ⁇ m to 140 ⁇ m per side, and still more preferably 30 ⁇ m to 100 ⁇ m. If this film thickness is 20 micrometers or more, sufficient charge / discharge capacity can be expressed. On the other hand, if this film thickness is 200 ⁇ m or less, the ion diffusion resistance in the electrode can be maintained low. Therefore, sufficient output characteristics can be obtained, and the cell volume can be reduced, whereby the energy density can be increased.
  • the upper limit and the lower limit of the range of the film thickness of the positive electrode active material layer can be arbitrarily combined. Note that the film thickness of the positive electrode active material layer in the case where the current collector has through holes or irregularities refers to the average value of the film thickness per surface of the portion having no through holes or irregularities of the current collector.
  • the bulk density of the positive electrode active material layer in the positive electrode after the later-described lithium doping step is preferably 0.25 g / cm 3 or more, more preferably in the range of 0.30 g / cm 3 or more and 1.3 g / cm 3 or less It is. If the bulk density of the positive electrode active material layer is 0.25 g / cm 3 or more, high energy density can be exhibited, and downsizing of the storage element can be achieved. On the other hand, if this bulk density is 1.3 g / cm 3 or less, diffusion of the electrolyte solution in the pores in the positive electrode active material layer is sufficient, and high output characteristics can be obtained.
  • the determination method of these values is particularly Although not limited, for example, it can be quantified by the following method.
  • Area of measurement for the positive electrode is not particularly limited but is preferably from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less, more preferably 25 cm 2 or more 150 cm 2 or less. If the area is 5 cm 2 or more, the repeatability of the measurement is secured. If the area is 200 cm 2 or less, the sample handling is excellent.
  • the non-aqueous lithium type storage element is disassembled in an Ar box controlled at a dew point of ⁇ 90 ° C. or less and an oxygen concentration of 1 ppm or less installed in a room at 23 ° C. to take out the positive electrode.
  • the taken out positive electrode is dipped and washed with dimethyl carbonate (DMC), and then vacuum dried in a side box under non-exposed to air.
  • the weight (M 0 ) is measured for the positive electrode obtained after vacuum drying.
  • the carbon material and the lithium transition metal oxide are eluted in water by immersing in 100 to 150 times the weight of the positive electrode in distilled water for 3 days or more.
  • the container is capped so that the distilled water does not volatilize during immersion.
  • the positive electrode is taken out of distilled water and vacuum dried as described above.
  • the weight (M 1 ) of the obtained positive electrode is measured.
  • the positive electrode active material layer coated on one side or both sides of the positive electrode current collector is removed using a spatula, a brush, a brush or the like.
  • the weight (M 2 ) of the remaining positive electrode current collector is measured, and A 3 is calculated by the following equation (1).
  • a 3 (M 0 ⁇ M 1 ) / (M 0 ⁇ M 2 ) ⁇ 100 (1) Subsequently, in order to calculate A 1 and A 2 , a positive electrode active material obtained by removing the above-mentioned alkali metal compound The TG curve of the layer is measured under the following conditions. Sample pan: platinum gas: in the air atmosphere or compressed air temperature rising rate: 0.5 ° C./min or less temperature range: 25 ° C. to 500 ° C. or more Melting point of lithium transition metal oxide minus 50 ° C. or less The mass at 25 ° C.
  • the mass at the first temperature at which the mass reduction rate becomes M 3 ⁇ 0.01 / min or less at a temperature of 500 ° C. or more is M 4 .
  • the carbon materials are all oxidized and burned by heating at a temperature of 500 ° C. or less in an oxygen-containing atmosphere (for example, an air atmosphere).
  • an oxygen-containing atmosphere for example, an air atmosphere.
  • lithium transition metal oxides do not decrease in mass up to the temperature of the melting point minus 50 ° C. of the lithium transition metal oxides even in an oxygen-containing atmosphere. Therefore, the content A 2 of the lithium transition metal oxide in the positive electrode active material layer can be calculated by the following equation (2).
  • a 2 (M 4 / M 3 ) ⁇ ⁇ 1- (M 0 ⁇ M 1 ) / (M 0 ⁇ M 2 ) ⁇ ⁇ 100
  • the content A 1 of the carbon material in the positive electrode active material layer Can be calculated by the following equation (3).
  • a 1 ⁇ (M 3 ⁇ M 4 ) / M 3 ⁇ ⁇ ⁇ 1 ⁇ (M 0 ⁇ M 1 ) / (M 0 ⁇ M 2 ) ⁇ ⁇ 100
  • the positive electrode active material left after the heat treatment The elemental ratio of the lithium transition metal oxide can be identified by analyzing by ICP measurement, XRD measurement, XPS measurement, XAFS measurement, or a combination thereof.
  • the non-aqueous lithium-type storage element includes the component A having a signal in the range of -2 to 2.5 ppm and -6 to -2.5 ppm in the solid 7 Li-NMR spectrum of the positive electrode active material layer.
  • the signal area ratio a / b is 1.5 to 20.0, where the signal areas of the components A and B are a and b, respectively.
  • the amount ratio of lithium contained in the positive electrode active material layer can be calculated by the following method using a solid 7 Li-NMR spectrum.
  • a commercially available apparatus can be used as a solid 7 Li-NMR measurement apparatus.
  • the rotation number of magic angle spinning is set to 14.5 kHz, and the irradiation pulse width is measured by a single pulse method with a 45 ° pulse. At the time of measurement, it is set to take enough repetition waiting time between measurements.
  • a 1 mol / L aqueous solution of lithium chloride is used as a shift reference, and the shift position separately measured as an external standard is 0 ppm.
  • Component A having the signal at -2 ppm to 2.5 ppm and The signal area ratio a / b can be calculated when the signal areas with component B at 6 to -3 ppm are a and b, respectively.
  • the peak top of signal A is assumed to be -2 ppm to 2.5 ppm and the peak top of signal B is assumed to be -6 ppm to -2.5 ppm, and the area of both components is determined by waveform separation. Find the ratio.
  • the waveform separation is calculated by the least squares method by fitting with a ratio of 25% of a Gaussian curve and 75% of a Lorentz curve and a half width within the range of 300 Hz to 1000 Hz.
  • the area ratio a / b of the signal area a of the component A to the signal area b of the component B is 1.5 to 20.0, preferably 2.5 to 15.0, and more preferably Is 3.5 to 10.0.
  • the area ratio a / b is 1.5 or more, a part of the active points interacting with Li ions on the surface of the activated carbon react with the electrolytic solution, and the interface between the positive electrode active material layer and the electrolytic solution and the positive electrode active material Since the diffusion of Li ions inside the layer is not impeded, the output of the storage element can be increased.
  • the active point that interacts with Li ions on the surface of the activated carbon is increased, so that the energy storage element can have high energy density.
  • the principle of achieving both high energy density and high power by adjusting the area ratio a / b within the range of 1.5 to 20.0 is not clear, it is presumed as follows. .
  • an active point that reversibly interacts with Li ions is formed on the surface of activated carbon contained in the positive electrode active material of the non-aqueous lithium-type storage element, and component B is attributed to the active point. Conceivable.
  • the active site is a cell using a positive electrode precursor containing a Li compound, and is obtained by activating an active site precursor formed through a lithium doping process described later by charge and discharge treatment.
  • the active point allows the activated carbon in the positive electrode active material to store electricity more than the capacity of the originally active material, so that the battery capacity can be improved.
  • active sites that reversibly interact with Li ions have relatively low interaction energy with Li ions, and therefore diffusion of Li ions is not inhibited even in an environment at a temperature lower than normal temperature. It is possible to maintain high output.
  • the active site precursor is formed when the lithium compound in the positive electrode precursor undergoes an oxidative decomposition reaction in the lithium doping step.
  • the active site precursor is not formed, and the active site does not appear even if charge and discharge treatment is performed after the lithium doping process.
  • the oxidative decomposition reaction does not proceed sufficiently, for example, when the active material ratio of the positive electrode active material layer or the negative electrode active material layer and the basis weight ratio of the positive electrode active material layer to the negative electrode active material layer are largely out of the preferable range, There are cases where the charge and discharge treatment process in the lithium doping process is inappropriate.
  • the negative electrode has a negative electrode current collector and a negative electrode active material layer present on one side or both sides thereof.
  • the negative electrode active material layer contains a negative electrode active material capable of inserting and extracting lithium ions.
  • the negative electrode active material layer may contain optional components such as a conductive filler, a binder, and a dispersion stabilizer, as necessary, in addition to the negative electrode active material.
  • nonporous negative electrode current collector means that lithium ions pass through the negative electrode current collector at least in the coated region of the negative electrode active material layer and lithium ions are uniform on the front and back of the negative electrode.
  • the negative electrode current collector does not have any pores.
  • the negative electrode current collector having an extremely small diameter or a very small amount of holes or the uncoated region of the negative electrode active material layer is within the range where the effects of the present invention Neither does it exclude the negative electrode current collector which it has. Further, in the present embodiment, at least a region of the negative electrode current collector to which the negative electrode active material layer is applied is nonporous, and an excess portion of the negative electrode current collector to which the negative electrode active material is not applied is The holes may or may not be present.
  • the negative electrode active material a material capable of storing and releasing lithium ions can be used. It is preferable to use at least two types of negative electrode active materials from the viewpoint of achieving both the output and the capacity of the storage element and maintaining them in a wide temperature range.
  • Specific examples of the negative electrode active material include carbon materials, titanium oxides, silicon, silicon oxides, silicon alloys, silicon compounds, tin and tin compounds.
  • the content of the carbon material to the total amount of the negative electrode active material is 50% by mass or more, and more preferably 70% by mass or more.
  • the content of the carbon material may be 100% by mass, it is preferably, for example, 90% by mass or less, and more preferably 80% by mass or less, from the viewpoint of obtaining the effect by the combined use of other materials. .
  • the negative electrode active material is preferably doped with lithium ions.
  • the lithium ion doped into the negative electrode active material mainly includes three forms.
  • a first mode is lithium ions to be stored in advance as a design value in a negative electrode active material before manufacturing a non-aqueous lithium-type storage element.
  • a second embodiment is lithium ions stored in a negative electrode active material at the time of manufacturing and shipping a non-aqueous lithium type storage element.
  • a third embodiment is lithium ions stored in a negative electrode active material after using a non-aqueous lithium-type storage element as a device.
  • the above-mentioned carbon materials include, for example, non-graphitizable carbon materials; graphitizable carbon materials; carbon black; carbon nanoparticles; activated carbon; artificial graphite; natural graphite; graphitized mesophase carbon small spheres; Etc .; petroleum based pitch, coal based pitch, mesocarbon microbeads, coke, carbonaceous material obtained by heat treating carbonaceous material precursor such as synthetic resin (eg phenol resin etc.); The thermal decomposition products of furyl alcohol resin or novolac resin; fullerene; carbon nanophone; and composite carbon materials of these can be mentioned.
  • synthetic resin eg phenol resin etc.
  • heat treatment is performed in a state in which one or more of the above-mentioned carbon materials (hereinafter also referred to as a substrate) and the above-mentioned carbonaceous material precursor coexist.
  • a composite carbon material in which a carbonaceous material derived from a quality material precursor is composited is preferable.
  • the carbonaceous material precursor is not particularly limited as long as it becomes the carbonaceous material by heat treatment, but petroleum-based pitch or coal-based pitch is particularly preferable.
  • the base material and the carbonaceous material precursor may be mixed at a temperature higher than the melting point of the carbonaceous material precursor.
  • the heat treatment temperature may be a temperature at which the component generated by volatilization or thermal decomposition of the carbonaceous material precursor to be used becomes the carbonaceous material, preferably 400 ° C. or more and 2500 ° C. or less, more preferably 500 ° C.
  • the temperature is higher than or equal to 2000 ° C., more preferably higher than or equal to 550 ° C. and lower than or equal to 1500 ° C.
  • the atmosphere in which the heat treatment is performed is not particularly limited, a non-oxidizing atmosphere is preferable.
  • the negative electrode active material layer preferably contains at least two types of negative electrode active materials made of a carbon material.
  • the above-mentioned carbon materials include, for example, non-graphitizable carbon materials; graphitizable carbon materials; carbon black; carbon nanoparticles; activated carbon; artificial graphite; natural graphite; graphitized mesophase carbon small spheres; Etc .; petroleum-based pitch, coal-based pitch, mesocarbon microbeads, coke, carbonaceous material obtained by heat-treating carbon precursor such as synthetic resin (eg phenol resin etc.); furfuryl alcohol The thermal decomposition products of resins or novolak resins; fullerenes; carbon nanophones; and composite carbon materials of these can be mentioned.
  • the average particle diameter of at least one type of negative electrode active material is preferably 1 ⁇ m to 15 ⁇ m, and more preferably 1.5 ⁇ m to 10 ⁇ m.
  • the negative electrode active material layer contains a negative electrode active material having an average particle diameter of 1 ⁇ m or more, the electrode strength of the negative electrode can be increased and the high load charge / discharge characteristics of the storage element can be improved. Since the negative electrode active material layer can increase the bulk density of the negative electrode by containing the negative electrode active material having an average particle diameter of 15 ⁇ m or less, the energy density of the storage element can be increased.
  • the negative electrode active material layer includes a negative electrode active material A having a specific surface area of 0.5 m 2 / g or more and 35 m 2 / g or less calculated by BET method based on the weight of the negative electrode active material; preferably includes a negative electrode active material B the calculated specific surface area is less than 50 m 2 / g or more 1,500 m 2 / g by.
  • the ratio of the negative electrode active material B is preferably 1.0% by mass to 45.0% by mass, and more preferably 2.0% by mass or more, based on the total amount of the negative electrode active material contained in the negative electrode active material layer.
  • the content is 35.0% by mass, more preferably 1.0% by mass to 20.0% by mass.
  • the ratio of the negative electrode active material B is 1.0% by mass or more, the Li ion diffusion rate in the negative electrode active material layer can be increased, and the output of the storage element can be increased. If the ratio of the negative electrode active material B is 45.0% by mass or less, the Li doping amount per unit area can be increased, so the negative electrode potential can be sufficiently lowered in the lithium doping step described later. Thus, the energy density of the storage element can be increased.
  • the lithium ion doping amount of the negative electrode active material A is preferably 50 mAh / g or more and 520 mAh / g or less, and more preferably 150 mAh / g or more and 460 mAh / g or less.
  • the lithium ion doping amount of the negative electrode active material B is preferably 530 mAh / g or more and 2,500 mAh / g or less, and more preferably 600 mAh / g or more and 2,000 mAh / g or less. If the lithium ion doping amount of the negative electrode active materials A and B is within the above range, the negative electrode potential can be sufficiently lowered in the lithium doping step described later even when two kinds of carbon materials are mixed. The energy density of the storage element can be increased.
  • the negative electrode active material A it is possible to use a composite carbon material A or the like provided with at least one selected from the group consisting of graphitic materials, soft carbon and hard carbon, or at least one of these as a substrate.
  • the graphite-based material used for the negative electrode active material A is not particularly limited, and for example, artificial graphite, natural graphite, low crystalline graphite, graphitized mesophase carbon small spheres, graphite whiskers, high specific surface area graphite, etc. are used be able to.
  • the average particle diameter of the graphite-based material is preferably 1 ⁇ m to 10 ⁇ m, and more preferably 2 ⁇ m to 8 ⁇ m.
  • the carbonaceous material precursor used for the negative electrode active material A is an organic material that can be made to be a composite of a carbonaceous material and a graphitic material by heat treatment, and can be dissolved in a solid, a liquid, or a solvent.
  • the carbonaceous material precursor is not particularly limited as long as it can be complexed with the graphite-based material by heat treatment, and examples thereof include pitch, mesocarbon microbeads, coke, synthetic resin (such as phenol resin), and the like. be able to.
  • the carbonaceous material precursor includes, for example, distillation residue of crude oil, fluid catalytic cracking residue (decant oil etc.), bottom oil derived from thermal cracker, ethylene tar obtained in naphtha cracking and the like.
  • the heat treatment temperature may be a temperature at which the component generated by volatilization or thermal decomposition of the carbonaceous material precursor to be used becomes the carbonaceous material, preferably 400 ° C. or more and 2,500 ° C.
  • the temperature is 500 ° C. or more and 2,000 ° C. or less, more preferably 550 ° C. or more and 1,500 ° C. or less.
  • the atmosphere in which the heat treatment is performed is not particularly limited, a non-oxidizing atmosphere is preferable.
  • the negative electrode active material B at least one selected from the group consisting of activated carbon, carbon black, template porous carbon, high specific surface area graphite and carbon nanoparticles, or composite carbon comprising at least one of them as a substrate Material B or the like can be used.
  • the carbonaceous material precursor used for the negative electrode active material B is an organic material capable of combining the amorphous carbon material and the carbonaceous material by heat treatment and being soluble in solid, liquid or solvent. is there.
  • the carbonaceous material precursor is not particularly limited as long as it can be complexed with the amorphous carbon material by heat treatment, but, for example, pitch, mesocarbon microbeads, coke, synthetic resin (for example, phenol resin etc.), etc. Can be mentioned.
  • the carbonaceous material precursor includes, for example, distillation residue of crude oil, fluid catalytic cracking residue (decant oil etc.), bottom oil derived from thermal cracker, ethylene tar obtained in naphtha cracking and the like.
  • the heat treatment temperature may be a temperature at which the component generated by volatilization or thermal decomposition of the carbonaceous material precursor to be used becomes the carbonaceous material, preferably 400 ° C. or more and 2,500 ° C.
  • the temperature is 500 ° C. or more and 2,000 ° C. or less, more preferably 550 ° C. or more and 1,500 ° C. or less.
  • the atmosphere in which the heat treatment is performed is not particularly limited, a non-oxidizing atmosphere is preferable.
  • the negative electrode active material layer preferably has a specific surface area of 4 m 2 / g or more and 75 m 2 / g or less calculated by BET method based on the weight of the negative electrode active material.
  • the lower limit value of the specific surface area calculated by the BET method is more preferably 5 m 2 / g or more, still more preferably 6 m 2 / g or more, particularly preferably 7 m 2 / g or more.
  • the upper limit value of the specific surface area calculated by the BET method is 60 m 2 / g or less, more preferably 40 m 2 / g or less, and particularly preferably 30 m 2 / g or less.
  • the negative electrode active material layer has a Raman mapping of the negative electrode active material layer obtained by Raman spectroscopy, the peak intensity I D of D band appearing in the 1350 ⁇ 15cm -1, appears at 1585 ⁇ 15cm-1 it is preferable ratio A1 for mapping the entire area of the mapping area ratio I D / I G peak intensity I G of 0.5 to 1.3 of the G band is below 95% 50%.
  • the lower limit value of A1 is preferably 60% or more, more preferably 65% or more.
  • the upper limit value of A1 is preferably 90% or less and 85% or less.
  • the negative electrode of the present embodiment has a specific surface area calculated by BET method in the negative electrode active material layer, and a peak intensity I D of D band appearing at 1350 ⁇ 15 cm ⁇ 1 in Raman mapping obtained by Raman spectroscopy on the surface of the negative electrode active material layer. And, by adjusting the distribution of the ratio I D / I G of the peak intensity I G of G band appearing at 1585 ⁇ 15 cm -1 within a specific range, excellent high load charge / discharge cycle characteristics and excellent high temperature at high voltage Storage characteristics are obtained.
  • the principle is not clear and is not limited to the theory, but is presumed as follows.
  • the specific surface area calculated by the BET method is 4 m 2 / g or more and A 1 is 60% or more, the high load charge / discharge cycle is improved.
  • the specific surface area and A1 within the above range, the surface area of the negative electrode active material layer that can receive lithium when charging with a large current is large, and the crystallinity of the carbon material is Since the diffusion rate of lithium ions is fast during charge and discharge and Li acceptability is improved, it is considered that lithium deposition when charging with a large current is suppressed and the high load charge and discharge cycle characteristics are improved.
  • the lithium compound when a lithium compound is contained in the positive electrode precursor, the lithium compound is decomposed by raising the voltage, and the coating on the negative electrode surface is broken and gas is easily generated at high temperature, but the specific surface area and A1 are adjusted within the above range. By doing this, excellent high voltage and high temperature storage characteristics can be exhibited. Also, if A1 is 60% or more and 95% or less, it means that the two types of carbon materials can be uniformly mixed, and the distribution of resistance in the negative electrode active material layer is small, so the high load charge / discharge cycle characteristics Improve.
  • a ratio A2 of the mapping area in the negative electrode active material layer in which the I D / I G is 1.0 or more and 1.3 or less to the entire mapping area is 3% or more and 70% or less .
  • the lower limit value of A2 is more preferably 4% or more, still more preferably 5% or more.
  • the upper limit value of A2 is more preferably 50% or less, still more preferably 30% or less. If A2 is 3% or more, the resistance at room temperature is excellent, and if it is 70% or less, the energy density is excellent.
  • the negative electrode active material layer has the amount of holes derived from pores with a diameter of 2 nm to 50 nm calculated by the BJH method based on the weight of the negative electrode active material as V m1 (cc / g), It is preferable to satisfy 0.6 ⁇ V m1 / (V m1 + V m2 ) ⁇ 0.8, where V m2 (cc / g) is the amount of holes derived from pores with a diameter of 20 nm or more and 50 nm or less.
  • the lower limit value of V m1 / (V m1 + V m2 ) is more preferably 0.63 or more.
  • the upper limit value of V m1 / (V m1 + V m2 ) is more preferably 0.75 or less.
  • V m1 / (V m1 + V m2 ) is 0.6 or more, the resistance at room temperature is excellent, and when V m1 / (V m1 + V m2 ) is 0.7 or less, the energy density is excellent.
  • the negative electrode active material layer in the negative electrode of the present embodiment has at least one peak in a region of 20 nm or more and 50 nm or less in diameter in a pore distribution curve obtained by analyzing an isotherm at nitrogen desorption by BJH method preferable.
  • the peel strength of the negative electrode active material layer in the negative electrode of the present embodiment is 0.40 N / cm or more and 2.00 N / cm or less. If the peeling strength is 0.40 N / cm or more, it is possible to suppress the loss of the negative electrode active material layer and to suppress a slight short circuit. If the peel strength is 2.00 N / cm or less, this means that there is no excess binder or the like in the negative electrode active material layer, so that the diffusivity of the electrolytic solution can be improved and resistance can be reduced.
  • the peel strength of the negative electrode active material layer according to the present embodiment is a value measured after pressing when applying the press described later.
  • the peel strength can be measured by known methods. For example, you may use the peeling test based on JISZ0237 (2009) "adhesive tape and the adhesive sheet test method.” Or you may use the test method used by the Example mentioned later.
  • the negative electrode active material may be a material that forms an alloy with lithium (hereinafter, also referred to as “alloy based negative electrode material”).
  • alloy-based negative electrode material preferably contains at least one selected from the group consisting of silicon, a silicon compound, tin, a tin compound, and a composite material of these with a carbon or carbonaceous material.
  • the silicon compound as the negative electrode active material is preferably a silicon oxide, and more preferably SiO x (wherein, x satisfies 0.01 ⁇ x ⁇ 1).
  • the composite material is preferably at least one substrate selected from the group consisting of silicon, silicon compounds, tin and tin compounds, a non-graphitizable carbon material; a graphitizable carbon material; carbon black; carbon nano Particles: activated carbon; artificial graphite; natural graphite; graphitized mesophase carbon microspheres; graphite whiskers; amorphous carbon materials such as polyacene materials; petroleum pitch, coal pitch, meso carbon micro beads, coke, synthetic resin ( A carbonaceous material obtained by heat-treating a carbonaceous material precursor such as a phenolic resin); a thermal decomposition product of a furfuryl alcohol resin or a novolac resin; a fullerene; a carbon nanofone; at least one selected from the group consisting of And carbon or carbonaceous materials by heat treatment or the like.
  • a composite material which can be obtained by heat treatment in the state in which one or more of the above-mentioned base materials coexist with a petroleum pitch or a coal pitch is particularly preferable.
  • the base material and the pitch may be mixed at a temperature higher than the melting point of the pitch.
  • the heat treatment temperature may be a temperature at which the component generated by volatilization or thermal decomposition of the pitch used becomes a carbonaceous material, preferably 400 ° C. or more and 2500 ° C. or less, more preferably 500 ° C. or more and 2000 ° C. or less Preferably it is 550 degreeC or more and 1500 degrees C or less.
  • the atmosphere in which the heat treatment is performed is not particularly limited, a non-oxidizing atmosphere is preferable.
  • the average particle size of the alloy-based negative electrode material is preferably 0.01 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size is 0.01 ⁇ m or more, the contact area with the non-aqueous electrolyte solution is increased, so that the resistance of the lithium ion secondary battery can be lowered.
  • the average particle diameter of the negative electrode active material is 30 ⁇ m or less, the negative electrode active material layer can be sufficiently thinned, and thus the energy density of the lithium ion secondary battery can be improved.
  • the average particle size of the alloy-based negative electrode material can be adjusted by pulverizing using a wet and dry jet mill incorporated with a classifier, a stirring type ball mill and the like.
  • the pulverizer is equipped with a centrifugal classifier, and fine particles pulverized in an inert gas environment such as nitrogen and argon can be collected by a cyclone or a dust collector.
  • the negative electrode active material layer is made of at least one selected from the group consisting of lithium titanate capable of absorbing and desorbing lithium ions, and titanium oxide capable of absorbing and desorbing lithium ions as a negative electrode active material.
  • lithium titanate is represented by the general formula LixTiyO4 (wherein x satisfies 0.8 ⁇ x ⁇ 1.4 and y satisfies 1.6 ⁇ y ⁇ 2.2).
  • titanium oxide rutile type titanium oxide, anatase type titanium oxide and the like can be mentioned.
  • Li 4/3 Ti 5/3 O 4 is preferable from the viewpoint that the increase in reaction resistance accompanying insertion and desorption of Li ions is small and high output can be maintained even in a low temperature environment.
  • the negative electrode active material layer according to the present embodiment may optionally contain, in addition to the negative electrode active material, optional components such as a conductive filler, a binder, and a dispersion stabilizer.
  • a conductive filler is not restrict
  • the amount of the conductive filler used is preferably 0 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. More preferably, it is 0 to 20 parts by mass, and more preferably 0 to 15 parts by mass.
  • the binding agent is not particularly limited.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • polyimide latex
  • styrene-butadiene copolymer fluororubber
  • acrylic copolymer etc.
  • the amount of the binder used is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the amount of the binder used is more preferably 2 parts by mass or more and 27 parts by mass or less, still more preferably 3 parts by mass or more and 25 parts by mass or less.
  • the amount of the binder is 1 part by mass or more, sufficient electrode strength is developed.
  • the amount of the binder is 30 parts by mass or less, high input / output characteristics are exhibited without inhibiting the lithium ion from entering and leaving the negative electrode active material.
  • the dispersion stabilizer is not particularly limited, and for example, PVP (polyvinyl pyrrolidone), PVA (polyvinyl alcohol), a cellulose derivative and the like can be used.
  • the use amount of the dispersion stabilizer is preferably 0 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. If the amount of the dispersion stabilizer is 10 parts by mass or less, high input / output characteristics are exhibited without inhibiting the lithium ion from entering and exiting from the negative electrode active material.
  • the material constituting the negative electrode current collector according to this embodiment is preferably a metal foil which has high electron conductivity and does not cause deterioration due to elution to a non-aqueous electrolytic solution and reaction with an electrolyte or ion.
  • a metal foil which has high electron conductivity and does not cause deterioration due to elution to a non-aqueous electrolytic solution and reaction with an electrolyte or ion.
  • metal foil For example, aluminum foil, copper foil, nickel foil, stainless steel foil etc. are mentioned.
  • a copper foil is preferable as the negative electrode current collector in the non-aqueous lithium-type storage element of the present embodiment.
  • the metal foil may be a normal metal foil having no irregularities or through holes, or may be a metal foil having irregularities subjected to embossing, chemical etching, electrolytic deposition, blasting, etc., expanded metal, punching metal It may be a metal foil having through holes such as an etching foil.
  • the negative electrode current collector in the present embodiment is preferably nonporous.
  • the thickness of the negative electrode current collector is not particularly limited as long as the shape and strength of the negative electrode can be sufficiently maintained, but for example, 1 to 100 ⁇ m is preferable.
  • the thickness of a negative electrode collector shall be measured based on the part in which a hole or unevenness
  • the negative electrode has a negative electrode active material layer on one side or both sides of a negative electrode current collector.
  • the negative electrode active material layer is fixed to the negative electrode current collector.
  • the negative electrode can be manufactured by a known manufacturing technique of an electrode in a lithium ion battery, an electric double layer capacitor and the like.
  • various materials containing a negative electrode active material are dispersed or dissolved in water or an organic solvent to prepare a slurry-like coating liquid, and this coating liquid is coated on one side or both sides on a negative electrode current collector.
  • a negative electrode can be obtained by forming a coating and drying it. Further, the obtained negative electrode may be pressed to adjust the film thickness or bulk density of the negative electrode active material layer.
  • various materials containing the negative electrode active material are dry mixed without using a solvent, and the obtained mixture is press-formed and then attached to the negative electrode current collector using a conductive adhesive. Is also possible.
  • the coating liquid is a liquid or slurry in which a part or all of various material powders including the negative electrode active material is dry-blended and then water or an organic solvent and / or a binder or dispersion stabilizer is dissolved or dispersed therein It may be prepared by adding the following substances.
  • various kinds of material powders including a negative electrode active material may be added to a liquid or slurry-like substance in which a binder or a dispersion stabilizer is dissolved or dispersed in water or an organic solvent to prepare a coating liquid. .
  • the preparation of the coating solution is not particularly limited, but preferably a disperser such as a homodisper or multi-axial disperser, a planetary mixer, a thin film swirl type high speed mixer, or the like can be used.
  • a disperser such as a homodisper or multi-axial disperser, a planetary mixer, a thin film swirl type high speed mixer, or the like.
  • the viscosity ( ⁇ b) of the coating liquid is preferably 1,000 mPa ⁇ s or more and 20,000 mPa ⁇ s or less.
  • the viscosity ( ⁇ b) is more preferably 1,500 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, still more preferably 1,700 mPa ⁇ s or more and 5,000 mPa ⁇ s or less. If the viscosity ( ⁇ b) is 1,000 mPa ⁇ s or more, dripping during coating film formation can be suppressed, and the coating film width and film thickness can be favorably controlled.
  • the pressure loss in the flow path of the coating liquid when using a coating machine can be small, stable coating can be performed, and control can be performed to a desired coating film thickness or less.
  • the TI value (thixotropy index value) of the coating liquid is preferably 1.1 or more. More preferably, it is 1.2 or more, more preferably 1.5 or more. If the TI value is 1.1 or more, the coating film width and the film thickness can be controlled well.
  • the formation of the coating film is not particularly limited, but a coating machine such as a die coater, a comma coater, a knife coater, or a gravure coater can be suitably used.
  • the coating film may be formed by single layer coating, or may be formed by multilayer coating.
  • the coating speed is preferably 0.1 m / min or more and 100 m / min or less.
  • the coating speed is more preferably 0.5 m / min to 70 m / min, still more preferably 1 m / min to 50 m / min. If the coating speed is 0.1 m / min or more, stable coating can be performed. On the other hand, if it is 100 m / min or less, sufficient coating accuracy can be secured.
  • Drying of the coating film is not particularly limited, but preferably, drying methods such as hot air drying and infrared (IR) drying can be used.
  • the coating may be dried at a single temperature, or may be dried by changing the temperature in multiple stages. Also, a plurality of drying methods may be combined and dried.
  • the drying temperature is preferably 25 ° C. or more and 200 ° C. or less.
  • the drying temperature is more preferably 40 ° C. or more and 180 ° C. or less, still more preferably 50 ° C. or more and 160 ° C. or less. If the drying temperature is 25 ° C. or more, the solvent in the coating can be sufficiently volatilized.
  • the temperature is 200 ° C. or less, it is possible to suppress uneven distribution of the binder due to cracking or migration of the coating film due to rapid evaporation of the solvent, and oxidation of the negative electrode current collector and the negative electrode active material layer.
  • Press such as a hydraulic press and a vacuum press
  • the film thickness, bulk density and electrode strength of the negative electrode active material layer can be adjusted by the press pressure, the gap, and the surface temperature of the press portion described later.
  • the pressing pressure is preferably 0.5 kN / cm or more and 20 kN / cm or less.
  • the pressing pressure is more preferably 1 kN / cm or more and 10 kN / cm or less, still more preferably 2 kN / cm or more and 7 kN / cm or less. If the pressing pressure is 0.5 kN / cm or more, the electrode strength can be sufficiently high.
  • the thickness and bulk density of the negative electrode active material layer can be adjusted as desired.
  • the gap between the press rolls can be set to any desired value according to the thickness of the negative electrode film after drying so that the desired thickness and bulk density of the negative electrode active material layer can be obtained.
  • the press speed can be set to any speed that does not cause deflection or wrinkles in the negative electrode.
  • the surface temperature of the press part may be room temperature or may be heated as required. The lower limit of the surface temperature of the press portion when heating is preferably 60 ° C. or higher, more preferably 45 ° C. or higher, and still more preferably 30 ° C. or higher.
  • the upper limit of the surface temperature of the press part in heating is preferably the melting point of the binder to be used plus 50 ° C. or less, more preferably 30 ° C. or less, still more preferably 20 ° C. or less.
  • PVdF polyvinylidene fluoride: melting point 150 ° C.
  • the surface temperature of the press portion is more preferably heating to 105 ° C. or more and 180 ° C. or less, and further preferably 120 ° C. or more and 170 ° C. or less.
  • the surface temperature of the press part is more preferably 55 ° C. or more and 130 ° C. or less, and further preferably 70 ° C. or more and 120 ° C. or less.
  • the melting point of the binding agent can be determined at the endothermic peak position of DSC (Differential Scanning Calorimetry, differential scanning calorimetry). For example, 10 mg of the sample resin is set in the measurement cell using a differential scanning calorimeter “DSC 7” manufactured by Perkin Elmer, and the temperature is increased from 30 ° C. to 10 ° C./min up to 250 ° C. in a nitrogen gas atmosphere. The temperature is raised, and the endothermic peak temperature in the temperature raising process becomes the melting point. Moreover, you may implement a press in multiple times, changing conditions of the press pressure, a clearance gap, speed, and the surface temperature of a press part.
  • DSC Different Scanning Calorimetry, differential scanning calorimetry
  • the BET specific surface area, the average pore diameter, the amount of mesopores, and the amount of micropores are values determined by the following methods.
  • the sample is vacuum dried overnight at 200 ° C., and adsorption and desorption isotherms are measured using nitrogen as an adsorbate.
  • the BET specific surface area is the mesopores by dividing the total pore volume per mass by the BET specific surface area by the BET multipoint method or the BET one point method.
  • the amount is calculated by the BJH method, and the micropore amount is calculated by the MP method.
  • the BJH method is a calculation method generally used for analysis of mesopores and proposed by Barrett, Joyner, Halenda et al. (Non-Patent Document 1).
  • the MP method means a method of determining the micropore volume, the micropore area, and the micropore distribution by using the “t-plot method” (Non-Patent Document 2).
  • S. It is a method devised by Mikhail, Brunauer, Bodor (Non-Patent Document 3).
  • the average particle diameter is the particle diameter at which the cumulative curve becomes 50% when the cumulative curve is determined to be 100% (that is, the 50% diameter (Median diameter)).
  • This average particle size can be measured using a commercially available laser diffraction type particle size distribution measuring apparatus.
  • the doping amount of lithium ions of the negative electrode active material in the non-aqueous lithium-type storage element at the time of shipping and after use can be known, for example, as follows. First, after the negative electrode active material layer in the present embodiment is washed with ethyl methyl carbonate or dimethyl carbonate and air-dried, an extract extracted with a mixed solvent of methanol and isopropanol and a negative electrode active material layer after extraction are obtained. This extraction is typically performed in an Ar box at an ambient temperature of 23 ° C.
  • the amounts of lithium contained in the extract solution obtained as described above and the negative electrode active material layer after extraction are respectively quantified using, for example, ICP-MS (inductively coupled plasma mass spectrometer) or the like, By determining the sum, the doping amount of lithium ions in the negative electrode active material can be known. Then, the value of the unit may be calculated by allocating the obtained value to the mass of the negative electrode active material subjected to extraction.
  • ICP-MS inductively coupled plasma mass spectrometer
  • the primary particle diameter is obtained by photographing the powder in several fields of view with an electron microscope, and measuring the particle diameter of the particles in those fields of view by about 2,000 to 3,000 particles using a fully automatic image processor or the like. Can be obtained by a method in which the value obtained by arithmetically averaging is used as the primary particle diameter.
  • the degree of dispersion is a value determined by a degree of dispersion evaluation test using a particle gauge specified in JIS K5600. That is, for a particle gauge having a groove of a desired depth depending on the particle size, a sufficient amount of sample is poured into the deep end of the groove and slightly overflows the groove.
  • the long side of the scraper is parallel to the width direction of the gauge, and the cutting edge is placed in contact with the deep end of the groove of the grain gauge, and the long side of the groove is maintained while holding the scraper on the surface of the gauge
  • draw the surface of the gauge at an equal speed, taking 1 to 2 seconds to a groove depth of 0, and apply light at an angle of 20 ° to 30 ° within 3 seconds after the pulling Observe and read the depth at which grains appear in the grooves of the grain gauge.
  • the basis weight of the negative electrode active material layer is preferably 10 g ⁇ m ⁇ 2 or more and 100 g ⁇ m ⁇ 2 or less, and more preferably 12 g ⁇ m ⁇ 2 or more and 80 g ⁇ m ⁇ 2 or less per one surface of the negative electrode current collector. More preferably, it is 15 g ⁇ m ⁇ 2 or more and 50 g ⁇ m ⁇ 2 or less.
  • the basis weight is 10 g ⁇ m ⁇ 2 or more, high load charge and discharge characteristics can be improved.
  • the basis weight is 100 g ⁇ m ⁇ 2 or less, the ion diffusion resistance in the electrode can be maintained low. Therefore, sufficient output characteristics can be obtained, the cell volume can be reduced, and the energy density can be increased.
  • the upper limit and the lower limit of the weight range of the negative electrode active material layer can be arbitrarily combined.
  • the film thickness of the negative electrode active material layer is preferably 10 ⁇ m or more and 150 ⁇ m or less per side.
  • the lower limit of the film thickness of the negative electrode active material layer is more preferably 12 ⁇ m or more, and still more preferably 15 ⁇ m or more.
  • the upper limit of the film thickness of the negative electrode active material layer is more preferably 120 ⁇ m or less, still more preferably 80 ⁇ m or less. If this film thickness is 10 micrometers or more, when coating a negative electrode active material layer, a streak etc. will not generate
  • the bulk density of the negative electrode active material layer is preferably 0.30 g / cm 3 or more and 1.8 g / cm 3 or less, more preferably 0.40 g / cm 3 or more and 1.5 g / cm 3 or less, further preferably 0 .45g / cm 3 or more 1.3g / cm 3 or less.
  • the bulk density is 0.30 g / cm 3 or more, sufficient strength can be maintained, and sufficient conductivity between the negative electrode active materials can be expressed.
  • it is 1.8 g / cm ⁇ 3 > or less, the void
  • the concentration of at least one element selected from the group consisting of Ni, Mn, Fe, Co and Al contained in the negative electrode active material layer is preferably 10 ppm or more and 5000 ppm or less, more preferably 10 ppm or more and 3000 ppm or less And more preferably 50 ppm or more and 1000 ppm or less. If this element concentration is 10 ppm or more, the metal element in the negative electrode is ionized when the storage element is exposed to a high temperature and high voltage state, so that the release of Li ions from the lithium compound in the positive electrode can be suppressed. As a result, it is possible to suppress the generation of reactive species and to suppress the voltage drop in the high temperature and high voltage state.
  • the element concentration is 5000 ppm or less, the diffusion of Li ions in the active material layer in the negative electrode is not inhibited, so that the output of the non-aqueous lithium-type storage element can be increased.
  • the formation of the protective film on the interface of the negative electrode active material layer by the additive or the like is not inhibited, the high temperature durability can be improved.
  • the negative electrode active material layer may contain any of these elements, and may contain two or more kinds. When the electrolytic solution contains two or more elements, the total concentration thereof may be 20 ppm or more and 10000 ppm or less.
  • the method of quantifying the metal element contained in the negative electrode active material layer is not particularly limited, and the methods described below may be mentioned.
  • the negative electrode is cut out from the electrode stack of the storage element and used as an organic solvent. Wash.
  • a solvent which removes the electrolyte decomposition product deposited on the negative electrode surface and reacts with lithium ions in the negative electrode is not particularly limited, but alcohol such as methanol, ethanol, isopropanol etc., or these The mixed solvent of is preferably used.
  • the negative electrode is sufficiently immersed in an ethanol solution 50 to 100 times the weight of the negative electrode for 3 days or more.
  • the container is preferably capped so that the ethanol does not evaporate during immersion.
  • the negative electrode is removed from ethanol and vacuum dried.
  • the conditions for vacuum drying are: temperature: 100 to 200 ° C., pressure: 0 to 10 kPa, and time: 5 to 20 hours, under which the remaining amount of ethanol in the negative electrode is 1% by mass or less.
  • residual amount of ethanol after immersing the negative electrode after vacuum drying in an organic solvent such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate, GC / MS of the above organic solvent is measured, and a calibration curve prepared in advance is obtained.
  • the element concentration S 168 eV of sulfur (S) determined based on the peak area of 168 eV of the S2p spectrum in X-ray photoelectron spectroscopy measurement (XPS) of the surface of the negative electrode active material layer It is preferable that it is 0.5 atomic% or more.
  • the element concentration of S is 0.5 atomic% or more, reduction and decomposition of the non-aqueous electrolyte solution on the surface of the negative electrode active material layer can be suppressed during high voltage, high temperature storage. Thereby, the energy density can be increased while maintaining the high temperature durability of the storage element.
  • the negative electrode active material layer according to the present embodiment As a method for causing the negative electrode active material layer according to the present embodiment to express the peak described above, for example, A method of mixing a sulfur-containing compound in the negative electrode active material layer, A method of adsorbing a sulfur-containing compound to the negative electrode active material layer, The method etc. which electrochemically deposit a sulfur-containing compound in a negative electrode active material layer are mentioned. Above all, a precursor that can be decomposed to generate this peak is contained in the non-aqueous electrolyte solution, and the above-mentioned compound is deposited in the negative electrode active material layer using the decomposition reaction in the process of producing the storage element.
  • the method of depositing the compound through the step of oxidatively decomposing the alkali metal compound in the positive electrode precursor at a high potential, which will be described later, is preferable, but the principle is not clear, but high input / output characteristics are obtained even in a low temperature environment. It is more preferable because a coating that can be maintained is formed.
  • R 5 to R 8 are at least one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, and a halogenated alkyl group having 1 to 12 carbon atoms And each n may be an integer of 0 to 3;
  • R 9 to R 14 are at least one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, and a halogenated alkyl group having 1 to 12 carbon atoms And each n may be an integer of 0 to 3;
  • R 25 to R 28 each represents at least one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, and a halogenated alkyl group having 1 to 12 carbon atoms And each n may be an integer of 0 to 3; ⁇
  • Y sulfur-containing compounds
  • the cyclic sulfate compound represented by the general formula (2-1) is ethylene sulfate or 1,3-propylene sulfate
  • the sultone compound represented by the formula is 1,3-propane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-but
  • the positive electrode active material layer according to this embodiment preferably has a peak of 162 eV to 166 eV in the S2p spectrum obtained by X-ray photoelectron spectroscopy (XPS) of the surface of the positive electrode active material layer.
  • XPS X-ray photoelectron spectroscopy
  • a method for causing the positive electrode active material layer according to the present embodiment to exhibit the peak explained by steam for example, A method of mixing a compound having a C—S—C structure in a positive electrode active material layer, A method of adsorbing a compound having a C—S—C structure to a positive electrode active material layer, Examples thereof include a method of electrochemically depositing a compound having a C—S—C structure in the positive electrode active material layer.
  • a precursor that can be decomposed to generate this peak is contained in the non-aqueous electrolyte solution, and the above-mentioned compound is deposited in the positive electrode active material layer using the decomposition reaction in the process of producing the storage element.
  • the method of depositing the compound through the step of oxidatively decomposing the alkali metal compound in the positive electrode precursor at a high potential, which will be described later, is preferable, but the principle is not clear, but high input / output characteristics are obtained even in a low temperature environment. It is more preferable because a coating that can be maintained is formed.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a formyl group, an acetyl group, a nitrile group, an acetyl group, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms 6 represents an alkoxy group of 6 or an alkyl ester having 1 to 6 carbon atoms.
  • thiophene compound represented by the above general formula (1) is more preferably thiophene, 2-methylthiophene, 3-methylthiophene, 2-cyanothiophene, 3-cyanothiophene, 2 from the viewpoint of addition to the electrolytic solution. , 5-dimethylthiophene, 2-methoxythiophene, 3-methoxythiophene, 2-chlorothiophene, 3-chlorothiophene, 2-acetylthiophene, and at least one selected from the group consisting of 3-acetylthiophene.
  • C 1 / C 2 Is preferably 0.35 or more and 5.80 or less, more preferably 0.40 or more and 3.00 or less, and still more preferably 0.60 or more and 2.50 or less. If C 1 / C 2 is 0.35 or more, the potential of the negative electrode can be lowered by sufficiently pre-doping lithium ions from the positive electrode precursor containing the lithium compound to the negative electrode, so the energy density of the storage element is improved. It can be done.
  • C 1 / C 2 is 5.80 or less, the activation reaction on the surface of the positive electrode active material by the doping reaction of the lithium compound contained in the positive electrode active material layer sufficiently proceeds, so the capacity improvement of the storage element And high output can be expected.
  • C 1 / C 2 is 5.80 or less, the utilization range of the capacity of the negative electrode active material associated with charge and discharge can be narrowed, so that high load charge and discharge characteristics can be improved.
  • D 1 / D 2 is 0.30 to 5.00. Is more preferably 0.70 or more and 3.50 or less, and still more preferably 1.00 or more and 2.50 or less. If D 1 / D 2 is 0.30 or more, the lithium ion diffusion rate in the negative electrode active material layer can be increased with respect to the surface adsorption rate of lithium ions in the positive electrode active material layer, so that the output characteristics of the storage element can be improved.
  • ⁇ Calculation of basis weight of positive electrode active material layer> In the case of a positive electrode precursor, part of the positive electrode precursor is cut out into a predetermined area, and the weight is measured.
  • area measurement is positive is not particularly limited, it is preferably, more preferably 25 cm 2 or more 150 cm 2 or less from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less. If the area is 5 cm 2 or more, the repeatability of the measurement is secured. If the area is 200 cm 2 or less, the sample handling is excellent. Subsequently, the positive electrode active material layer of the positive electrode precursor is scraped off using a spatula, a brush, a brush or the like, and the weight of the positive electrode current collector foil is measured.
  • the method for calculating the basis weight of the positive electrode active material layer in the case of the positive electrode subjected to the lithium doping step is described below.
  • the nonaqueous lithium-type storage element whose voltage is adjusted to 2.9 V is disassembled to take out the electrode stack, and the positive electrode is cut out from the electrode stack and washed with an organic solvent.
  • the organic solvent is not particularly limited as long as it can remove the electrolyte decomposition product deposited on the surface of the positive electrode, but the elution of the lithium compound is suppressed by using an organic solvent having a solubility of 2% or less of the lithium compound.
  • an organic solvent for example, polar solvents such as methanol, ethanol, acetone, methyl acetate and the like are suitably used.
  • area measurement is positive is not particularly limited, it is preferably, more preferably 25 cm 2 or more 150 cm 2 or less from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less. If the area is 5 cm 2 or more, the repeatability of the measurement is secured. If the area is 200 cm 2 or less, the sample handling is excellent.
  • the positive electrode is sufficiently immersed in an ethanol solution 50 to 100 times the weight of the positive electrode for 3 days or more.
  • the container is preferably capped so that the ethanol does not evaporate during immersion.
  • the positive electrode is removed from ethanol and vacuum dried.
  • the conditions for vacuum drying are: temperature: 100 to 200 ° C., pressure: 0 to 10 kPa, and time: 5 to 20 hours.
  • the condition is that the remaining amount of ethanol in the positive electrode is 1% by mass or less.
  • cleaning mentioned later can be measured, and it can quantify based on the analytical curve prepared beforehand.
  • the area of the positive electrode obtained after vacuum drying be X C (m 2 ).
  • the substrate is sufficiently immersed in distilled water 100 to 150 times the measured weight of the positive electrode active material layer for 3 days or more. It is preferable to cap the vessel so that the distilled water does not volatilize during the immersion, and it is preferable to occasionally stir the aqueous solution in order to accelerate the elution of the lithium compound.
  • the positive electrode active material layer After immersing for 3 days or more, the positive electrode active material layer is taken out from distilled water and vacuum dried in the same manner as the above-mentioned ethanol washing. Measure the weight M x 1 C (g) after vacuum drying.
  • the basis weight C x1 (g / m 2 of the positive electrode active material layer) can be calculated by Formula (5).
  • C x1 (M x1C -M x2C ) / X C Equation (5)
  • ⁇ Calculation of negative electrode active material layer basis weight> In the case of the negative electrode before the injection step, a part of the negative electrode is cut out to a predetermined area, and the weight is measured.
  • the area of the negative electrode to be measured is not particularly limited, it is preferably, more preferably 25 cm 2 or more 150 cm 2 or less from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less. If the area is 5 cm 2 or more, the repeatability of the measurement is secured. If the area is 200 cm 2 or less, the sample handling is excellent. Subsequently, the negative electrode active material layer in the negative electrode is scraped off using a spatula, a brush, a brush or the like, and the weight of the negative electrode current collector foil is measured.
  • the positive electrode active material layer basis weight A Z1 of the positive electrode precursor is It can be calculated by (6).
  • a Z1 (g ⁇ m ⁇ 2 ) (M ZA1 ⁇ M ZA2 ) / S ZA formula (6)
  • the determination method of the fabric weight of the negative electrode active material layer in the case of the negative electrode which passed through the lithium dope process is described below.
  • the negative electrode is cut out of the electrode stack in the argon box and washed with an organic solvent.
  • a solvent which removes the electrolyte decomposition product deposited on the negative electrode surface and reacts with lithium ions in the negative electrode is not particularly limited, but alcohol such as methanol, ethanol, isopropanol etc., or these
  • the mixed solvent of is preferably used.
  • the area of the negative electrode to be measured is not particularly limited, it is preferably, more preferably 25 cm 2 or more 150 cm 2 or less from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less. If the area is 5 cm 2 or more, the repeatability of the measurement is secured. If the area is 200 cm 2 or less, the sample handling is excellent.
  • the negative electrode is sufficiently immersed in an ethanol solution 50 to 100 times the weight of the negative electrode for 3 days or more.
  • the container is preferably capped so that the ethanol does not evaporate during immersion.
  • the negative electrode is removed from ethanol and vacuum dried.
  • the conditions for vacuum drying are: temperature: 100 to 200 ° C., pressure: 0 to 10 kPa, and time: 5 to 20 hours, under which the remaining amount of ethanol in the negative electrode is 1% by mass or less.
  • the area of the negative electrode obtained after vacuum drying is taken as X A (m 2 ).
  • X A The area of the negative electrode obtained after vacuum drying is taken as X A (m 2 ).
  • all the negative electrode active material layer of the negative electrode is removed, and the weight M 0xA (g) of the negative electrode active material layer and the weight M x 2A of the obtained current collector of the negative electrode are measured.
  • the substrate is sufficiently immersed in distilled water 100 to 150 times the measured weight of the negative electrode active material layer for 3 days or more. It is preferable to cap the vessel so that the distilled water does not volatilize during the immersion, and it is preferable to occasionally stir the aqueous solution in order to accelerate the elution of the lithium compound.
  • the negative electrode active material layer After immersing for 3 days or more, the negative electrode active material layer is taken out from distilled water and vacuum dried in the same manner as the above-mentioned ethanol washing. Measure the weight M x 1A (g) after vacuum drying.
  • the basis weight A x1 (g / m 2 of the negative electrode active material layer) can be calculated by Formula (7).
  • a x1 (M x1A -M x2A ) / X A formula (7)
  • the electrolytic solution of the present embodiment is non-aqueous, that is, the electrolytic solution contains a non-aqueous solvent described later.
  • the non-aqueous electrolytic solution preferably contains a lithium salt of 0.5 mol / L or more based on the total amount of the non-aqueous electrolytic solution. That is, the non-aqueous electrolytic solution preferably contains lithium ions as an electrolyte.
  • LiN (SO 2 F) 2), LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 2 F 5), LiN (SO 2 CF 3) (SO 2 C 2 F 4 H), LiC (SO 2 F) 3, LiC (SO 2 CF 3) 3, LiC (SO 2 C 2 F 5 ) 3 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiPF 6 , LiBF 4 and the like can be used alone, or two or more kinds may be mixed and used.
  • the non-aqueous electrolyte preferably contains at least one selected from the group consisting of LiPF 6 , LiN (SO 2 F) 2 and LiBF 4 because it can exhibit high conductivity, and LiPF 6 and / or LiBF 4 It is more preferable to include LiPF 6 and / or LiBF 4 and LiN (SO 2 F) 2 .
  • the lithium salt concentration in the non-aqueous electrolyte solution is preferably 0.5 mol / L or more based on the total amount of the non-aqueous electrolyte solution, and a range of 0.5 mol / L or more and 2.0 mol / L or less is more preferable. .
  • the lithium salt concentration is 0.5 mol / L or more, the anions are sufficiently present, and the capacity of the storage element can be sufficiently increased.
  • the lithium salt concentration is 2.0 mol / L or less, it is possible to prevent the undissolved lithium salt from depositing in the non-aqueous electrolyte solution and to prevent the viscosity of the electrolyte solution from becoming too high, and the conductivity decreases. It is preferable because it does not cause deterioration of the output characteristics.
  • the non-aqueous electrolytic solution of the present embodiment preferably contains LiN (SO 2 F) 2 at a concentration of 0.1 mol / L to 1.5 mol / L based on the total amount of the non-aqueous electrolytic solution, LiN
  • the concentration of SO 2 F) 2 is more preferably 0.3 mol / L or more and 1.2 mol / L or less.
  • the LiN (SO 2 F) 2 concentration is 0.1 mol / L or more, the ion conductivity of the electrolyte solution is increased, and an appropriate amount of electrolyte film is deposited on the negative electrode interface, thereby causing decomposition of the electrolyte solution. It can be reduced.
  • this concentration is 1.5 mol / L or less, deposition of the electrolyte salt does not occur at the time of charge and discharge, and the viscosity of the electrolytic solution does not cause an increase even after a long period of time.
  • the nonaqueous electrolytic solution of the present embodiment preferably contains a cyclic carbonate as the nonaqueous solvent. It is advantageous that the non-aqueous electrolytic solution contains a cyclic carbonate in that it dissolves a lithium salt having a desired concentration and that a suitable amount of lithium compound is deposited on the positive electrode active material layer.
  • cyclic carbonates include ethylene carbonate (EC), propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate and the like.
  • the total content of the cyclic carbonate is preferably 15% by mass or more, more preferably 20% by mass or more, based on the total amount of the non-aqueous electrolyte solution.
  • the said total content is 15 mass% or more, it will become possible to dissolve a lithium salt of a desired density
  • the non-aqueous electrolytic solution of the present embodiment preferably contains, as a non-aqueous solvent, dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) which are linear carbonate compounds.
  • the volume ratio of ethyl methyl carbonate to dimethyl carbonate (DMC / EMC) is preferably 0.5 or more and 8.0 or less, more preferably 0.8 or more and 6.0 or less, and 1.0 or more. More preferably, it is 0 or less. If DMC / EMC is 0.5 or more, the viscosity of the electrolytic solution can be reduced, and high lithium ion conductivity can be expressed. If DMC / EMC is 8.0 or less, the melting point of the mixed solvent can be kept low, and high input / output characteristics can be exhibited even in a low temperature environment.
  • the non-aqueous electrolyte solution of this embodiment may contain the other linear carbonate as a non-aqueous solvent.
  • other linear carbonates include dialkyl carbonate compounds represented by diethyl carbonate, dipropyl carbonate, dibutyl carbonate and the like. The dialkyl carbonate compounds are typically unsubstituted.
  • the total content of the linear carbonate is preferably 30% by mass or more, more preferably 35% by mass or more, preferably 95% by mass or less, more preferably 90% by mass or less, based on the total amount of the non-aqueous electrolyte is there.
  • electrolyte solution When the content of the linear carbonate is 30% by mass or more, the viscosity of the electrolytic solution can be reduced, and high lithium ion conductivity can be exhibited. If the said total concentration is 95 mass% or less, electrolyte solution can further contain the additive mentioned later.
  • the non-aqueous electrolytic solution of the present embodiment may further contain an additive.
  • the additive is not particularly limited.
  • the thiophene compound represented by the above general formula (1), the cyclic sulfate compound represented by the above general formula (2-1), the sultone compound, the above general formula (2- Compound represented by 4), cyclic sulfite compound represented by the above general formula (2-5), cyclic phosphazene, non-cyclic fluorine-containing ether, fluorine-containing cyclic carbonate, cyclic carbonate, cyclic carboxylic acid ester, and cyclic acid Anhydride etc. can be used independently and you may mix and use 2 or more types.
  • a sultone compound for example, a sultone compound represented by the above general formula (2-2) or (2-3) or a sultone compound represented by the following general formula (7) can be mentioned. These sultone compounds may be used alone or in combination of two or more.
  • R 11 ⁇ R 16 is a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group having 1 to 12 carbon atoms having 1 to 12 carbon atoms, being the same or different It may be ⁇
  • the sultone compound represented by the formula (7) is 1 from the viewpoint of little adverse effect on resistance and from the viewpoint of suppressing decomposition of the non-aqueous electrolyte at high temperature to suppress gas generation.
  • 2,5,2-dioxadithiepane 2,2,4,4-tetraoxide is preferable, and other sultone compounds include methylene bis (benzene sulfonic acid), methylene bis (phenyl methane sulfonic acid), methylene bis (ethane) Sulfonic acid), methylene bis (2, 4, 6, trimethyl benzene sulfonic acid), and methylene bis (2- trifluoromethyl benzene sulfonic acid) can be mentioned, and at least one selected from among these is selected Is preferred.
  • the total content of sultone compounds in the non-aqueous electrolyte solution of the non-aqueous lithium-type storage element according to this embodiment is preferably 0.5% by mass or more and 15% by mass or less based on the total amount of the non-aqueous electrolyte solution . If the total content of the sultone compounds in the non-aqueous electrolyte solution is 0.5% by mass or more, it is possible to suppress the decomposition of the electrolyte solution at high temperature and suppress the gas generation. On the other hand, when the total content is 15% by mass or less, the decrease in the ion conductivity of the electrolytic solution can be suppressed, and high input / output characteristics can be maintained.
  • the content of the sultone compound present in the non-aqueous electrolytic solution of the non-aqueous lithium-type storage element is preferably 1% by mass or more and 10% by mass or less from the viewpoint of achieving both high input / output characteristics and durability. Preferably it is 3 to 8 mass%.
  • Cyclic phosphazene examples include ethoxypentafluorocyclotriphosphazene, diethoxytetrafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene and the like, and one or more selected from these are preferable.
  • the content of cyclic phosphazene in the non-aqueous electrolyte solution is preferably 0.5% by mass or more and 20% by mass or less based on the total amount of the non-aqueous electrolyte solution. If this value is 0.5% by weight or more, it is possible to suppress the decomposition of the electrolytic solution at high temperature and suppress the gas generation. On the other hand, if this value is 20% by mass or less, the decrease in the ion conductivity of the electrolytic solution can be suppressed, and high input / output characteristics can be maintained.
  • the content of cyclic phosphazene is more preferably 2% by mass to 15% by mass, and still more preferably 4% by mass to 12% by mass. These cyclic phosphazenes may be used alone or in combination of two or more.
  • Non-cyclic fluorine-containing ether for example, HCF 2 CF 2 OCH 2 CF 2 CF 2 H, CF 3 CFHCF 2 OCH 2 CF 2 CF 2 H, HCF 2 CF 2 CH 2 OCH 2 CF 2 CF 2 H, CF 3 CFHCF 2 OCH 2 CF 2 CFHCF 3 and the like can be mentioned, and among them, HCF 2 CF 2 OCH 2 CF 2 CF 2 H is preferable from the viewpoint of electrochemical stability.
  • the content of the non-cyclic fluorine-containing ether is preferably 0.5% by mass to 15% by mass, and more preferably 1% by mass to 10% by mass, based on the total amount of the non-aqueous electrolytic solution.
  • the content of the non-cyclic fluorine-containing ether is 0.5% by mass or more, the stability of the non-aqueous electrolyte solution against oxidative decomposition is enhanced, and a storage element having high durability at high temperature can be obtained.
  • the content of the non-cyclic fluorine-containing ether is 15% by mass or less, the solubility of the electrolyte salt can be well maintained, and the ion conductivity of the non-aqueous electrolyte can be maintained high. It becomes possible to express input / output characteristics.
  • the non-cyclic fluorine-containing ether may be used alone or in combination of two or more.
  • the fluorine-containing cyclic carbonate is preferably selected from fluoroethylene carbonate (FEC) and difluoroethylene carbonate (dFEC) from the viewpoint of compatibility with other nonaqueous solvents.
  • the content of the cyclic carbonate containing a fluorine atom is preferably 0.5% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass, based on the total amount of the non-aqueous electrolyte solution.
  • the content of the cyclic carbonate containing a fluorine atom is 0.5% by mass or more, a good film can be formed on the negative electrode, and by suppressing the reductive decomposition of the electrolytic solution on the negative electrode, at high temperature A highly durable storage element can be obtained.
  • the content of the fluorine atom-containing cyclic carbonate is 10% by mass or less, the solubility of the electrolyte salt can be well maintained, and the ion conductivity of the non-aqueous electrolyte can be maintained high. It becomes possible to express a high degree of input / output characteristics.
  • the above-mentioned cyclic carbonates containing a fluorine atom may be used alone or in combination of two or more.
  • cyclic carbonate For cyclic carbonates, vinylene carbonate is preferred.
  • the content of the cyclic carbonate is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
  • the content of the cyclic carbonate is 0.5% by mass or more, a good film on the negative electrode can be formed, and the durability at high temperature can be obtained by suppressing the reductive decomposition of the electrolytic solution on the negative electrode. A high storage element can be obtained.
  • the content of cyclic carbonate is 10% by mass or less, the solubility of the electrolyte salt can be well maintained, and the ion conductivity of the non-aqueous electrolyte can be maintained high, so high input / output can be achieved. It becomes possible to express the characteristic.
  • Cyclic carboxylic acid ester examples include gamma-butyrolactone, gamma-valerolactone, gamma-caprolactone, epsilon-caprolactone and the like, and it is preferable to use one or more selected from these. Among them, gamma-butyrolactone is particularly preferable in view of the improvement of the battery characteristics derived from the improvement of the lithium ion dissociation degree.
  • the content of the cyclic carboxylic acid ester is preferably 0.5% by mass or more and 15% by mass or less, and more preferably 1% by mass or more and 5% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
  • the content of the cyclic acid anhydride is 0.5% by mass or more, a good film on the negative electrode can be formed, and high temperature durability can be obtained by suppressing reductive decomposition of the electrolytic solution on the negative electrode.
  • a storage element with a high when the content of the cyclic carboxylic acid ester is 15% by mass or less, the solubility of the electrolyte salt can be well maintained, and the ion conductivity of the non-aqueous electrolytic solution can be maintained high. It becomes possible to express output characteristics.
  • the above-mentioned cyclic carboxylic acid esters may be used alone or in combination of two or more.
  • the cyclic acid anhydride is preferably at least one selected from succinic anhydride, maleic anhydride, citraconic anhydride, and itaconic anhydride. Above all, it is preferable to select from succinic anhydride and maleic anhydride from the viewpoint that the production cost of the electrolyte can be suppressed by industrial availability and the point that it can be easily dissolved in non-aqueous electrolyte.
  • the content of the cyclic acid anhydride is preferably 0.5% by mass or more and 15% by mass or less, and more preferably 1% by mass or more and 10% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
  • the content of the cyclic acid anhydride is 0.5% by mass or more, a good film can be formed on the negative electrode, and high temperature durability can be obtained by suppressing reductive decomposition of the electrolytic solution on the negative electrode. A high storage element can be obtained.
  • the content of the cyclic acid anhydride is 15% by mass or less, the solubility of the electrolyte salt can be well maintained, and the ion conductivity of the non-aqueous electrolyte can be maintained high, thus high input / output It becomes possible to express the characteristic.
  • the above cyclic acid anhydrides may be used alone or in combination of two or more.
  • the concentration of at least one element selected from the group consisting of Ni, Mn, Fe, Co and Al is preferably 10 ppm or more and 1000 ppm or less, and more preferably 15 ppm or more and 800 ppm or less. Or less, more preferably 20 ppm or more and 600 ppm or less. If this element concentration is 10 ppm or more, the metal element in the negative electrode is ionized when the storage element is exposed to a high temperature and high voltage state, so that the release of Li ions from the lithium compound in the positive electrode can be suppressed. As a result, it is possible to suppress the generation of reactive species and to suppress the voltage drop in the high temperature and high voltage state.
  • the power storage element can have a high output.
  • the protective film formed on the interface of the negative electrode active material layer is not broken, the storage element can have sufficient high-temperature durability.
  • the electrolyte may contain any of these elements, and may contain two or more. When the electrolytic solution contains two or more elements, the total concentration thereof may be 20 ppm or more and 2000 ppm or less.
  • the method of adding at least one selected from the group consisting of Ni, Mn, Fe, Co and Al to the electrolytic solution is not particularly limited, but a compound containing these elements is mixed with the positive electrode precursor, A method of applying and decomposing and eluting; and a method of dissolving in an electrolytic solution, and the like.
  • a method in which a compound containing an element of Ni, Mn, Fe, Co or Al is mixed with a positive electrode precursor, and a voltage is applied to decompose and elute is preferable.
  • the method of quantifying the metal element contained in the non-aqueous electrolyte solution is not particularly limited.
  • the non-aqueous electrolyte solution is taken out from the storage element, and ICP-AES, atomic absorption analysis, fluorescence X Methods such as linear analysis, neutron activation analysis, ICP-MS, etc. may be mentioned.
  • the positive electrode precursor and the negative electrode are laminated or wound through a separator to form an electrode laminate or an electrode wound body having the positive electrode precursor, the negative electrode and the separator.
  • a separator a polyolefin microporous film such as a polyethylene microporous film or a polypropylene microporous film used for a lithium ion secondary battery, or a cellulose non-woven paper used for an electric double layer capacitor, polyester type A non-woven fabric containing a resin can be used.
  • a film made of organic or inorganic fine particles may be laminated as an insulating layer on one side or both sides of these separators. In addition, organic or inorganic fine particles may be contained inside the separator.
  • the thickness of the separator is preferably 5 ⁇ m or more and 35 ⁇ m or less. A thickness of 5 ⁇ m or more is preferable because self-discharge due to internal micro shorts tends to be small. On the other hand, by setting the thickness to 35 ⁇ m or less, the input / output characteristics of the non-aqueous lithium-type storage element tend to be high, which is preferable.
  • the thickness of the film made of organic or inorganic fine particles is preferably 1 ⁇ m to 10 ⁇ m. It is preferable to make the film made of organic or inorganic fine particles 1 ⁇ m or more in thickness, since the self-discharge due to the internal micro short tends to be small.
  • the porosity of the separator of the present embodiment is preferably 30% to 75%, and more preferably 55 to 70%. Setting the porosity to 30% or more is preferable from the viewpoint of following the rapid movement of lithium ions during high-speed charge and discharge. On the other hand, setting the porosity to 70% or less is preferable from the viewpoint of improving the film strength, and it is possible to suppress the internal short circuit of the storage element due to the unevenness of the electrode surface or foreign matter.
  • Non-aqueous lithium type storage element As described later, the non-aqueous lithium-type storage element of the present embodiment is configured such that the electrode stack or the electrode winding body is accommodated in the outer package together with the non-aqueous electrolytic solution.
  • the electrode laminate obtained in the cell assembling step is obtained by connecting a positive electrode terminal and a negative electrode terminal to a laminate formed by laminating a positive electrode precursor and a negative electrode cut in the shape of a single leaf through a separator.
  • a stacked electrode By using a stacked electrode, the distance between the positive electrode and the negative electrode can be made uniform when stored in the outer package, so that the internal resistance can be reduced and the power storage element can have a high output.
  • an electrode winding body connects a positive electrode terminal and a negative electrode terminal to the winding body formed by winding a positive electrode precursor and a negative electrode through a separator.
  • the shape of the electrode winding body may be cylindrical or flat, but it is preferable to be flat from the viewpoint of improving the filling rate of the storage element at the time of packing.
  • the time required for the cell assembly process can be shortened, so that the production efficiency is improved.
  • the method of connecting the positive electrode terminal and the negative electrode terminal is not particularly limited, it is carried out by a method such as resistance welding or ultrasonic welding.
  • a metal can, a laminate packaging material, etc. can be used as an exterior body.
  • the metal can is preferably made of aluminum or an aluminum alloy.
  • the lid of the metal can is preferably provided with a safety valve. By providing the safety valve, gas can be released when the internal pressure of the battery rises due to gas generation.
  • a metal can By using a metal can, the filling rate of the electrode laminate in the outer package can be increased, so that the energy density can be improved.
  • a laminate packaging material a film in which a metal foil and a resin film are laminated is preferable, and a three-layer structure composed of an outer layer resin film / metal foil / interior resin film is exemplified.
  • the outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used.
  • the metal foil is for preventing permeation of moisture and gas, and foils of copper, aluminum, stainless steel and the like can be suitably used.
  • the inner resin film protects the metal foil from the non-aqueous electrolytic solution housed inside, and is for melting and sealing at the time of heat sealing of the outer package, and polyolefin, acid-modified polyolefin and the like can be suitably used.
  • the dried electrode laminate or electrode wound body is preferably housed in an outer package represented by a metal can or a laminate packaging material, and sealed in a state in which only one opening remains.
  • an electrode wound body it is preferable to form it into a flat shape using a press before being stored in the outer package. At this time, the wound body may be heated at the time of pressurization. After the wound body is formed into a flat shape, it is housed in the outer package. From the viewpoint of improving the adhesion between the exterior body and the electrode rod disassembling, it is preferable to apply pressure and heat again using a press after storage.
  • the method of sealing the outer package is not particularly limited, but in the case of using a laminate packaging material, a method such as heat sealing or impulse sealing is used.
  • the residual solvent is preferably 1.5% by mass or less based on the mass of the positive electrode active material layer or the negative electrode active material layer. If the residual solvent content is more than 1.5% by mass, the solvent remains in the system, which deteriorates the self-discharge characteristics and the cycle characteristics, which is not preferable.
  • the non-aqueous electrolytic solution is injected into the electrode stack or the electrode winding body housed in the outer package. After completion of the pouring step, it is desirable to further carry out impregnation, and sufficiently immerse the positive electrode, the negative electrode and the separator with the non-aqueous electrolytic solution. In a state where the non-aqueous electrolytic solution is not immersed in at least a part of the positive electrode, the negative electrode, and the separator, in the lithium doping step described later, the doping proceeds nonuniformly, so the resistance of the obtained non-aqueous lithium storage element is obtained. Rising or decreasing in durability.
  • the impregnation method is not particularly limited.
  • the electrode laminate or electrode winding body after liquid injection is placed in a vacuum chamber in a state where the outer package is opened, and the inside of the chamber is It is possible to use a method of reducing pressure and returning to atmospheric pressure again.
  • the laminate packaging material is used after the impregnation step
  • the electrode laminate or the electrode wound body in the state where the outer package is opened is sealed by sealing while decompressing.
  • sealing means such as welding or caulking is used.
  • Lithium doping process In the lithium doping step, as a preferred step, a voltage is applied between the positive electrode precursor and the negative electrode to decompose the lithium compound, thereby decomposing the lithium compound in the positive electrode precursor to release lithium ions.
  • the lithium active material layer is pre-doped with lithium ion by reducing the lithium ion.
  • a gas such as CO 2 is generated along with the oxidative decomposition of the lithium compound in the positive electrode precursor. Therefore, when applying a voltage, it is preferable to take means for releasing the generated gas to the outside of the package.
  • a method of applying a voltage in a state in which a part of the exterior body is opened in a state in which an appropriate gas discharge means such as a degassing valve, a gas permeable film, etc.
  • an appropriate gas discharge means such as a degassing valve, a gas permeable film, etc.
  • Method of applying voltage; etc. can be mentioned.
  • the electrode stack or the electrode winding body is subjected to aging after completion of the lithium doping step.
  • the solvent in the non-aqueous electrolyte decomposes at the electrode-electrolyte interface, and a lithium ion permeable solid polymer film is formed on the electrode.
  • the method of the aging is not particularly limited, but for example, a method of reacting a solvent in the non-aqueous electrolytic solution in a high temperature environment can be used.
  • the electrode laminate or the electrode wound body is installed in a pressure reducing chamber in a state where the outer package is opened, and the inside of the chamber is reduced in pressure using a vacuum pump. A method etc. can be used.
  • the electric energy E (Wh) is a value obtained by the following method: It refers to a value calculated by F ⁇ (4.2 ⁇ 2.2) / 2/3600, using the capacitance F (F) calculated by the method described above.
  • volume The volume of the non-aqueous lithium-type storage element is not particularly specified, but a region of the electrode stack or the electrode winding body in which the positive electrode active material layer and the negative electrode active material layer are stacked is accommodated by the outer package. Point to the volume of the part.
  • the region where the positive electrode active material layer and the negative electrode active material layer are present is cup-formed
  • the volume (V11) of the non-aqueous lithium-type storage element contained in the laminate film includes the external dimension length (l1), the external dimension width (w1), and the laminate film of the cup molding portion
  • the volume of the non-aqueous lithium-type storage element is simply the volume of the outer size of the metal can.
  • the volume of the non-aqueous lithium-type storage element is the volume of the outer size of the metal can. That is, the volume (V33) of the non-aqueous lithium-type storage element is determined by the outer radius (r) of the bottom or upper surface of the cylindrical metal can and the outer dimension length (l3). Calculated by r ⁇ l3.
  • the normal temperature internal resistance Ra ( ⁇ ) is a value obtained by the following method: First, constant-current charging is performed until reaching 4.2 V at a current value of 20 C in a constant temperature bath where the cell corresponding to the non-aqueous lithium type storage element is set at 25 ° C. Perform constant voltage charging for a total of 30 minutes. Subsequently, constant-current discharge is performed up to 2.2 V at a current value of 20 C to obtain a discharge curve (time-voltage).
  • the low temperature internal resistance Rc is a value obtained by the following method: First, the cell corresponding to the non-aqueous lithium type storage element is left for 2 hours in a thermostat set at -30.degree. Thereafter, while keeping the temperature of the constant temperature bath at -30 ° C., constant current charging is performed until it reaches 4.2 V at a current value of 1.0 C, and then a total of 2 constant voltage charges for applying a constant voltage of 4.2 V Do time. Subsequently, constant current discharge is performed up to 2.2 V at a current value of 10 C to obtain a discharge curve (time-voltage).
  • the amount of gas generation at the time of the high temperature storage test and the rate of increase in internal resistance at normal temperature after the high temperature storage test are measured by the following method: First, constant-current charging is performed at a current value of 100 C until reaching 4.2 V in a constant temperature bath where the cell corresponding to the non-aqueous lithium type storage element is set to 25 ° C., and then a constant voltage of 4.2 V is applied. Perform constant-voltage charging for 10 minutes. Thereafter, the cell is stored at 60 ° C., removed from the environment at 60 ° C. every two weeks, charged to 4.2 V at the cell voltage in the above charging step, and then stored again at 60 ° C. .
  • the rate of increase in resistance after the high load charge / discharge cycle test is measured by the following method: First, constant-current charging is performed at a current value of 300 C until reaching 4.2 V in a constant temperature bath where the cell corresponding to the non-aqueous lithium type storage element is set to 25 ° C., and then 2.2 V at a current value of 300 C Perform constant current discharge until reaching. The above charge and discharge process is repeated 60000 times, capacitance measurement is performed before and after the test, capacitance before the start of the test is Fa (F), and capacitance after the test is Fd (F). The capacitance retention ratio after the high load charge / discharge cycle test before the start of the test is calculated by Fd / Fa.
  • the non-aqueous lithium type storage element is an outer package housing an initial room temperature internal resistance Ra ( ⁇ ), an electrostatic capacity F (F), an electric energy E (Wh), and an electric storage element
  • Ra initial room temperature internal resistance
  • F electrostatic capacity
  • E electric energy
  • Rc electric storage element
  • Ra ⁇ F is preferably 3.0 or less, more preferably 2.6 or less, from the viewpoint of exhibiting sufficient charge capacity and discharge capacity for large currents. Preferably it is 2.4 or less. If Ra ⁇ F is less than or equal to the above upper limit value, a non-aqueous lithium-type storage element having excellent input / output characteristics can be obtained. Therefore, by combining a storage system using a non-aqueous lithium type storage element with, for example, a high efficiency engine, it is possible to sufficiently withstand high loads applied to the non-aqueous lithium type storage element, which is preferable.
  • E / V is preferably 20 or more, more preferably 25 or more, and still more preferably 30 or more, from the viewpoint of exhibiting sufficient charge capacity and discharge capacity. If E / V is more than said lower limit, the electrical storage element which has the outstanding volume energy density can be obtained. Therefore, when using the storage system using a storage element in combination with the engine of a car, for example, it becomes possible to install the storage system in a limited narrow space in the car, which is preferable.
  • Rc / Ra of (c) is preferably 30 or less, more preferably 26 or less, from the viewpoint of exhibiting sufficient charge capacity and discharge capacity even in a low temperature environment of ⁇ 30 ° C. Preferably it is 22 or less. If Rc / Ra is equal to or less than the above upper limit value, a storage element having excellent output characteristics even in a low temperature environment can be obtained. Therefore, it is possible to obtain a storage element that provides sufficient power to drive a motor when starting an engine such as a car or a motorcycle under a low temperature environment.
  • the non-aqueous lithium type storage element stores the initial normal temperature internal resistance at Ra ( ⁇ ), the capacitance at F (F), the cell voltage of 4.2 V, and the environmental temperature of 60 ° C. for two months Assuming that the internal resistance at 25 ° C. is Rb ( ⁇ ), and the internal resistance at an ambient temperature of ⁇ 30 ° C. is Rc, the following requirements (d) and (e): (D) Rb / Ra is 0.3 or more and 3.0 or less, and (e) the amount of gas generated when stored at a cell voltage of 4.2 V and an environmental temperature of 60 ° C. for 2 months is 30 ⁇ at 25 ° C. Less than 10 -3 cc / F, It is preferable to simultaneously satisfy
  • Rb / Ra is preferably 3.0 or less from the viewpoint of exhibiting sufficient charge capacity and discharge capacity for large current when exposed to a high temperature environment for a long time More preferably, it is 2.0 or less, More preferably, it is 1.5 or less. If Rb / Ra is equal to or less than the above upper limit value, excellent output characteristics can be obtained stably for a long time, which leads to prolonging the lifetime of the device.
  • the amount of gas generated when stored for two months at a cell voltage of 4.2 V and an environmental temperature of 60 ° C. does not degrade the characteristics of the device by the generated gas. It is preferable that it is 30 ⁇ 10 ⁇ 3 cc / F or less, more preferably 20 ⁇ 10 ⁇ 3 cc / F or less, still more preferably 15 ⁇ 10 ⁇ 3 cc / F or less as a value measured in . If the amount of gas generated under the above conditions is equal to or less than the above upper limit value, there is no risk that the cell will expand due to gas generation even if the device is exposed to high temperature for a long time. Therefore, a storage element having sufficient safety and durability can be obtained.
  • a storage module can be manufactured by connecting a plurality of non-aqueous alkali metal storage elements according to this embodiment in series or in parallel. Further, the non-aqueous alkaline metal storage element and storage module of the present embodiment can achieve both high input / output characteristics and safety at high temperature, so that a power regeneration assist system, a power load leveling system, uninterrupted power supply Used for power supply system, non-contact power supply system, energy harvesting system, storage system, electric power steering system, emergency power supply system, in-wheel motor system, idling stop system, quick charge system, smart grid system, backup power system etc be able to.
  • the backup power supply system can be used to make multiple power supplies of vehicles such as electric vehicles and electric motorcycles, and refers to the second or subsequent power supply system among the plurality of power supply systems.
  • the storage system is suitably used for natural power generation such as solar power generation or wind power generation
  • the power load leveling system is preferably used for a micro grid, etc.
  • the uninterruptible power supply system is preferably used for production facilities of a factory.
  • the non-aqueous alkaline metal storage element is an energy harvesting system for energy leveling and leveling of voltage fluctuations such as microwave power transmission or electric field resonance. In order to use the electric power generated by vibration power generation etc., it utilizes suitably, respectively.
  • non-aqueous alkali metal storage elements are connected in series or in parallel as a cell stack, or a non-aqueous alkali metal storage element, a lead battery, a nickel hydrogen battery, a lithium ion secondary
  • the cells or fuel cells are connected in series or in parallel.
  • the non-aqueous lithium type storage element according to the present embodiment can achieve both high input / output characteristics and safety at high temperature, for example, electric vehicles, plug-in hybrid vehicles, hybrid vehicles, electric motorcycles, etc. Or a hybrid construction machine.
  • a hybrid construction machine is a construction machine equipped with a combination of a fuel oil such as light oil and gasoline and a storage element, and may be a manned vehicle or a driverless vehicle, such as a shovel, a wheel loader, or the like It can be a replacement attachment construction machine or the like.
  • the power regeneration assist system, the electric power steering system, the emergency power supply system, the in-wheel motor system, the idling stop system, the backup power supply system or the combination thereof described above is suitably mounted on a vehicle or a hybrid construction machine.
  • Example 1 ⁇ Pulverization of lithium carbonate> Using lithium carbonate having a BET specific surface area of 0.9 m 2 / g and a pore volume P of 0.001 cc / g, 15 parts by mass of lithium carbonate and 85 parts by mass of IPA (isopropanol) are mixed in a homodispersion, A lithium carbonate suspension was obtained. The lithium carbonate suspension was milled in a wet bead mill for 2 hours to obtain a lithium compound-containing slurry. The obtained lithium compound-containing slurry was heated to 50 ° C. under reduced pressure with a heating mixer, and dried while stirring for 3 hours to prepare lithium carbonate. It was 0.5 micrometer when the lithium carbonate particle diameter of preparation was calculated
  • the activated carbon was dried for 10 hours in an electric dryer maintained at 115 ° C., and then pulverized for 1 hour with a ball mill to obtain an activated carbon A.
  • the average particle diameter of the activated carbon A was measured using a laser diffraction type particle size distribution measuring apparatus (SALD-2000J) manufactured by Shimadzu Corporation and found to be 4.2 ⁇ m.
  • SALD-2000J laser diffraction type particle size distribution measuring apparatus
  • pore distribution was measured using a pore distribution measuring apparatus (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics.
  • the BET specific surface area was 2360 m 2 / g
  • the mesopore amount (V1) was 0.52 cc / g
  • the micropore amount (V2) was 0.88 cc / g
  • V1 / V2 0.59.
  • the pore distribution of the activated carbon B was measured using a pore distribution measuring apparatus (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics.
  • AUTOSORB-1 AS-1-MP pore distribution measuring apparatus manufactured by Yuasa Ionics.
  • the BET specific surface area was 3627 m 2 / g
  • the mesopore amount (V1) was 1.50 cc / g
  • the micropore amount (V2) was 2.28 cc / g
  • V1 / V2 0.66.
  • the activated carbon A obtained above was used as a positive electrode active material to manufacture a positive electrode precursor.
  • the mixture was mixed with 10 parts by mass, 8.0 parts by mass of PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone), and the mixture was subjected to a peripheral speed of 17 m / m using a thin film swirl type high speed mixer film mix manufactured by PRIMIX.
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,700 mPa ⁇ s, and the TI value was 3.5. Further, the degree of dispersion of the obtained coating liquid was measured using a particle gauge manufactured by Yoshimitsu Seiki. As a result, the particle size was 35 ⁇ m.
  • the above coating solution is coated on one side or both sides of a 15 ⁇ m thick aluminum foil using a die coater manufactured by Toray Engineering Co., Ltd.
  • the obtained positive electrode precursor was pressed using a roll press under the conditions of a pressure of 4 kN / cm and a surface temperature of the press part of 25 ° C.
  • the film thickness of the positive electrode active material layer of the positive electrode precursor obtained above was measured using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd., and the average thickness of the thickness of the positive electrode precursor measured at any ten places From the value, it was determined by subtracting the thickness of the aluminum foil.
  • the film thickness of the positive electrode active material layer was 110 ⁇ m per side.
  • the fabric weight of the positive electrode active material layer was 52 g ⁇ m ⁇ 2 per one surface.
  • the single-sided positive electrode precursor and the double-sided positive electrode precursor using activated carbon A are referred to as a single-sided positive electrode precursor A and a double-sided positive electrode precursor A (collectively, “positive electrode precursor A”).
  • the single-sided positive electrode precursor and the double-sided positive electrode precursor using activated carbon B are referred to as a single-sided positive electrode precursor B and a double-sided positive electrode precursor B (collectively "positive electrode precursor B"), respectively.
  • the obtained negative electrode active material A was cooled to 60 ° C. by natural cooling, and then taken out of the electric furnace.
  • the average particle size and BET specific surface area of the obtained negative electrode active material A were measured by the same method as described above. As a result, the average particle size was 6.4 ⁇ m, and the BET specific surface area was 5.2 m 2 / g.
  • a negative electrode was manufactured using the negative electrode active material A as a negative electrode active material. 85 parts by mass of the negative electrode active material A, 10 parts by mass of acetylene black, 5 parts by mass of PVdF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) are mixed, and the mixture is a thin film swirl type high speed manufactured by PRIMIX It disperse
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,789 mPa ⁇ s, and the TI value was 4.3.
  • the above coating solution is coated on both sides of a 10 ⁇ m thick electrolytic copper foil without through holes using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 85 ° C. The negative electrode A was obtained.
  • the obtained negative electrode A was pressed using a roll press under a pressure of 4 kN / cm and a surface temperature of the press part of 25 ° C.
  • the film thickness of the negative electrode active material layer of the negative electrode A obtained above was obtained from the average value of the thicknesses measured at any ten places of the negative electrode A using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd. , Determined by subtracting the thickness of the copper foil.
  • the basis weight per one surface of the negative electrode active material layer of the negative electrode A was 30 g / m 2 , and the film thickness was 40 ⁇ m.
  • the negative electrode A thus obtained is cut out to a size of 1.4 cm ⁇ 2.0 cm (2.8 cm 2 ), and one layer of the negative electrode active material layer coated on both sides of the copper foil is a spatula, brush, brush And the working electrode was used.
  • LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 1: 1 as electrolyte using metallic lithium as a counter electrode and reference electrode respectively
  • An electrochemical cell was fabricated in an argon box using a non-aqueous solution.
  • the initial charging capacity of the obtained electrochemical cell was measured using the charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd. according to the following procedure.
  • TOSCAT-3100U charge / discharge device
  • Against the electrochemical cell at a temperature 25 ° C., after the voltage value at a current value 0.5 mA / cm 2 was subjected to constant current charging until 0.01 V, further the current value reached 0.01 mA / cm 2 The constant voltage charge was performed.
  • the capacity per unit mass of the negative electrode A (the doping amount of lithium ion) was 400 mAh / g.
  • Negative Electrode Active Material B 150 g of commercially available coconut shell activated carbon having an average particle diameter of 3.0 ⁇ m and a BET specific surface area of 1,780 m 2 / g are put in a stainless steel mesh crucible and made of stainless steel containing 270 g of coal pitch (softening point: 50 ° C.)
  • the negative electrode active material B was obtained by placing the two on a bat and placing them in an electric furnace (inside furnace effective dimension 300 mm ⁇ 300 mm ⁇ 300 mm) and performing a thermal reaction. The heat treatment was performed by raising the temperature in the furnace to 600 ° C. for 8 hours under a nitrogen atmosphere and holding the temperature for 4 hours at the same temperature.
  • the inside of the furnace was cooled to 60 ° C. by natural cooling, and then the negative electrode active material B was taken out of the furnace.
  • the average particle size and BET specific surface area of the obtained negative electrode active material B were measured by the same method as described above. As a result, the average particle size was 3.2 ⁇ m, and the BET specific surface area was 262 m 2 / g.
  • Negative Electrode Active Material C 100 parts by weight of carbon black (CB1) having an average particle diameter of 30 nm and a BET specific surface area of 254 m 2 / g, and 50 parts by weight of optically isotropic pitch (P1) having a softening point of 110 ° C. and a metaphase amount (QI amount) of 13%
  • the resulting mixture was calcined at 1,000 ° C. in a non-oxidizing atmosphere.
  • the composite porous material C was obtained as a negative electrode active material C by grinding the fired product to an average particle diameter (D50) of 7 ⁇ m.
  • the BET specific surface area of the obtained negative electrode active material C was measured by the same method as described above. As a result, the BET specific surface area was 180 m 2 / g.
  • Negative Electrode Active Material D By grinding the non-graphitizable carbon, a negative electrode active material D having an average particle diameter of 5 ⁇ m and a BET specific surface area of 6 m 2 / g was obtained.
  • the lithium ion doping amount was measured in the same manner as for the negative electrode A, and as a result, the negative electrode B was 750 mAh / g, the negative electrode C was 1300 mAh / g, and the negative electrode D was 420 mAh / g.
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd.
  • the viscosity ( ⁇ b) was 2,982 mPa ⁇ s, and the TI value was 3.2.
  • the above coating solution is coated on both sides of a 10 ⁇ m thick, 1.5 ⁇ m thick Rzjis electrolytic copper foil using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 85 ° C.
  • the negative electrode was obtained (hereinafter, also referred to as "double-sided negative electrode”).
  • the obtained negative electrode was pressed using a roll press under a condition of a pressure of 4 kN / cm and a surface temperature of 25 ° C. of a pressing portion to obtain a negative electrode E.
  • the total thickness of the obtained negative electrode E was measured at any 10 points of the negative electrode using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd.
  • the thickness of the copper foil was subtracted from the measured average value of the total thickness to determine the film thickness of the negative electrode active material layer of the negative electrode E.
  • the basis weight per one surface of the negative electrode active material layer of the negative electrode E was 20 g / m 2 , and the film thickness was 30 ⁇ m.
  • the negative electrode E was 600 mAh / g.
  • ⁇ Manufacture of negative electrode F 85 parts by mass of lithium titanate (Li 4/3 Ti 5/3 O 4 ) having an average particle diameter of 5 ⁇ m and a BET specific surface area of 7 m 2 / g, 10 parts by mass of acetylene black, and 5 of PVdF (polyvinylidene fluoride) Parts and NMP (N-methyl pyrrolidone) are mixed, and the mixture is dispersed at a peripheral speed of 15 m / s using a thin film swirl type high-speed mixer film mix manufactured by PRIMIX, and a coating liquid (negative electrode active material I got F).
  • lithium titanate Li 4/3 Ti 5/3 O 4
  • BET specific surface area 7 m 2 / g
  • PVdF polyvinylidene fluoride Parts
  • NMP N-methyl pyrrolidone
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,789 mPa ⁇ s, and the TI value was 4.3.
  • the above coating solution is coated on both sides of a 10 ⁇ m thick electrolytic copper foil without through holes using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 85 ° C.
  • the negative electrode was obtained.
  • the obtained negative electrode was pressed using a roll press under a pressure of 4 kN / cm and a surface temperature of 25 ° C.
  • the film thickness of the negative electrode active material layer of the negative electrode F obtained above is obtained from the average value of the thicknesses measured at any ten places of the negative electrode F using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd. , Determined by subtracting the thickness of the copper foil.
  • the basis weight per one surface of the negative electrode active material layer of the negative electrode F was 35 g / m 2 , and the film thickness was 40 ⁇ m.
  • the negative electrode F was 180 mAh / g.
  • a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): methyl ethyl carbonate (EMC) 34: 44: 22 (volume ratio) is used as the organic solvent, and LiN (SO 2 F) with respect to all the electrolytic solution Dissolve each electrolyte salt so that the concentration ratio of 2 and LiPF 6 is 25:75 (molar ratio), and the sum of the concentrations of LiN (SO 2 F) 2 and LiPF 6 is 1.2 mol / L.
  • a non-aqueous electrolytic solution 1 was obtained.
  • the concentrations of LiN (SO 2 F) 2 and LiPF 6 in the electrolyte prepared here were 0.3 mol / L and 0.9 mol / L, respectively.
  • ⁇ Assembly of storage element> The obtained double-sided negative electrode A and the double-sided positive electrode precursor A were cut into 10 cm ⁇ 10 cm (100 cm 2 ).
  • the top and bottom surfaces use a single-sided positive electrode precursor, 21 double-sided negative electrodes and 20 double-sided positive electrode precursors, and made of polyethylene with a thickness of 15 ⁇ m and a porosity of 65% between the negative electrode and the positive electrode precursor
  • the microporous membrane separator A was sandwiched and laminated.
  • ⁇ Welding of terminals> Thereafter, the negative electrode terminal and the positive electrode terminal were connected to the negative electrode and the positive electrode precursor, respectively, by ultrasonic welding to form an electrode laminate.
  • the electrode stack was vacuum dried at 80 ° C., 50 Pa, and 60 hours.
  • This electrode laminate is inserted into an exterior body made of an aluminum laminate packaging material in a dry environment with a dew point of -45 ° C, and the exterior body 3 side of the electrode terminal portion and the bottom portion at 180 ° C, 20 sec and 1.0 MPa Heat sealed.
  • ⁇ Injection, impregnation, sealing process of storage element About 80 g of the non-aqueous electrolyte solution 1 was injected under atmospheric pressure to the electrode laminate housed in the aluminum laminate packaging material under a dry air environment with a temperature of 25 ° C. and a dew point of ⁇ 40 ° C. or less. Subsequently, the non-aqueous lithium-type storage element was placed in a decompression chamber, and after reducing the pressure from atmospheric pressure to ⁇ 87 kPa, the pressure was returned to atmospheric pressure and allowed to stand for 5 minutes. Thereafter, the pressure was reduced from atmospheric pressure to ⁇ 87 kPa, and then the process of returning to atmospheric pressure was repeated four times, and then the device was allowed to stand for 15 minutes.
  • the pressure was reduced from normal pressure to ⁇ 91 kPa, and then returned to atmospheric pressure. Similarly, the steps of depressurizing the element and returning to the atmospheric pressure were repeated a total of seven times. (The pressure was reduced to -95, -96, -97, -81, -97, -97, -97 kPa, respectively).
  • the non-aqueous electrolytic solution was impregnated into the electrode laminate through the above steps. Thereafter, the non-aqueous lithium-type storage element was placed in a vacuum sealing machine, and the aluminum laminate packaging material was sealed by sealing at 180 ° C. for 10 seconds at a pressure of 0.1 MPa in a state of reduced pressure to ⁇ 95 kPa.
  • ⁇ Aging process> After performing constant current discharge until the voltage reaches 3.0 V at 0.7 A in a 25 ° C. environment, perform the constant current constant voltage charge up to 4.0 V for 1 hour in a non-aqueous lithium storage element after lithium doping The voltage was adjusted to 4.0 V by Subsequently, the non-aqueous lithium type storage element was stored in a thermostat at 60 ° C. for 20 hours.
  • ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is subjected to constant current discharge at 25 ° C. in 10 A until voltage reaches 2.5 V, then charged from 2.5 V to 3.9 V at 10 A, and then at 10 A The charge and discharge process of discharging to 2.5 V was repeated five times.
  • ⁇ Gas removal process> After the additional charge and discharge process, a part of the aluminum laminate packaging material was opened in a dry air environment with a temperature of 25 ° C. and a dew point of ⁇ 40 ° C. Subsequently, the non-aqueous lithium type storage element is placed in a decompression chamber and decompressed from atmospheric pressure to -80 kPa for 3 minutes using a diaphragm pump (N816.3 KT. 45.18) manufactured by KNF, The process of returning to atmospheric pressure for 3 minutes was repeated a total of three times. Thereafter, the non-aqueous lithium-type storage element was put in a reduced pressure sealing machine, the pressure was reduced to ⁇ 90 kPa, and sealing was performed at 200 ° C. for 10 seconds at a pressure of 0.1 MPa to seal the aluminum laminate packaging material.
  • a diaphragm pump N816.3 KT. 45.18
  • ⁇ Analysis of positive electrode active material layer> The completed non-aqueous lithium type storage element is adjusted to 2.9 V, and then disassembled in an Ar box managed with a dew point of -90 ° C. or less and an oxygen concentration of 1 ppm or less installed in a room of 23 ° C. to take out the positive electrode.
  • the taken out positive electrode was dipped and washed with dimethyl carbonate (DMC), and then vacuum dried in a side box under non-exposed to air. The dried positive electrode was transferred from the side box to the Ar box while maintaining the atmosphere unexposed.
  • DMC dimethyl carbonate
  • Solid 7 Li-NMR measurement The positive electrode active material layer was collected from the positive electrode obtained above and weighed. Solid 7 Li-NMR measurement was performed using the obtained positive electrode active material layer as a sample. Using a JEOL RESONANCE ECA 700 (the resonance frequency of 7 Li-NMR is 272.1 MHz) as a measurement device, the rotation angle of magic angle spinning is 14.5 kHz, and the irradiation pulse width is 45 ° pulse in a room temperature environment. NMR was measured by the single pulse method. A 0.8 mol / L aqueous solution of lithium chloride was used as a shift standard, and the shift position separately measured as an external standard was set to 0 ppm.
  • the repetitive waiting time during the measurement was sufficiently taken, and the repetitive waiting time was set to 300 seconds, and the integration number was set to 32 times.
  • the peak top of signal A at -2 ppm to 2.5 ppm, -6 ppm to Assuming that the peak top of signal B was ⁇ 2.5 ppm the area ratio of both components was determined by waveform separation.
  • the waveform separation was calculated by the least squares method by fitting at a ratio of 25% of a Gaussian curve and 75% of a Lorentz curve with a half width within the range of 300 Hz to 1000 Hz. The results are shown in Table 2.
  • Example 2 to 8 and Comparative Examples 1 and 2 Non-aqueous lithium type electricity storage in the same manner as in Example 1 except that the ratio of the lithium compound in the negative electrode, the positive electrode precursor active material, the lithium compound, and the positive electrode precursor in Example 1 is changed as described in Table 1, respectively.
  • the element was produced and various evaluations were performed. The evaluation results are shown in Table 2.
  • Example 9 A non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except for the lithium doping step described below, and various evaluations were performed. The evaluation results are shown in Table 2. ⁇ Lithium doping process> With respect to the obtained non-aqueous lithium type storage element, using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., a voltage of 4.8 V is reached at a current value of 0.7 A under an environment of 25 ° C. After current charging, the battery was initially charged by a method of continuing 4.8 V constant voltage charging for 10 hours, and lithium doping was performed on the negative electrode.
  • TOSCAT-3100U charge / discharge device manufactured by Toyo System Co., Ltd.
  • Example 10 A non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except for the lithium doping step described below, and various evaluations were performed.
  • ⁇ Lithium doping process> Using the charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., the obtained non-aqueous lithium-type storage element was measured until it reached 4.5 V at a current value of 0.7 A under an environment of 25 ° C. After current charging, initial charging was continued by a method in which 4.5 V constant voltage charging was continued for 10 hours, and lithium doping was performed on the negative electrode.
  • Example 11 A non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except for the lithium doping step described below, and various evaluations were performed.
  • ⁇ Lithium doping process> With respect to the obtained non-aqueous lithium type storage element, using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., a voltage of 4.3 A is reached at a current value of 0.7 A under an environment of 25 ° C. After current charging, initial charging was continued by a method in which 4.3 V constant voltage charging was continued for 10 hours, and lithium doping was performed on the negative electrode.
  • TOSCAT-3100U charge / discharge device manufactured by Toyo System Co., Ltd.
  • Example 12 A non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except for the additional charge-discharge step described below, and various evaluations were performed. ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is discharged at 10 A under constant current discharge at 25 ° C. until the voltage reaches 2.6 V, then charged from 2.6 V to 4.0 V at 10 A, and then at 10 A The charge and discharge process of discharging to 2.6 V was repeated five times.
  • Example 13 A non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except for the additional charge-discharge step described below, and various evaluations were performed. ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is subjected to constant current discharge at 10 A in a 25 ° C. environment until it reaches 2.4 V at 10 A, then charged at 10 A from 2.4 V to 3.8 V, and then at 10 A The charge and discharge process of discharging to 2.4 V was repeated five times.
  • Example 14 A non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except for the additional charge-discharge step described below, and various evaluations were performed. ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is discharged in a constant current environment at 25 ° C. until the voltage reaches 2.3 V at 10 A, then charged from 2.3 V to 3.6 V at 10 A and then at 10 A The charge and discharge process of discharging to 2.3 V was repeated five times. (Comparative example 3)
  • a non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except that the additional charge and discharge step was not performed, and various evaluations were performed.
  • Example 15 [Fabrication of positive electrode precursor C containing transition metal oxide] 43.1 parts by mass of activated carbon A, 14.4 parts by mass of LiCoO 2 having an average particle diameter of 3.5 ⁇ m as a lithium transition metal oxide, 30.0 parts by mass of lithium carbonate, 3.0 parts by mass of ketjen black , 1.5 parts by mass of PVP (polyvinyl pyrrolidone), and 8.0 parts by mass of PVDF (polyvinylidene fluoride), and NMP (N-methyl -2-) so that the weight ratio of the solid content is 24.5%.
  • PVP polyvinyl pyrrolidone
  • PVDF polyvinylidene fluoride
  • NMP N-methyl -2-
  • the viscosity ( ⁇ b) and the TI value of the obtained positive electrode coating liquid 1 were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,690 mPa ⁇ s, and the TI value was 6.6. Further, the degree of dispersion of the obtained positive electrode coating liquid 1 was measured using a particle gauge manufactured by Yoshimitsu Seiki.
  • the particle size was 23 ⁇ m.
  • a double-sided die coater manufactured by Toray Engineering, apply the positive electrode coating solution 1 on one side or both sides of a 15 ⁇ m thick aluminum foil at a coating speed of 1 m / s, and the temperature of the drying furnace is 70 ° C, The temperature was adjusted in the order of 90 ° C., 110 ° C., and 130 ° C., and then dried with an IR heater to obtain a positive electrode precursor C.
  • the obtained positive electrode precursor C was pressed using a roll press under the conditions of a pressure of 6 kN / cm and a surface temperature of the press part of 25 ° C.
  • the total thickness of the positive electrode precursor C was measured at any 10 points of the positive electrode precursor C, using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd.
  • the film thickness of the positive electrode active material layer obtained by subtracting the thickness of the aluminum foil was 70 ⁇ m per side.
  • the fabric weight of the positive electrode active material layer was 45 g ⁇ m ⁇ 2 per one surface.
  • a non-aqueous lithium-type storage element was prepared and evaluated in the same manner as in Example 1 except for the preparation of the positive electrode precursor. It finished the mass ratio A 1 of the carbon material contained in the positive electrode active material layer in the positive electrode of a nonaqueous lithium-type storage element, and the mass ratio A 2 of the lithium transition metal oxide is calculated in the manner described above. The results are shown in Table 2.
  • Example 15 In Example 15 except that the positive electrode active material in the negative electrode, the positive electrode precursor, the lithium compound, and the lithium compound ratio in the positive electrode precursor were changed as described in Table 1, respectively, A water-based lithium-type storage element was produced and subjected to various evaluations. The evaluation results are shown in Table 2. The abbreviations of positive electrode active materials in Tables 1, 3, 5 and 10 have the following meanings, respectively. NCA: LiNi 0.80 Co 0.15 Al 0.05 O 2 NCM: LiNi 0.33 Co 0.33 Mn 0.33 O 2
  • Example 34 A storage element was assembled in the same manner as in Example 23 using the negative electrode F. Thereafter, a non-aqueous lithium-type storage element was produced in the same manner as in Example 23, except that the lithium doping step to the additional charging / discharging step described below was performed.
  • ⁇ Lithium doping process> With respect to the obtained non-aqueous lithium type storage element, using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., a voltage of 3.2 A is reached at a current value of 0.7 A under an environment of 25 ° C. After current charging, initial charging was continued by a method in which 3.2 V constant voltage charging was continued for 10 hours, and lithium doping was performed on the negative electrode.
  • TOSCAT-3100U charge / discharge device manufactured by Toyo System Co., Ltd.
  • ⁇ Aging process> After performing constant current discharge to reach a voltage of 1.6 V at 0.7 A in a 25 ° C. environment, perform a constant current constant voltage charge up to 3.0 V for 1 hour in a non-aqueous lithium storage element after lithium doping The voltage was adjusted to 3.0 V by Subsequently, the non-aqueous lithium type storage element was stored in a thermostat at 60 ° C. for 20 hours.
  • ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is discharged in a constant current environment at 25 ° C. until the voltage reaches 1.6 V at 10 A, then charged from 1.6 V to 3.0 V at 10 A, and then at 10 A The charge and discharge process of discharging to 1.6 V was repeated five times.
  • Example 8 A non-aqueous lithium type storage element was produced in the same manner as in Example 15 except that the type or ratio of the positive electrode active material was changed as shown in Table 1, and the additional charge / discharge step was not performed. I made an evaluation.
  • a negative electrode B2 was produced in the same manner as in the production of the negative electrode B, except that the negative electrode current collector was changed to a copper foil having a through hole with a thickness of 15 ⁇ m. As a result, the film thickness of the negative electrode active material layer of the negative electrode B2 was 40 ⁇ m per side.
  • a positive electrode precursor A2 was manufactured using activated carbon A as a positive electrode active material.
  • the viscosity ( ⁇ b) was 2,700 mPa ⁇ s, and the TI value was 3.5. Further, the degree of dispersion of the obtained coating liquid was measured using a particle gauge manufactured by Yoshimitsu Seiki. As a result, the particle size was 35 ⁇ m.
  • the above coating solution is coated on one side or both sides of a 15 ⁇ m thick aluminum foil using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 100 ° C. to obtain a positive electrode precursor I got The obtained positive electrode precursor was pressed using a roll press under a condition of a pressure of 4 kN / cm and a surface temperature of 25 ° C.
  • the thickness of the positive electrode active material layer of the positive electrode precursor A2 obtained above was measured at any ten places of the positive electrode precursor using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd. From the average value, it was determined by subtracting the thickness of the aluminum foil. As a result, the film thickness of the positive electrode active material layer was 120 ⁇ m per side. As a result of calculating the fabric weight by the above-mentioned method, the fabric weight of the positive electrode active material layer was 36 g ⁇ m ⁇ 2 per one surface.
  • the double-sided negative electrode B2 and the double-sided positive electrode precursor A2 were cut into 10 cm ⁇ 10 cm (100 cm 2 ).
  • a lithium metal foil corresponding to 760 mAh / g per unit mass of the negative electrode active material B was attached to one side of the double-sided negative electrode B2.
  • the top and bottom surfaces use a single-sided positive electrode precursor, and further use 21 double-sided negative electrodes and 20 double-sided positive electrode precursors that have undergone the above-mentioned lithium affixing step, with a thickness of 15 ⁇ m between the negative electrode and the positive electrode precursor. It laminated
  • the negative electrode terminal and the positive electrode terminal were connected to the negative electrode and the positive electrode precursor, respectively, by ultrasonic welding to form an electrode laminate.
  • the electrode stack was vacuum dried at 80 ° C., 50 Pa, and 60 hours.
  • This electrode laminate is inserted into an outer package body made of a laminate film in a dry environment with a dew point of -45 ° C, and the outer package body of the electrode terminal portion and the bottom portion is heated at 180 ° C, 20 sec, and 1.0MPa. I sealed it.
  • the nonaqueous electrolytic solution was injected into the outer package, and the outer package was sealed to assemble a non-aqueous lithium-type storage element.
  • ⁇ Aging process> The non-aqueous lithium-type storage element after lithium doping was adjusted to a cell voltage of 3.0 V, and then stored for 24 hours in a thermostat set at 45 ° C. Subsequently, using a charge / discharge device manufactured by Aska Electronics, charge current 10 A, discharge current 10 A, constant current charge between lower limit voltage 2.0 V, upper limit voltage 4.0 V, charge / discharge cycle by constant current discharge 2 I repeated it several times.
  • a non-aqueous lithium-type storage element was produced in the same manner as in Example 1 except that the storage element assembly, the lithium doping step, and the aging step were changed to the methods described above, and various evaluations were performed. The evaluation results are shown in Table 2.
  • Example 35 [Manufacture of Negative Electrode Containing Two Active Materials] 80 parts by mass of a mixed active material obtained by mixing negative electrode active material A and negative electrode active material B in a ratio of 95: 5, 8 parts by mass of acetylene black, 12 parts by mass of PVdF (polyvinylidene fluoride), and NMP (N- (N-) Methyl pyrrolidone) was mixed, and the mixture was dispersed at a peripheral velocity of 15 m / s using a thin film swirl type high-speed mixer film mix manufactured by PRIMIX, to obtain a coating liquid.
  • a mixed active material obtained by mixing negative electrode active material A and negative electrode active material B in a ratio of 95: 5
  • 8 parts by mass of acetylene black 12 parts by mass of PVdF (polyvinylidene fluoride), and NMP (N- (N-) Methyl pyrrolidone) was mixed, and the mixture was dispersed at a peripheral velocity of
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,789 mPa ⁇ s, and the TI value was 4.3.
  • the above coating solution is coated on both sides of a 10 ⁇ m thick electrolytic copper foil without through holes using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 85 ° C. The negative electrode was obtained.
  • the obtained negative electrode was pressed using a roll press under a condition of a pressure of 4 kN / cm and a surface temperature of 25 ° C. of a pressing portion to obtain a negative electrode 2.
  • the film thickness of the negative electrode active material layer of the negative electrode 2 obtained above is obtained from the average value of the thicknesses measured at any ten places of the negative electrode 2 using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd. , Determined by subtracting the thickness of the copper foil.
  • the basis weight per one surface of the negative electrode active material layer of the negative electrode 2 was 28 g / m 2 , and the film thickness was 40 ⁇ m.
  • a non-aqueous lithium-type storage element was produced and evaluated in the same manner as in Example 1 except for the production of the negative electrode. The evaluation results are shown in Table 4.
  • Example 35 is the same as Example 35 except that the ratios of the negative electrode, the negative electrode active material, the active material in the positive electrode precursor, the lithium compound, and the lithium compound in the positive electrode precursor are changed as described in Table 3, respectively.
  • a non-aqueous lithium-type storage element was fabricated and subjected to various evaluations. The evaluation results are shown in Table 4.
  • Example 53 to 55 The active material in the positive electrode precursor, the lithium compound, and the lithium compound ratio in the positive electrode precursor were each changed as described in Table 3, and an insulating porous layer with a thickness of 5 ⁇ m was formed on a polyolefin microporous film with a thickness of 16 ⁇ m.
  • a non-aqueous lithium-type storage element was produced in the same manner as in Example 43 except that a separator with a porosity of 60% was used, and various evaluations were performed. The evaluation results are shown in Table 4.
  • Example 56 Using a microporous polyolefin membrane as a substrate, and using a separator with a thickness of 16 ⁇ m and a porosity of 66% in which inorganic particles are contained in the inside of the substrate, the positive electrode active material was further changed as described in Table 3.
  • a non-aqueous lithium-type storage element was produced in the same manner as in Example 43 except for the above, and various evaluations were performed. The evaluation results are shown in Table 4.
  • Example 57 A non-aqueous lithium type electricity storage device was produced in the same manner as in Example 43 except that a cellulose non-woven separator having a thickness of 16 ⁇ m and a porosity of 70% was used and the positive electrode active material was changed as described in Table 3. , Performed various evaluations. The evaluation results are shown in Table 4.
  • Example 58 The same procedure as in Example 43 was carried out except that a separator having a porosity of 60% in which a 20 ⁇ m thick polyester-based non-woven fabric had a 4 ⁇ m thick insulating porous layer formed thereon was used and the positive electrode active material was changed as described in Table 3. A non-aqueous lithium-type storage element was fabricated and subjected to various evaluations. The evaluation results are shown in Table 4.
  • Example 59 ⁇ Welding of terminals> An electrode laminate was prepared in the same manner as in Example 43, and a negative electrode terminal and a positive electrode terminal were connected to the negative electrode and the positive electrode precursor, respectively, by ultrasonic welding to form an electrode laminate.
  • the electrode laminate was vacuum dried at 80 ° C. and 50 Pa for 60 hours.
  • About 80 g of the non-aqueous electrolyte was injected under atmospheric pressure in a dry air environment with a temperature of 25 ° C. and a dew point of -40 ° C. or less.
  • the non-aqueous lithium-type storage element was placed in a decompression chamber, and after reducing the pressure from atmospheric pressure to ⁇ 87 kPa, the pressure was returned to atmospheric pressure and allowed to stand for 5 minutes. Thereafter, the pressure was reduced from atmospheric pressure to ⁇ 87 kPa, and then the process of returning to atmospheric pressure was repeated four times, and then allowed to stand for 15 minutes. Further, the pressure was reduced from normal pressure to ⁇ 91 kPa, and then returned to atmospheric pressure. Similarly, the process of reducing the pressure and returning to the atmospheric pressure was repeated a total of seven times. (The pressure was reduced to -95, -96, -97, -81, -97, -97, -97 kPa, respectively). The non-aqueous electrolytic solution was impregnated into the electrode laminate through the above steps.
  • ⁇ Lithium doping process> The current value of the obtained non-aqueous lithium type storage element was measured using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd. installed in a dry air environment with a temperature of 25 ° C. and a dew point of ⁇ 40 ° C. or less. After performing constant current charging until reaching a voltage of 4.7 V at 0.7 A, initial charging was performed by a method of continuing 4.7 V constant voltage charging for 10 hours, and lithium doping was performed on the negative electrode.
  • TOSCAT-3100U charge / discharge device manufactured by Toyo System Co., Ltd.
  • ⁇ Aging process> After performing constant current discharge until the voltage reaches 3.0 V at 0.7 A in a 25 ° C. environment, perform the constant current constant voltage charge up to 4.0 V for 1 hour in a non-aqueous lithium storage element after lithium doping The voltage was adjusted to 4.0 V by Subsequently, the non-aqueous lithium type storage element was stored in a thermostat at 60 ° C. for 20 hours.
  • ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is subjected to constant current discharge at 10 A in a 25 ° C. environment until it reaches 2.4 V at 10 A, then charged at 10 A from 2.4 V to 3.8 V, and then at 10 A The charge and discharge process of discharging to 2.4 V was repeated five times.
  • Example 60 and 61 Comparative Example 20
  • a non-aqueous lithium type storage element was produced in the same manner as in Example 36, except that the active material in the negative electrode, the positive electrode precursor, the lithium compound, and the lithium compound ratio in the positive electrode precursor were changed as described in Table 3, respectively. And made various evaluations.
  • Example 62 to 64 Comparative Example 21
  • the positive electrode active material was also changed as described in Table 3
  • a nonaqueous lithium-type storage element was produced in the same manner as in Example 60 except for the above, and various evaluations were performed. The evaluation results are shown in Table 4.
  • Example 65 ⁇ Production of Positive Electrode Precursor D> 30.3 parts by mass of activated carbon A, 27.2 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 having a mean particle size of 4.0 ⁇ m as a lithium transition metal oxide, 30.0 parts of lithium carbonate Parts by weight, 3.0 parts by weight of ketjen black, 1.5 parts by weight of PVP (polyvinylpyrrolidone), and 8.0 parts by weight of PVDF (polyvinylidene fluoride), and the weight ratio of the solid content is 24.5% NMP (N-Methyl-2-pyrrolidone) was mixed so that the mixture was mixed using PRIMIX's thin film revolving high-speed mixer "FILMIX (registered trademark)" at a circumferential velocity of 20 m / s.
  • FILMIX registered trademark
  • the viscosity ( ⁇ b) and the TI value of the obtained positive electrode coating liquid 1C were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,690 mPa ⁇ s, and the TI value was 6.6. Further, the degree of dispersion of the obtained positive electrode coating liquid 1 was measured using a particle gauge manufactured by Yoshimitsu Seiki. As a result, the particle size was 23 ⁇ m.
  • the coating liquid 1C is coated on one side or both sides of a 15 ⁇ m-thick aluminum foil using a double-sided die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 120 ° C. Precursor 1 (one side) and positive electrode precursor 1 (both sides) were obtained.
  • the discharge pressure of the die is 55 kPa
  • the discharge pressure of the upper surface die is 55 kPa
  • the discharge pressure of the lower surface die Was set to 60 kPa.
  • the obtained positive electrode precursor 1 (one side) and positive electrode precursor 1 (both sides) are pressed using a roll press under a condition of a pressure of 6 kN / cm and a surface temperature of 25 ° C. of the pressing portion to obtain a positive electrode precursor D Obtained.
  • the total thickness of the positive electrode precursor D (both sides) was measured at any 10 points of the positive electrode precursor D (both sides) using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd.
  • the thickness of the positive electrode active material layer determined by subtracting the thickness of the aluminum foil was 76.9 ⁇ m per one side.
  • the fabric weight of the positive electrode active material layer was 47.8 g ⁇ m ⁇ 2 per one surface.
  • the active material A and C were used as the negative electrode active material to manufacture a negative electrode G.
  • the mixture was dispersed under the conditions of a circumferential velocity of 17 m / s using a thin film swirl type high speed mixer film mix manufactured by PRIMIX CO., LTD. To obtain a coating liquid 1A.
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid 1A were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,520 mPa ⁇ s, and the TI value was 4.0.
  • the coating liquid 1A is coated on both sides of a 10 ⁇ m thick electrolytic copper foil using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 2 m / s and dried at a drying temperature of 120 ° C. to obtain a negative electrode G1.
  • the discharge pressure of the upper surface die was 45 kPa, and the discharge pressure of the lower surface die was 50 kPa.
  • the obtained negative electrode E1 was pressed using a roll press under the conditions of a pressure of 5 kN / cm and a surface temperature of the press part of 25 ° C.
  • the total thickness of the pressed negative electrode G was measured at any 10 points of the negative electrode G using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd. Thereafter, the negative electrode active material layer on one side of the negative electrode G was removed, and the thickness was measured again.
  • the fabric weight of the negative electrode active material layer was 62.3 g ⁇ m ⁇ 2 per one surface.
  • a non-aqueous lithium-type storage element was produced and evaluated in the same manner as in Example 43 except that the positive electrode precursor D and the negative electrode G were used. Furthermore, a high load charge / discharge cycle test was performed on the storage element obtained in the above-described process by the following method.
  • [High load charge and discharge cycle test] With respect to the storage element obtained in the above process, constant-current charging is performed until a voltage of 300 C reaches 4.2 V in a constant temperature bath in which a cell corresponding to a non-aqueous lithium storage element is set to 25 ° C. A constant current discharge is performed until it reaches 2.2 V at a current value of 300C.
  • the above-mentioned charge and discharge process is repeated 60000 times, and the internal temperature resistance measurement at normal temperature discharge is performed before and after the test, and the capacitance before the start of the test is Fa (F), and the capacitance after the test is Fd (F)
  • the capacitance retention ratio Fd / Fa after the high load charge / discharge cycle test relative to before the start of the test was 0.95.
  • Examples 66 to 83, Comparative Examples 22 to 29 The active material contained in the positive electrode precursor and the active material contained in the negative electrode are changed as shown in Table 5 to prepare the respective coating liquids, and the discharge amount of the die at the time of coating is adjusted to obtain the positive electrode precursor
  • a non-aqueous lithium-type storage element was produced and evaluated in the same manner as in Example 65 except that the thickness, the basis weight, the thickness of the negative electrode, and the basis weight of the negative electrode were changed as shown in Table 5.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • LiN (SO 2 F) 2 (abbreviated as “LiFSI” in Table 7)
  • LiPF 6 LiN (SO 2 F) 2
  • thiophene was dissolved in an amount of 1% by mass with respect to the total electrolytic solution to obtain a non-aqueous electrolytic solution 2.
  • a non-aqueous lithium-type storage element was produced and evaluated in the same manner as in Example 43.
  • a part of the obtained negative electrode sample was cut out to a size of 5 cm ⁇ 5 cm, and each was immersed in 20 g of methanol, the container was covered, and allowed to stand in a 25 ° C. environment for 3 days. Thereafter, the negative electrode sample was taken out and vacuum dried at 120 ° C. and 5 kPa for 10 hours.
  • GC / MS was measured under the conditions in which a calibration curve was prepared beforehand, and it was confirmed that the amount of diethyl carbonate present was less than 1%.
  • ⁇ XPS analysis of negative electrode active material layer surface A part of the obtained negative electrode sample was cut out to a size of 3 mm ⁇ 3 mm, and was put into an XPS apparatus (Thermo Fisher ESCALLAB 250) in a non-exposed state of the atmosphere to perform XPS measurement.
  • ⁇ Metal element in negative electrode active material layer> The obtained negative electrode sample was completely removed of the negative electrode active material layer on the negative electrode current collector using a Teflon (registered trademark) spatula, and the obtained negative electrode active material layer was acid-decomposed using concentrated nitric acid. The resulting solution was diluted with pure water so as to have an acid concentration of 2%, and then the amount (ppm) of each metal element was determined by ICP-MS Thermo Fisher Scientific Co., Ltd., X series 2), The concentration of Ni was 4560 ppm.
  • the obtained non-aqueous lithium type storage element was set to 4.2 V at a current value of 100 C using a charge / discharge device (5 V, 360 A) manufactured by Fujitsu Telecom Networks Ltd. in a thermostatic chamber set at 25 ° C. Constant current charging until reaching, followed by constant voltage charging applying a constant voltage of 4.2 V for a total of 10 minutes. Thereafter, the cell was stored at 60 ° C., removed from the environment at 60 ° C. every two weeks, charged to 4.2 V at the cell voltage in the same charging step, and then stored again at 60 ° C. .
  • Example 85 to 120 and Comparative Examples 30 to 35 A non-aqueous lithium-type storage element was produced in the same manner as in Example 84 except that the salt in the non-aqueous electrolytic solution, the solvent composition ratio, and the additive were changed as described in Table 7, and various evaluations were performed. The The evaluation results are shown in Table 8 and Table 9.
  • Example 121 [Fabric electrode winding body production] ⁇ Production of Positive Electrode Precursor D2> 43.1 parts by mass of activated carbon A, 14.4 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 having a mean particle size of 4.0 ⁇ m as a lithium transition metal oxide, 30.0 parts of lithium carbonate Parts by weight, 3.0 parts by weight of ketjen black, 1.5 parts by weight of PVP (polyvinylpyrrolidone), and 8.0 parts by weight of PVDF (polyvinylidene fluoride), and the weight ratio of the solid content is 24.5% NMP (N-Methyl-2-pyrrolidone) was mixed so that the mixture was mixed using PRIMIX's thin film revolving high-speed mixer "FILMIX (registered trademark)" at a circumferential velocity of 20 m / s.
  • FILMIX registered trademark
  • the viscosity ( ⁇ b) and the TI value of the obtained positive electrode coating liquid 1 were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,690 mPa ⁇ s, and the TI value was 6.6. Further, the degree of dispersion of the obtained positive electrode coating liquid 1 was measured using a particle gauge manufactured by Yoshimitsu Seiki. As a result, the particle size was 23 ⁇ m.
  • a double-sided die coater manufactured by Toray Engineering, apply positive electrode coating solution 1 on both sides of a 15 ⁇ m thick aluminum foil at a coating speed of 1 m / s, and the temperature of the drying furnace is 70 ° C, 90 ° C. The temperature was adjusted in the order of 110 ° C. and 130 ° C., followed by drying with an IR heater to obtain a positive electrode precursor.
  • the obtained positive electrode precursor was pressed using a roll press under a condition of a pressure of 6 kN / cm and a surface temperature of 25 ° C. of a pressing portion to obtain a positive electrode precursor D2.
  • the total thickness of the positive electrode precursor D2 was measured at any 10 points of the positive electrode precursor using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd.
  • the film thickness of the positive electrode active material layer obtained by subtracting the thickness of the aluminum foil was 70 ⁇ m per side.
  • the fabric weight of the positive electrode active material layer was 45 g ⁇ m ⁇ 2 per one surface.
  • the viscosity ( ⁇ b) and the TI value of the obtained coating liquid were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,789 mPa ⁇ s, and the TI value was 4.3.
  • the above coating solution is coated on both sides of a 10 ⁇ m thick electrolytic copper foil without through holes using a die coater manufactured by Toray Engineering Co., Ltd. at a coating speed of 1 m / s and dried at a drying temperature of 85 ° C. The negative electrode was obtained.
  • the obtained negative electrode was pressed using a roll press under a condition of a pressure of 4 kN / cm and a surface temperature of 25 ° C. of a pressing portion to obtain a negative electrode G2.
  • the film thickness of the negative electrode active material layer of the negative electrode G2 obtained above is obtained from the average value of the thicknesses measured at any ten places of the negative electrode A using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Instruments Co., Ltd. , Determined by subtracting the thickness of the copper foil.
  • the basis weight per one surface of the negative electrode active material layer of the negative electrode G2 was 28 g / m 2 , and the film thickness was 40 ⁇ m.
  • the obtained double-sided negative electrode was cut into 12.2 cm ⁇ 450 cm, and the double-sided positive electrode precursor was cut into 12.0 cm ⁇ 300 cm.
  • the negative electrode and the positive electrode precursor each have an uncoated portion.
  • the uncoated portion was formed to have a width of 2 cm from the end side.
  • a microporous membrane separator with a thickness of 15 ⁇ m is sandwiched so that the uncoated parts are in opposite directions from each other, and the uncoated parts protrude from the separator, and are wound in an elliptical shape to press the wound body It was molded into a flat shape.
  • the electrode terminal was joined to the negative electrode and the positive electrode precursor by ultrasonic welding to form an electrode wound body.
  • This electrode-wound body was housed in an outer package made of an aluminum laminate, and the outer package 3 of the electrode terminal portion and the bottom portion was heat-sealed under the conditions of a temperature of 180 ° C., a sealing time of 20 seconds and a sealing pressure of 1.0 MPa. . It was vacuum dried at a temperature of 80 ° C., a pressure of 50 Pa, and a drying time of 60 hours.
  • ⁇ Injection, impregnation, sealing process About 80 g of the non-aqueous electrolyte was injected under atmospheric pressure to the electrode winding body housed in the aluminum laminate packaging material under a dry air environment of a temperature of 25 ° C. and a dew point of -40 ° C. or less. Subsequently, the non-aqueous lithium-type storage element was placed in a decompression chamber, and after reducing the pressure from atmospheric pressure to ⁇ 87 kPa, the pressure was returned to atmospheric pressure and allowed to stand for 5 minutes. Thereafter, the pressure was reduced from atmospheric pressure to ⁇ 87 kPa, and then the process of returning to atmospheric pressure was repeated four times, and then allowed to stand for 15 minutes.
  • the pressure was reduced from normal pressure to ⁇ 91 kPa, and then returned to atmospheric pressure. Similarly, the steps of pressure reduction and return to atmospheric pressure were repeated a total of seven times (pressure reduction to -95, 96, 97, 81, 97, 97 and 97 kPa, respectively).
  • the non-aqueous electrolytic solution was impregnated into the electrode laminate through the above steps. Thereafter, the non-aqueous lithium-type storage element was placed in a vacuum sealing machine, and the aluminum laminate packaging material was sealed by sealing at 180 ° C. for 10 seconds at a pressure of 0.1 MPa in a state of reduced pressure to ⁇ 95 kPa.
  • Lithium doping process Using the charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., the obtained non-aqueous lithium type storage element was measured until the voltage of 4.7 V was reached at a current value of 0.7 A under an environment of 25 ° C. After current charging, initial charging was continued by a method of continuing 4.7 V constant voltage charging for 10 hours, and lithium doping was performed on the negative electrode.
  • TOSCAT-3100U charge / discharge device manufactured by Toyo System Co., Ltd.
  • ⁇ Aging process> After performing constant current discharge until the voltage reaches 3.0 V at 0.7 A in a 25 ° C. environment, perform the constant current constant voltage charge up to 4.0 V for 1 hour in a non-aqueous lithium storage element after lithium doping The voltage was adjusted to 4.0 V by Subsequently, the non-aqueous lithium type storage element was stored in a thermostat at 60 ° C. for 20 hours.
  • ⁇ Additional charge and discharge process> After aging, the non-aqueous lithium-type storage element is subjected to constant current discharge at 25 ° C. in 10 A until voltage reaches 2.5 V, then charged from 2.5 V to 3.9 V at 10 A, and then at 10 A The charge and discharge process of discharging to 2.5 V was repeated five times.
  • the non-aqueous lithium-type storage element was placed in a vacuum sealing machine, and after reducing the pressure to -90 kPa, the aluminum laminate packaging material was sealed by sealing at 200 ° C. for 10 seconds at a pressure of 0.1 MPa.
  • a non-aqueous lithium-type storage element comprising a flat wound electrode body is completed.
  • the obtained storage element was evaluated in the same manner as in Example 1.
  • Example 122 and 123 and Comparative Examples 36 to 38 A non-aqueous lithium-type storage element is produced in the same manner as in Example 121, except that the negative electrode, the positive electrode precursor active material, the lithium compound, and the lithium compound ratio in the positive electrode precursor are changed as described in Table 10, respectively. Various evaluations were made. The evaluation results are shown in Table 11.
  • Example 124 A non-aqueous lithium-type storage element was produced in the same manner as in Example 121 except that a positive electrode precursor D3 described below was used as a positive electrode precursor, and various evaluations were performed. The evaluation results are shown in Table 11.
  • the positive electrode coating liquid 1 was obtained.
  • the viscosity ( ⁇ b) and the TI value of the obtained positive electrode coating liquid 1 were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,690 mPa ⁇ s, and the TI value was 6.6. Further, the degree of dispersion of the obtained positive electrode coating liquid 1 was measured using a particle gauge manufactured by Yoshimitsu Seiki. As a result, the particle size was 23 ⁇ m.
  • a double-sided die coater manufactured by Toray Engineering, apply positive electrode coating solution 1 on both sides of a 15 ⁇ m thick aluminum foil at a coating speed of 1 m / s, and the temperature of the drying furnace is 70 ° C, 90 ° C. The temperature was adjusted in the order of 110 ° C. and 130 ° C., followed by drying with an IR heater to obtain a positive electrode precursor.
  • the obtained positive electrode precursor was pressed using a roll press under a condition of a pressure of 6 kN / cm and a surface temperature of 25 ° C. of a pressing portion to obtain a positive electrode precursor D3.
  • the total thickness of the positive electrode precursor D3 was measured at any 10 points of the positive electrode precursor using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd.
  • the thickness of the positive electrode active material layer determined by subtracting the thickness of the aluminum foil was 75 ⁇ m per one side.
  • the fabric weight of the positive electrode active material layer was 47 g ⁇ m ⁇ 2 per one surface.
  • Example 125 A non-aqueous lithium-type storage element was produced in the same manner as in Example 121 except that a positive electrode precursor D4 described below was used as a positive electrode precursor, and various evaluations were performed. The evaluation results are shown in Table 11.
  • FILMIX registered trademark
  • the positive electrode coating liquid 1 was obtained.
  • the viscosity ( ⁇ b) and the TI value of the obtained positive electrode coating liquid 1 were measured using an E-type viscometer TVE-35H manufactured by Toki Sangyo Co., Ltd. As a result, the viscosity ( ⁇ b) was 2,690 mPa ⁇ s, and the TI value was 6.6. Further, the degree of dispersion of the obtained positive electrode coating liquid 1 was measured using a particle gauge manufactured by Yoshimitsu Seiki. As a result, the particle size was 23 ⁇ m.
  • a double-sided die coater manufactured by Toray Engineering, apply positive electrode coating solution 1 on both sides of a 15 ⁇ m thick aluminum foil at a coating speed of 1 m / s, and the temperature of the drying furnace is 70 ° C, 90 ° C. The temperature was adjusted in the order of 110 ° C. and 130 ° C., followed by drying with an IR heater to obtain a positive electrode precursor.
  • the obtained positive electrode precursor was pressed using a roll press under a condition of a pressure of 6 kN / cm and a surface temperature of 25 ° C. of a pressing portion to obtain a positive electrode precursor D4.
  • the total thickness of the positive electrode precursor D4 was measured at any 10 points of the positive electrode precursor using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd.
  • the thickness of the positive electrode active material layer determined by subtracting the thickness of the aluminum foil was 77 ⁇ m per one side.
  • the fabric weight of the positive electrode active material layer was 48 g ⁇ m ⁇ 2 per one surface.
  • Example 126 to 128 and Comparative Examples 39 to 41 The flat type electrode body obtained in Example 121 was housed in a metal can, and in the same manner as in Example 59, a non-aqueous lithium type storage element was produced, and various evaluations were performed. The evaluation results are shown in Table 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

非水系リチウム型蓄電素子の正極集電体上に設けられた正極活物質層の固体Li-NMRスペクトルにおいて、少なくとも-2~2.5ppmにシグナルを有する成分Aのシグナル面積比aと、-6~-2.5ppmにシグナルを有する成分Bのシグナル面積bとの比であるシグナル面積比a/bが、1.5~20.0である。

Description

非水系リチウム型蓄電素子
 本発明は、非水系リチウム型蓄電素子に関する。
 近年、地球環境の保全及び省資源を目指すエネルギーの有効利用の観点から、風力発電の電力平滑化システム又は深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システム等が注目を集めている。
 これらの蓄電システムに用いられる電池の第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
 第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。
 現在、高出力蓄電デバイスとしては、電気二重層キャパシタ、ニッケル水素電池等が開発されている。
 電気二重層キャパシタのうち、電極に活性炭を用いたものは、0.5~1kW/L程度の出力特性を有する。この電気二重層キャパシタは、耐久性(サイクル特性及び高温保存特性)も高く、前記高出力が要求される分野で最適のデバイスと考えられてきた。しかし、そのエネルギー密度は1~5Wh/L程度に過ぎない。そのため、更なるエネルギー密度の向上が必要である。
 他方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を有し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度及び出力をより一層高めるとともに、耐久性(特に、高温における安定性)を高めるための研究が精力的に進められている。
 また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(蓄電素子の放電容量の何%を放電した状態かを示す値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されている。しかし、そのエネルギー密度は100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(サイクル特性及び高温保存特性)については、電気二重層キャパシタに比べ劣るため、リチウムイオン電池は、実用的な耐久性を持たせるためには、放電深度が0~100%の範囲よりも狭い範囲での使用となる。実際に使用できるリチウムイオン電池の容量は更に小さくなるから、耐久性をより一層向上させるための研究が精力的に進められている。
 上記のように、高エネルギー密度、高出力特性、及び耐久性を兼ね備えた蓄電素子の実用化が強く求められている。しかし、上述した既存の蓄電素子には、それぞれ一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められている。その有力な候補として、リチウムイオンキャパシタと呼ばれる蓄電素子が注目され、開発が盛んに行われている。
 キャパシタのエネルギーは1/2・C・V2(ここで、Cは静電容量、Vは電圧)で表される。
 リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(非水系リチウム型蓄電素子)の一種であって、正極においては約3V以上で電気二重層キャパシタと同様の陰イオンの吸着・脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵・放出によるファラデー反応によって、充放電を行う蓄電素子である。
 上述の電極材料とその特徴をまとめると、電極に活性炭等の材料を用い、活性炭表面のイオンの吸着・脱離(非ファラデー反応)により充放電を行う場合は、高出力かつ高耐久性を実現するが、エネルギー密度が低くなる(例えば1倍とする。)。一方、電極に酸化物や炭素材料を用い、ファラデー反応により充放電を行う場合は、エネルギー密度が高くなる(例えば活性炭を用いた非ファラデー反応の10倍とする。)が、耐久性及び出力特性に課題がある。
 これらの電極材料の組合せとして、電気二重層キャパシタは、正極及び負極に活性炭(エネルギー密度1倍)を用い、正負極共に非ファラデー反応により充放電を行うことを特徴とし、高出力かつ高耐久性を有するがエネルギー密度が低い(正極1倍×負極1倍=1)という特徴がある。
 リチウムイオン二次電池は、正極にリチウム遷移金属酸化物(エネルギー密度10倍)、負極に炭素材料(エネルギー密度10倍)を用い、正負極共にファラデー反応により充放電を行うことを特徴とし、高エネルギー密度(正極10倍×負極10倍=100)だが、出力特性及び耐久性に課題がある。更に、ハイブリッド電気自動車等で要求される高耐久性を満足させるためには放電深度を制限しなければならず、リチウムイオン二次電池では、そのエネルギーの10~50%しか使用できない。
 リチウムイオンキャパシタは、正極に活性炭(エネルギー密度1倍)、負極に炭素材料(エネルギー密度10倍)を用い、正極では非ファラデー反応、負極ではファラデー反応により充放電を行うことを特徴とし、電気二重層キャパシタ及びリチウムイオン二次電池の特徴を兼ね備えた新規の非対称キャパシタである。そして、高出力かつ高耐久性でありながら、高エネルギー密度(正極1倍×負極10倍=10)を有し、リチウムイオン二次電池の様に放電深度を制限する必要がないことが特徴である。
 リチウムイオンキャパシタの用途としては、例えば、鉄道、建機、自動車用蓄電等が挙げられる。これらの用途では、主にエネルギー回生又はモーターアシストのためにリチウムイオンキャパシタが、-30℃から60℃までの幅広い温度環境で使用される。特に低温環境では、電池の内部抵抗が上昇し、大電流の充放電によって負極界面にリチウムデンドライトが析出することで性能低下及び内部短絡を引き起こす可能性があり、蓄電素子の安全性・信頼性の面で大きな問題となっている。そのため、幅広い温度環境において低抵抗化かつ高出力である蓄電素子が求められている。
 また、これらの用途では、蓄電素子を搭載するためのスペースが限られているため、よりエネルギー密度が高く、小型化が可能な蓄電素子が求められている。しかしながら、一般的に、エネルギー密度を高めようとすると蓄電素子の内部抵抗が上昇するため、出力が低下するという課題がある。
 このような課題への対策技術として、特許文献1では、窒素原子を有する導電性高分子が表面に結合し、かつ、所定の直径を有する細孔の細孔容積が特定の比率となる多孔質炭素材料を電極材料として用いることにより、高容量かつサイクル特性に優れた蓄電素子が開示されている。
 特許文献2では、高磁界中で高温処理した炭素を、蓄電素子に使用することにより静電容量増加に有効な細孔面積を増加させ、かつ容積を増加させる大きな溝を減少することによって、エネルギー密度を向上させる技術が提供されている。
 特許文献3では、活性炭に連通マクロ孔を形成し、かつ孔径分布、比表面積、ミクロ容積、及びミクロ孔幅を最適化することで、高出力かつ高電圧充電に対する耐久性に優れた蓄電素子が開示されている。
 特許文献4では、正極に正極活物質以外のリチウム化合物を含有し、そのリチウム化合物の分解反応によって、正極活物質層の細孔径及び細孔分布を最適化することによって、高エネルギー密度、高入出力特性、及び高負荷充放電サイクル耐久性に優れた非水系リチウム型蓄電素子が開示されている。
 なお、本明細書において、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出されるが、BJH法は非特許文献1において提唱されており、かつMP法は、「t-プロット法」(非特許文献2)を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、非特許文献3に示される。
特開2013-161835号公報 特開2003-59781号公報 特開2013-201170号公報 国際公開第2017/126698号
E.P.Barrett,L.G.Joyner and P.Halenda,J.Am.Chem.Soc.,73,373(1951) B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965) R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45(1968)
 しかしながら、いずれの特許文献にも、低温環境における高出力化については言及がない。正極活物質層の表面改質又は細孔制御によってエネルギー密度を高めていくと、正極活物質層の細孔表面及び細孔内部におけるリチウムイオンの拡散が阻害されるため、低温環境下で蓄電素子の特性が大幅に低下する可能性があるが、これらの文献ではその点が考慮されていない。
 したがって、本発明が解決しようとする課題は、高エネルギー密度化と高出力化を両立し、かつ、それらの特性を幅広い温度環境下で維持することができる非水系リチウム型蓄電素子を提供することである。
 本発明者らは、非水系リチウム型蓄電素子において、正極活物質に活性炭を含有させ、正極活物質層に、Liイオンと可逆的に相互作用する活性点を形成させることによって、正極活物質層内及び電解液との界面のLiイオン拡散性を損なわずに正極活物質の単位質量当たりの容量を向上させて、上記課題を解決できることを見出した。本発明は、上記の知見に基づいて為されたものである。
 すなわち、本発明は、下記のとおりのものである。
[1]
  正極、負極、セパレータ、及びリチウムイオンを含む非水系電解液を備える非水系リチウム型蓄電素子であって、
 該負極が、負極集電体と、該負極集電体の片面上又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、該負極活物質は、リチウムイオンを吸蔵及び放出できる炭素材料を含み、
 該正極が、正極集電体と、該正極集電体の片面上又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、該正極活物質は、活性炭を含み、かつ
 該正極活物質層は、該正極活物質層の固体Li-NMRスペクトルにおいて、-2~2.5ppmの範囲内にシグナルを有する成分Aと、-6~-2.5ppmの範囲内にシグナルを有する成分Bとを含み、該成分A及びBのシグナル面積をそれぞれa及びbとしたときに、シグナル面積比a/bが1.5~20.0である非水系リチウム型蓄電素子。
[2]
 前記正極活物質が、リチウムイオンを吸蔵及び放出可能な遷移金属酸化物をさらに含む、[1]に記載の非水系リチウム型蓄電素子。
[3]
 前記遷移金属酸化物が、下記式:
  Lix1CoO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1NiO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1Ni (1-y){式中、Mは、Co、Mn、Al、Fe、Mg及びTiから成る群より選ばれる少なくとも1種の元素であり、x1は、0≦x1≦2を満たし、かつyは、0.2<y<0.97を満たす。}、
  Lix1Ni1/3Co1/3Mn1/3{式中、x1は、0≦x1≦2を満たす。}、
  Lix1MnO{式中、x1は、0≦x1≦2を満たす。}、
  α-Lix1FeO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1VO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1CrO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1Mn{式中、x1は、0≦x1≦2を満たす。}、
  Lix1 Mn(2-y){式中、Mは、Co、Ni、Al、Fe、Mg及びTiから成る群より選ばれる少なくとも1種の元素であり、x1は、0≦x1≦2を満たし、かつyは、0.2<y<0.97を満たす。}、
  Lix1NiCoAl(1-a-b){式中、x1は、0≦x1≦2を満たし、かつa及びbは、それぞれ0.2<a<0.97と0.2<b<0.97を満たす。}、
  Lix1NiCoMn(1-c-d){式中、x1は、0≦x1≦2を満たし、かつc及びdは、それぞれ0.2<c<0.97と0.2<d<0.97を満たす。}、
  Lix1PO{式中、Mは、Co、Ni、Fe、Mn及びCuから成る群より選ばれる少なくとも1種の元素であり、かつx1は、0≦x1≦2を満たす。}、及び
  Li(PO{式中、zは、0≦z≦3を満たす。}、
から成る群より選ばれる少なくとも1種のリチウム遷移金属酸化物を含む、[2]に記載の非水系リチウム型蓄電素子。
[4]
 前記活性炭の平均粒子径が、2μm以上20μm以下であり、かつ前記遷移金属酸化物の平均粒子径が、0.1μm以上20μm以下である、[2]または[3]に記載の非水系リチウム型蓄電素子。
[5]
 前記正極が、前記活性炭を含む炭素材料と、前記リチウム遷移金属酸化物とを含み、正極活物質層中に占める前記炭素材料の質量割合をAとし、前記リチウム遷移金属酸化物の質量割合をAとしたとき、A/Aが0.1以上2.5以下である、[2]~[4]のいずれか一項に記載の非水系リチウム型蓄電素子。
[6]
 前記正極が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムから成る群から選ばれる1種以上を、前記正極活物質の総量に対して1質量%以上50質量%以下で含む、[1]~[5]のいずれか一項に記載の非水系リチウム型蓄電素子。
[7]
 前記正極集電体及び前記負極集電体が、無孔状の金属箔である、[1]~[6]のいずれか一項に記載の非水系リチウム型蓄電素子。
[8]
 前記負極が、少なくとも2種類の前記負極活物質を含有する、[1]~[7]のいずれか一項に記載の非水系リチウム型蓄電素子。
[9]
 少なくとも1種の前記負極活物質の平均粒子径が、1μm以上15μm以下である、[8]に記載の非水系リチウム型蓄電素子。
[10]
 前記正極の前記正極活物質層の目付をC(g/m)とし、前記負極の前記負極活物質層の目付をC(g/m)とするとき、C/Cが0.35以上5.80以下である、[1]~[9]のいずれか一項に記載の非水系リチウム型蓄電素子。
[11]
 前記正極の前記正極活物質層の厚みをD(μm)とし、前記負極の前記負極活物質層の厚みをD(μm)とするとき、D/Dが0.30以上5.00以下である、[1]~[10]のいずれか一項に記載の非水系リチウム型蓄電素子。
[12]
 前記負極活物質層表面のX線光電子分光測定(XPS)により検出される硫黄(S)の元素濃度が、0.5atomic%以上であり、かつ
 前記正極活物質層表面のX線光電子分光測定(XPS)で得られるS2pスペクトルにおいて、162eV~166eVのピークがある、[1]~[11]のいずれか一項に記載の非水系リチウム型蓄電素子。
[13]
 前記非水系電解液に、添加剤として、
  下記一般式(1):
Figure JPOXMLDOC01-appb-C000007
{一般式(1)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、ホルミル基、アセチル基、ニトリル基、アセチル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキルエステルを表す。}
で表されるチオフェン化合物から成る群から選択される1種以上の含硫黄化合物(X)と;
  下記一般式(2-1):
Figure JPOXMLDOC01-appb-C000008
{一般式(2-1)中、R~Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表される環状硫酸化合物、下記一般式(2-2):
Figure JPOXMLDOC01-appb-C000009
{一般式(2-2)中、R~R14は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表されるスルトン化合物、下記一般式(2-3):
Figure JPOXMLDOC01-appb-C000010
{一般式(2-3)中、R15~R18は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表されるスルトン化合物、下記一般式(2-4):
Figure JPOXMLDOC01-appb-C000011
{一般式(2-4)中、R19~R24は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよい。}
で表される化合物、及び下記一般式(2-5):
Figure JPOXMLDOC01-appb-C000012
{一般式(2-5)中、R25~R28は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表される環状亜硫酸化合物から成る群から選択される1種以上の含硫黄化合物(Y)と
を含む、[1]~[12]のいずれか一項に記載の非水系リチウム型蓄電素子。
[14]
 前記非水系電解液中に含まれる、Ni、Mn、Fe、Co及びAlから成る群から選択される少なくとも1種の元素濃度が、10ppm以上1000ppm以下である、[1]~[13]のいずれか一項に記載の非水系リチウム型蓄電素子。
[15]
 セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、前記非水系電解液と、前記正極と前記負極が前記セパレータを介して積層された電極積層体又は前記正極と前記負極が前記セパレータを介して捲回された電極捲回体とを収納している外装体の体積をV(L)、環境温度-30℃における内部抵抗をRcとした時、以下の(a)~(c)の要件:
 (a)RaとFの積Ra・Fが0.5以上3.5以下である、
 (b)E/Vが20以上80以下である、及び
 (c)Rc/Raが30以下である、
を同時に満たす、[1]~[14]のいずれか一項に記載の非水系リチウム型蓄電素子。
[16]
 セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、セル電圧4.2V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRb(Ω)としたとき、
以下の(d)及び(e)の要件:
 (d)Rb/Raが0.3以上3.0以下である、及び
 (e)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10-3cc/F以下である、
を同時に満たす、[15]に記載の非水系リチウム型蓄電素子。
[17]
 [1]~[16]のいずれか一項に記載の非水系リチウム型蓄電素子を含む電気自動車、プラグインハイブリッド自動車、ハイブリッド自動車、又は電動バイク。
[18]
 [1]~[16]のいずれか一項に記載の非水系リチウム型蓄電素子を含むハイブリッド建機。
[19]
 [1]~[16]のいずれか一項に記載の非水系リチウム型蓄電素子を含むバックアップ電源システム。
 本発明によれば、正極活物質層に、Liイオンと可逆的に相互作用する活性点を形成させることによって、正極活物質層内及び電解液との界面のLiイオン拡散性を損なわずに正極活物質の単位質量当たりの容量を向上させることができ、それによって、非水系リチウム型蓄電素子の高エネルギー密度化と高出力化を両立し、かつそれらの特性を幅広い温度環境下でも維持することができる。
 以下、本発明の実施形態(以下、「本実施形態」という。)を詳細に説明するが、本発明は本実施形態に限定されるものではない。本実施形態の各数値範囲における上限値及び下限値は任意に組み合わせて任意の数値範囲を構成することができる。
 非水系リチウム型蓄電素子は一般に、正極、負極、セパレータ、電解液、及び外装体を主な構成要素とする。電解液としては、リチウム塩を溶解させた有機溶媒(以下、非水系電解液という。)を用いる。
[正極]
 正極は、正極集電体と、その片面又は両面に存在する正極活物質層とを有する。
 また、正極は、蓄電素子組み立て前の正極前駆体として、リチウム化合物を含むことが好ましい。後述のように、本実施形態では蓄電素子組み立て工程内で、負極にリチウムイオンをプレドープすることが好ましいが、そのプレドープ方法としては、リチウム化合物を含む正極前駆体、負極、セパレータ、外装体、及び非水系電解液を用いて蓄電素子を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。リチウム化合物は、正極前駆体の正極集電体上に形成された正極活物質層に含有されることが好ましい。リチウム化合物は、正極前駆体中にいかなる態様で含まれていてもよい。例えば、リチウム化合物は、正極集電体と正極活物質層との間に存在してもよく、正極活物質層の表面上に存在してもよい。
 本明細書において、リチウムドープ工程前における正極状態のことを正極前駆体、リチウムドープ工程後における正極状態のことを正極と定義する。
 本明細書において、「無孔状の正極集電体」とは、少なくとも正極活物質層の塗工された領域において、リチウムイオンが正極集電体を通過して、正極の表裏でリチウムイオンが均一化する程度の孔を有しない正極集電体を意味する。したがって、無孔状の正極集電体は、本発明の効果を奏する範囲内において、極めて小径又は微量の孔を有する正極集電体、及び正極活物質層の塗工されていない領域に孔を有する正極集電体をも排除するものではない。
 また、本実施形態において、正極集電体のうち少なくとも正極活物質層が塗工された領域は無孔状であり、正極集電体のうち正極活物質が塗工されていない余剰部分には孔があってもよいし、無くてもよい。
[正極活物質層]
 本実施形態に係る正極に含まれる正極活物質層は、活性炭を含む正極活物質を含有する。正極活物質層は、正極活物質以外に、必要に応じて、遷移金属酸化物、導電性フィラー、結着剤、分散安定剤等の任意成分を含むことが好ましく、リチウムイオンを吸蔵及び放出可能な遷移金属酸化物を含むことがより好ましい。
 また、正極前駆体の正極活物質層には、正極活物質以外のリチウム化合物が含有されることが好ましい。
[正極活物質]
 本実施形態に係る正極活物質は、活性炭を含む。正極活物質としては、活性炭のみを使用してもよく、又は活性炭に加えて、遷移金属酸化物を混合することが好ましい。
 また、後述するような他の炭素材料を活性炭と併用してもよい。この炭素材料としては、カーボンナノチューブ、導電性高分子、又は多孔性の炭素材料を使用することが好ましい。
 正極活物質として用いる活性炭の種類及びその原料には特に制限はない。しかしながら、高い入出力特性と、高いエネルギー密度とを両立させるために、活性炭の細孔を最適に制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、(1)高い入出力特性のためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下である活性炭(以下、活性炭1ともいう。)が好ましく、また(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m/g以上4,200m/g以下である活性炭(以下、活性炭2ともいう。)が好ましい。
 以下、上記(1)活性炭1及び上記(2)活性炭2について、個別に順次説明する。
[活性炭1]
 活性炭1のメソ孔量V1は、蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。他方、V1は、正極の嵩密度の低下を抑える点から、0.8cc/g以下であることが好ましい。V1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
 活性炭1のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましい。他方、V2は、活性炭の嵩を抑え、電極としての密度を増加させ、単位体積当たりの容量を増加させるという点から、1.0cc/g以下であることが好ましい。V2は、より好ましくは0.6cc/g以上1.0cc/g以下、更に好ましくは0.8cc/g以上1.0cc/g以下である。尚、下限と上限の組み合わせは任意のものであることができる。
 マイクロ孔量V2に対するメソ孔量V1の比(V1/V2)は、0.3≦V1/V2≦0.9の範囲であることが好ましい。すなわち、高容量を維持しながら出力特性の低下を抑えることができる程度に、マイクロ孔量に対するメソ孔量の割合を大きくするという点から、V1/V2が0.3以上であることが好ましい。一方で、高出力特性を維持しながら容量の低下を抑えることができる程度に、メソ孔量に対するマイクロ孔量の割合を大きくするという点から、V1/V2は0.9以下であることが好ましい。より好ましいV1/V2の範囲は0.4≦V1/V2≦0.7、更に好ましいV1/V2の範囲は0.55≦V1/V2≦0.7である。尚、下限と上限の組み合わせは任意のものであることができる。
 活性炭1の平均細孔径は、得られる蓄電素子の出力を最大にする点から、17Å以上であることが好ましく、18Å以上であることがより好ましく、20Å以上であることが最も好ましい。また容量を最大にする点から、活性炭1の平均細孔径は25Å以下であることが好ましい。
 活性炭1のBET比表面積は、1,500m/g以上3,000m/g以下であることが好ましく、1,500m/g以上2,500m/g以下であることがより好ましい。BET比表面積が1,500m2/g以上の場合には、良好なエネルギー密度が得られ易く、他方、BET比表面積が3,000m/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。尚、下限と上限の組み合わせは任意のものであることができる。
 上記のような特徴を有する活性炭1は、例えば、以下に説明する原料及び処理方法を用いて得ることができる。
 本実施形態では、活性炭1の原料として用いられる炭素源は、特に限定されるものではない。例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜等の植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタール等の化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等の各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレン等の合成ゴム;その他の合成木材、合成パルプ等、及びこれらの炭化物が挙げられる。これらの原料の中でも、量産対応及びコストの観点から、ヤシ殻、木粉等の植物系原料、及びそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
 これらの原料を上記活性炭1とするための炭化及び賦活の方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
 これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400~700℃(好ましくは450~600℃)程度において、30分~10時間程度に亘って焼成する方法が挙げられる。
 上記炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法が好ましく用いられる。このうち、賦活ガスとして、水蒸気又は二酸化炭素を使用する方法が好ましい。
 この賦活方法では、賦活ガスを0.5~3.0kg/h(好ましくは0.7~2.0kg/h)の割合で供給しながら、上記炭化物を3~12時間(好ましくは5~11時間、更に好ましくは6~10時間)掛けて800~1,000℃まで昇温して賦活するのが好ましい。
 更に、上記で説明された炭化物の賦活処理に先立ち、予め上記炭化物を1次賦活してもよい。この1次賦活では、通常、炭素材料を水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で焼成してガス賦活する方法が、好ましく採用できる。
 上記炭化方法における焼成温度及び焼成時間と、上記賦活方法における賦活ガス供給量、昇温速度及び最高賦活温度とを適宜組み合わせることにより、本実施形態において使用できる、上記の特徴を有する活性炭1を製造することができる。
 活性炭1の平均粒子径は、2~20μmであることが好ましい。
 上記平均粒子径が2μm以上であると、活物質層の密度が高いために電極体積当たりの容量が高くなる傾向がある。ここで、平均粒子径が小さいと耐久性が低いという欠点を招来する場合があるが、平均粒子径が2μm以上であればそのような欠点が生じ難い。一方で、平均粒子径が20μm以下であると、高速充放電には適合し易くなる傾向がある。上記平均粒子径は、より好ましくは2~15μmであり、更に好ましくは3~10μmである。上記平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
[活性炭2]
 活性炭2のメソ孔量V1は、蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい。他方、V1は、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。V1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは、1.2cc/g以上1.8cc/g以下である。
 活性炭2のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.8cc/gより大きい値であることが好ましい。他方、V2は、活性炭の電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、3.0cc/g以下であることが好ましい。V2は、より好ましくは1.0cc/g超2.5cc/g以下、更に好ましくは1.5cc/g以上2.5cc/g以下である。
 上述したメソ孔量及びマイクロ孔量を有する活性炭2は、従来の電気二重層キャパシタ又はリチウムイオンキャパシタ用として使用されていた活性炭よりもBET比表面積が高いものである。活性炭2のBET比表面積の具体的な値としては、2,300m/g以上4,200m/g以下であることが好ましい。BET比表面積の下限としては、3,000m/g以上であることがより好ましく、3,200m/g以上であることが更に好ましい。他方、BET比表面積の上限としては、3,800m/g以下であることがより好ましい。BET比表面積が2,300m/g以上の場合には、良好なエネルギー密度が得られ易く、他方、BET比表面積が4,200m/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。
 なお、活性炭2のV1、V2及びBET比表面積については、それぞれ上記で説明された好適な範囲の上限と下限を、任意に組み合わせることができる。
 上記のような特徴を有する活性炭2は、例えば以下に説明するような原料及び処理方法を用いて得ることができる。
 活性炭2の原料として用いられる炭素源としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、例えば、木材、木粉、ヤシ殻等の植物系原料;石油ピッチ、コークス等の化石系原料;フェノール樹脂、フラン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂等の各種合成樹脂等が挙げられる。これらの原料の中でも、フェノール樹脂、及びフラン樹脂は、高比表面積の活性炭を作製するのに適しており特に好ましい。
 これらの原料を炭化する方式、或いは賦活処理時の加熱方法としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の公知の方式が挙げられる。加熱時の雰囲気は窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガス、又はこれらの不活性ガスを主成分として他のガスとの混合したガスが用いられる。炭化温度は400~700℃(下限について、好ましくは450℃以上、更に好ましくは500℃以上。上限について、好ましくは650℃以下)程度で0.5~10時間程度焼成することが好ましい。
 上記炭化処理後の炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法、及びアルカリ金属化合物と混合した後に加熱処理を行うアルカリ金属賦活法があるが、高比表面積の活性炭を作製するにはアルカリ金属賦活法が好ましい。
 この賦活方法では、炭化物とKOH、NaOH等のアルカリ金属化合物との質量比が1:1以上(アルカリ金属化合物の量が、炭化物の量と同じかこれよりも多い量)となるように混合した後に、不活性ガス雰囲気下で600~900℃(好ましくは650℃~850℃)の範囲において、0.5~5時間加熱を行い、その後アルカリ金属化合物を酸及び水により洗浄除去し、更に乾燥を行う。
 炭化物とアルカリ金属化合物の質量比(=炭化物:アルカリ金属化合物)は1:1以上が好ましいことを先記したが、アルカリ金属化合物の量が増えるほど、メソ孔量が増えるが、質量比1:3.5付近を境に急激に孔量が増える傾向があるので、質量比は1:3よりアルカリ金属化合物が増えることが好ましく、1:5.5以下であることが好ましい。質量比はアルカリ金属化合物が増えるほど孔量が大きくなるが、その後の洗浄等の処理効率を考慮すると上記範囲であることが好ましい。
 なお、マイクロ孔量を大きくし、メソ孔量を大きくしないためには、賦活する際に炭化物の量を多めにしてKOHと混合するとよい。マイクロ孔量及びメソ孔量の双方を大きくするためには、KOHの量を多めに使用するとよい。また、主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行うことが好ましい。
 活性炭2の平均粒子径は2μm以上20μm以下であることが好ましく、より好ましくは3μm以上10μm以下である。
[活性炭の使用]
 活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
 上記の活性炭1及び2は、これらのうちのいずれか一方を選択して使用してもよいし、両者を混合して使用してもよい。
 正極活物質は、活性炭1及び2以外の材料(例えば、上記の特定のV及び/若しくはVを有さない活性炭、又は活性炭以外の材料(例えば、導電性高分子等)等)を含んでもよい。例示の態様において、正極活物質層中の活性炭1の含有量、又は活性炭2の含有量、又は活性炭1及び2の合計含有量、すなわち正極活物質層中の炭素材料の質量割合をAとするとき、Aが15質量%以上65質量%以下であることが好ましく、より好ましくは20質量%以上50質量%以下である。
[遷移金属酸化物]
 遷移金属酸化物は、高エネルギー密度化と高出力化を両立し、かつ、それらの特性を広い温度範囲内で維持するという観点から、リチウムイオンを吸蔵及び放出可能なことが好ましく、層状構造、オリビン構造、又はスピネル構造を有するリチウム遷移金属酸化物であることがより好ましい。
 正極活物質として用いられる遷移金属酸化物には、特に制限はない。遷移金属酸化物としては、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、バナジウム(V)、及びクロム(Cr)から成る群より選ばれる少なくとも1種の元素を含む酸化物が挙げられる。なお、本明細書では、用語「遷移金属酸化物」は、遷移金属リン酸塩も含むものとする。
 遷移金属酸化物として、具体的には、下記式:
  Lix1CoO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1NiO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1Ni (1-y){式中、Mは、Co、Mn、Al、Fe、Mg及びTiから成る群より選ばれる少なくとも1種の元素であり、x1は、0≦x1≦2を満たし、かつyは、0.2<y<0.97を満たす。}、
  Lix1Ni1/3Co1/3Mn1/3{式中、x1は、0≦x1≦2を満たす。}、
  Lix1MnO{式中、x1は、0≦x1≦2を満たす。}、
  α-Lix1FeO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1VO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1CrO{式中、x1は、0≦x1≦2を満たす。}、
  Lix1Mn{式中、x1は、0≦x1≦2を満たす。}、
  Lix1 Mn(2-y){式中、Mは、Co、Ni、Al、Fe、Mg及びTiから成る群より選ばれる少なくとも1種の元素であり、x1は、0≦x1≦2を満たし、かつyは、0.2<y<0.97を満たす。}、
  Lix1NiCoAl(1-a-b){式中、x1は、0≦x1≦2を満たし、かつa及びbは、それぞれ0.2<a<0.97と0.2<b<0.97を満たす。}、
  Lix1NiCoMn(1-c-d){式中、x1は、0≦x1≦2を満たし、かつc及びdは、それぞれ0.2<c<0.97と0.2<d<0.97を満たす。}、
  Lix1PO{式中、Mは、Co、Ni、Fe、Mn及びCuから成る群より選ばれる少なくとも1種の元素であり、かつx1は、0≦x1≦2を満たす。}、及び
  Li(PO{式中、zは、0≦z≦3を満たす。}、
から成る群より選ばれる少なくとも1種のリチウム遷移金属酸化物が挙げられる。
 本実施形態では、正極活物質とは異なるアルカリ金属化合物が正極前駆体に含まれていれば、プレドープ時にアルカリ金属化合物がアルカリ金属のドーパント源となり、負極にプレドープができるため、遷移金属化合物に予めリチウムイオンが含まれていなくても(すなわち、上記一般式においてx1=0であっても)、非水系リチウム型蓄電素子として電気化学的な充放電をすることができる。
 上記で説明されたリチウム遷移金属酸化物の中でも、高エネルギー密度化と高出力化を両立し、かつ、それらの特性を広い温度範囲内で維持するという観点から、下記式:
  Lix2FePO{式中、x2は、0.8≦x2≦1.2を満たす。}、
  Lix2CoPO{式中、x2は、0.8≦x2≦1.2を満たす。}、及び
  Lix2MnPO{式中、x2は、0.8≦x2≦1.2を満たす。}、
から成る群より選ばれる少なくとも1種が好ましい。
 リチウム遷移金属酸化物の平均粒子径は、0.1~20μmであることが好ましい。平均粒子径が0.1μm以上であると、活物質層の密度が高いために電極体積当たりの容量が高くなる傾向がある。平均粒子径が小さくなるにつれて耐久性も低くなるという欠点を招来する場合があるが、平均粒子径が0.1μm以上であれば、そのような欠点が生じ難い。他方で、平均粒子径が20μm以下であると、高速充放電には適合し易くなる傾向がある。平均粒子径は、より好ましくは0.5~15μmであり、更に好ましくは1~10μmである。更に、リチウム遷移金属酸化物の平均粒子径が炭素材料の平均粒子径より小さいと、平均粒子径の大きな炭素材料により形成される空隙にリチウム遷移金属酸化物が配置することができ、蓄電素子を低抵抗化できるため好ましい。
[リチウム遷移金属酸化物の使用]
 リチウム遷移金属酸化物は、1種であってもよいし、2種以上の材料の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
 正極活物質は、上記リチウム遷移金属酸化物以外の材料(例えば、導電性高分子等)を含んでもよい。例示の態様において、正極活物質層の総質量を基準として、リチウム遷移金属酸化物の含有比率をGとするとき、Gが1.0質量%以上50.0質量%以下であり、好ましくは10.0質量%以上45.0質量%以下であり、より好ましくは15.0質量%以上40.0質量%以下である。遷移金属酸化物の含有比率が1.0質量%以上であれば、蓄電素子のエネルギー密度をより高めることが可能であり、含有率が50.0質量%以下であれば蓄電素子を高出力化することができる。
[正極活物質の使用]
 正極活物質層中に占める上記炭素材料の質量割合をAとし、リチウム遷移金属酸化物の質量割合をAとしたとき、A/Aが0.1以上2.5以下であることが好ましく、より好ましくは0.2以上2.0以下、さらに好ましくは0.3以上1.2以下である。A/Aが0.1以上であれば正極活物質層の嵩密度を高め、高容量化できる。A/Aが2.5以下であれば活性炭間の電子伝導が高まるために低抵抗化でき、且つ活性炭とアルカリ金属化合物の接触面積が増えるためにアルカリ金属化合物の分解を促進できる。
 正極活物質層における正極活物質の含有割合は、正極前駆体における正極活物質層の全質量を基準として、35質量%以上95質量%以下であることが好ましい。正極活物質の含有割合の上限としては、45質量%以上であることがより好ましく、55質量%以上であることがさらに好ましい。他方、正極活物質の含有割合の下限としては、90質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。この範囲の含有割合とすることにより、好適な充放電特性を発揮する。
[リチウム化合物]
 本実施形態の正極前駆体の正極活物質層には、正極活物質以外のリチウム化合物が含有されることが好ましい。本明細書では、用語「リチウム化合物」は、電解質としてのリチウム塩及び上記で説明されたリチウム遷移金属酸化物とは異なるものである。
(リチウム化合物)
 本実施形態に係るリチウム化合物としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上が好適に用いられる。中でも、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムがより好適であり、空気中での取り扱いが可能であり、かつ吸湿性が低いという観点から炭酸リチウムがさらに好適に用いられる。このようなリチウム化合物は、電圧の印加によって分解し、負極へのリチウムドープのドーパント源として機能するとともに、正極活物質層において空孔を形成するから、電解液の保持性に優れ、イオン伝導性に優れる正極を形成することができる。非水系電解液として、後述するLiPF等のリチウム塩を予め溶解させた電解液を用いる場合には、リチウム金属炭酸塩を単独で用いることもできる。正極前駆体中に含まれるリチウム化合物は1種でもよく、2種以上のリチウム化合物を含んでいてもよく、リチウム化合物と他のアルカリ金属炭酸塩を混合して用いてもよい。
 また、本実施形態の正極前駆体としては少なくとも1種のリチウム化合物を含んでいればよく、リチウム化合物の他に、下記式におけるMをNa、K、Rb、及びCsから選ばれる1種以上として、
  MO等の酸化物、
  MOH等の水酸化物、
  MFやMCl等のハロゲン化物、
  M(CO等の蓚酸塩、
  RCOOM(式中、RはH、アルキル基、又はアリール基である)等のカルボン酸塩
を1種以上含んでいてもよい。
 また、正極前駆体は、BeCO、MgCO、CaCO、SrCO、又はBaCOから選ばれるアルカリ土類金属炭酸塩、並びにアルカリ土類金属酸化物、アルカリ土類金属水酸化物、アルカリ土類金属ハロゲン化物、アルカリ土類金属シュウ酸塩、及びアルカリ土類金属カルボン酸塩を1種以上含んでいてもよい。
 正極前駆体に含まれるリチウム化合物の質量割合が10質量%以上50質量%以下含まれるように正極前駆体を作製することが好ましい。リチウム化合物の質量割合が10質量%以上であれば負極に十分な量のリチウムイオンをプレドープすることができ、非水系リチウム型蓄電素子の容量が高まる。リチウム化合物の質量割合50質量%以下であれば、正極前駆体中の電子伝導を向上させることができるので、リチウム化合物の分解を効率よく行うことができる。
 正極前駆体が、リチウム金属化合物の他に上記2種以上のアルカリ金属化合物、又はアルカリ土類金属化合物を含む場合は、アルカリ金属化合物、及びアルカリ土類金属化合物の総量が、正極前駆体の片面当たり正極活物質層中に1質量%以上50質量%以下の割合で含まれるように正極前駆体を作製することが好ましい。
[正極前駆体のリチウム化合物]
 リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることが最も好ましい。他方、正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、該リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
 リチウム化合物の粉砕には、ボールミル、ビーズミル、リングミル、ジェットミル、ロッドミル、高圧ホモジナイザー等の、湿式及び/又は乾式のいずれの粉砕機であっても用いることができる。リチウム化合物を分散媒に分散させ、その分散液を用いて粉砕する湿式粉砕においては、粉砕後必要に応じて、加熱ミキサー等で分散媒を揮発させ、リチウム化合物を粉体化することができる。また、リチウム化合物の核成長には、CVD法;熱プラズマやレーザーアブソレーション等を用いるPVD法;沈殿や共沈、析出、昌析等の液相プロセス等を用いることができる。また、必要に応じて上記の方法を複数組み合わせてもよい。
[正極のリチウム化合物]
 本実施形態では、正極が含有する、正極活物質以外のリチウム化合物の平均粒子径をXとするとき、0.1μm≦X≦10.0μmであることが好ましい。リチウム化合物の平均粒子径の更に好ましい範囲は、0.5μm≦X≦5.0μmである。Xが0.1μm以上の場合、高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。Xが10.0μm以下の場合、高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。
 正極が含有する、正極活物質以外のリチウム化合物は、正極における正極活物質層の全質量を基準として、1質量%以上50質量%以下であることが好ましく、2.5質量%以上25質量%以下であることがより好ましい。リチウム化合物量が1質量%以上であると、高温環境下における正極上での電解液溶媒の分解反応を炭酸リチウムが抑制するため、高温耐久性が向上し、2.5質量%以上でその効果が顕著になる。また、リチウム化合物量が50質量%以下であると、正極活物質間の電子伝導性がリチウム化合物により阻害されることが比較的小さいため、高い入出力特性を示し、35質量%以下であると、特に入出力特性の観点から特に好ましい。尚、下限と上限の組み合わせは任意のものであることができる。
[電極中のリチウム化合物の同定方法]
 正極中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
 以下に記載するSEM-EDX、ラマン、XPSを測定する際には、アルゴンボックス中で非水系リチウム型蓄電素子を解体して正極を取り出し、正極表面に付着した電解質を洗浄した後に測定を行うことが好ましい。正極の洗浄方法については、正極表面に付着した電解質を洗い流せればよいため、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート溶媒が好適に利用できる。洗浄方法としては、例えば、正極重量の50~100倍のジエチルカーボネート溶媒に正極を10分間以上浸漬させ、その後溶媒を取り替えて再度正極を浸漬させる。その後正極をジエチルカーボネートから取り出し、真空乾燥させた後に、SEM-EDX、ラマン分光法、及びXPSの解析を実施する。真空乾燥の条件は、温度:0~200℃、圧力:0~20kPa、時間:1~40時間の範囲で正極中のジエチルカーボネートの残存が1質量%以下になる条件とする。ジエチルカーボネートの残存量については、後述する蒸留水洗浄、液量調整後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。
 後述するイオンクロマトグラフィーでは、正極を蒸留水で洗浄した後の水を解析することにより陰イオンを同定することができる。
 解析手法にてリチウム化合物を同定できなかった場合、その他の解析手法として、固体Li-NMR、XRD(X線回折)、TOF-SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることにより、リチウム化合物を同定することもできる。
[走査型電子顕微鏡-エネルギー分散型X線分析(SEM-EDX)]
 リチウム化合物及び正極活物質は、観察倍率を1000倍~4000倍にして測定した正極表面のSEM-EDX画像による酸素マッピングにより判別できる。SEM-EDX画像の測定例としては、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着やスパッタリング等の方法により表面処理することもできる。SEM-EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%~60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化したとき、明部を面積で50%以上含む粒子をリチウム化合物とする。
[顕微ラマン分光]
 リチウム炭酸塩及び正極活物質は、観察倍率を1000倍~4000倍にして測定した正極前駆体表面の炭酸イオンのラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071~1104cm-1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算するが、この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を炭酸イオンの頻度分布から差し引く。
[X線光電分光法(XPS)]
 XPSにより電子状態を解析することによりリチウム化合物の結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(リチウム元素)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングにてクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。
 得られたXPSスペクトルについて、
  Li1sの結合エネルギー50~54eVのピークをLiOまたはLi-C結合、55~60eVのピークをLiF、LiCO、LiPO(式中、x、y、及びzは、それぞれ1~6の整数である);
  C1sの結合エネルギー285eVのピークをC-C結合、286eVのピークをC-O結合、288eVのピークをCOO、290~292eVのピークをCO 2-、C-F結合;
  O1sの結合エネルギー527~530eVのピークをO2-(LiO)、531~532eVのピークをCO、CO、OH、PO(式中、xは1~4の整数である)、SiO(式中、xは1~4の整数である)、533eVのピークをC-O、SiO(式中、xは1~4の整数である);
  F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC-F結合、LiPO(式中、x、y、及びzは、それぞれ1~6の整数である)、PF
  P2pの結合エネルギーについて、133eVのピークをPO(式中、xは1~4の整数である)、134~136eVのピークをPF(式中、xは1~6の整数である);
  Si2pの結合エネルギー99eVのピークをSi、シリサイド、101~107eVのピークをSi(式中、x、及びyは、それぞれ任意の整数である)
として帰属することができる。
 得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。得られた電子状態の測定結果及び存在元素比の結果から、存在するリチウム化合物を同定することができる。
[イオンクロマトグラフィー]
 正極前駆体を蒸留水で洗浄し、洗浄した後の水をイオンクロマトグラフィーで解析することにより、水中に溶出した炭酸イオンを同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。また、質量分析計や荷電化粒子検出器を検出器と組み合わせて測定することもできる。
 サンプルの保持時間は、使用するカラムや溶離液等の条件が決まれば、イオン種成分毎に一定であり、またピークのレスポンスの大きさはイオン種毎に異なるが、イオン種の濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
 上記方法でリチウム化合物を同定できなかった場合、その他の解析手法として、固体Li-NMR、XRD(X線回折)、TOF-SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることにより、リチウム化合物を同定することもできる。
[リチウム化合物の定量方法]
 正極中に含まれるリチウム化合物の定量方法を以下に記載する。
 正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水での洗浄前後の正極質量変化からリチウム化合物を定量することができる。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、より好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。有機溶媒による洗浄については、正極表面に堆積した非水系電解液分解物を除去できればよいため、有機溶媒は特に限定されないが、リチウム化合物の溶解度が2%以下である有機溶媒を用いることでリチウム化合物の溶出が抑制されるため好ましい。例えば、メタノール、アセトン等の極性溶媒が好適に用いられる。
 正極の洗浄方法については、正極の質量に対し50~100倍のメタノール溶液に正極を3日間以上十分に浸漬させる。この時、メタノールが揮発しないよう容器に蓋をする等の対策を施すことが好ましい。その後正極をメタノールから取り出し、真空乾燥(温度:100~200℃、圧力:0~10kPa、時間:5~20時間の範囲で正極中のメタノールの残存が1質量%以下になる条件とする。メタノールの残存量については、後述する蒸留水洗浄後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。)し、その時の正極の質量をM(g)とする。続いて、正極の質量の100倍(100M(g))の蒸留水に正極を3日間以上十分に浸漬させる。この時、蒸留水が揮発しないよう容器に蓋をする等の対策を施すことが好ましい。3日間以上浸漬させた後、蒸留水から正極を取り出し(前述のイオンクロマトグラフィーを測定する場合は、蒸留水の量が100M(g)になるように液量を調整する。)、上述のメタノール洗浄と同様に真空乾燥する。この時の正極の質量をM(g)とし、続いて、得られた正極の集電体の質量を測定するため、スパチュラ、ブラシ、刷毛等を用いて集電体上の正極活物質層を取り除く。得られた正極集電体の質量をM(g)とすると、正極中に含まれるリチウム化合物の割合Z(質量%)は、次式により算出できる。
   Z=100×[1-(M-M)/(M-M)]
[リチウム化合物及び正極活物質の平均粒子径]
 リチウム化合物の平均粒子径をXとするとき、0.1μm≦X≦10μmであり、正極活物質の平均粒子径をYとするとき、2μm≦Y≦20μmであり、かつX<Yであることが好ましい。より好ましくは、Xは、0.5μm≦X≦5μmであり、Yは、3μm≦Y≦10μmである。Xが0.1μm以上の場合、リチウムプレドープ後の正極中にリチウム化合物を残存させることができるため、高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル耐久性が向上する。他方、Xが10μm以下の場合、高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。Yが2μm以上の場合、正極活物質間の電子伝導性を確保できる。他方、Yが20μm以下の場合、電解質イオンとの反応面積が増加するために高い入出力特性が得られる。X<Yであれば、正極活物質間に生じる隙間にリチウム化合物が充填されるため、正極活物質間の電子伝導性を確保しつつ、エネルギー密度を高めることができる。
 X及びYの測定方法は特に限定されないが、正極断面のSEM画像、及びSEM-EDX画像から算出することができる。正極断面の形成方法については、正極上部からArビームを照射し、試料直上に設置した遮蔽板の端部に沿って平滑な断面を作製するBIB加工を用いることができる。正極に炭酸リチウムを含有させる場合、正極断面のラマンイメージングを測定することで炭酸イオンの分布を求めることもできる。
[リチウム化合物と正極活物質の判別方法]
 リチウム化合物及び正極活物質は、観察倍率を1000倍~4000倍にして測定した正極断面のSEM-EDX画像による酸素マッピングにより判別できる。SEM-EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%~60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
[X及びYの算出方法]
 X及びYは、正極断面SEMと同視野にて測定した正極断面SEM-EDXから得られた画像を、画像解析することで求めることができる。正極断面のSEM画像にて判別されたリチウム化合物の粒子X、及びそれ以外の粒子を正極活物質の粒子Yとし、断面SEM画像中に観察されるX、Yそれぞれの粒子全てについて、断面積Sを求め、次式により粒子径dを求める(円周率をπとする。)。
   d=2×(S/π)1/2
 得られた粒子径dを用いて、次式により体積平均粒子径X及びYを求める。
  X(Y)=Σ[4/3π×(d/2)×d]/Σ[4/3π×(d/2)
 正極断面の視野を変えて5ヶ所以上測定し、それぞれのX及びYの平均値をもって平均粒子径X及びYとする。
[正極活物質層の任意成分]
 本実施形態における正極活物質層は、必要に応じて、正極活物質及びリチウム化合物の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
 導電性フィラーとしては、特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、黒鉛、カーボンナノチューブ、これらの混合物等を用いることができる。導電性フィラーの使用量は、正極活物質100質量部に対して、好ましくは0質量部以上30質量部以下である。より好ましくは0.01質量部以上20質量部以下、さらに好ましくは1質量部以上15質量部以下である。導電性フィラーの使用量が30質量部よりも多くなると、正極活物質層における正極活物質の含有割合が少なくなるために、正極活物質層体積当たりのエネルギー密度が低下するので好ましくない。
 結着剤としては、特に制限されるものではないが、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン-ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着剤の使用量は、正極活物質100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは3質量部以上27質量部以下、さらに好ましくは5質量部以上25質量部以下である。結着剤の使用量が1質量部以上であれば、十分な電極強度が発現される。一方で結着剤の使用量が30質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
 分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、正極活物質100質量部に対して、好ましくは、0質量部又は0.1質量部以上、10質量部以下である。分散安定剤の使用量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
[正極集電体]
 本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない材料であれば特に制限はないが、金属箔が好ましい。本実施形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔がより好ましい。
 該金属箔は凹凸や貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
 特に、電極作製の容易性、高い電子伝導性の観点から、正極集電体は、無孔状であることが好ましい。
 正極集電体の厚みは、正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1~100μmが好ましい。
[正極前駆体の製造]
 本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。さらに、得られた正極前駆体にプレスを施して、正極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
 正極前駆体の塗工液は、正極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調製してもよい。また、水又は有機溶媒に結着剤又は分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、正極活物質を含む各種材料粉末を追加して、塗工液を調製してもよい。ドライブレンド法として、例えばボールミル等を使用して正極活物質及びリチウム化合物、並びに必要に応じて導電性フィラーを予備混合して、導電性の低いリチウム化合物に導電性フィラーをコーティングさせる予備混合をしてもよく、これにより、後述のリチウムドープ工程において正極前駆体でリチウム化合物が分解し易くなる。塗工液の溶媒に水を使用する場合には、リチウム化合物を加えることで塗工液がアルカリ性になることもあるため、必要に応じてpH調整剤を添加してもよい。
 正極前駆体の塗工液の調製には、特に制限されるものではないが、好適にはホモディスパーや多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、塗工液を周速1m/s以上50m/s以下で分散することが好ましい。周速が1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。また、周速が50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
 塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm未満では、正極活物質を含む各種材料粉末の粒子径以下のサイズとなり、塗工液作製時に材料を破砕していることになり好ましくない。また、粒度が100μm以下であれば、塗工液吐出時の詰まりや塗膜のスジ発生等がなく、安定に塗工ができる。
 正極前駆体の塗工液の粘度(ηb)は、1,000mPa・s以上20,000mPa・s以下が好ましく、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び膜厚が良好に制御できる。また、粘度(ηb)が20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
 また、該塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
 正極前駆体の塗膜の形成は特に制限されるものではないが、好適にはダイコーター又はコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工で形成してもよい。多層塗工の場合には、塗膜各層内のリチウム化合物の含有量が異なるように塗工液組成を調整してもよい。また、塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。他方、塗工速度が100m/分以下であれば、塗工精度を十分に確保できる。
 正極前駆体の塗膜の乾燥については、特に制限されるものではないが、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。また、複数の乾燥方法を組み合わせて塗膜を乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。他方、乾燥温度が200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、及び正極集電体又は正極活物質層の酸化を抑制できる。
 正極前駆体のプレスには、特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。正極活物質層の膜厚、嵩密度及び電極強度は、後述するプレス圧力、隙間、及びプレス部の表面温度により調整できる。
 プレス圧力は、0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。他方、プレス圧力が20kN/cm以下であれば、正極前駆体に撓み又はシワが生じることがなく、所望の正極活物質層膜厚又は嵩密度に調整できる。
 また、プレスロール同士の隙間は、所望の正極活物質層の膜厚や嵩密度となるように乾燥後の正極前駆体膜厚に応じて任意の値を設定できる。さらに、プレス速度は正極前駆体に撓みやシワが生じない任意の速度に設定できる。
 また、プレス部の表面温度は室温でもよいし、必要によりプレス部を加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは融点マイナス45℃以上、さらに好ましくは融点マイナス30℃以上である。他方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは融点プラス30℃以下、さらに好ましくは融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面を90℃以上200℃以下に加温することが好ましく、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下にプレス部の表面を加熱することである。また、結着剤にスチレン-ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面を40℃以上150℃以下に加温することが好ましく、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下にプレス部の表面を加温することである。
 結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
 また、プレス圧力、隙間、速度、及びプレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
 正極活物質層の目付は、正極集電体の片面当たり20g・m-2以上150g・m-2以下であることが好ましく、より好ましくは片面当たり25g・m-2以上120g・m-2以下であり、更に好ましくは30g・m-2以上80g・m-2以下である。この目付が20g・m-2以上であれば、十分な充放電容量を発現することができる。他方、この目付が150g・m-2以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、十分な出力特性が得られるとともに、セル体積を縮小することができるため、エネルギー密度を高めることができる。上記正極活物質層の目付の範囲の上限と下限は、任意に組み合わせることができる。
 正極活物質層の膜厚は、正極集電体の片面当たり20μm以上200μm以下であることが好ましく、より好ましくは片面当たり25μm以上140μm以下であり、更に好ましくは30μm以上100μm以下である。この膜厚が20μm以上であれば、十分な充放電容量を発現することができる。他方、この膜厚が200μm以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、十分な出力特性が得られるとともに、セル体積を縮小することができるため、エネルギー密度を高めることができる。上記正極活物質層の膜厚の範囲の上限と下限は、任意に組み合わせることができる。なお、集電体が貫通孔や凹凸を有する場合における正極活物質層の膜厚とは、集電体の貫通孔や凹凸を有していない部分の片面当たりの膜厚の平均値をいう。
[リチウムドープ工程後の正極]
 後述のリチウムドープ工程後の正極における正極活物質層の嵩密度は、0.25g/cm以上であることが好ましく、より好ましくは0.30g/cm以上1.3g/cm以下の範囲である。正極活物質層の嵩密度が0.25g/cm以上であれば、高いエネルギー密度を発現でき、蓄電素子の小型化を達成できる。他方、この嵩密度が1.3g/cm以下であれば、正極活物質層内の空孔における電解液の拡散が十分となり、高い出力特性が得られる。
[正極活物質層中の炭素材料、リチウム遷移金属酸化物]
 正極活物質層中に含まれる炭素材料の質量割合をA、リチウム遷移金属酸化物の質量割合をA、その他の成分の質量割合をAとしたとき、これらの値の定量方法は特に限定されないが、例えば下記の方法により定量することができる。
 測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、より好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。
 まず、非水系リチウム型蓄電素子を23℃の部屋に設置された露点-90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体して正極を取り出す。取り出した正極を、ジメチルカーボネート(DMC)で浸漬洗浄した後、大気非暴露を維持した状態下で、サイドボックス中で真空乾燥させる。真空乾燥後に得られた正極について、重量(M)を測定する。続いて、正極の重量の100~150倍の蒸留水に3日間以上浸漬させ、炭素材料とリチウム遷移金属酸化物以外の成分を水中に溶出させる。浸漬の間、蒸留水が揮発しないよう容器に蓋をすることが好ましい。3日間以上浸漬させた後、蒸留水から正極を取り出し、上記と同様に真空乾燥する。得られた正極の重量(M)を測定する。続いて、スパチュラ、ブラシ、刷毛等を用いて正極集電体の片面、または両面に塗布された正極活物質層を取り除く。残った正極集電体の重量(M)を測定し、以下の(1)式でAを算出する。
 A=(M-M)/(M-M)×100  (1)式
 続いて、A、Aを算出するため、上記アルカリ金属化合物を取り除いて得られた正極活物質層について、以下の条件にてTG曲線を測定する。
・試料パン:白金
・ガス:大気雰囲気下、又は圧縮空気
・昇温速度:0.5℃/min以下
・温度範囲:25℃~500℃以上リチウム遷移金属酸化物の融点マイナス50℃の温度以下
 得られるTG曲線の25℃の質量をMとし、500℃以上の温度にて質量減少速度がM×0.01/min以下となった最初の温度における質量をMとする。
 炭素材料は、酸素含有雰囲気(例えば、大気雰囲気)下では500℃以下の温度で加熱することですべて酸化・燃焼する。他方、リチウム遷移金属酸化物は酸素含有雰囲気下でもリチウム遷移金属酸化物の融点マイナス50℃の温度までは質量減少することがない。
 そのため、正極活物質層におけるリチウム遷移金属酸化物の含有量Aは以下の(2)式で算出できる。
 A=(M/M)×{1-(M-M)/(M-M)}×100  (2)式
 また、正極活物質層における炭素材料の含有量Aは以下の(3)式で算出できる。
 A={(M-M)/M}×{1-(M-M)/(M-M)}×100  (3)式
 加熱処理後に残った正極活物質について、ICP測定、XRD測定、XPS測定、XAFS測定、またはそれらを組み合わせて分析することにより、リチウム遷移金属酸化物の元素比率を同定することができる。
[正極活物質層中の固体Li-NMR]
 本実施形態に係る非水系リチウム型蓄電素子は、正極活物質層の固体Li-NMRスペクトルにおいて、-2~2.5ppmの範囲内にシグナルを有する成分Aと、-6~-2.5ppmの範囲内にシグナルを有する成分Bとを有し、成分A及びBのシグナル面積をそれぞれa及びbとしたときに、シグナル面積比a/bが1.5~20.0である。
 本明細書において、正極活物質層に含まれるリチウム量比は、固体Li-NMRスペクトルにより以下の方法により算出できる。
 固体Li-NMRの測定装置としては、市販の装置を用いることができる。室温環境下において、マジックアングルスピニングの回転数を14.5kHzとし、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。測定に際しては測定の間の繰り返し待ち時間を十分にとるように設定する。
 シフト基準として1mol/L塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとする。
 上記の条件によって得られた正極活物質層の固体Li-NMRスペクトルで、-30ppm~30ppmの範囲に観測されるシグナルについて、シグナルを-2ppm~2.5ppmに有する成分Aと、シグナルを-6~-3ppmに有する成分Bとのシグナル面積をそれぞれa、bとしたときに、シグナル面積比a/bが算出できる。
 シグナルAとシグナルBが重なっている場合は、-2ppm~2.5ppmにシグナルAのピークトップを、-6ppm~-2.5ppmにシグナルBのピークトップを想定し、波形分離により両成分の面積比を求める。波形分離は、ガウス曲線が25%、ローレンツ曲線が75%の割合であり、半値幅を300Hz~1000Hzの範囲内にあるものとしてフィッテイングを行い、最小二乗法により算出する。
 本実施形態では、成分Aのシグナル面積aと成分Bのシグナル面積bの面積比a/bは、1.5~20.0であり、好ましくは2.5~15.0であり、より好ましくは3.5~10.0である。面積比a/bが1.5以上であると、活性炭表面のLiイオンと相互作用する活性点の一部が、電解液と反応して、正極活物質層と電解液の界面及び正極活物質層内部のLiイオンの拡散を妨げることがないため、蓄電素子を高出力化することができる。面積比a/bが15.0以下であることで、活性炭表面のLiイオンと相互作用する活性点が増加するため、蓄電素子を高エネルギー密度化することができる。
 面積比a/bを1.5~20.0の範囲内に調整することで、高エネルギー密度化と高出力化を両立することができる原理は明らかではないが、次のように推察される。本実施形態では、非水系リチウム型蓄電素子の正極活物質に含まれる活性炭表面には、Liイオンと可逆的に相互作用する活性点が形成されおり、成分Bは該活性点に起因するものと考えられる。該活性点は、Li化合物を含む正極前駆体を用いたセルで、後述するリチウムドープ工程を経ることにより形成される活性点前駆体を充放電処理により活性化させたものである。該活性点によって、正極活物質中の活性炭が、元来持っている活物質容量以上に電気を蓄えることが可能となるため、電池容量を向上させることができる。また、Liイオンと可逆的に相互作用する活性点は、Liイオンとの相互作用エネルギーが相対的に低いため、常温よりも低い温度の環境下でもLiイオンの拡散が阻害されることがなく、高出力を維持することが可能となる。
 なお、該活性点前駆体は、リチウムドープ工程において正極前駆体中のリチウム化合物が酸化分解反応を起こす際に形成されるものである。そのため、酸化分解反応が十分に進行しない条件下では、活性点前駆体が形成されず、リチウムドープ工程後に充放電処理を行っても活性点は発現しない。酸化分解反応が十分に進行しない条件として、例えば、正極活物質層、または負極活物質層の活物質比率、正極活物質層と負極活物質層の目付け比率が好ましい範囲から大きく外れている場合、リチウムドープ工程における充放電処理工程が不適切な場合等が挙げられる。
[負極]
 負極は、負極集電体と、その片面又は両面に存在する負極活物質層とを有する。
 負極活物質層は、リチウムイオンを吸蔵及び放出できる負極活物質を含む。負極活物質層は、負極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
 本明細書において、「無孔状の負極集電体」とは、少なくとも負極活物質層の塗工された領域において、リチウムイオンが負極集電体を通過して負極の表裏でリチウムイオンが均一化する程度の孔を有しない負極集電体を意味する。したがって、無孔状の負極集電体は、本願発明の効果を奏する範囲内において、極めて小径又は微量の孔を有する負極集電体や、負極活物質層の塗工されていない領域に孔を有する負極集電体をも排除するものではない。また、本実施形態において、負極集電体のうち少なくとも負極活物質層が塗工された領域は無孔状であり、負極集電体のうち負極活物質が塗工されていない余剰部分には孔があってもよいし、無くてもよい。
[負極活物質]
 負極活物質としては、リチウムイオンを吸蔵及び放出可能な物質を用いることができる。蓄電素子の出力と容量を両立し、かつ広い温度範囲内でそれらを維持するという観点からは、少なくとも2種類の負極活物質を用いることが好ましい。
 負極活物質としては、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。好ましくは、負極活物質の総量に対する炭素材料の含有率が50質量%以上であり、より好ましくは70質量%以上である。炭素材料の含有率は、100質量%でよいが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。
 負極活物質には、リチウムイオンをドープすることが好ましい。本明細書において、負極活物質にドープされたリチウムイオンとしては、主に3つの形態が包含される。
 第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
 第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
 第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
 負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
 上記炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素質材料前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
 これらの中でも負極の抵抗を下げる観点から、上記炭素材料1種以上(以下、基材ともいう。)と上記炭素質材料前駆体とを共存させた状態で熱処理を行い、該基材と該炭素質材料前駆体由来の炭素質材料とを複合させた複合炭素材料が好ましい。該炭素質材料前駆体としては、熱処理により該炭素質材料となるものであれば特に制限はないが、石油系のピッチ又は石炭系のピッチが特に好ましい。熱処理を行う前に、該炭素質材料前駆体の融点より高い温度において、該基材と該炭素質材料前駆体とを混合してもよい。熱処理温度は、使用する該炭素質材料前駆体が揮発又は熱分解して発生する成分が該炭素質材料となる温度であればよいが、好ましくは400℃以上2500℃以下、より好ましくは500℃以上2000℃以下、さらに好ましくは550℃以上1500℃以下である。熱処理を行う雰囲気は特に制限はないが、非酸化性雰囲気が好ましい。
[負極活物質層]
 負極活物質層は、好ましくは、炭素材料から成る少なくとも2種類の負極活物質を含有する。
 上記炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
 2種類の負極活物質のうち、少なくとも1種の負極活物質の平均粒子径が、1μm以上15μm以下であることが好ましく、1.5μm以上10μm以下であることがより好ましい。負極活物質層は平均粒径1μm以上の負極活物質を含有することで、負極の電極強度を高め、蓄電素子の高負荷充放電特性を向上させることができる。負極活物質層は平均粒径15μm以下の負極活物質を含有することで、負極のかさ密度を高めることができるため、蓄電素子のエネルギー密度を高めることができる。
 本実施形態において、負極活物質層は、負極活物質の重量を基準として、BET法により算出した比表面積が0.5m/g以上35m/g以下である負極活物質Aと、BET法により算出した比表面積が50m/g以上1,500m/g以下である負極活物質Bを含むことが好ましい。
 負極活物質Bの比率が、負極活物質層に含まれる負極活物質の総量を基準として、1.0質量%~45.0質量%であることが好ましく、より好ましくは2.0質量%~35.0質量%であり、さらに好ましくは1.0質量%~20.0質量%である。負極活物質Bの比率が1.0質量%以上であれば、負極活物質層内のLiイオン拡散速度を高めることができ、蓄電素子を高出力化することができる。負極活物質Bの比率が45.0質量%以下であれば、単位面積当たりのLiドープ量を増加させることができるため、後述のリチウムドープ工程において、負極電位を十分に下げることができ、これにより、蓄電素子のエネルギー密度を高めることができる。
 負極活物質Aのリチウムイオンドープ量が、単位質量当たり50mAh/g以上520mAh/g以下であることが好ましく、より好ましくは150mAh/g以上460mAh/g以下である。
 また、負極活物質Bのリチウムイオンドープ量が、単位質量当たり530mAh/g以上2,500mAh/g以下であることが好ましく、より好ましくは600mAh/g以上2,000mAh/g以下である。
 負極活物質A及びBのリチウムイオンドープ量が上記範囲内であれば、2種の炭素材料を混合した場合においても、後述のリチウムドープ工程において、負極電位を十分に下げることができ、これにより、蓄電素子のエネルギー密度を高めることができる。
 負極活物質Aとしては、黒鉛系材料、ソフトカーボン及びハードカーボンから成る群から選択される少なくとも1つ、又はこれらの少なくとも1つを基材として備える複合化炭素材料Aなどを使用することができる。
 負極活物質Aに使用される黒鉛系材料としては、特に制限はないが、例えば、人造黒鉛、天然黒鉛、低結晶黒鉛、黒鉛化メソフェーズカーボン小球体、黒鉛ウイスカ、高比表面積黒鉛などを使用することができる。黒鉛系材料の平均粒子径は、好ましくは1μm以上10μm以下、より好ましくは2μm以上8μm以下である。負極活物質Aとして、上述した黒鉛系材料を用いてもよいが、低抵抗化の観点から、後述するような複合化処理を黒鉛系材料に施すと、より好適に使用できる。
 負極活物質Aに使用される炭素質材料前駆体は、熱処理することにより、黒鉛系材料に炭素質材料を複合させることができ、かつ固体、液体、又は溶剤に溶解可能な有機材料である。この炭素質材料前駆体としては、熱処理により黒鉛系材料と複合化するものであれば特に制限はないが、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。熱処理を行う前に、該炭素質材料前駆体の融点より高い温度において、該基材と該炭素質材料前駆体とを混合してもよい。熱処理温度は、使用する該炭素質材料前駆体が揮発又は熱分解して発生する成分が該炭素質材料となる温度であればよいが、好ましくは400℃以上2,500℃以下、より好ましくは500℃以上2,000℃以下、さらに好ましくは550℃以上1,500℃以下である。熱処理を行う雰囲気は特に制限はないが、非酸化性雰囲気が好ましい。
 負極活物質Bとしては、活性炭、カーボンブラック、鋳型多孔質炭素、高比表面積黒鉛及びカーボンナノ粒子から成る群から選択される少なくとも1つ、又はこれらの少なくとも1つを基材として備える複合化炭素材料Bなどを使用することができる。
 負極活物質Bに使用される炭素質材料前駆体は、熱処理することにより、非晶質炭素材料に炭素質材料を複合させることができ、かつ固体、液体、又は溶剤に溶解可能な有機材料である。この炭素質材料前駆体としては、熱処理により非晶質炭素材料と複合化するものであれば特に制限はないが、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。熱処理を行う前に、該炭素質材料前駆体の融点より高い温度において、該基材と該炭素質材料前駆体とを混合してもよい。熱処理温度は、使用する該炭素質材料前駆体が揮発又は熱分解して発生する成分が該炭素質材料となる温度であればよいが、好ましくは400℃以上2,500℃以下、より好ましくは500℃以上2,000℃以下、さらに好ましくは550℃以上1,500℃以下である。熱処理を行う雰囲気は特に制限はないが、非酸化性雰囲気が好ましい。
 本実施形態において、負極活物質層は、負極活物質の重量を基準として、BET法により算出した比表面積が4m/g以上75m/g以下であることが好ましい。BET法により算出した比表面積の下限値は、より好ましくは5m/g以上、さらに好ましくは6m/g以上、特に好ましくは7m/g以上である。BET法により算出した比表面積の上限値は、より60m/g以下、さらに好ましくは40m/g以下、特に好ましくは30m/g以下である。
 本実施形態において、負極活物質層は、ラマン分光法により得られる該負極活物質層のラマンマッピングで、1350±15cm-1に現れるDバンドのピーク強度Iと、1585±15cm-1に現れるGバンドのピーク強度Iの比I/Iが0.5以上1.3以下であるマッピング面積のマッピング全体面積に対する割合A1が50%以上95%以下であることが好ましい。A1の下限値は、好ましくは60%以上、更に好ましくは65%以上である。A1の上限値は、好ましくは90%以下、85%以下である。
 本実施形態の負極は、負極活物質層におけるBET法により算出した比表面積、負極活物質層表面のラマン分光法により得られるラマンマッピングにおいて、1350±15cm-1に現れるDバンドのピーク強度Iと、1585±15cm-1に現れるGバンドのピーク強度Iの比I/Iの分布を特定の範囲内に調整することで優れた高負荷充放電サイクル特性と高電圧における優れた高温保存特性が得られる。その原理は明らかではなく、理論に限定されないが、次のように推察される。
 BET法により算出した比表面積が4m/g以上であり、かつA1が60%以上であれば、高負荷充放電サイクルが向上する。原理は必ずしも明らかではないが、比表面積とA1を上記の範囲内に調整することで、大電流で充電する際のリチウムを受入れる負極活物質層の表面積が大きく、かつ炭素材料の結晶化度が低いため、充放電に際してリチウムイオンの拡散が速く、Li受入れ性が向上するために、大電流で充電する際のリチウム析出が抑制され、高負荷充放電サイクル特性が向上すると考えられる。特に、正極前駆体にリチウム化合物を含有する場合、リチウム化合物の分解物が負極表面に堆積し、リチウムの受入れ性が低下するため、リチウムが析出し易いが、上記の範囲にすることで、リチウムの析出を抑制できる。
 一方で、BET法により算出した比表面積が75m/g以下であり、かつA1が95%以下であれば、高電圧における優れた高温保存特性を発現する。原理は必ずしも明らかではないが、前記の範囲にすることで、負極表面での電解液の分解反応を抑制できるため高電圧における優れた高温保存特性を発現できる。特に、正極前駆体にリチウム化合物を含有する場合、高電圧化でリチウム化合物が分解し、負極表面の被膜を破壊し、高温でガス発生し易いが、比表面積とA1を上記の範囲内に調整することで、優れた高電圧高温保存特性を発現できる。
 また、A1が60%以上95%以下であれば2種の炭素材料が均一に混合できていることを意味し、負極活物質層内での抵抗の分布が小さいため、高負荷充放電サイクル特性が向上する。
 本実施形態の負極は、負極活物質層における上記I/Iが1.0以上1.3以下であるマッピング面積のマッピング全体面積に対する割合A2が3%以上70%以下であることが好ましい。A2の下限値は、より好ましくは4%以上、さらに好ましくは5%以上である。A2の上限値は、より好ましくは50%以下、さらに好ましくは30%以下である。A2が3%以上であれば、室温での抵抗に優れ、70%以下であれば、エネルギー密度に優れる。
 本実施形態の負極における、負極活物質層は、該負極活物質重量を基準として、BJH法により算出した直径2nm以上50nm以下の細孔に由来する空孔量をVm1(cc/g)、直径20nm以上50nm以下の細孔に由来する空孔量をVm2(cc/g)とするとき、0.6≦Vm1/(Vm1+Vm2)≦0.8を満たすことが好ましい。Vm1/(Vm1+Vm2)の下限値はさらに好ましくは0.63以上である。Vm1/(Vm1+Vm2)の上限値はさらに好ましくは0.75以下である。Vm1/(Vm1+Vm2)が0.6以上であれば、室温での抵抗に優れ、Vm1/(Vm1+Vm2)が0.7以下であれば、エネルギー密度に優れる。
 本実施形態の負極における負極活物質層は、窒素脱着時の等温線をBJH法で解析して得られる、細孔分布曲線において、直径20nm以上50nm以下の領域に少なくとも1つのピークを有することが好ましい。直径20nm以上50nm以下の領域に少なくとも1つのピークを有することで低温での抵抗に優れる。
 本実施形態の負極における負極活物質層の剥離強度は、0.40N/cm以上2.00N/cm以下である。剥離強度が0.40N/cm以上であれば、負極活物質層の欠落を抑制し、微短絡を抑制することができる。剥離強度が2.00N/cm以下であれば、負極活物質層内に過剰な結着剤等が存在しないことを意味するため、電解液の拡散性が向上して低抵抗化できる。
 本実施形態に係る負極活物質層の剥離強度は、後述のプレスを施す場合は、プレス後に測定する値である。複数回プレスを実施する場合は、最終プレス後に測定する値である。プレスを実施しない負極の場合は、未プレスの状態で測定する値である。
 剥離強度は既知の方法で測定することができる。例えば、JIS Z0237(2009)「粘着テープ・粘着シート試験方法」に準拠した剥離試験を用いてもよい。または、後述する実施例で用いた試験方法を用いてもよい。
 代替的には、負極活物質は、リチウムと合金を形成する材料(以下、「合金系負極材料」ともいう。)でよい。合金系負極材料は、好ましくは、ケイ素、ケイ素化合物、錫、錫化合物、及びこれらと炭素又は炭素質材料との複合材料から成る群から選択される少なくとも1種を含む。負極活物質としてのケイ素化合物は、ケイ素酸化物であることが好ましく、SiO(式中、xは0.01≦x≦1を満たす)であることがより好ましい。
 複合材料は、好ましくはケイ素、ケイ素化合物、錫、及び錫化合物から成る群から選択される少なくとも1種の基材と、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人工黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素質材料前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;から成る群から選択される少なくとも1種の炭素又は炭素質材料とを熱処理等により複合させた材料である。
 これらの中でも、上記の基材1種以上と石油系のピッチ又は石炭系のピッチとを共存させた状態で熱処理をして得ることができる複合材料が特に好ましい。熱処理を行う前に、ピッチの融点より高い温度において、基材とピッチとを混合してもよい。熱処理温度は、使用するピッチが揮発又は熱分解して発生する成分が炭素質材料となる温度であればよいが、好ましくは400℃以上2500℃以下、より好ましくは500℃以上2000℃以下、さらに好ましくは550℃以上1500℃以下である。熱処理を行う雰囲気は特に制限はないが、非酸化性雰囲気が好ましい。
 合金系負極材料の平均粒子径は、0.01μm以上30μm以下であることが好ましい。平均粒子径が0.01μm以上であれば、非水系電解液との接触面積が増えるためにリチウムイオン二次電池の抵抗を下げることができる。負極活物質の平均粒子径が30μm以下であれば、負極活物質層を十分に薄膜化できるため、リチウムイオン二次電池のエネルギー密度を向上できる。
 合金系負極材料の平均粒子径は、分級機内臓の湿式及び乾式ジェットミル、撹拌型ボールミル等を用いて粉砕することにより調整することができる。粉砕機は遠心力分級機を備えており、窒素、アルゴン等の不活性ガス環境下で粉砕された微粒子は、サイクロン又は集塵機で捕集することができる。
 代替的には、負極活物質層は、負極活物質として、リチウムイオンを吸蔵及び放出可能なチタン酸リチウム、並びにリチウムイオンを吸蔵及び放出可能な酸化チタンから成る群から選択される少なくとも1種を含んでいてもよい。例えば、チタン酸リチウムは、一般式LixTiyO4(式中、xは0.8≦x≦1.4を満たし、かつyは1.6≦y≦2.2を満たす)で表される。例えば、酸化チタンとしては、ルチル型の酸化チタン、アナターゼ型の酸化チタン等が挙げられる。これらの中でも、Liイオンの挿入脱離に伴う反応抵抗の上昇が小さく、低温環境下でも高出力を維持できるという観点から、Li4/3Ti5/3が好ましい。
 本実施形態に係る負極活物質層は、必要に応じて、負極活物質の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
 導電性フィラーの種類は特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維等が例示される。導電性フィラーの使用量は、負極活物質100質量部に対して、好ましくは0質量部以上30質量部以下である。より好ましくは0質量部以上20質量部以下、さらに好ましくは0質量部以上15質量部以下である。
 結着剤としては、特に制限されるものではないが、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン-ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着剤の使用量は、負極活物質100質量部に対して、好ましくは1質量部以上30質量部以下である。結着剤の使用量は、より好ましくは2質量部以上27質量部以下、さらに好ましくは3質量部以上25質量部以下である。結着剤の量が1質量部以上であれば、十分な電極強度が発現される。一方で結着剤の量が30質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
 分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、負極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
[負極集電体]
 本実施形態に係る負極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化がおこらない金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
 該金属箔は凹凸や貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
 特に、電極作製の容易性、高い電子伝導性の観点から、本実施形態における負極集電体は、無孔状であることが好ましい。
 負極集電体の厚みは、負極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1~100μmが好ましい。なお、負極集電体が孔又は凹凸を有するときには、孔又は凹凸が存在しない部分に基づいて負極集電体の厚みを測定するものとする。
[負極の製造]
 負極は、負極集電体の片面上又は両面上に負極活物質層を有して成る。典型的な態様において負極活物質層は負極集電体に固着している。
 負極は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることができる。さらに得られた負極にプレスを施して、負極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、負極活物質を含む各種材料を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて負極集電体に貼り付ける方法も可能である。
 塗工液は、負極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水又は有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調製してもよい。また、水又は有機溶媒に結着剤又は分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、負極活物質を含む各種材料粉末を追加して塗工液を調製してもよい。塗工液の調製は、特に制限されるものではないが、好適にはホモディスパー又は多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。また、周速50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
 塗工液の粘度(ηb)は、1,000mPa・s以上20,000mPa・s以下が好ましい。粘度(ηb)は、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び膜厚が良好に制御できる。また、20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
 また、該塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましい。より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
 塗膜の形成は特に制限されるものではないが、好適にはダイコーター又はコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。また、塗工速度は0.1m/分以上100m/分以下であることが好ましい。塗工速度は、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。他方、100m/分以下であれば、塗工精度を十分に確保できる。
 塗膜の乾燥は特に制限されるものではないが、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。また、複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましい。乾燥温度は、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。他方、200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、負極集電体や負極活物質層の酸化を抑制できる。
 負極のプレスは特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。負極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、隙間、プレス部の表面温度により調整できる。プレス圧力は0.5kN/cm以上20kN/cm以下が好ましい。プレス圧力は、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。他方、20kN/cm以下であれば、負極に撓みやシワが生じることがなく、所望の負極活物質層膜厚又は嵩密度に調整できる。また、プレスロール同士の隙間は所望の負極活物質層の膜厚や嵩密度となるように乾燥後の負極膜厚に応じて任意の値を設定できる。さらに、プレス速度は負極に撓みやシワが生じない任意の速度に設定できる。また、プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは45℃以上、さらに好ましくは30℃以上である。他方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは30℃以下、さらに好ましくは20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面温度を90℃以上200℃以下に加温することが好ましい。プレス部の表面温度は、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することである。また、結着剤にスチレン-ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面温度を40℃以上150℃以下に加温することが好ましい。プレス部の表面温度はより好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温することである。
 結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
 また、プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
[測定項目]
 本明細書において、BET比表面積及び平均細孔径、メソ孔量、マイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
 BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett,Joyner,Halendaらにより提唱されたものである(非特許文献1)。
 また、MP法とは、「t-プロット法」(非特許文献2)を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、R.S.Mikhail,Brunauer,Bodorにより考案された方法である(非特許文献3)。
 平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
 出荷時及び使用後の非水系リチウム型蓄電素子における負極活物質のリチウムイオンのドープ量は、例えば、以下のようにして知ることができる。
 先ず、本実施形態における負極活物質層をエチルメチルカーボネート又はジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層と、を得る。この抽出は、典型的にはArボックス内にて、環境温度23℃で行われる。
 上記のようにして得られた抽出液と、抽出後の負極活物質層と、に含まれるリチウム量を、それぞれ、例えばICP-MS(誘導結合プラズマ質量分析計)等を用いて定量し、その合計を求めることによって、負極活物質におけるリチウムイオンのドープ量を知ることができる。そして、得られた値を抽出に供した負極活物質量で割り付けて、上記単位の数値を算出すればよい。
 1次粒子径は、粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて2,000~3,000個程度計測し、これらを算術平均した値を1次粒子径とする方法により得ることができる。
 本明細書中、分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。次いで、スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1~2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
 粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s-1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。次いで、ずり速度を20s-1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いてTI値はTI値=ηa/ηbの式により算出される。ずり速度を2s-1から20s-1へ上昇させる際は、1段階で上昇させてもよいし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
 負極活物質層の目付は、負極集電体の片面当たり10g・m-2以上100g・m-2以下であることが好ましく、より好ましくは片面当たり12g・m-2以上80g・m-2以下であり、更に好ましくは15g・m-2以上50g・m-2以下である。この目付が10g・m-2以上であれば、高負荷充放電特性を向上させることができる。他方、この目付が100g・m-2以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、十分な出力特性が得られるとともに、セル体積を縮小することが可能となり、エネルギー密度を高めることができる。上記負極活物質層の目付の範囲の上限と下限は、任意に組み合わせることができる。
 負極活物質層の膜厚は、片面当たり、10μm以上150μm以下が好ましい。該負極活物質層の膜厚の下限は、より好ましくは12μm以上であり、さらに好ましくは15μm以上である。該負極活物質層の膜厚の上限は、より好ましくは120μm以下であり、さらに好ましくは80μm以下である。この膜厚が10μm以上であれば、負極活物質層を塗工した際にスジ等が発生せず塗工性に優れる。他方、この膜厚が150μm以下であれば、セル体積を縮小することによって高いエネルギー密度を発現できる。なお、集電体が貫通孔や凹凸を有する場合における負極活物質層の膜厚とは、集電体の貫通孔や凹凸を有していない部分の片面当たりの膜厚の平均値をいう。
 負極活物質層の嵩密度は、好ましくは0.30g/cm以上1.8g/cm以下であり、より好ましくは0.40g/cm以上1.5g/cm以下、さらに好ましくは0.45g/cm以上1.3g/cm以下である。嵩密度が0.30g/cm以上であれば、十分な強度を保つことができるとともに、負極活物質間の十分な導電性を発現することができる。また、1.8g/cm以下であれば、負極活物質層内でイオンが十分に拡散できる空孔が確保できる。
[負極活物質層中の金属元素]
 負極活物質層に含まれる、Ni、Mn、Fe、Co及びAlから成る群から選択される少なくとも1種の元素濃度が、10ppm以上5000ppm以下であることが好ましく、より好ましくは10ppm以上3000ppm以下であり、さらに好ましくは50ppm以上1000ppm以下である。この元素濃度が10ppm以上であれば、蓄電素子が高温高電圧状態にさらされた場合に、負極中の金属元素がイオン化するため、正極中のリチウム化合物からのLiイオンの放出を抑制できる。その結果、反応活性種の生成を抑え、高温高電圧状態での電圧低下を抑制することができる。この元素濃度が5000ppm以下であれば、負極中活物質層内のLiイオンの拡散を阻害することがないため、非水系リチウム型蓄電素子を高出力化することができる。また、添加剤等による負極活物質層界面の保護被膜形成を阻害することがないため、高温耐久性を向上することができる。負極活物質層は、これらの元素のいずれかを含めばよく、2種以上含んでいてもよい。電解液が2種以上の元素を含む場合には、それらの合計の濃度が、20ppm以上10000ppm以下であればよい。
[負極活物質層中の金属元素定量方法]
 負極活物質層中に含まれる金属元素を定量する方法としては特に制限されないが、以下に記載する方法が挙げられる、蓄電素子の完成後に、蓄電素子の電極積層体から負極を切り出して有機溶媒で洗浄する。洗浄に使用する有機溶媒としては、負極表面に堆積した電解液分解物を除去し、負極中のリチウムイオンと反応する溶媒がよく、特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール、又はこれらの混合溶媒が好適に用いられる。負極の洗浄方法は、負極の重量に対し50~100倍のエタノール溶液に負極を3日間以上十分に浸漬させる。浸漬の間、エタノールが揮発しないよう、例えば容器に蓋をすることが好ましい。3日間以上浸漬させた後、負極をエタノールから取り出し、真空乾燥する。真空乾燥の条件は、温度:100~200℃、圧力:0~10kPa、時間:5~20時間の範囲で負極中のエタノールの残存が1質量%以下になる条件とする。エタノールの残存量については、真空乾燥後の負極をジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等の有機溶媒に浸漬した後、上記の有機溶媒のGC/MSを測定し、予め作成した検量線を基に定量することができる。
 真空乾燥後に、スパチュラ、ブラシ、刷毛等を用いて負極の負極活物質層をすべて取り除き、得られた負極活物質層の金属元素濃度をICP-AES、原子吸光分析法、蛍光X線分析法、中性子放射化分析法、ICP-MS等を用いて算出する方法等が挙げられる。
[負極活物質層の被膜]
 本実施形態に係る負極活物質層は、負極活物質層表面のX線光電子分光測定(XPS)において、S2pスペクトルの168eVのピーク面積に基づいて求めた硫黄(S)の元素濃度S168eVが、0.5atomic%以上であることが好ましい。Sの元素濃度が0.5atomic%以上であれば、高電圧、高温保存時に非水系電解液が負極活物質層表面で還元分解することを抑制できる。これにより、蓄電素子の高温耐久性を維持しながら、高エネルギー密度化することができる。
 上記で説明されたピークを本実施形態に係る負極活物質層に発現させるための方法としては、例えば、
  負極活物質層に含硫黄化合物を混合する方法、
  負極活物質層に含硫黄化合物を吸着させる方法、
  負極活物質層に含硫黄化合物を電気化学的に析出させる方法
等が挙げられる。
 中でも、非水系電解液中に、分解してこのピークを生成し得る前駆体を含有させておき、蓄電素子を作製する工程における分解反応を利用して、負極活物質層内に上記化合物を堆積させる方法が好ましく、更に、後述の正極前駆体中のアルカリ金属化合物を高電位で酸化分解させる工程を経て上記化合物を堆積させる方法は、原理は定かではないが低温環境下でも高い入出力特性を維持することができる被膜が形成されるため、より好ましい。
 上記ピークを生成し得る前駆体として、下記一般式(2-1):
Figure JPOXMLDOC01-appb-C000013
{一般式(2-1)中、R~Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表される環状硫酸化合物、下記一般式(2-2):
Figure JPOXMLDOC01-appb-C000014
{一般式(2-2)中、R~R14は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表されるスルトン化合物、下記一般式(2-3):
Figure JPOXMLDOC01-appb-C000015
{一般式(2-3)中、R15~R18は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表されるスルトン化合物、下記一般式(2-4):
Figure JPOXMLDOC01-appb-C000016
{一般式(2-4)中、R19~R24は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよい。}
で表される化合物、及び下記一般式(2-5):
Figure JPOXMLDOC01-appb-C000017
{一般式(2-5)中、R25~R28は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
で表される環状亜硫酸化合物から成る群から選択される1種以上の含硫黄化合物(Y)を電解液に添加することが好ましい。
 電解液への添加の観点から、より好ましくは、一般式(2-1)で表される環状硫酸化合物は、エチレンスルファート又は1,3-プロピレンスルファートであり、一般式(2-2)で表されるスルトン化合物は、1,3-プロパンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-ブタンスルトン又は2,4-ペンタンスルトンであり、一般式(2-3)で表されるスルトン化合物は、1,3-プロペンスルトン又は1,4-ブテンスルトンであり、一般式(2-4)で表される化合物は、3-スルフォレンであり、かつ一般式(2-5)で表される環状亜硫酸化合物が、亜硫酸エチレン、1,2-亜硫酸プロピレン、又は1,3-亜硫酸プロピレンである。
[正極活物質層表面の被膜]
 本実施形態に係る正極活物質層は、正極活物質層表面のX線光電子分光測定(XPS)で得られるS2pスペクトルにおいて、162eV~166eVのピークを有することが好ましい。このようなピークを有することによって、高電圧及び高温保存時に非水系電解液が正極活物質層表面で酸化分解することを抑制できる。これにより、蓄電素子の高温耐久性を維持しながら、高エネルギー密度化することができる。
 蒸気で説明されたピークを本実施形態に係る正極活物質層に発現させるための方法としては、例えば、
  正極活物質層にC-S-C構造を有する化合物を混合する方法、
  正極活物質層にC-S-C構造を有する化合物を吸着させる方法、
  正極活物質層にC-S-C構造を有する化合物を電気化学的に析出させる方法
等が挙げられる。
 中でも、非水系電解液中に、分解してこのピークを生成し得る前駆体を含有させておき、蓄電素子を作製する工程における分解反応を利用して、正極活物質層内に上記化合物を堆積させる方法が好ましく、更に、後述の正極前駆体中のアルカリ金属化合物を高電位で酸化分解させる工程を経て上記化合物を堆積させる方法は、原理は定かではないが低温環境下でも高い入出力特性を維持することができる被膜が形成されるため、より好ましい。
 上記ピークを生成し得る前駆体としては、下記一般式(1):
Figure JPOXMLDOC01-appb-C000018
{一般式(1)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、ホルミル基、アセチル基、ニトリル基、アセチル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキルエステルを表す。}
で表されるチオフェン化合物から成る群から選択される1種以上の含硫黄化合物(X)を電解液に添加することが好ましい。
 電解液への添加の観点から、上記一般式(1)で表されるチオフェン化合物は、より好ましくは、チオフェン、2-メチルチオフェン、3-メチルチオフェン、2-シアノチオフェン、3-シアノチオフェン、2,5-ジメチルチオフェン、2-メトキシチオフェン、3-メトキシチオフェン、2-クロロチオフェン、3-クロロチオフェン、2-アセチルチオフェン、及び3-アセチルチオフェンから成る群から選択される少なくとも1種である。
<正極と負極の設計>
 本実施形態において、正極の正極活物質層の目付をC(g/m)とし、負極の負極活物質層の目付をC(g/m)とするとき、C/Cが0.35以上5.80以下であることが好ましく、より好ましくは0.40以上3.00以下であり、さらに好ましくは0.60以上2.50以下である。C/Cが0.35以上であれば、リチウム化合物を含む正極前駆体から負極へリチウムイオンを十分にプレドープすることによって、負極電位を下げることができるため、蓄電素子のエネルギー密度を向上させることができる。他方、C/Cが5.80以下であれば、正極活物質層に含まれるリチウム化合物のドープ反応による正極活物質表面の活性化反応が、十分に進行するため、蓄電素子の容量向上と高出力化が期待できる。また、C/Cが5.80以下の場合には、充放電に伴う負極活物質容量の利用幅を狭くすることができるため、高負荷充放電特性を向上させることができる。
 また、正極の正極活物質層の厚みをD(μm)とし、負極の負極活物質層の厚みをD(μm)とするとき、D/Dが0.30以上5.00以下であることが好ましく、より好ましくは0.70以上3.50以下であり、さらに好ましくは1.00以上2.50以下である。D/Dが0.30以上であれば、正極活物質層内のリチウムイオンの表面吸着速度に対する負極活物質層内のリチウムイオン拡散速度が速まるため、蓄電素子の出力特性を向上できる。他方、D/Dが5.00以下であれば、負極活物質層内のリチウムイオンの挿入反応に対する正極活物質層内のリチウムイオン拡散速度が速まるため、蓄電素子の入力特性を向上できる。また、充放電に伴う負極活物質容量の利用幅を狭くすることができるため、高負荷充放電特性を向上させることができる。
<正極活物質層目付の算出>
 正極前駆体の場合、正極前駆体の一部を所定の面積に切り出し、重量を測定する。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、更に好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。続いて正極前駆体の正極活物質層をスパチュラ、ブラシ、刷毛等を用いて削り取り、正極集電箔の重量を測定する。切り出した正極前駆体の面積をSZC(m)重量をMZ1(g),正極集電箔の重量をMZ2(g)とすると、正極前駆体の正極活物質層目付CZ1は以下の式(4)で算出できる。
   CZ1(g・m―2)=(MZC1―MZC2)/SZC       数式(4)
 リチウムドープ工程を経た正極の場合の正極活物質層目付の算出法を以下に記載する。アルゴンボックス中で、電圧を2.9Vに調整した非水系リチウム型蓄電素子を解体して電極積層体を取り出し、電極積層体から正極を切り出して有機溶媒で洗浄する。有機溶媒としては、正極表面に堆積した電解液分解物を除去できればよく、特に限定されないが、リチウム化合物の溶解度が2%以下である有機溶媒を用いることでリチウム化合物の溶出が抑制される。そのような有機溶媒としては、例えばメタノール、エタノール、アセトン、酢酸メチル等の極性溶媒が好適に用いられる。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、更に好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。
 正極の洗浄方法は、正極の重量に対し50~100倍のエタノール溶液に正極を3日間以上十分に浸漬させる。浸漬の間、エタノールが揮発しないよう、例えば容器に蓋をすることが好ましい。3日間以上浸漬させた後、正極をエタノールから取り出し、真空乾燥する。真空乾燥の条件は、温度:100~200℃、圧力:0~10kPa、時間:5~20時間の範囲で正極中のエタノールの残存が1質量%以下になる条件とする。エタノールの残存量については、後述する蒸留水洗浄後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。
 真空乾燥後に得られた正極の面積をX(m)とする。スパチュラ、ブラシ、刷毛等を用いて正極の正極活物質層をすべて取り除き、正極活物質層の重量M0xC(g)と得られた正極の集電体の重量Mx2Cを測定する。続いて、測定した正極活物質層重量の100~150倍の蒸留水に3日間以上十分に浸漬させる。浸漬の間、蒸留水が揮発しないよう容器に蓋をすることが好ましく、リチウム化合物の溶出を促進させるために時折水溶液を撹拌させることが好ましい。3日間以上浸漬させた後、蒸留水から正極活物質層を取り出し、上記のエタノール洗浄と同様に真空乾燥する。真空乾燥後の重量Mx1C(g)を測定する。正極活物質層の目付Cx1(g/mは 数式(5)にて算出できる。
   Cx1=(Mx1C-Mx2C)/X       数式(5)
<負極活物質層目付の算出>
 注液工程前の負極場合、負極の一部を所定の面積に切り出し、重量を測定する。測定する負極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、更に好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。続いて負極中の負極活物質層をスパチュラ、ブラシ、刷毛等を用いて削り取り、負極集電箔の重量を測定する。切り出した負極の面積をSZA(m)重量をMZ1(g),負極集電箔の重量をMZ2(g)とすると、正極前駆体の正極活物質層目付AZ1は以下の数式(6)で算出できる。
   AZ1(g・m―2)=(MZA1―MZA2)/SZA     数式(6)
 リチウムドープ工程を経た負極の場合の負極活物質層の目付の定量方法を以下に記載する。上記アルゴンボックス中で電極積層体から負極を切り出して有機溶媒で洗浄する。洗浄に使用する有機溶媒としては、負極表面に堆積した電解液分解物を除去し、負極中のリチウムイオンと反応する溶媒がよく、特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール、又はこれらの混合溶媒が好適に用いられる。
 測定する負極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、更に好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。
 負極の洗浄方法は、負極の重量に対し50~100倍のエタノール溶液に負極を3日間以上十分に浸漬させる。浸漬の間、エタノールが揮発しないよう、例えば容器に蓋をすることが好ましい。3日間以上浸漬させた後、負極をエタノールから取り出し、真空乾燥する。真空乾燥の条件は、温度:100~200℃、圧力:0~10kPa、時間:5~20時間の範囲で負極中のエタノールの残存が1質量%以下になる条件とする。
 エタノールの残存量については、真空乾燥後の負極をジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等の有機溶媒に浸漬した後、上記の有機溶媒のGC/MSを測定し、予め作成した検量線を基に定量することができる。
 真空乾燥後に得られた負極の面積をX(m)とする。スパチュラ、ブラシ、刷毛等を用いて負極の負極活物質層をすべて取り除き、負極活物質層の重量M0xA(g)と得られた負極の集電体の重量Mx2Aを測定する。続いて、測定した負極活物質層重量の100~150倍の蒸留水に3日間以上十分に浸漬させる。浸漬の間、蒸留水が揮発しないよう容器に蓋をすることが好ましく、リチウム化合物の溶出を促進させるために時折水溶液を撹拌させることが好ましい。3日間以上浸漬させた後、蒸留水から負極活物質層を取り出し、上記のエタノール洗浄と同様に真空乾燥する。真空乾燥後の重量Mx1A(g)を測定する。負極活物質層の目付Ax1(g/mは 数式(7)にて算出できる。
   Ax1=(Mx1A-Mx2A)/X    式(7)
[電解液]
 本実施形態の電解液は、非水系であり、すなわち、この電解液は、後述する非水溶媒を含む。非水系電解液は、非水系電解液の総量を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。すなわち、非水系電解液は、リチウムイオンを電解質として含むことが好ましい。
[リチウム塩]
 本実施形態の非水系電解液は、リチウム塩として、例えば、(LiN(SOF))、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiN(SOCF)(SOH)、LiC(SOF)、LiC(SOCF、LiC(SO、LiCFSO、LiCSO、LiPF、LiBF等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、非水系電解液は、LiPF、LiN(SOF)及びLiBFから成る群から選択される少なくとも1つを含むことが好ましく、LiPF及び/又はLiBFを含むことがより好ましく、LiPF及び/又はLiBFとLiN(SOF)とを含むことがさらに好ましい。
 非水系電解液中のリチウム塩濃度は、該非水系電解液の総量を基準として、0.5mol/L以上であることが好ましく、0.5mol/L以上2.0mol/L以下の範囲がより好ましい。リチウム塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。また、リチウム塩濃度が2.0mol/L以下である場合、未溶解のリチウム塩が非水系電解液中に析出すること、及び電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下せず、出力特性も低下しないため好ましい。
 本実施形態の非水系電解液は、非水系電解液の総量を基準として、0.1mol/L以上1.5mol/L以下の濃度のLiN(SOF)を含むことが好ましく、LiN(SOF)の濃度は、より好ましくは0.3mol/L以上1.2mol/L以下である。LiN(SOF)濃度が0.1mol/L以上であれば、電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより電解液が分解することによるガスを低減することができる。他方、この濃度が1.5mol/L以下であれば、充放電の時に電解質塩の析出が起きず、かつ長期間経過後であっても電解液の粘度が増加を引き起こすことがない。
[非水溶媒]
 本実施形態の非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び正極活物質層にリチウム化合物を適量堆積させる点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。
 環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。上記合計含有量が15質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能となり、高いリチウムイオン伝導度を発現することができる。さらに正極活物質層にリチウム化合物を適量堆積させることが可能となり、電解液の酸化分解を抑制することができる。
 本実施形態の非水系電解液は、非水溶媒として、鎖状カーボネート化合物であるジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を含有することが好ましい。ジメチルカーボネートに対するエチルメチルカーボネートの体積比率(DMC/EMC)が0.5以上8.0以下であることが好ましく、0.8以上6.0以下であることがより好ましく、1.0以上4.0以下であることがさらに好ましい。DMC/EMCが0.5以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。DMC/EMCが8.0以下であれば、混合溶媒の融点を低く保つことが可能となり、低温環境下でも高い入出力特性を発揮することができる。
 また、本実施形態の非水系電解液は、非水溶媒として、その他の鎖状カーボネートを含んでいてもよい。その他の鎖状カーボネートとしては、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
 鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。上記鎖状カーボネートの含有量が30質量%以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。上記合計濃度が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
[添加剤]
 本実施形態の非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、特に制限されないが、例えば、上記一般式(1)で表されるチオフェン化合物、上記一般式(2-1)で表される環状硫酸化合物、スルトン化合物、上記一般式(2-4)で表される化合物、上記一般式(2-5)で表される環状亜硫酸化合物、環状ホスファゼン、非環状含フッ素エーテル、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物等を単独で用いることができ、また、2種以上を混合して用いてもよい。
 スルトン化合物としては、例えば、上記一般式(2-2)若しくは(2-3)で表されるスルトン化合物、又は下記一般式(7)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、単独で用いてもよく、又は2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000019
{式(7)中、R11~R16は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、又は炭素数1~12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよい。}
 本実施形態では、抵抗への悪影響の少なさの観点、及び非水系電解液の高温における分解を抑制してガス発生を抑えるという観点から、式(7)で表されるスルトン化合物としては、1,5,2,4-ジオキサジチエパン2,2,4,4-テトラオキシドが好ましく、その他のスルトン化合物としては、メチレンビス(ベンゼンスルホン酸)、メチレンビス(フェニルメタンスルホン酸)、メチレンビス(エタンスルホン酸)、メチレンビス(2,4,6,トリメチルベンゼンスルホン酸)、及びメチレンビス(2-トリフルオロメチルベンゼンスルホン酸)を挙げることができ、これらのうちから選択される少なくとも1種以上を選択することが好ましい。
 本実施形態における非水系リチウム型蓄電素子の非水系電解液中のスルトン化合物の総含有量は、非水系電解液の総量を基準として、0.5質量%以上15質量%以下であることが好ましい。非水系電解液中のスルトン化合物の総含有量が0.5質量%以上であれば、高温における電解液の分解を抑制してガス発生を抑えることが可能となる。一方で、この総含有量が15質量%以下であれば、電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。また、非水系リチウム型蓄電素子の非水系電解液に存在するスルトン化合物の含有量は、高い入出力特性と耐久性を両立する観点から、好ましくは1質量%以上10質量%以下であり、より好ましくは3質量%以上8質量%以下である。
[環状ホスファゼン]
 環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン等を挙げることができ、これらのうちから選択される1種以上が好ましい。
 非水系電解液中の環状ホスファゼンの含有率は、該非水系電解液の総量を基準として、0.5質量%以上20質量%以下であることが好ましい。この値が0.5重量%以上であれば、高温における電解液の分解を抑制してガス発生を抑えることが可能となる。他方、この値が20質量%以下であれば、電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。環状ホスファゼンの含有率は、より好ましくは2質量%以上15質量%以下であり、更に好ましくは4質量%以上12質量%以下である。
 尚、これらの環状ホスファゼンは、単独で用いてもよく、又は2種以上を混合して用いてもよい。
[非環状含フッ素エーテル]
 非環状含フッ素エーテルとしては、例えば、HCFCFOCHCFCFH、CFCFHCFOCHCFCFH、HCFCFCHOCHCFCFH、CFCFHCFOCHCFCFHCF等が挙げられ、中でも、電気化学的安定性の観点から、HCFCFOCHCFCFHが好ましい。
 非環状含フッ素エーテルの含有量は、該非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることが更に好ましい。非環状含フッ素エーテルの含有量が0.5質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時耐久性が高い蓄電素子が得られる。他方、非環状含フッ素エーテルの含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、非環状含フッ素エーテルは、単独で使用しても、2種以上を混合して使用してもよい。
[含フッ素環状カーボネート]
 含フッ素環状カーボネートについては、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)から選択して使用されることが好ましい。
 フッ素原子を含有する環状カーボネートの含有量は、該非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。フッ素原子を含有する環状カーボネートの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することによって、高温における耐久性が高い蓄電素子が得られる。他方、フッ素原子を含有する環状カーボネートの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記のフッ素原子を含有する環状カーボネートは、単独で使用しても、2種以上を混合して使用してもよい。
[環状炭酸エステル]
 環状炭酸エステルについては、ビニレンカーボネートが好ましい。
 環状炭酸エステルの含有量は、該非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状炭酸エステルの含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温における耐久性が高い蓄電素子が得られる。他方、環状炭酸エステルの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。
[環状カルボン酸エステル]
 環状カルボン酸エステルとしては、例えば、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等を挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。中でも、ガンマブチロラクトンが、リチウムイオン解離度の向上に由来する電池特性向上の点から、特に好ましい。
 環状カルボン酸エステルの含有量は、該非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。他方、環状カルボン酸エステルの含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の環状カルボン酸エステルは、単独で使用しても、2種以上を混合して使用してもよい。
[環状酸無水物]
 環状酸無水物については、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸から選択される1種以上が好ましい。中でも工業的な入手のし易さによって電解液の製造コストが抑えられる点、非水系電解液中に溶解し易い点等から、無水コハク酸及び無水マレイン酸から選択することが好ましい。
 環状酸無水物の含有量は、該非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。他方、環状酸無水物の含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。尚、上記の環状酸無水物は、単独で使用しても、2種以上を混合して使用してもよい。
[電解液中の金属元素]
 本実施形態の非水系電解液は、Ni、Mn、Fe、Co及びAlから成る群から選択される少なくとも1種の元素濃度が、10ppm以上1000ppm以下であることが好ましく、より好ましくは15ppm以上800ppm以下であり、さらに好ましくは20ppm以上600ppm以下である。この元素濃度が10ppm以上であれば、蓄電素子が高温高電圧状態にさらされた場合に、負極中の金属元素がイオン化するため、正極中のリチウム化合物からのLiイオンの放出を抑制できる。その結果、反応活性種の生成を抑え、高温高電圧状態での電圧低下を抑制することができる。この元素濃度が1000ppm以下であれば、負極界面におけるLiイオン伝導性の低い被膜の形成を抑制できる。これにより、蓄電素子を高出力化することができる。また、負極活物質層界面に形成されている保護被膜を破壊することがないため、蓄電素子が十分な高温耐久性を得ることができる。電解液は、これらの元素のいずれかを含めばよく、2種以上含んでいてもよい。電解液が2種以上の元素を含む場合には、それらの合計の濃度が、20ppm以上2000ppm以下であればよい。
 Ni、Mn、Fe、Co及びAlから成る群から選択される少なくとも1つを電解液中に添加する方法としては特に制限されないが、これらの元素を含む化合物を正極前駆体に混合し、電圧を印加させて分解し、溶出させる方法;;電解液中に溶解させる方法等が挙げられる。中でも、Ni、Mn、Fe、Co又はAlのいずれかの元素を含む化合物を正極前駆体に混合し、電圧を印加して分解し、溶出させる方法が好ましい。
[非水系電解液中の金属元素定量方法]
 非水系電解液中に含まれる金属元素を定量する方法としては特に制限されないが、例えば、蓄電素子の完成後に、蓄電素子から非水系電解液を取り出し、ICP-AES、原子吸光分析法、蛍光X線分析法、中性子放射化分析法、ICP-MS等を用いて算出する方法等が挙げられる。
[セパレータ]
 正極前駆体及び負極は、セパレータを介して積層又は捲回され、正極前駆体、負極及びセパレータを有する電極積層体または電極捲回体が形成される。
 セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜等のポリオレフィン製微多孔膜、又は電気二重層キャパシタで用いられるセルロース製の不織紙、ポリエステル系樹脂を含む不織布等を用いることができる。これらのセパレータの片面または両面に、有機または無機の微粒子から成る膜が絶縁層として積層されていてもよい。また、セパレータの内部に有機または無機の微粒子が含まれていてもよい。
 セパレータの厚みは5μm以上35μm以下が好ましい。5μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。他方、35μm以下の厚みとすることにより、非水系リチウム型蓄電素子の入出力特性が高くなる傾向があるため好ましい。
 また、有機または無機の微粒子から成る膜の厚みは、1μm以上10μm以下が好ましい。有機または無機の微粒子から成る膜を1μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。他方、10μm以下の厚みとすることにより、非水系リチウム型蓄電素子の入出力特性が高くなる傾向があるため好ましい。
 本実施形態のセパレータの空孔率は、30%~75%が好ましく、より好ましくは、55~70%である。空孔率を30%以上とすることは、高速充放電時のリチウムイオンの急速な移動に追従する観点からも好ましい。他方、空孔率を70%以下とすることは、膜強度を向上する観点から好ましく、電極表面の凹凸や異物による蓄電素子の内部短絡を抑制することができる。
[非水系リチウム型蓄電素子]
 本実施形態の非水系リチウム型蓄電素子は、後述するとおり、電極積層体又は電極捲回体が、非水系電解液とともに外装体内に収納されて構成される。
[組立]
 セル組み立て工程で得られる電極積層体は、枚葉の形状にカットした正極前駆体と負極を、セパレータを介して積層して成る積層体に、正極端子と負極端子を接続したものである。積層型電極にすることで、外装体に収納した際に、正極と負極の距離を均一化することができるため、内部抵抗が低減し、蓄電素子を高出力化することができる。
 また、電極捲回体は、正極前駆体と負極を、セパレータを介して捲回して成る捲回体に正極端子及び負極端子を接続したものである。電極捲回体の形状は円筒型であっても、扁平型であってもよいが、パック化する際の蓄電素子の充填率を向上させる観点から、扁平型であることが好ましい。捲回型電極にすることで、セル組立工程に要する時間を短縮することができるため、生産効率が向上する。
 正極端子と負極端子の接続の方法は特に限定はしないが、抵抗溶接や超音波溶接などの方法で行う。
[外装体]
 外装体としては、金属缶、ラミネート包材等を使用できる。
 金属缶は、アルミニウム又はアルミニウム合金で形成されているものが好ましい。金属缶の蓋体には、安全弁が設けられていることが好ましい。安全弁が設置されていることで、ガス発生により電池の内圧が上昇した場合に、ガスを放出することができる。金属缶を用いることで、外装体内の電極積層体の充填率を高めることができるため、エネルギー密度を向上させることができる。
 ラミネート包材としては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムから成る3層構成のものが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する非水系電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。ラミネート包材を用いることで、蓄電素子の放熱性を高めることができ、高温耐久性を向上させることができる。
[外装体への収納]
 乾燥した電極積層体又は電極捲回体は、金属缶やラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。電極捲回体の場合、外装体へ収納する前に、プレス機を用いて扁平状に成形することが好ましい。この際、加圧時に捲回体を加温してもよい。捲回体を扁平状に成形した後に、外装体へ収納する。外装体と電極捲解体の密着性を向上させるという観点から、収納後に再度プレス機を用いて加圧、及び加温することが好ましい。
 外装体の封止方法は特に限定しないがラミネート包材を用いる場合は、ヒートシールやインパルスシールなどの方法を用いる。
[乾燥]
 外装体へ収納した電極積層体又は電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法に限定はないが、真空乾燥などにより乾燥する。残存溶媒は、正極活物質層又は負極活物質層の質量あたり、1.5質量%以下が好ましい。残存溶媒が1.5質量%より多いと、系内に溶媒が残存し、自己放電特性やサイクル特性を悪化させるため、好ましくない。
[注液、含浸、封止工程]
 組立工程の終了後に、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液する。注液工程の終了後に、更に、含浸を行い、正極、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープ工程において、ドープが不均一に進むため、得られる非水系リチウム型蓄電素子の抵抗が上昇したり、耐久性が低下したりする。上記含浸の方法としては、特に制限されないが、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸工程終了後、ラミネート包材を用いる場合は、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉する。金属缶を用いる場合は、溶接やカシメ等の封口手段を用いる。
[リチウムドープ工程]
 リチウムドープ工程において、好ましい工程としては、正極前駆体と負極との間に電圧を印加してリチウム化合物を分解することにより、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極活物質層にリオチウムイオンがプレドープされる。
 このリチウムドープ工程において、正極前駆体中のリチウム化合物の酸化分解に伴い、CO等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
[エージング工程]
 リチウムドープ工程の終了後に、電極積層体又は電極捲回体にエージングを行うことが好ましい。エージング工程において非水系電解液中の溶媒が電極-電解液界面で分解し、電極にリチウムイオン透過性の固体高分子被膜が形成される。
 上記エージングの方法としては、特に制限されないが、例えば、高温環境下で非水系電解液中の溶媒を反応させる方法等を用いることができる。
[追加充放電工程]
 本実施形態に係る非水系リチウム型蓄電素子のエージング後に、電極積層体又は電極捲回体に追加充放電を行うことが好ましい。追加充放電を行うことで、リチウムドープ工程時のリチウム化合物分解反応により生成される活性炭表面の表面官能基が安定化し、Liイオンと可逆的に相互作用する活性点が形成される。これによって、正極活物質中の活性炭が元来持っている活物質容量以上に電気を蓄えることが可能となるため、電池容量を向上させることができる。また、Liイオンと可逆的に相互作用する活性点は、Liイオンとの相互作用エネルギーが低いため、低温環境下でもLiイオンの拡散が阻害されることがなく、高出力を維持することが可能となる。
[ガス抜き工程]
 エージング工程の終了後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム型蓄電素子の抵抗が上昇してしまう。
 上記ガス抜きの方法としては、特に制限されないが、例えば、前記外装体を開口した状態で電極積層体又は電極捲回体を減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。
[静電容量]
 本明細書中、静電容量F(F)とは、以下の方法によって得られる値である:
 先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で4.2Vに到達するまで定電流充電を行い、次いで、4.2Vの定電圧を印加する定電圧充電を合計で30分行う。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとする。ここで得られたQを用いて、F=Q/(4.2-2.2)により算出される値をいう。
[電力量]
 本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である:
 先に述べた方法で算出された静電容量F(F)を用いて、F×(4.2-2.2)/2/3600により算出される値をいう。
[体積]
 非水系リチウム型蓄電素子の体積は、特に指定はないが、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
 例えば、ラミネートフィルムによって収納された電極積層体又は電極捲回体の場合は、電極積層体又は電極捲回体のうち、正極活物質層および負極活物質層が存在する領域が、カップ成形されたラミネートフィルムの中に収納されるが、この非水系リチウム型蓄電素子の体積(V11)は、このカップ成形部分の外寸長さ(l1)、外寸幅(w1)、及びラミネートフィルムを含めた非水系リチウム型蓄電素子の厚み(t1)により、V11=l1×w1×t1で計算される。
 角型の金属缶に収納された電極積層体又は電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、単にその金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V22)は、角型の金属缶の外寸長さ(l2)と外寸幅(w2)、外寸厚み(t2)により、V22=l2×w2×t2で計算される。
 また、円筒型の金属缶に収納された電極捲回体の場合においても、非水系リチウム型蓄電素子の体積としては、その金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V33)は、円筒型の金属缶の底面または上面の外寸半径(r)、外寸長さ(l3)により、V33=3.14×r×r×l3で計算される。
[エネルギー密度]
 本明細書中、エネルギー密度とは、電気量Eと体積Vii(i=1、2、3)を用いてE/Vi(Wh/L)の式により得られる値である。
[常温内部抵抗]
 本明細書では、常温内部抵抗Ra(Ω)とは、以下の方法によって得られる値である:
 先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間-電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=4.2-Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
[低温内部抵抗]
 本明細書では、低温内部抵抗Rcとは、以下の方法によって得られる値である:
 先ず、非水系リチウム型蓄電素子と対応するセルを-30℃に設定した恒温槽内に2時間放置する。その後、恒温槽を-30℃に保ったまま、1.0Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で2時間行う。続いて、10Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間-電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=4.2-Eo、及びRc=ΔE/(10C(電流値A))により算出される値である。
[高温保存試験]
 本明細書では、高温保存試験時のガス発生量、及び高温保存試験後の常温内部抵抗上昇率は、以下の方法によって測定する:
 先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、100Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を10分間行う。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、前述の充電工程にてセル電圧を4.2Vに充電した後、再びセルを60℃環境下で保存する。この工程を繰り返し行い、保存開始前のセル体積Va、保存試験2か月後のセル体積Vbをアルキメデス法によって測定する。Vb-Vaをセル電圧4.2V及び環境温度60℃において2か月間保存した際に発生するガス量とする。
 上記高温保存試験後のセルに対して、上記常温内部抵抗と同様の測定方法を用いて得られる抵抗値を高温保存試験後の常温内部抵抗Rbとしたとき、高温保存試験開始前の常温内部抵抗Raに対する高温保存試験後の常温内部抵抗上昇率はRb/Raにより算出される。
[高負荷充放電サイクル試験]
 本明細書では、高負荷充放電サイクル試験後の抵抗上昇率は、以下の方法によって測定する:
 先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で4.2Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。上記充放電工程を60000回繰り返し、試験開始前と、試験終了後に静電容量測定を行い、試験開始前の静電容量をFa(F)、試験終了後の静電容量をFd(F)としたとき、試験開始前に対する高負荷充放電サイクル試験後の静電容量維持率はFd/Faにより算出される。
 本実施形態に係る非水系リチウム型蓄電素子は、初期の常温内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、蓄電素子を収納している外装体の体積をV(L)、低温内部抵抗をRcとしたとき、以下の(a)~(c):
 (a)RaとFとの積Ra・Fが0.5以上3.0以下である;
 (b)E/Vが20以上80以下である;及び
 (c)Rc/Raが30以下である;
を同時に満たすものであることが好ましい。
 (a)について、Ra・Fは、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.6以下であり、更に好ましくは2.4以下である。Ra・Fが上記の上限値以下であれば、優れた入出力特性を有する非水系リチウム型蓄電素子を得ることができる。そのため、非水系リチウム型蓄電素子を用いた蓄電システムと、例えば高効率エンジンと、を組み合わせること等によって該非水系リチウム型蓄電素子に印加される高負荷にも十分に耐え得ることとなり、好ましい。
 (b)について、E/Vは十分な充電容量と放電容量とを発現させる観点から、20以上であることが好ましく、より好ましくは25以上であり、更に好ましくは30以上である。E/Vが上記の下限値以上であれば、優れた体積エネルギー密度を有する蓄電素子を得ることができる。そのため、蓄電素子を用いた蓄電システムを、例えば、自動車のエンジンと組み合わせて使用する場合に、自動車内の限られた狭いスペースに蓄電システムを設置することが可能となり、好ましい。
 (c)について、Rc/Raは、-30℃という低温環境下においても十分な充電容量と放電容量とを発現させる観点から、30以下であることが好ましく、より好ましくは26以下であり、更に好ましくは22以下である。Rc/Raが上記の上限値以下であれば、低温環境下においても優れた出力特性を有する蓄電素子を得ることができる。そのため、低温環境下での自動車・バイク等のエンジン始動時に、モーターを駆動するための十分な電力を与える蓄電素子を得ることが可能となる。
 本実施形態に係る非水系リチウム型蓄電素子は、初期の常温内部抵抗をRa(Ω)、静電容量をF(F)、セル電圧4.2V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRb(Ω)、並びに環境温度-30℃における内部抵抗をRcとした時、以下の(d)及び(e)の要件:
 (d)Rb/Raが0.3以上3.0以下である、及び
 (e)セル電圧4.2V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10-3cc/F以下である、
を同時に満たすことより好ましい。
 (d)について、Rb/Raは、高温環境下に長時間曝された場合に、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.0以下であり、更に好ましくは1.5以下である。Rb/Raが上記の上限値以下であれば、長期間安定して優れた出力特性を得ることができるため、デバイスの長寿命化につながる。
 (e)について、セル電圧4.2V及び環境温度60℃において2か月間保存した際に発生するガス量は、発生したガスにより素子の特性を低下させないとの観点から、発生ガス量を25℃において測定した値として、30×10-3cc/F以下であることが好ましく、より好ましくは20×10-3cc/F以下であり、更に好ましくは15×10-3cc/F以下である。上記の条件下で発生するガス量が上記の上限値以下であれば、デバイスが長期間高温に曝された場合であっても、ガス発生によってセルが膨張するおそれがない。そのため、十分な安全性及び耐久性を有する蓄電素子を得ることができる。
[非水系アルカリ金属型蓄電素子の用途]
 本実施形態に係る複数個の非水系アルカリ金属型蓄電素子を直列又は並列に接続することにより蓄電モジュールを作製することができる。また、本実施形態の非水系アルカリ金属型蓄電素子及び蓄電モジュールは、高い入出力特性と高温での安全性とを両立することができるので、電力回生アシストシステム、電力負荷平準化システム、無停電電源システム、非接触給電システム、エナジーハーベストシステム、蓄電システム、電動パワーステアリングシステム、非常用電源システム、インホイールモーターシステム、アイドリングストップシステム、急速充電システム、スマートグリッドシステム、バックアップ電源システム等に使用されることができる。バックアップ電源システムは、電気自動車、電動バイクなどの乗り物の複数電源化に利用されることができ、複数の電源システムのうち2番目以降の電源システムをいう。 蓄電システムは太陽光発電又は風力発電等の自然発電に、電力負荷平準化システムはマイクログリッド等に、無停電電源システムは工場の生産設備等に、それぞれ好適に利用される。非接触給電システムにおいて、非水系アルカリ金属型蓄電素子は、マイクロ波送電又は電界共鳴等の電圧変動の平準化及びエネルギーの蓄電のために、エナジーハーベストシステムにおいて、非水系アルカリ金属型蓄電素子は、振動発電等で発電した電力を使用するために、それぞれ好適に利用される。
 蓄電システムにおいては、セルスタックとして、複数個の非水系アルカリ金属型蓄電素子が直列又は並列に接続されるか、又は非水系アルカリ金属型蓄電素子と、鉛電池、ニッケル水素電池、リチウムイオン二次電池又は燃料電池とが直列又は並列に接続される。
 また、本実施形態に係る非水系リチウム型蓄電素子は、高い入出力特性と高温での安全性とを両立することができるので、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド自動車、電動バイク等の乗り物、又はハイブリッド建機に搭載されることができる。ハイブリッド建機は、軽油、ガソリンなどの燃料エンジンと蓄電素子との組み合わせを備える建設機械であり、有人機(manned vehicle)又は無人機(driverless vehicle)でよく、例えば、ショベルカー、ホイールローダー、可換アタッチメント建機などであることができる。上記で説明された電力回生アシストシステム、電動パワーステアリングシステム、非常用電源システム、インホイールモーターシステム、アイドリングストップシステム、バックアップ電源システム又はこれらの組み合わせが、乗り物又はハイブリッド建機に好適に搭載される。
 以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<炭酸リチウムの粉砕>
 BET比表面積が0.9m/g、細孔容積Pが0.001cc/gの炭酸リチウムを用い、炭酸リチウムを15質量部とIPA(イソプロパノール)を85質量部とをホモディスパーで混合し、炭酸リチウム懸濁液を得た。この炭酸リチウム懸濁液を湿式ビーズミルで2時間に亘って粉砕し、リチウム化合物含有スラリーを得た。得られたリチウム化合物含有スラリーを加熱ミキサーで減圧状態で50℃に加熱し、3時間撹拌しながら乾燥することで、炭酸リチウムを調製した。得られた炭酸リチウムについて平均粒子径を測定することで仕込みの炭酸リチウム粒子径を求めたところ、0.5μmであった。
<正極活物質の調製>
[正極活物質Aの調製]
 破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間掛けて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で活性炭を10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭Aを得た。
 この活性炭Aについて、島津製作所社製レーザー回折式粒度分布測定装置(SALD-2000J)を用いて平均粒径を測定した結果、4.2μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB-1 AS-1-MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[正極活物質Bの調製]
 フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルで粉砕し、分級を行って平均粒径7μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後、濃度2mol/Lに調整した希塩酸中で1時間に亘って賦活化物の撹拌洗浄を行った後、蒸留水でpH5~6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭Bを得た。
 この活性炭Bについて、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB-1 AS-1-MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
<正極前駆体Aの製造>
 上記で得た活性炭Aを正極活物質として用いて正極前駆体を製造した。
 活性炭Aを42.4質量部、リチウム化合物として平均粒径0.5μmの炭酸リチウムを45.1質量部、KB(ケッチェンブラック)を3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,700mPa・s、TI値は3.5であった。また、得られた塗工液の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は35μmであった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。上記で得られた正極前駆体の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。その結果、正極活物質層の膜厚は片面当たり110μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり52g・m-2であった。
 以下、活性炭Aを用いた片面正極前駆体および両面正極前駆体を、それぞれ片面正極前駆体Aおよび両面正極前駆体A(総称して「正極前駆体A」)という。活性炭Bを用いた片面正極前駆体および両面正極前駆体を、それぞれ片面正極前駆体Bおよび両面正極前駆体B(総称して「正極前駆体B」)という。
<負極活物質の調製>
[負極活物質Aの調製]
 平均粒子径が6.2μm、かつBET比表面積が7.2m/gの人造黒鉛150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:65℃)15gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。籠とバットを窒素雰囲気下、1,250℃まで8時間で昇温し、同温度で4時間保持することにより熱反応させ、負極活物質Aを得た。得られた負極活物質Aを自然冷却により60℃まで冷却した後、電気炉から取り出した。
 得られた負極活物質Aについて、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は6.4μm、BET比表面積は5.2m/gであった。
<負極Aの製造>
 次いで負極活物質Aを負極活物質として用いて負極を製造した。
 負極活物質Aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極Aを得た。得られた負極Aについてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。上記で得られた負極Aの負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極Aの任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極Aの負極活物質層の片面当たりの目付は30g/m、膜厚は40μmであった。
[負極単位重量当たり容量の測定]
 得られた負極Aを1.4cm×2.0cm(2.8cm)の大きさに1枚切り出し、銅箔の両面に塗工された負極活物質層の片方の層をスパチュラ、ブラシ、刷毛を用いて除去して作用極とした。対極及び参照極としてそれぞれ金属リチウムを用い、電解液としてエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比1:1混合溶媒に、LiPFを1.0mol/Lの濃度で溶解させた非水系溶液を用いて、アルゴンボックス中で電気化学セルを作製した。
 得られた電気化学セルについて、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、以下の手順で初期充電容量を測定した。
 電気化学セルに対して、温度25℃において、電流値0.5mA/cmで電圧値が0.01Vになるまで定電流充電を行った後、更に電流値が0.01mA/cmになるまで定電圧充電を行った。この定電流充電及び定電圧充電の時の充電容量を初回充電容量として評価したところ、負極Aの単位質量当たりの容量(リチウムイオンのドープ量)は400mAh/gであった。
[負極活物質Bの調製]
 平均粒子径3.0μm、BET比表面積が1,780m/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行うことにより、負極活物質Bを得た。この熱処理は、窒素雰囲気下で、炉内部を600℃まで8時間で昇温し、同温度で4時間保持する方法により行った。続いて、自然冷却により炉内部を60℃まで冷却した後、負極活物質Bを炉から取り出した。
 得られた負極活物質Bについて、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は3.2μm、BET比表面積は262m/gであった。
[負極活物質Cの調製]
 平均粒子径30nm、BET比表面積254m/gのカーボンブラック(CB1)100重量部と、軟化点110℃、メタフェーズ量(QI量)13%の光学的等方性ピッチ(P1)50重量部とを加熱ニーダ-で混捏して、得られた混捏物を、非酸化性雰囲気下、1,000℃で焼成した。焼成物を平均粒子径(D50)7μmに粉砕することにより、負極活物質Cとして複合多孔性材料Cを得た。得られた負極活物質Cについて、上記と同様の方法でBET比表面積を測定した。その結果BET比表面積は180m/gであった。
[負極活物質Dの調製]
 難黒鉛化性炭素を粉砕することにより平均粒子径5μm、BET比表面積6m/gの負極活物質Dを得た。
<負極B、負極C、負極Dの製造>
 上記で得た負極活物質B、負極活物質C、負極活物質Dを負極活物質として用いたこと以外は負極Aと同様にして負極B、負極C、負極Dをそれぞれ製造した。負極Aと同様にリチウムイオンのドープ量を測定した結果、負極Bは750mAh/g、負極Cは1300mAh/g、負極Dは420mAh/gであった。
<負極Eの製造>
 平均粒子径0.9μmのケイ素を75質量部、ケッチェンブラックを10質量部、及びポリイミドバインダーを15質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液(負極活物質E)を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,982mPa・s、TI値は3.2であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μm、Rzjis1.5μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た(以下、「両面負極」ともいう。)。得られた負極についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施して、負極Eを得た。得られた負極Eの全厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極の任意の10か所で測定した。測定された全厚の平均値から銅箔の厚さを引いて、負極Eの負極活物質層の膜厚を求めた。その結果、負極Eの負極活物質層の片面当たりの目付は20g/m、膜厚は30μmであった。負極Aと同様にリチウムイオンのドープ量を測定した結果、負極Eは600mAh/gであった。
<負極Fの製造>
 平均粒子径5μm、BET比表面積は7m/gのチタン酸リチウム(Li4/3Ti5/3)を85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液(負極活物質F)を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た。得られた負極についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施して、負極Fを得た。上記で得られた負極Fの負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極Fの任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極Fの負極活物質層の片面当たりの目付は35g/m、膜厚は40μmであった。負極Aと同様にリチウムイオンのドープ量を測定した結果、負極Fは180mAh/gであった。
<電解液の調製>
 有機溶媒として、エチレンカーボネート(EC):ジメチルカーボネート(DMC):メチルエチルカーボネート(EMC)=34:44:22(体積比)の混合溶媒を用い、全電解液に対してLiN(SOF)及びLiPFの濃度比が25:75(モル比)であり、かつLiN(SOF)及びLiPFの濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して非水系電解液1を得た。
 ここで調製した電解液におけるLiN(SOF)及びLiPFの濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
<蓄電素子の組立>
 得られた両面負極Aおよび両面正極前駆体Aを10cm×10cm(100cm)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μm、空孔率65%のポリエチレン製微多孔膜セパレータAを挟んで積層した。
<端子の溶接>
 その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体を形成した。この電極積層体を80℃、50Pa、及び60hrの条件下で真空乾燥した。この電極積層体を、露点-45℃のドライ環境下にて、アルミニウムラミネート包材から成る外装体内に挿入し、電極端子部およびボトム部の外装体3方を180℃、20sec及び1.0MPaでヒートシールした。
<蓄電素子の注液、含浸、封止工程>
 アルミニウムラミネート包材の中に収納された電極積層体に、温度25℃、露点-40℃以下のドライエアー環境下にて、上記非水系電解液1を大気圧下で約80g注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から-87kPaまで減圧した後、大気圧に戻す工程を4回繰り返した後、素子を15分間静置した。さらに、常圧から-91kPaまで減圧した後、大気圧に戻した。同様に素子を減圧し、大気圧に戻す工程を合計7回繰り返した。(それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の工程により、非水系電解液を電極積層体に含浸させた。
 その後、非水系リチウム型蓄電素子を減圧シール機に入れ、-95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.7Aで電圧4.7Vに到達するまで定電流充電を行った後、続けて4.7V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング工程>
 リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧3.0Vに到達するまで定電流放電を行った後、4.0Vまで定電流定電圧充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に20時間保管した。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧2.5Vに到達するまで定電流放電を行った後、2.5Vから3.9Vまで10Aで充電し、その後、10Aで2.5Vまで放電するという充放電工程を5回繰り返した。
<ガス抜き工程>
 追加充放電工程後の非水系リチウム型蓄電素子を、温度25℃、露点-40℃のドライエアー環境下でアルミニウムラミネート包材の一部を開封した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から-80kPaまで3分間掛けて減圧した後、3分間掛けて大気圧に戻す工程を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミニウムラミネート包材を封止した。
<正極活物質層の解析>
 完成した非水系リチウム型蓄電素子を2.9Vに調整した後、23℃の部屋に設置された露点-90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体して正極を取り出した。取り出した正極を、ジメチルカーボネート(DMC)で浸漬洗浄した後、大気非暴露を維持した状態下でサイドボックス中で真空乾燥させた。
 乾燥後の正極を、大気非暴露を維持した状態でサイドボックスからArボックスに移した。
[固体Li-NMR測定]
 上記で得た正極から正極活物質層を採取し、秤量した。得られた正極活物質層を試料として、固体Li-NMR測定を行った。測定装置としてJEOL RESONANCE社製ECA700(Li-NMRの共鳴周波数は272.1MHzである)を用い、室温環境下において、マジックアングルスピニングの回転数を14.5kHz、照射パルス幅を45°パルスとして、シングルパルス法によりNMRを測定した。シフト基準として0.8mol/L塩化リチウム水溶液を用い、外部標準として別途測定したシフト位置を0ppmとした。測定に際しては、測定の間の繰り返し待ち時間を十分に取るようにし、繰り返し待ち時間を300秒、積算回数を32回に設定して測定した。
 上記の条件によって得られた正極活物質層の固体Li-NMRスペクトルで、-30ppm~30ppmの範囲に観測されるシグナルについて、-2ppm~2.5ppmにシグナルAのピークトップを、-6ppm~-2.5ppmにシグナルBのピークトップを想定し、波形分離により両成分の面積比を求めた。波形分離はガウス曲線が25%、ローレンツ曲線が75%の割合で、半値幅を300Hz~1000Hzの範囲内としてフィッテイングを行い、最小二乗法により算出した。結果を表2に示す。
[エネルギー密度の算出]
 上記工程で得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値で4.2Vに到達するまで定電流充電を行い、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分行った。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(4.2-2.2)により算出された静電容量F(F)を用いて、
 E/V=F×(4.2-2.2)/2/Vによりエネルギー密度を算出したところ35.3Wh/Lであった。
[Ra・Fの算出]
 上記工程で得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間-電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=4.2-Eo、及びR=ΔE/(20C(電流値A))により常温内部抵抗Raを算出した。
 静電容量Fと25℃における内部抵抗Raとの積Ra・Fは2.45ΩFであった。
[Rc/Raの算出]
 上記工程で得られた蓄電素子について、-30℃に設定した恒温槽内に2時間放置した後、恒温槽を-30℃に保ったまま富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、1.0Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で2時間行った。続いて、120Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間-電圧)を得て、上記内部抵抗算出方法により低温内部抵抗Rcを算出した。
 -30℃における内部抵抗Rcと25℃における内部抵抗Raの比Rc/Raは16.3であった。
(実施例2~8、及び比較例1、2)
 実施例1において、負極、正極前駆体活物質、リチウム化合物、正極前駆体中のリチウム化合物比率をそれぞれ表1に記載のとおりに変更した他は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
 評価結果は表2に示した。
(実施例9)
 以下に記載するリチウムドープ工程以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
 評価結果は表2に示した。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.7Aで電圧4.8Vに到達するまで定電流充電を行った後、続けて4.8V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
(実施例10)
 以下に記載するリチウムドープ工程以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.7Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
(実施例11)
 以下に記載するリチウムドープ工程以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.7Aで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
(実施例12)
 以下に記載する追加充放電工程以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧2.6Vに到達するまで定電流放電を行った後、2.6Vから4.0Vまで10Aで充電し、その後、10Aで2.6Vまで放電するという充放電工程を5回繰り返した。
(実施例13)
 以下に記載する追加充放電工程以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧2.4Vに到達するまで定電流放電を行った後、2.4Vから3.8Vまで10Aで充電し、その後、10Aで2.4Vまで放電するという充放電工程を5回繰り返した。
(実施例14)
 以下に記載する追加充放電工程以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧2.3Vに到達するまで定電流放電を行った後、2.3Vから3.6Vまで10Aで充電し、その後、10Aで2.3Vまで放電するという充放電工程を5回繰り返した。
(比較例3)
 追加充放電工程を行わなかったこと以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
(実施例15)
[遷移金属酸化物を含有する正極前駆体Cの作製]
 活性炭Aを43.1質量部、リチウム遷移金属酸化物として平均粒子径が3.5μmのLiCoOを14.4質量部、炭酸リチウムを30.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びに固形分の重量比が24.5%になるようにNMP(N-メチル-2-ピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速20m/sの条件で3分間分散して正極塗工液1を得た。
 得られた正極塗工液1の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,690mPa・s、TI値は6.6であった。また、得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は23μmであった。
 東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の片面又は両面に正極塗工液1を塗工速度1m/sの条件で塗工し、乾燥炉の温度を70℃、90℃、110℃、130℃の順番に調整し、その後、IRヒーターで乾燥して正極前駆体Cを得た。得られた正極前駆体Cを、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。正極前駆体Cの全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体Cの任意の10か所で測定した。アルミニウム箔の厚さを引いて求めた正極活物質層の膜厚は片面当たり70μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり45g・m-2であった。
 上記正極前駆体の作製以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、評価を行った。完成した非水系リチウム型蓄電素子の正極中の正極活物質層に含まれる炭素材料の質量割合Aと、リチウム遷移金属酸化物の質量割合Aを上述の方法で算出した。結果を表2に示す。
(実施例16~33、及び比較例4~7)
 上記実施例15において、負極、正極前駆体中の正極活物質、リチウム化合物、正極前駆体中のリチウム化合物比率をそれぞれ表1に記載のとおりに変更した他は、実施例15と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
 評価結果は表2に示した。
 なお、表1、3、5及び10における正極活物質の略称は、それぞれ以下の意味である。
  NCA:LiNi0.80Co0.15Al0.05
  NCM:LiNi0.33Co0.33Mn0.33
(実施例34)
 負極Fを用いて実施例23と同様に蓄電素子を組み立てた。その後、以下に記載するリチウムドープ工程から追加充放電工程までを行なったこと以外は、実施例23と同様にして非水系リチウム型蓄電素子を作製した。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.7Aで電圧3.2Vに到達するまで定電流充電を行った後、続けて3.2V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング工程>
 リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧1.6Vに到達するまで定電流放電を行った後、3.0Vまで定電流定電圧充電を1時間行うことにより電圧を3.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に20時間保管した。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧1.6Vに到達するまで定電流放電を行った後、1.6Vから3.0Vまで10Aで充電し、その後、10Aで1.6Vまで放電するという充放電工程を5回繰り返した。
[エネルギー密度の算出]
 上記工程で得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値で3.0Vに到達するまで定電流充電を行い、続いて3.0Vの定電圧を印加する定電圧充電を合計で30分行った。その後、1.5Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.0-1.5)により算出された静電容量F(F)を用いて、
 E/V=F×(3.0-1.5)/2/Vによりエネルギー密度を算出したところ35.4Wh/Lであった。
[Ra・Fの算出]
 上記工程で得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.0Vに到達するまで定電流充電し、続いて3.0Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、20Cの電流値で1.5Vまで定電流放電を行って、放電カーブ(時間-電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.0-Eo、及びR=ΔE/(20C(電流値A))により常温内部抵抗Raを算出した。
 静電容量Fと25℃における内部抵抗Raとの積Ra・Fは0.75ΩFであった。
[Rc/Raの算出]
 上記工程で得られた蓄電素子について、-30℃に設定した恒温槽内に2時間放置した後、恒温槽を-30℃に保ったまま富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、1.0Cの電流値で3.0Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で2時間行った。続いて、120Cの電流値で1.5Vまで定電流放電を行って、放電カーブ(時間-電圧)を得て、上記内部抵抗算出方法により低温内部抵抗Rcを算出した。
 -30℃における内部抵抗Rcと25℃における内部抵抗Raの比Rc/Raは6.4であった。
(比較例8~11)
 表1に示されるとおりに正極活物質の種類又は割合を変更し、かつ追加充放電工程を行わなかったこと以外は、実施例15と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
(比較例12)
<負極B2の製造>
 上記負極Bの製造において、負極集電体を、厚さ15μmの貫通孔を持つ銅箔に変更した以外は同様の方法で負極B2を製造した。その結果、負極B2の負極活物質層の膜厚は片面当たりの厚さは40μmであった。
<正極前駆体A2の製造>
 活性炭Aを正極活物質として用いて正極前駆体A2を製造した。
 活性炭Aを87.5質量部、KB(ケッチェンブラック)を3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,700mPa・s、TI値は3.5であった。また、得られた塗工液の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は35μmであった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施して、正極前駆体A2を得た。上記で得られた正極前駆体A2の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。その結果、正極活物質層の膜厚は片面当たり120μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり36g・m-2であった。
<蓄電素子の組立>
 両面負極B2および両面正極前駆体A2を10cm×10cm(100cm)にカットした。この両面負極B2の片面に、負極活物質Bの単位質量当たり760mAh/gに相当するリチウム金属箔を貼り付けた。最上面と最下面は片面正極前駆体を用い、更に上記リチウム貼り付け工程を経た両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接で接続して電極積層体を形成した。この電極積層体を80℃、50Pa、及び60hrの条件下で真空乾燥した。この電極積層体を、露点-45℃のドライ環境下にて、ラミネートフィルムから成る外装体内に挿入し、電極端子部およびボトム部の外装体3方を180℃、20sec、及び1.0MPaでヒートシールした。非水系電解液を外装体に注入して、該外装体を密閉することにより、非水系リチウム型蓄電素子を組立てた。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、45℃に設定した恒温槽内で21時間放置することで、負極にリチウムドープを行った。
<エージング工程>
 リチウムドープ後の非水系リチウム型蓄電素子をセル電圧3.0Vに調整した後、45℃に設定した恒温槽内で24時間保存した。続いて、アスカ電子製の充放電装置を用いて、充電電流10A、放電電流10Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
 蓄電素子組立、リチウムドープ工程、エージング工程を上記に記載する方法に変更した以外は実施例1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
 評価結果は表2に示した。
(比較例13~15)
 比較例12において、負極、負極活物質、正極前駆体中の活物質をそれぞれ表1に記載のとおりに変更した他は、比較例12と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果は表2に示した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
(実施例35)
[2種類の活物質を含む負極の製造]
 負極活物質Aと負極活物質Bを95:5の比率で混合した混合活物質を80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た。得られた負極についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施して、負極2を得た。上記で得られた負極2の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極2の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極2の負極活物質層の片面当たりの目付は28g/m、膜厚は40μmであった。
 上記負極の作製以外は、実施例1と同様にして非水系リチウム型蓄電素子を作製し、評価を行った。評価結果は表4に示した。
(実施例36~52、及び比較例16~19)
 実施例35において、負極、負極活物質、正極前駆体中の活物質、リチウム化合物、正極前駆体中のリチウム化合物比率をそれぞれ表3に記載のとおりに変更した他は、実施例35と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
 評価結果は表4に示した。
(実施例53~55)
 正極前駆体中の活物質、リチウム化合物、正極前駆体中のリチウム化合物比率をそれぞれ表3に記載のとおりに変更し、かつ厚み16μmのポリオレフィン微多孔膜上に厚み5μmの絶縁多孔層を形成した空孔率60%のセパレータを用いたこと以外は、実施例43と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果は表4に示した。
(実施例56)
 ポリオレフィン微多孔膜を基材として使用し、かつ基材の内部に無機粒子が含まれる厚み16μm及び空孔率66%のセパレータを用い、さらに表3に記載のとおりに正極活物質を変更したこと以外は、実施例43と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果は表4に示した。
(実施例57)
 厚み16μm、空孔率70%のセルロース製不織布セパレータを用い、さらに表3に記載のとおりに正極活物質を変更したこと以外は、実施例43と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果は表4に示した。
(実施例58)
 厚み20μmのポリエステル系不織布に厚み4μmの絶縁多孔層を形成した空孔率60%のセパレータを用い、さらに表3に記載のとおりに正極活物質を変更したこと以外は、実施例43と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果は表4に示した。
(実施例59)
<端子の溶接>
 実施例43と同様に電極積層体を作製し、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接で接続して電極積層体とした。この電極積層体を80℃、50Paで、60hr真空乾燥した。
<蓄電素子の注液、含浸、封止工程>
 得られた電極積層体をアルミニウム製の金属缶ケースに収納した。温度25℃、露点-40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から-87kPaまで減圧した後、大気圧に戻す工程を4回繰り返したのち、15分間静置した。さらに、常圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す工程を合計7回繰り返した。(それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の工程により、非水系電解液を電極積層体に含浸させた。
<リチウムドープ工程>
 得られた非水系リチウム型蓄電素子に対して、温度25℃、露点-40℃以下のドライエアー環境下に設置された東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、電流値0.7Aで電圧4.7Vに到達するまで定電流充電を行った後、続けて4.7V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング工程>
 リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧3.0Vに到達するまで定電流放電を行った後、4.0Vまで定電流定電圧充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に20時間保管した。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧2.4Vに到達するまで定電流放電を行った後、2.4Vから3.8Vまで10Aで充電し、その後、10Aで2.4Vまで放電するという充放電工程を5回繰り返した。
<ガス抜き工程>
 追加充放電工程後の非水系リチウム型蓄電素子を、温度25℃、露点-40℃のドライエアー環境下で、減圧チャンバーの中に入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す工程を合計3回繰り返した。その後、金属缶ケースに蓋体を装着し、溶接、カシメを行うことで封口した。
 実施例43と同様にして、評価を行った。評価結果を表4に示す。
(実施例60及び61、比較例20)
 負極、正極前駆体中の活物質、リチウム化合物、正極前駆体中のリチウム化合物比率をそれぞれ表3に記載のとおりに変更した他は、実施例36と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
(実施例62~64、比較例21)
 厚み16μmのポリオレフィン微多孔膜上に厚み5μmの絶縁多孔層を形成した空孔率60%のセパレータを用い、さらに実施例62と64については表3に記載のとおりに正極活物質も変更したこと以外は、実施例60と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果は表4に示した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
(実施例65)
<正極前駆体Dの製造>
 活性炭Aを30.3質量部、リチウム遷移金属酸化物として平均粒子径が4.0μmのLiNi0.80Co0.15Al0.05を27.2質量部、炭酸リチウムを30.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びに固形分の重量比が24.5%になるようにNMP(N-メチル-2-ピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速20m/sの条件で3分間分散して正極塗工液1Cを得た。
 得られた正極塗工液1Cの粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,690mPa・s、TI値は6.6であった。また、得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は23μmであった。
 塗工液1Cを東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度120℃で乾燥して正極前駆体1(片面)及び正極前駆体1(両面)を得た。アルミニウム箔の片面に塗工液1Cを塗る際に、ダイの吐出圧を55kPaとし、アルミニウム箔の両面に塗工液1Cを塗る際に、上面ダイの吐出圧を55kPaとし、下面ダイの吐出圧を60kPaとした。得られた正極前駆体1(片面)及び正極前駆体1(両面)を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスして、正極前駆体Dを得た。
 正極前駆体D(両面)の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体D(両面)の任意の10か所で測定した。アルミニウム箔の厚さを引いて求めた正極活物質層の膜厚は片面当たり76.9μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり47.8g・m-2であった。
<負極Gの製造>
 活物質A及びCを負極活物質として用いて負極Gを製造した。
 活物質Aと活物質Cを95:5の比率で混合した混合活物質を84質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を6質量部、並びにNMP(N-メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液1Aを得た。得られた塗工液1Aの粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,520mPa・s、TI値は4.0であった。
 塗工液1Aを東レエンジニアリング社製のダイコーターを用いて厚さ10μmの電解銅箔の両面に塗工速度2m/sの条件で塗工し、乾燥温度120℃で乾燥して負極G1を得た。銅箔の両面に塗工液1Aを塗る際に、上面ダイの吐出圧を45kPaとし、下面ダイの吐出圧を50kPaとした。得られた負極E1を、ロールプレス機を用いて圧力5kN/cm、プレス部の表面温度25℃の条件でプレスした。
 プレスされた負極Gの全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極Gの任意の10か所で測定した。その後、負極Gの内の一方の面の負極活物質層を取り除き、再度厚みを測定した。その後、負極集電体上に残った負極活物質層を全て取り除き、銅箔の厚みを測定した。銅箔の厚さを引いて求めた負極活物質層の膜厚は片面当たり80.1μmであった。上述の方法で目付を算出した結果、負極活物質層の目付は片面当たり62.3g・m-2であった。
 正極前駆体D、負極Gを用いたこと以外は実施例43と同様にして非水系リチウム型蓄電素子を作製し、評価を行った。さらに、上記工程で得られた蓄電素子について、以下の方法で高負荷充放電サイクル試験を行った。
[高負荷充放電サイクル試験]
 上記工程で得られた蓄電素子について、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で4.2Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。上記充放電工程を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の静電容量をFa(F)、試験終了後の静電容量をFd(F)としたとき、試験開始前に対する高負荷充放電サイクル試験後の静電容量維持率Fd/Faは0.95であった。
(実施例66~83、比較例22~29)
 正極前駆体に含まれる活物質、負極に含まれる活物質を表5のとおりに変更して、それぞれの塗工液を調製し、塗工時のダイの吐出量を調整して、正極前駆体の厚み、目付、及び、負極の厚み、目付を表5のとおりに変更したこと以外は、実施例65と同様の方法で非水系リチウム型蓄電素子を作製し、評価を行った。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
(実施例84)
<電解液の調製>
 有機溶媒として、エチレンカーボネート(EC):ジメチルカーボネート(DMC):メチルエチルカーボネート(EMC):=33:26:41(体積比)の混合溶媒を用い、全電解液に対してLiN(SOF)及びLiPFの濃度比が25:75(モル比)であり、かつLiN(SOF)及びLiPFの濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
 ここで調製した電解液におけるLiN(SOF)(表7中では「LiFSI」として略記した)及びLiPFの濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
 また、添加剤として全電解液に対して1質量%となる量のチオフェンを溶解して非水系電解液2を得た。
 非水系電解液2を用いて、実施例43と同様にして非水系リチウム型蓄電素子を作製し、評価した。
[負極試料の調製]
 上記で得られた蓄電素子を解体し、得られた両面に負極活物質層が塗工された負極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで負極を動かし、10分間洗浄した。続いて負極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に負極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された負極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、負極試料を得た。
 得られた負極試料の一部を、5cm×5cmの大きさに切り出し、それぞれを20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後負極試料を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。
<負極活物質層表面のXPS解析>
 得られた負極試料の一部を3mm×3mmの大きさに切り出し、大気非暴露下の状態でXPS装置(サーモフィッシャーESCALLAB250)へ投入し、XPS測定を行った。X線源を単色化AlKα(15kV、10mA)、X線ビーム径200μmφを用い、結合エネルギー0~1100eVの範囲でサーベイスキャンにより全元素の検出を行い、検出された各元素に対応する結合エネルギーの範囲で、帯電中和有りでナロースキャンを行い、C1s、O1s、S2p、F1s、N1s、Li1s、P2pについてのスペクトルを取得し、それらのピーク面積を用いてSの相対元素濃度を算出したところ1.5atomic%であった。結果を表8に示す。
<負負極活物質層中の金属元素>
 得られた負極試料について、テフロン(登録商標)製のスパチュラを用いて負極集電体上の負極活物質層を全て取り除き、得られた負極活物質層について、濃硝酸を用いて酸分解した。得られた溶液を2%の酸濃度になるように純水で希釈した後、ICP-MSサーモフィッシャーサイエンティフィック社、Xシリーズ2)により各金属元素の存在量(ppm)を求めたところ、Niの濃度が4560ppmであった。
<電解液中の金属元素定量>
 蓄電素子の解体で得られた電解液のうち0.2gを、テフロン(登録商標)容器に入れ、60%硝酸4ccを添加した。得られた試料をマイクロウェーブ分解装置(マイルストーンゼネラル社、ETHOS PLUS)を用いて分解し、これを純水で50mlにメスアップした。この非水系電解液の測定をICP/MS(サーモフィッシャーサイエンティフィック社、Xシリーズ2)にて行い、非水系電解液単位質量当たりのNaの存在量(ppm)を求めたところ、AlとNiが検出され、それらの濃度の合計が840ppmであった。
<正極活物質層表面のXPS解析>
 負極活物質層と同様にして、正極活物質層表面のXPS解析を行い、162eV~166eVにピークを検出した。結果を表8に示す。
[高温保存試験後のガス発生量]
 得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電工程にてセル電圧を4.2Vに充電した後、再びセルを60℃環境下で保存した。この工程を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。Vb-Vaにより求めたガス発生量は23.5×10-3cc/Fであった。
[Rb/Raの算出]
 上記高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温内部抵抗Rbを算出した。
 このRb(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の内部抵抗Ra(Ω)で除して算出した比Rb/Raは1.25であった。
(実施例85~120、及び比較例30~35)
 非水系電解液中の塩、溶媒組成比、添加剤をそれぞれ表7に記載のとおりに変更した他は、実施例84と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果を表8及び表9に示す。
 表7における添加剤の略称は、それぞれ以下の意味である。
[添加剤]
 PES:1-プロペン 1,3-スルトン
 PS:1,3-プロパンスルトン
 ESF:亜硫酸エチレン
 PSF:亜硫酸1,2-プロピレン
 SFL:3-スルフォレン
 ES:エチレンスルファート
 TP:チオフェン
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
(実施例121)
[扁平電極捲回体の作製]
<正極前駆体D2の製造>
 活性炭Aを43.1質量部、リチウム遷移金属酸化物として平均粒子径が4.0μmのLiNi0.80Co0.15Al0.05を14.4質量部、炭酸リチウムを30.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びに固形分の重量比が24.5%になるようにNMP(N-メチル-2-ピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速20m/sの条件で3分間分散して正極塗工液1を得た。
 得られた正極塗工液1の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,690mPa・s、TI値は6.6であった。また、得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は23μmであった。
 東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液1を塗工速度1m/sの条件で塗工し、乾燥炉の温度を70℃、90℃、110℃、130℃の順番に調整し、その後IRヒーターで乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスして、正極前駆体D2を得た。正極前駆体D2の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体の任意の10か所で測定した。アルミニウム箔の厚さを引いて求めた正極活物質層の膜厚は片面当たり70μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり45g・m-2であった。
<負極G2の製造>
 負極活物質Aと負極活物質Cを95:5の比率で混合した混合活物質を80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N-メチルピロリドン)を混合し、混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た。得られた負極についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施して、負極G2を得た。上記で得られた負極G2の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極Aの任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極G2の負極活物質層の片面当たりの目付は28g/m、膜厚は40μmであった。
<組立工程>
 得られた両面負極を12.2cm×450cm、両面正極前駆体を12.0cm×300cmにカットした。負極と正極前駆体はそれぞれ未塗工部を有する。この未塗工部は端部側から幅2cmになるように形成した。未塗工部が互いに反対方向となるように、それぞれ厚み15μmの微多孔膜セパレータを挟み、かつセパレータから未塗工部が突出するようにして楕円形状に捲回し、捲回体をプレスして扁平形状に成型した。
[端子溶接]
 その後、負極と正極前駆体とに電極端子を超音波溶接にて接合して電極捲回体とした。この電極捲回体をアルミラミネート包材から成る外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。これを、温度80℃、圧力50Paで、及び乾燥時間60hrの条件下で真空乾燥した。
<注液、含浸、封止工程>
 アルミラミネート包材の中に収納された電極捲回体に、温度25℃、露点-40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から-87kPaまで減圧した後、大気圧に戻す工程を4回繰り返した後、15分間静置した。さらに、常圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す工程を合計7回繰り返した(それぞれ、-95,96,97,81,97,97,97kPaまで減圧した)。以上の工程により、非水系電解液を電極積層体に含浸させた。
 その後、非水系リチウム型蓄電素子を減圧シール機に入れ、-95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[リチウムドープ工程]
 得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.7Aで電圧4.7Vに到達するまで定電流充電を行った後、続けて4.7V定電圧充電を10時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング工程>
 リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧3.0Vに到達するまで定電流放電を行った後、4.0Vまで定電流定電圧充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に20時間保管した。
<追加充放電工程>
 エージング後の非水系リチウム型蓄電素子を25℃環境下、10Aで電圧2.5Vに到達するまで定電流放電を行った後、2.5Vから3.9Vまで10Aで充電し、その後、10Aで2.5Vまで放電するという充放電工程を5回繰り返した。
[ガス抜き工程]
 エージング後の非水系リチウム型蓄電素子を、温度25℃、露点-40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。次いで、負極の非対向部に取り付けられたマスキングを取出した後、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す工程を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
 以上の工程により、扁平捲回型電極体から成る非水系リチウム型蓄電素子が完成した。
得られた蓄電素子について、実施例1と同様にして評価を行った。
(実施例122、123及び比較例36~38)
 負極、正極前駆体活物質、リチウム化合物、正極前駆体中のリチウム化合物比率をそれぞれ表10に記載のとおりに変更した他は、実施例121と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果を表11に示す。
(実施例124)
 正極前駆体として、以下に記載する正極前駆体D3を用いたこと以外は、実施例121と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果を表11に示す。
<正極前駆体D3の製造>
 活性炭Aを43.1質量部、リチウム遷移金属酸化物として平均粒子径が3.0μmのLiFePOを14.4質量部、炭酸リチウムを15.0質量部、炭酸カリウムを15質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びに固形分の重量比が24.5%になるようにNMP(N-メチル-2-ピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速20m/sの条件で3分間分散して正極塗工液1を得た。
 得られた正極塗工液1の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,690mPa・s、TI値は6.6であった。また、得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は23μmであった。
 東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液1を塗工速度1m/sの条件で塗工し、乾燥炉の温度を70℃、90℃、110℃、130℃の順番に調整し、その後IRヒーターで乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスして、正極前駆体D3を得た。正極前駆体D3の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体の任意の10か所で測定した。アルミニウム箔の厚さを引いて求めた正極活物質層の膜厚は片面当たり75μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり47g・m-2であった。
(実施例125)
 正極前駆体として、以下に記載する正極前駆体D4を用いたこと以外は、実施例121と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果を表11に示す。
<正極前駆体D4の製造>
 活性炭Aを43.1質量部、リチウム遷移金属酸化物として平均粒子径が3.5μmのLiFePOを14.4質量部、炭酸リチウムを15.0質量部、炭酸ナトリウムを15質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びに固形分の重量比が24.5%になるようにNMP(N-メチル-2-ピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速20m/sの条件で3分間分散して正極塗工液1を得た。
 得られた正極塗工液1の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,690mPa・s、TI値は6.6であった。また、得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は23μmであった。
 東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液1を塗工速度1m/sの条件で塗工し、乾燥炉の温度を70℃、90℃、110℃、130℃の順番に調整し、その後IRヒーターで乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスして、正極前駆体D4を得た。正極前駆体D4の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体の任意の10か所で測定した。アルミニウム箔の厚さを引いて求めた正極活物質層の膜厚は片面当たり77μmであった。上述の方法で目付を算出した結果、正極活物質層の目付は片面当たり48g・m-2であった。
(実施例126~128、及び比較例39~41)
 実施例121で得られた扁平型電極体を、金属缶に収納して、実施例59と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030

Claims (19)

  1.  正極、負極、セパレータ、及びリチウムイオンを含む非水系電解液を備える非水系リチウム型蓄電素子であって、
     該負極が、負極集電体と、該負極集電体の片面上又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、該負極活物質は、リチウムイオンを吸蔵及び放出できる炭素材料を含み、
     該正極が、正極集電体と、該正極集電体の片面上又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、該正極活物質は、活性炭を含み、かつ
     該正極活物質層は、該正極活物質層の固体Li-NMRスペクトルにおいて、-2~2.5ppmの範囲内にシグナルを有する成分Aと、-6~-2.5ppmの範囲内にシグナルを有する成分Bとを含み、該成分A及びBのシグナル面積をそれぞれa及びbとしたときに、シグナル面積比a/bが1.5~20.0である非水系リチウム型蓄電素子。
  2.  前記正極活物質が、リチウムイオンを吸蔵及び放出可能な遷移金属酸化物をさらに含む、請求項1に記載の非水系リチウム型蓄電素子。
  3.  前記遷移金属酸化物が、下記式:
      Lix1CoO{式中、x1は、0≦x1≦2を満たす。}、
      Lix1NiO{式中、x1は、0≦x1≦2を満たす。}、
      Lix1Ni (1-y){式中、Mは、Co、Mn、Al、Fe、Mg及びTiから成る群より選ばれる少なくとも1種の元素であり、x1は、0≦x1≦2を満たし、かつyは、0.2<y<0.97を満たす。}、
      Lix1Ni1/3Co1/3Mn1/3{式中、x1は、0≦x1≦2を満たす。}、
      Lix1MnO{式中、x1は、0≦x1≦2を満たす。}、
      α-Lix1FeO{式中、x1は、0≦x1≦2を満たす。}、
      Lix1VO{式中、x1は、0≦x1≦2を満たす。}、
      Lix1CrO{式中、x1は、0≦x1≦2を満たす。}、
      Lix1Mn{式中、x1は、0≦x1≦2を満たす。}、
      Lix1 Mn(2-y){式中、Mは、Co、Ni、Al、Fe、Mg及びTiから成る群より選ばれる少なくとも1種の元素であり、x1は、0≦x1≦2を満たし、かつyは、0.2<y<0.97を満たす。}、
      Lix1NiCoAl(1-a-b){式中、x1は、0≦x1≦2を満たし、かつa及びbは、それぞれ0.2<a<0.97と0.2<b<0.97を満たす。}、
      Lix1NiCoMn(1-c-d){式中、x1は、0≦x1≦2を満たし、かつc及びdは、それぞれ0.2<c<0.97と0.2<d<0.97を満たす。}、
      Lix1PO{式中、Mは、Co、Ni、Fe、Mn及びCuから成る群より選ばれる少なくとも1種の元素であり、かつx1は、0≦x1≦2を満たす。}、及び
      Li(PO{式中、zは、0≦z≦3を満たす。}、
    から成る群より選ばれる少なくとも1種のリチウム遷移金属酸化物を含む、請求項2に記載の非水系リチウム型蓄電素子。
  4.  前記活性炭の平均粒子径が、2μm以上20μm以下であり、かつ前記遷移金属酸化物の平均粒子径が、0.1μm以上20μm以下である、請求項2または3に記載の非水系リチウム型蓄電素子。
  5.  前記正極が、前記活性炭を含む炭素材料と、前記リチウム遷移金属酸化物とを含み、正極活物質層中に占める前記炭素材料の質量割合をAとし、前記リチウム遷移金属酸化物の質量割合をAとしたとき、A/Aが0.1以上2.5以下である、請求項2~4のいずれか一項に記載の非水系リチウム型蓄電素子。
  6.  前記正極が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムから成る群から選ばれる1種以上を、前記正極活物質の総量に対して1質量%以上50質量%以下で含む、請求項1~5のいずれか一項に記載の非水系リチウム型蓄電素子。
  7.  前記正極集電体及び前記負極集電体が、無孔状の金属箔である、請求項1~6のいずれか一項に記載の非水系リチウム型蓄電素子。
  8.  前記負極が、少なくとも2種類の前記負極活物質を含有する、請求項1~7のいずれか一項に記載の非水系リチウム型蓄電素子。
  9.  少なくとも1種の前記負極活物質の平均粒子径が、1μm以上15μm以下である、請求項8に記載の非水系リチウム型蓄電素子。
  10.  前記正極の前記正極活物質層の目付をC(g/m)とし、前記負極の前記負極活物質層の目付をC(g/m)とするとき、C/Cが0.35以上5.80以下である、請求項1~9のいずれか一項に記載の非水系リチウム型蓄電素子。
  11.  前記正極の前記正極活物質層の厚みをD(μm)とし、前記負極の前記負極活物質層の厚みをD(μm)とするとき、D/Dが0.30以上5.00以下である、請求項1~10のいずれか一項に記載の非水系リチウム型蓄電素子。
  12.  前記負極活物質層表面のX線光電子分光測定(XPS)により検出される硫黄(S)の元素濃度が、0.5atomic%以上であり、かつ
     前記正極活物質層表面のX線光電子分光測定(XPS)で得られるS2pスペクトルにおいて、162eV~166eVのピークがある、請求項1~11のいずれか一項に記載の非水系リチウム型蓄電素子。
  13.  前記非水系電解液に、添加剤として、
      下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {一般式(1)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、ホルミル基、アセチル基、ニトリル基、アセチル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキルエステルを表す。}
    で表されるチオフェン化合物から成る群から選択される1種以上の含硫黄化合物(X)と;
      下記一般式(2-1):
    Figure JPOXMLDOC01-appb-C000002
    {一般式(2-1)中、R~Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
    で表される環状硫酸化合物、下記一般式(2-2):
    Figure JPOXMLDOC01-appb-C000003
    {一般式(2-2)中、R~R14は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
    で表されるスルトン化合物、下記一般式(2-3):
    Figure JPOXMLDOC01-appb-C000004
    {一般式(2-3)中、R15~R18は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
    で表されるスルトン化合物、下記一般式(2-4):
    Figure JPOXMLDOC01-appb-C000005
    {一般式(2-4)中、R19~R24は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよい。}
    で表される化合物、及び下記一般式(2-5):
    Figure JPOXMLDOC01-appb-C000006
    {一般式(2-5)中、R25~R28は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群より選ばれる少なくとも1つを表し、互いに同一であっても異なっていてもよく;そしてnは0~3の整数である。}
    で表される環状亜硫酸化合物から成る群から選択される1種以上の含硫黄化合物(Y)と
    を含む、請求項1~12のいずれか一項に記載の非水系リチウム型蓄電素子。
  14.  前記非水系電解液中に含まれる、Ni、Mn、Fe、Co及びAlから成る群から選択される少なくとも1種の元素濃度が、10ppm以上1000ppm以下である、請求項2~13のいずれか一項に記載の非水系リチウム型蓄電素子。
  15.  セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、前記非水系電解液と、前記正極と前記負極が前記セパレータを介して積層された電極積層体又は前記正極と前記負極が前記セパレータを介して捲回された電極捲回体とを収納している外装体の体積をV(L)、環境温度-30℃における内部抵抗をRcとした時、以下の(a)~(c)の要件:
     (a)RaとFの積Ra・Fが0.5以上3.5以下である、
     (b)E/Vが20以上80以下である、及び
     (c)Rc/Raが30以下である、
    を同時に満たす、請求項1~14のいずれか一項に記載の非水系リチウム型蓄電素子。
  16.  セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、セル電圧4.2V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRb(Ω)としたとき、
     以下の(d)及び(e)の要件:
     (d)Rb/Raが0.3以上3.0以下である、及び
     (e)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10-3cc/F以下である、
    を同時に満たす、請求項15に記載の非水系リチウム型蓄電素子。
  17.  請求項1~16のいずれか一項に記載の非水系リチウム型蓄電素子を含む電気自動車、プラグインハイブリッド自動車、ハイブリッド自動車、又は電動バイク。
  18.  請求項1~16のいずれか一項に記載の非水系リチウム型蓄電素子を含むハイブリッド建機。
  19.  請求項1~16のいずれか一項に記載の非水系リチウム型蓄電素子を含むバックアップ電源システム。
PCT/JP2018/042006 2017-11-14 2018-11-13 非水系リチウム型蓄電素子 WO2019098200A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18879358.2A EP3712915B1 (en) 2017-11-14 2018-11-13 Non-aqueous lithium-type electricity storage element
US16/646,213 US11824203B2 (en) 2017-11-14 2018-11-13 Non-aqueous lithium-type electricity storage element
JP2019554233A JP6997208B2 (ja) 2017-11-14 2018-11-13 非水系リチウム型蓄電素子
CN201880058852.2A CN111095453B (zh) 2017-11-14 2018-11-13 非水系锂型蓄电元件
KR1020207006910A KR102389965B1 (ko) 2017-11-14 2018-11-13 비수계 리튬형 축전 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219268 2017-11-14
JP2017219268 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019098200A1 true WO2019098200A1 (ja) 2019-05-23

Family

ID=66539544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042006 WO2019098200A1 (ja) 2017-11-14 2018-11-13 非水系リチウム型蓄電素子

Country Status (7)

Country Link
US (1) US11824203B2 (ja)
EP (1) EP3712915B1 (ja)
JP (1) JP6997208B2 (ja)
KR (1) KR102389965B1 (ja)
CN (1) CN111095453B (ja)
TW (1) TWI688149B (ja)
WO (1) WO2019098200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094109A (zh) * 2022-01-19 2022-02-25 深圳新宙邦科技股份有限公司 锂离子电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330156B2 (ja) * 2020-09-17 2023-08-21 株式会社東芝 電極、電極群、二次電池、電池パック、及び車両
CN116417570B (zh) * 2023-06-12 2023-08-22 蔚来电池科技(安徽)有限公司 二次电池和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059781A (ja) 2001-08-09 2003-02-28 Mitsubishi Heavy Ind Ltd 電気二重層キャパシタ用電極、その電極材料製造方法及び電極製造装置
JP2013161835A (ja) 2012-02-01 2013-08-19 Yokohama Rubber Co Ltd:The 導電性高分子/多孔質炭素材料複合体およびそれを用いた電極材料
JP2013201170A (ja) 2012-03-23 2013-10-03 Aion Kk 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
WO2015076261A1 (ja) * 2013-11-19 2015-05-28 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126698A1 (ja) 2016-01-22 2017-07-27 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126691A1 (ja) * 2016-01-22 2017-07-27 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126682A1 (ja) * 2016-01-22 2017-07-27 旭化成株式会社 リチウムイオン二次電池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69205542T3 (de) * 1991-04-26 2001-06-07 Sony Corp Sekundärbatterie mit nichtwässrigem elektrolyt.
JP3502669B2 (ja) * 1994-08-23 2004-03-02 呉羽化学工業株式会社 二次電池電極用炭素質材料およびその製造法
US6852451B2 (en) * 2000-09-06 2005-02-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery having a carbonaceous material containing negative electrode and a nonaqueous electrolyte containing a nonaqueous solvent
JP3715251B2 (ja) 2001-05-24 2005-11-09 本田技研工業株式会社 電気二重層キャパシタの電極用活性炭の製造方法および炭素原料
DE602004031958D1 (de) 2003-09-17 2011-05-05 Asahi Chemical Ind Membran-elektrodenbaugruppe für eine festpolymer-brennstoffzelle
CN100530792C (zh) 2003-09-17 2009-08-19 旭化成株式会社 用于固体聚合物燃料电池的膜电极组件
JP5401765B2 (ja) * 2007-04-20 2014-01-29 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
WO2012111338A1 (ja) * 2011-02-17 2012-08-23 株式会社豊田自動織機 電解液及びリチウムイオン二次電池
JP5557793B2 (ja) * 2011-04-27 2014-07-23 株式会社日立製作所 非水電解質二次電池
KR102247739B1 (ko) 2011-05-13 2021-05-03 미쯔비시 케미컬 주식회사 비수계 이차 전지용 탄소재, 그 탄소재를 사용한 부극 및 비수계 이차 전지
KR101630821B1 (ko) 2011-06-17 2016-06-16 우미코르 코어 물질의 원소와 하나 이상의 금속 산화물의 혼합물로 코팅된 리튬 금속 산화물 입자
JP6397262B2 (ja) 2014-02-07 2018-09-26 信越化学工業株式会社 非水電解質二次電池
JP2016001593A (ja) * 2014-05-21 2016-01-07 株式会社リコー 非水系電解液蓄電素子
CN106463765A (zh) * 2014-06-10 2017-02-22 日立化成株式会社 锂离子电池
KR20160005555A (ko) * 2014-07-07 2016-01-15 삼성에스디아이 주식회사 리튬전지
EP3193402B1 (en) * 2014-09-10 2019-06-05 Kabushiki Kaisha Toshiba Wound electrode group, electrode group, and non-aqueous electrolyte battery
CN107210431B (zh) * 2015-02-06 2021-07-30 陈忠伟 制备锂离子电池的阳极的方法
CN108475585B (zh) 2016-01-22 2020-04-14 旭化成株式会社 非水系锂蓄电元件
US10340526B2 (en) 2016-01-22 2019-07-02 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059781A (ja) 2001-08-09 2003-02-28 Mitsubishi Heavy Ind Ltd 電気二重層キャパシタ用電極、その電極材料製造方法及び電極製造装置
JP2013161835A (ja) 2012-02-01 2013-08-19 Yokohama Rubber Co Ltd:The 導電性高分子/多孔質炭素材料複合体およびそれを用いた電極材料
JP2013201170A (ja) 2012-03-23 2013-10-03 Aion Kk 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
WO2015076261A1 (ja) * 2013-11-19 2015-05-28 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126698A1 (ja) 2016-01-22 2017-07-27 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126691A1 (ja) * 2016-01-22 2017-07-27 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126682A1 (ja) * 2016-01-22 2017-07-27 旭化成株式会社 リチウムイオン二次電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B.C. LIPPENSJ. H. DE BOER, J. CATALYSIS, 1965, pages 4319
E.P. BARRETTL.G. JOYNERP. HALENDA, J. AM. CHEM. SOC., vol. 73, 1951, pages 373
R.S. MIKHAILS. BRUNAUERE.E. BODOR, J. COLLOID INTERFACE SCI., vol. 26, 1968, pages 45
See also references of EP3712915A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094109A (zh) * 2022-01-19 2022-02-25 深圳新宙邦科技股份有限公司 锂离子电池

Also Published As

Publication number Publication date
US11824203B2 (en) 2023-11-21
KR20200035453A (ko) 2020-04-03
TW201924122A (zh) 2019-06-16
EP3712915A4 (en) 2021-02-17
EP3712915B1 (en) 2024-01-03
EP3712915A1 (en) 2020-09-23
KR102389965B1 (ko) 2022-04-22
JP6997208B2 (ja) 2022-02-03
CN111095453A (zh) 2020-05-01
TWI688149B (zh) 2020-03-11
US20200274169A1 (en) 2020-08-27
CN111095453B (zh) 2022-04-05
JPWO2019098200A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7096724B2 (ja) 非水系リチウム型蓄電素子
JP6714566B2 (ja) 非水系リチウム型蓄電素子の製造方法
KR102333849B1 (ko) 비수계 리튬 축전 소자
WO2017126697A1 (ja) 非水系リチウム型蓄電素子
JP2019091792A (ja) 非水系リチウム型蓄電素子
JP6997208B2 (ja) 非水系リチウム型蓄電素子
JP2018056410A (ja) 非水系リチウム蓄電素子
JP2018061022A (ja) 非水系リチウム型蓄電素子
JP6829572B2 (ja) 捲回式非水系リチウム型蓄電素子
JP6815148B2 (ja) 非水系リチウム型蓄電素子
JP6698493B2 (ja) 非水系リチウム蓄電素子
JP6829573B2 (ja) 捲回式非水系リチウム型蓄電素子
JP2018056429A (ja) 非水系リチウム型蓄電素子
JP6815151B2 (ja) 非水系リチウム型蓄電素子
JP2018056428A (ja) 非水系リチウム型蓄電素子用の負極
JP2018056413A (ja) 非水系リチウム型蓄電素子
JP2018056404A (ja) 非水系リチウム型蓄電素子
JP6815146B2 (ja) 非水系リチウム型蓄電素子
JP2018056417A (ja) 非水系リチウム型蓄電素子
JP2018056408A (ja) 非水系リチウム型蓄電素子
JP2018056430A (ja) 非水系リチウム型蓄電素子
JP2018056405A (ja) 非水系リチウム型蓄電素子
JP2018056403A (ja) 非水系リチウム型蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554233

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879358

Country of ref document: EP

Effective date: 20200615