WO2019097902A1 - Method for manufacturing liquid crystal element - Google Patents

Method for manufacturing liquid crystal element Download PDF

Info

Publication number
WO2019097902A1
WO2019097902A1 PCT/JP2018/037583 JP2018037583W WO2019097902A1 WO 2019097902 A1 WO2019097902 A1 WO 2019097902A1 JP 2018037583 W JP2018037583 W JP 2018037583W WO 2019097902 A1 WO2019097902 A1 WO 2019097902A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
polymer
solvent
carbon atoms
Prior art date
Application number
PCT/JP2018/037583
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 奥田
裕介 植阪
小山 貴由
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201880060453.XA priority Critical patent/CN111108433B/en
Priority to KR1020207009462A priority patent/KR102321076B1/en
Priority to JP2019553745A priority patent/JP7074142B2/en
Publication of WO2019097902A1 publication Critical patent/WO2019097902A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present disclosure relates to a method of manufacturing a liquid crystal element.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • Various devices are known such as a VA (Vertical Alignment) liquid crystal device using a nematic liquid crystal having a vertical alignment (homeotropic) alignment mode.
  • a liquid crystal device of a lateral electric field mode such as an IPS (In-Plane Switching) type or an FFS (Fringe Field Switching) type having a cell structure in which a pair of electrodes is provided on one substrate is also known.
  • a PSA (Polymer Sustained Alignment) method is known (see, for example, Patent Document 1).
  • a photopolymerizable monomer is mixed in advance with liquid crystal in the gap between a pair of substrates, and after a liquid crystal cell is constructed, ultraviolet light is irradiated in a state where a voltage is applied between the substrates to polymerize the photopolymerizable monomer.
  • ultraviolet light is irradiated in a state where a voltage is applied between the substrates to polymerize the photopolymerizable monomer.
  • Patent Document 1 discloses that, in the PSA technology, a pattern electrode patterned to have a comb-tooth shape (also referred to as a fishbone shape) having a large number of openings (slit portions) is used as a pixel electrode. It is done.
  • a drain bus line is formed on a glass substrate on the array substrate side, and an interlayer insulating film is formed thereon.
  • a fishbone-shaped pixel electrode is formed on the interlayer insulating film, and a liquid crystal alignment film is formed on the pixel electrode.
  • the liquid crystal alignment film generally dissolves polymer components such as polyamic acid, polyimide, polyorganosiloxane, (meth) acrylic polymer, polyamide and the like in a solvent, applies the polymer composition on a substrate and It is formed by removing.
  • the liquid crystal alignment agent and the interlayer insulating film are formed in the slit in the pixel region (that is, the display region) of the liquid crystal device. And contact.
  • the characteristics of the interlayer insulating film may change due to the influence of the liquid crystal aligning agent, or impurity components contained in the interlayer insulating film may be eluted into the liquid crystal aligning agent to deteriorate the performance of the liquid crystal alignment film. There is a concern that the reliability of the liquid crystal device may be reduced.
  • the present disclosure has been made in view of the above problems, and in a device structure in which an interlayer insulating film, a pattern electrode, and a liquid crystal alignment film are formed in this order on a substrate, a liquid crystal that can obtain a liquid crystal device with excellent reliability. It is an object to provide a method of manufacturing a device.
  • the present disclosure adopts the following means in order to solve the problems.
  • a method of manufacturing a liquid crystal device comprising: a pair of substrates disposed opposite to each other, a liquid crystal layer disposed between the pair of substrates, and a pair of electrodes, wherein at least one of the pair of electrodes is A pattern electrode having a plurality of openings, forming an interlayer insulating film on at least one of the pair of substrates, forming the pattern electrode on the interlayer insulating film, and forming the pattern electrode on the pattern electrode.
  • a liquid crystal alignment film to be in contact with at least a part of the interlayer insulating film, the liquid crystal alignment film comprising: a polymer component; and at least one solvent selected from the following solvent group:
  • solvent group [A] Solvent: a compound represented by the following formula (1), a compound represented by the following formula (2), N, N, 2-trimethylpropionamide, and 1,3-dimethyl-2-imidazolidinone.
  • [B] Solvent dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diethylene glycol monoethyl ether, 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, 2-methyl-2-hexanol, 2 6, 6-dimethyl-4-heptanol, diisobutyl ketone, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and propylene glycol monobutyl ether.
  • R 1 is a monovalent hydrocarbon group having 2 to 5 carbon atoms, or a monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group.
  • R 2 and R 3 each independently represent a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, or “—O— between carbon-carbon bonds of the hydrocarbon group. R 2 and R 3 may be bonded to each other to form a ring structure.
  • R 4 is an alkyl group having 1 to 6 carbon atoms.
  • FIG. 1 is a view schematically showing a part of a liquid crystal device.
  • FIG. 2 is a cross-sectional view schematically showing a part of the liquid crystal device according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically showing a part of the liquid crystal device of the second embodiment.
  • FIG. 4 is a view showing the structure of the electrode used in the example.
  • FIG. 5 is a view showing the structure of the electrode used in the example.
  • the liquid crystal device 10 is a vertical alignment type liquid crystal display element of a PSA (Polymer Sustained Alignment) type.
  • a plurality of pixels 11 are arranged in a matrix.
  • the pixels 11 are formed in a region surrounded by the scanning signal lines 12 and the video signal lines 13 which cross each other.
  • a thin film transistor (TFT) 14 that functions as a liquid crystal driving element is disposed.
  • the liquid crystal device 10 includes an array substrate 15, an opposing substrate 16, and a liquid crystal layer 17.
  • the array substrate 15 has a transparent substrate 18 such as a glass substrate or a plastic substrate, scanning signal lines 12, video signal lines 13, thin film transistors 14, pixel electrodes 19, and an interlayer insulating film 21 (see FIG. 2).
  • the thin film transistor 14 includes a gate electrode 22 formed of the scanning signal line 12, a semiconductor layer 23 formed of silicon (Si), a source electrode 24 formed of the video signal line 13, and a drain electrode 25 connected to the pixel electrode 19. It consists of
  • the thin film transistor 14 is provided by a known method such as photolithography. A known material can be used as a specific material that constitutes each part of the thin film transistor 14.
  • the pixel electrode 19 is formed of a transparent conductor such as ITO. As shown in FIG. 1, the pixel electrode 19 is a pattern electrode in which a plurality of slits (long and narrow rectangular openings) 19 c are provided on a planar electrode. Specifically, the pixel electrode 19 is provided between a trunk line portion 19a extending in two directions orthogonal to each other, a plurality of branch line portions 19b extending in an oblique direction from the trunk line portion 19a, and a plurality of branch line portions 19b. A plurality of formed slit portions 19c are provided, and a repeated pattern of a conductive portion and a nonconductive portion is provided. The pixel electrode 19 is electrically connected to the thin film transistor 14. The thin film transistor 14 is electrically connected to the scanning signal line 12 and the video signal line 13 and is supplied with various signals.
  • the array substrate 15 has a structure in which a transparent substrate 18, an interlayer insulating film 21 and a pixel electrode 19 are stacked in this order in a display area in which a plurality of pixels 11 are arranged in a matrix.
  • the pixel electrode 19 is connected to the drain electrode 25 through a contact hole 27 provided in the interlayer insulating film 21.
  • the interlayer insulating film 21 is formed by photolithography using a radiation sensitive resin composition described later. By providing the interlayer insulating film 21, the increase in capacitive coupling between the pixel electrode 19 and the signal line is suppressed.
  • the counter substrate 16 includes a glass substrate 28, a color filter layer 29, an overcoat layer (not shown) as an insulating layer, and a common electrode 31.
  • the color filter layer 29 is composed of sub-pixels colored with red (R), green (G) and blue (B).
  • the color filter layer 29 is produced by a known method such as photolithography.
  • the common electrode 31 is a planar electrode formed of a transparent conductor such as ITO, and is provided across the plurality of pixels 11.
  • a first alignment film 32 is formed on the electrode formation surface of the array substrate 15, and a second alignment film 33 is formed on the electrode formation surface of the counter substrate 16.
  • the first alignment film 32 and the second alignment film 33 are liquid crystal alignment films that regulate the alignment of liquid crystal molecules in the liquid crystal layer 17, and are substrates using a liquid crystal alignment agent that is a polymer composition containing a polymer component. It is formed on top.
  • the first alignment film 32 is in contact with the interlayer insulating film 21 at least in the slit portion 19 c in the display area.
  • the array substrate 15 and the counter substrate 16 are arranged with a predetermined gap (cell gap) such that the alignment film forming surface of the array substrate 15 and the alignment film forming surface of the counter substrate 16 face each other.
  • the peripheral portions of the pair of opposed substrates are bonded together by a sealing agent (not shown).
  • a sealing agent a known material (for example, a thermosetting resin or a photocurable resin) is used as the sealing agent for a liquid crystal device.
  • the liquid crystal composition is filled in a space surrounded by the array substrate 15, the counter substrate 16 and the sealing agent, whereby the liquid crystal layer 17 is disposed in contact with the first alignment film 32 and the second alignment film 33. It is done.
  • the liquid crystal layer 17 has negative dielectric anisotropy.
  • the liquid crystal layer 17 has PSA layers 34 and 35 which are polymer layers at the interface with the array substrate 15 and the interface with the counter substrate 16 respectively.
  • the PSA layers 34 and 35 are formed by photopolymerizing photopolymerizable monomers previously mixed in the liquid crystal layer 17 in a state in which liquid crystal molecules are pretilted and aligned after construction of a liquid crystal cell. In the liquid crystal device 10, the initial alignment of liquid crystal molecules in the liquid crystal layer 17 is controlled by the PSA layers 34 and 35.
  • polarizers 36 and 37 are disposed outside the array substrate 15 and the counter substrate 16, respectively.
  • a terminal area is provided at the outer edge of the array substrate 15.
  • a liquid crystal device 10 is driven by connecting a driver IC or the like for driving liquid crystal to the terminal area.
  • liquid crystal aligning agent used in order to form a liquid crystal aligning film (1st alignment film 32, 2nd alignment film 33) is demonstrated.
  • the liquid crystal aligning agent contains a polymer component and a solvent component.
  • the main skeleton of the polymer contained in the liquid crystal aligning agent is not particularly limited.
  • at least one polymer (hereinafter, also referred to as [P] polymer) selected from the group consisting of polyamic acid, polyamic acid ester, polyimide and polyorganosiloxane is preferable.
  • liquid crystal aligning agent in preparation of a liquid crystal aligning agent, it may be used individually by 1 type as a polymer, and may be used combining 2 or more types.
  • (meth) acrylic is meant to include “acrylic” and “methacrylic”.
  • the method for synthesizing the polymer is not particularly limited.
  • the [P] polymer is a polyamic acid
  • the polyamic acid can be obtained by reacting tetracarboxylic acid dianhydride with a diamine.
  • tetracarboxylic acid dianhydrides used in the synthesis of polyamic acids include aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, and aromatic tetracarboxylic acid dianhydrides. .
  • aliphatic tetracarboxylic acid dianhydride for example, 1,2,3,4-butanetetracarboxylic acid dianhydride, ethylenediaminetetraacetic acid dianhydride etc .
  • alicyclic tetracarboxylic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2- c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro-2,5-dio
  • the tetracarboxylic acid dianhydride used in the synthesis preferably contains an alicyclic tetracarboxylic acid dianhydride from the viewpoint that the solubility of the resulting polymer in a solvent can be further increased, and a cyclobutane ring, a cyclopentane ring and It is more preferable to include a tetracarboxylic acid dianhydride having at least one ring structure selected from the group consisting of cyclohexane rings (hereinafter, also referred to as “specific tetracarboxylic acid dianhydride”).
  • the use ratio of the specific tetracarboxylic acid dianhydride is preferably 10 mol% or more, preferably 20 to 100 mol%, with respect to the total amount of tetracarboxylic acid dianhydride used in the synthesis of the polyamic acid. More preferable.
  • diamine used for the synthesis of the polyamic acid examples include aliphatic diamines, alicyclic diamines, aromatic diamines, diamino organosiloxanes and the like.
  • aliphatic diamines for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane and the like
  • alicyclic diamines As, for example, 1,4-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine) etc .
  • aromatic diamines for example, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2'-dimethyl-4,4'-di
  • diaminoorganosiloxanes include, for example, 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like, and diamines described in JP-A-2010-97188 can be used.
  • diamines described in JP-A-2010-97188 can be used.
  • one kind of diamine may be used alone, or two or more kinds thereof may be used in combination.
  • the polyamic acid can be obtained by reacting the above-mentioned tetracarboxylic acid dianhydride and diamine with a molecular weight modifier as required.
  • the ratio of tetracarboxylic acid dianhydride and diamine used in the synthesis reaction of the polyamic acid is such that the acid anhydride group of tetracarboxylic acid dianhydride is 0.2 to 2 per 1 equivalent of amino group of diamine. The ratio which becomes equivalent is preferable.
  • the molecular weight modifier examples include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. It can be mentioned.
  • the proportion of the molecular weight modifier used is preferably 20% by mass or less based on the total amount of tetracarboxylic acid dianhydride and diamine used.
  • the synthesis reaction of polyamic acid is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
  • the organic solvent used for the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like.
  • Preferred organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol,
  • One or more selected from the group consisting of halogenated phenols and specific solvents described later are used as a solvent, or a mixture of one or more of these and other organic solvents (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.) It is preferred to use
  • the amount of the organic solvent used is preferably such that the total amount of tetracarboxylic acid dianhydride and diamine is 0.1 to 50% by mass with respect to the total amount of the reaction solution.
  • reaction solution in which the polyamic acid is dissolved is obtained.
  • This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparation of a liquid crystal aligning agent after the polyamic acid contained in the reaction solution is isolated.
  • the polyimide can be obtained by dehydration ring closure and imidization of the polyamic acid synthesized as described above.
  • the polyimide may be a completely imidized product obtained by dehydrating and ring closing all of the amic acid structure of the precursor polyamic acid, and only a part of the amic acid structure may be dehydrating and ring closing, and the amic acid structure and the imide. It may be a partial imidate in which ring structures coexist.
  • the imidation ratio of the polyimide is preferably 30% or more, more preferably 40 to 99%, and still more preferably 60 to 99%.
  • the imidation ratio is a percentage representing the ratio of the number of imide ring structures to the total number of amic acid structures of polyimide and the number of imide ring structures.
  • part of the imide ring may be an isoimide ring.
  • the dehydration ring closure of polyamic acid is preferably carried out by a method of dissolving polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary.
  • a dehydrating agent for example, an acid anhydride such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 moles per mole of the polyamic acid's amic acid structure.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used.
  • the amount of the dehydrating ring-closing catalyst used is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used.
  • an organic solvent to be used the organic solvent illustrated as what is used for the synthesis
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours.
  • the obtained reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparing a liquid crystal aligning agent after isolating a polyimide.
  • the polyamic acid ester is, for example, a method of reacting a polyamic acid obtained by the above reaction with an esterification agent, a method of reacting a [II] tetracarboxylic acid diester with a diamine, a [III] tetracarboxylic acid diester It can be obtained by a method of reacting a dihalide with a diamine, or the like.
  • an esterifying agent of said [I] methanol, ethanol etc. are mentioned, for example.
  • the tetracarboxylic acid diester used in the above [II] can be obtained by ring-opening tetracarboxylic acid dianhydride with an alcohol or the like.
  • the tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with a suitable chlorinating agent such as thionyl chloride.
  • the resulting polyamic acid ester may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist.
  • the reaction solution obtained by dissolving the polyamic acid ester may be used as it is for the preparation of a liquid crystal aligning agent, or the polyamic acid ester contained in the reaction solution may be isolated for the preparation of a liquid crystal aligning agent.
  • the polyamic acid, polyamic acid ester and polyimide obtained as described above preferably have a solution viscosity of 10 to 800 mPa ⁇ s when this is made into a solution with a concentration of 10% by mass, preferably 15 to 500 mPa. More preferably, it has a solution viscosity of s.
  • the solution viscosity (mPa ⁇ s) of the above-mentioned polymer is a polymer solution having a concentration of 10% by mass prepared using a good solvent (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.) of the polymer. It is the value measured at 25 ° C. using an E-type viscometer.
  • the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) for polyamic acid, polyamic acid ester and polyimide is preferably 500 to 100,000, and 1,000 to 50,000. Is more preferred.
  • Polyorganosiloxane can be obtained, for example, by hydrolysis or hydrolysis / condensation of a hydrolyzable silane compound, preferably in the presence of a suitable organic solvent, water and a catalyst.
  • hydrolyzable silane compounds used for the synthesis of polyorganosiloxanes include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane and trimethoxysilylpropyl.
  • Alkoxysilane compounds such as succinic anhydride, dimethyldimethoxysilane, dimethyldiethoxysilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, 3-ureido Propyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (3-cyclohexylamino) propylto Nitrogen and sulfur containing alkoxysilane compounds such as methoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy Epoxy group-containing silane compounds such as cyclohexyl) eth
  • the above-mentioned hydrolysis / condensation reaction is carried out by reacting one or more silane compounds as described above with water, preferably in the presence of a suitable catalyst and an organic solvent.
  • the proportion of water used is preferably 1 to 30 moles relative to 1 mole of the silane compound (total amount).
  • a catalyst to be used an acid, an alkali metal compound, an organic base (for example, triethylamine, tetramethyl ammonium hydroxide etc.), a titanium compound, a zirconium compound etc. can be mentioned, for example.
  • the amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, etc., and should be set appropriately.
  • the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols and the like, and among these, it is preferable to use a water insoluble or poorly water soluble organic solvent.
  • the proportion of the organic solvent used is preferably 50 to 1,000 parts by mass with respect to a total of 100 parts by mass of the silane compound used for the reaction.
  • the above hydrolysis / condensation reaction is preferably carried out, for example, by heating with an oil bath or the like. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the solvent can be removed from the organic solvent layer separated from the reaction solution to obtain a polysiloxane.
  • the synthesis method is not particularly limited.
  • epoxy group-containing silane compounds or epoxy group-containing silane compounds Hydrolysis condensation of a mixture of this and other silane compounds to synthesize an epoxy group-containing polyorganosiloxane, and then reacting the obtained epoxy group-containing polyorganosiloxane with a carboxylic acid having the above functional group And the like.
  • the reaction of the epoxy group-containing polyorganosiloxane with the carboxylic acid can be carried out according to a known method.
  • the polyorganosiloxane preferably has a polystyrene equivalent weight average molecular weight (Mw) measured by GPC in the range of 500 to 100,000, more preferably in the range of 1,000 to 30,000, 1, More preferably, it is from 000 to 20,000.
  • Mw polystyrene equivalent weight average molecular weight measured by GPC in the range of 500 to 100,000, more preferably in the range of 1,000 to 30,000, 1, More preferably, it is from 000 to 20,000.
  • the content ratio of the [P] polymer in the liquid crystal aligning agent (total amount when two or more are contained) is 60% by mass or more based on the total amount of the polymer components in the liquid crystal aligning agent Preferably, it is 80% by mass or more.
  • the liquid crystal aligning agent contains at least one kind of [p] polymer, which is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide, in that a liquid crystal element more excellent in reliability can be obtained. .
  • the content ratio of the [p] polymer in the liquid crystal aligning agent (in the case of containing two or more, the total amount thereof) is 40% by mass or more based on the total amount of the polymer components in the liquid crystal aligning agent Preferably, it is 60% by mass or more.
  • the polymer component contained in the liquid crystal aligning agent is a polymer having a partial structure represented by the following formula (3).
  • * -L 1 -R 11 -R 12 -R 13 -R 14 (3) L 1 is, -O -, - CO -, - COO- * 1, -OCO- * 1, -NR 15 -, - NR 15 -CO- * 1, -CO-NR 15 -* 1 , an alkanediyl group having 1 to 6 carbon atoms, -O-R 16- * 1 , or -R 16 -O- * 1 (provided that R 15 is a hydrogen atom or a monovalent group having 1 to 10 carbon atoms) a hydrocarbon group, R 16 is an alkanediyl group of 1 to 3 carbon atoms.
  • R 11 and R 13 each independently represent a single bond, a phenylene group or a cycloalkylene group
  • R 12 represents a single bond, a phenylene group, a cycloalkylene group, -R 17 -B 1 - * 2 , or -B 1 -R 17 - * 2 (However, R 17 is a phenylene group or a cycloalkylene group, B 1 is -CO -.
  • R 17 R 14 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms.
  • a fluoroalkoxy group having 1 to 18 carbon atoms or a hydrocarbon group having 17 to 51 carbon atoms having a steroid skeleton may have a radically polymerizable group or a photoinitiator group, provided that R 14 is In the case of a hydrogen atom, a fluorine atom or a group having 1 to 3 carbon atoms, all of R 11 , R 12 and R 13 will not be single bonds. "*" Indicates that it is a bond.)
  • the L 1 and B 1 alkanediyl groups, and the R 14 alkyl group, fluoroalkyl group, alkoxy group and fluoroalkoxy group are preferably linear.
  • the group having a steroid skeleton of R 14 include cholestanyl group, cholesteryl group, lanostanyl group and the like.
  • the phenylene group of R 11 , R 12 , R 13 and R 17 is preferably a 1,4-phenylene group, and the cycloalkylene group is preferably a 1,4-cyclohexylene group.
  • R 11 and R 13 at least one of them is preferably a phenylene group or a cycloalkylene group.
  • R 12 is a phenylene group, a cycloalkylene group, -R 17 -B 1 - * 2, or -B 1 -R 17 - is preferably a * 2.
  • the main skeleton of the polymer having a partial structure represented by the above formula (3) is not particularly limited, but is preferably a [P] polymer.
  • the content ratio of the partial structure represented by the above formula (3) in the polymer is appropriately set according to the main chain of the polymer, but from the viewpoint of sufficiently increasing the response speed of the liquid crystal, the entire content of the polymer
  • the amount is preferably 1 to 50 mol%, and more preferably 2 to 40 mol%, based on the monomer unit.
  • a liquid crystal aligning agent has a radical polymerizable group, a photoinitiator group, a radical polymerization inhibitor group, and a polymer component as a polymer component, in that a liquid crystal element in which an afterimage hardly occurs and a response speed of liquid crystal can be obtained
  • a polymer having at least one selected from the group consisting of nitrogen-containing heterocycles (but excluding the imide ring possessed by polyimide), an amino group, and a protected amino group hereinafter, also referred to as “specific partial structure” Is preferably contained.
  • the radical polymerizable group examples include (meth) acryloyl group, vinyl group, allyl group, vinylphenyl group, maleimide group, vinyloxy group, ethynyl group and the like. Among these, a (meth) acryloyl group is particularly preferable in terms of high reactivity.
  • the photoinitiator group is a site that generates polymerization initiation ability by light or a site having a photosensitizing function, and polymerizes a polymerizable component by irradiation with radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam, and X-ray. It is a group having a structure derived from a startable compound (photoinitiator).
  • the photoinitiator group is preferably a group having a structure derived from a radical polymerization initiator capable of generating radicals by light irradiation.
  • a group having a structure derived from an acetophenone compound, an oxime ester compound, a dibenzoyl compound, a benzoin compound, a benzophenone compound, an alkylphenone compound, or an acylphosphine oxide compound can be mentioned.
  • the photoinitiator group is preferably a group having an acetophenone structure.
  • the polymer has at least one of a radically polymerizable group and a photoinitiator group, it is preferable to have these groups in the side chain.
  • the radical polymerization inhibitor group is a polymerization initiator by capturing a peroxide decomposition agent that neutralizes the peroxy radical or hydroperoxide generated due to energy such as ultraviolet light and heat, or a radical intermediate during polymerization. It functions as a radical scavenger that suppresses the progress.
  • a polymer having such a polymerization inhibitor group in the liquid crystal alignment film it is possible to suppress the reaction of the photopolymerizable compound mixed in the liquid crystal layer in the PSA mode with light irradiation.
  • the polymerization inhibitor group is preferably a group having at least one selected from the group consisting of a hindered amine structure, a hindered phenol structure and an aniline structure.
  • nitrogen-containing heterocycle examples include pyrrole, imidazole, pyrazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, indole, benzimidazole, purine, quinoline, isoquinoline, naphthyridine, quinoxaline, phthalazine, triazine, carbazole, acridine, piperidine, And piperazine, pyrrolidine, hexamethyleneimine and the like.
  • the amino group and the protected amino group are preferably a group represented by the following formula (N-1).
  • R 50 is a hydrogen atom or a monovalent organic group.
  • “*” Is a bond that bonds to a hydrocarbon group.
  • the monovalent organic group of R 50 is preferably a monovalent hydrocarbon group or a protecting group.
  • the monovalent hydrocarbon group preferably has 1 to 10 carbon atoms, and specific examples thereof include linear or branched alkyl groups such as methyl, ethyl, propyl and butyl; and cycloalkyl such as cyclohexyl and the like And groups; aryl groups such as phenyl group and methylphenyl; and aralkyl groups such as benzyl group.
  • the substituent which R 50 may have include a halogen atom, a cyano group, an alkylsilyl group, an alkoxysilyl group and the like.
  • R 50 is preferably an alkyl group having 1 to 5 carbon atoms, a cyclohexyl group, a phenyl group or a benzyl group.
  • Examples of the hydrocarbon group to which “*” in the above formula (N-1) is bonded include alkanediyl group, cyclohexylene group, phenylene group and the like.
  • the protective group is preferably a group which is released by heat, and examples thereof include a carbamate type protective group, an amide type protective group, an imide type protective group, a sulfonamide type protective group, and the following formulas (8-1) to (8-) Groups represented by each of 5) and the like can be mentioned.
  • tert-butoxycarbonyl group is preferable in that it is highly removable by heat and in that the remaining amount of the deprotected portion in the film is reduced.
  • Ar 11 is a monovalent group having 6 to 10 carbon atoms in which one hydrogen atom has been removed from a substituted or unsubstituted aromatic ring, and 61 represents an alkyl group having 1 to 12 carbon atoms, R 62 represents a methylene group or an ethylene group, and "*" represents a bond bonded to a nitrogen atom.
  • the main skeleton of the polymer having the above specific partial structure is not particularly limited, but it is preferably a [P] polymer, and more preferably a [p] polymer.
  • the content ratio of the above-mentioned specific partial structure in the polymer is preferably 5 mol% to the total monomer units of the polymer, and 10 to 80 mol%. It is more preferable to do.
  • the liquid crystal aligning agent contains, as a solvent component, at least one specific solvent selected from the group of solvents shown below (a group consisting of [A] solvent and [B] solvent).
  • Solvent group [A] Solvent: a compound represented by the following formula (1), a compound represented by the following formula (2), N, N, 2-trimethylpropionamide, and 1,3-dimethyl-2-imidazolidinone.
  • [B] Solvent dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diethylene glycol monoethyl ether, 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, 2-methyl-2-hexanol, 2 6, 6-dimethyl-4-heptanol, diisobutyl ketone, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and propylene glycol monobutyl ether.
  • R 1 is a monovalent hydrocarbon group having 2 to 5 carbon atoms, or a monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group.
  • R 2 and R 3 each independently represent a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, or “—O— between carbon-carbon bonds of the hydrocarbon group. R 2 and R 3 may be bonded to each other to form a ring structure.
  • R 4 is an alkyl group having 1 to 6 carbon atoms.
  • the monovalent hydrocarbon group having 2 to 5 carbon atoms of R 1 is preferably a chain hydrocarbon group, and for example, an alkyl group having 2 to 5 carbon atoms, alkenyl And alkynyl groups.
  • the monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group for example, an alkoxyalkyl group having 2 to 5 carbon atoms can be mentioned.
  • alkyl group having 2 to 5 carbon atoms for example, an ethyl group, a propyl group, a butyl group, a pentyl group and the like; and an alkenyl group having 2 to 5 carbon atoms, for example, a vinyl group and 1-propenyl group 2-propenyl group, 3-butenyl group, etc. as an alkynyl group having 2 to 5 carbon atoms, such as ethynyl group, 2-propynyl group, 2-butynyl group, etc.
  • R 1 is preferably an alkyl group having 2 to 5 carbon atoms or an alkoxyalkyl group.
  • Specific examples of the compound represented by the above formula (1) include, for example, N-ethyl-2-pyrrolidone, N- (n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n-) Butyl) -2-pyrrolidone, N- (t-butyl) -2-pyrrolidone, N- (n-pentyl) -2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N And-methoxybutyl-2-pyrrolidone and the like.
  • N-ethyl-2-pyrrolidone, N- (n-pentyl) -2-pyrrolidone, N- (t-butyl) -2-pyrrolidone and N-methoxypropyl-2-pyrrolidone are particularly preferably used.
  • the compound represented by the said Formula (1) can be used individually by 1 type or in combination of 2 or more types of these exemplary compounds.
  • Compound represented by formula (2) As the monovalent hydrocarbon group having 1 to 6 carbon atoms for R 2 and R 3 in the compound represented by the above formula (2), for example, a linear hydrocarbon group having 1 to 6 carbon atoms, 3 to 6 carbon atoms Examples thereof include six alicyclic hydrocarbon groups and aromatic hydrocarbon groups having 5 or 6 carbon atoms. Further, examples of the monovalent group having “—O—” between carbon-carbon bonds of the hydrocarbon group include, for example, an alkoxyalkyl group having 2 to 6 carbon atoms.
  • chain hydrocarbon group having 1 to 6 carbon atoms for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and the like can be mentioned, and these are linear Or may be branched.
  • examples of the alicyclic hydrocarbon group having 3 to 6 carbon atoms include, for example, a cyclopentyl group and a cyclohexyl group; and examples of an aromatic hydrocarbon group include, for example, a phenyl group and the like; and an alkoxyalkyl group having 2 to 6 carbon atoms.
  • the alkoxyalkyl group mentioned for R 1 and the like can be mentioned respectively.
  • R 2 and R 3 in the formula (2) may be the same or different.
  • R 2 and R 3 may bond to each other to form a ring together with the nitrogen atom to which R 2 and R 3 are bonded.
  • Examples of the ring formed by bonding R 2 and R 3 to each other include a pyrrolidine ring, a piperidine ring and the like, and a monovalent chain hydrocarbon group such as a methyl group is bonded to these rings.
  • R 2 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom or a methyl group is there.
  • alkyl group having 1 to 6 carbon atoms of R 4 examples include the groups exemplified in the description of the alkyl group having 1 to 6 carbon atoms of R 2 and R 3 above.
  • it is an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group or an ethyl group.
  • the compound represented by the above formula (2) include, for example, 3-butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-hexyloxy-N, N- Dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n-butoxy-N-isopropyl-propionamide and the like.
  • the compound represented by the said Formula (2) can be used individually by 1 type or in combination of 2 or more types.
  • [B] Among the above solvents, dipropylene glycol monomethyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and diacetone alcohol, as the solvent, in that the influence on interlayer insulating film 21 can be further reduced. It is preferably at least one selected from the group consisting of propylene glycol monobutyl ether.
  • solvent component although only a specific solvent may be used, you may use together other solvents other than a specific solvent. As such other solvents, it is also referred to as a solvent having high polymer solubility and leveling ability (hereinafter, also referred to as "first solvent”), and a solvent having good wettability and spreadability (hereinafter, "second solvent”). Can be mentioned.
  • first solvent for example, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -butyrolactam, N, N-dimethylformamide, N, N-dimethylacetamide, 4-hydroxy-4-methyl -2-pentanone, ethylene carbonate, propylene carbonate etc.
  • the second solvent for example, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxy propionate, ethyl ethoxy propionate, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene Glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diethyl ether acetate Iso Mill propionate, isoamyl isobutyrate, etc., can be exemplified respectively.
  • 1 type in the above may be used independently, and 2 or more
  • the liquid crystal aligning agent When preparing the liquid crystal aligning agent, only one of the [A] solvent and the [B] solvent may be used as the specific solvent, but when forming the liquid crystal alignment film, the liquid crystal aligning agent and the interlayer insulating film 21
  • at least one of the [A] solvent and the [B] solvent is capable of suppressing the influence exerted on the interlayer insulating film 21 in the state where it is in contact and at the same time the elution of the impurity component from the interlayer insulating film 21 can be suppressed. It is preferable that at least one of
  • the proportion of the solvent used (total amount when two or more are used) is sufficient to suppress the effect on the interlayer insulating film 21 and the effect of suppressing the elution of the impurity component from the interlayer insulating film 21.
  • the content is preferably 10% by mass or more, and more preferably 20% by mass or more based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • the upper limit of the use ratio is preferably 90% by mass or less, based on the total amount of the solvent contained in the liquid crystal aligning agent, from the viewpoint of obtaining the effect of improving the coatability by the [B] solvent, and 80% It is more preferable to make it% or less.
  • [A] solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the proportion of the solvent used (total amount when two or more are used) has an effect on the interlayer insulating film 21 and suppresses the elution of the impurity component from the interlayer insulating film 21 and the coatability of the liquid crystal aligning agent
  • the content is preferably 10% by mass or more, and more preferably 20% by mass or more based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • the upper limit of the use ratio is preferably 80% by mass or less, and more preferably 70% by mass or less, based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • a [B] solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the ratio of use of the specific solvent (total amount when two or more types are used) sufficiently achieves the effect of suppressing the influence on the interlayer insulating film 21 and the effect of reducing the elution of the impurity component from the interlayer insulating film 21
  • the content is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, based on the total amount of the solvent contained in the liquid crystal aligning agent. It is particularly preferable to set it as mass% or more.
  • the proportions of use of the other solvents sufficiently obtain the effects of the present disclosure.
  • the content is preferably 50% by mass or less, more preferably 30% by mass or less, and more preferably 10% by mass or less, based on the total amount of the solvent contained in the liquid crystal aligning agent. It is particularly preferable to set the content to less than mass%.
  • the solvent component is composed of the [A] solvent and the [B] solvent.
  • the solvent component is composed of the [A] solvent and the [B] solvent” does not interfere with the effects of the present disclosure other solvents other than the [A] solvent and the [B] solvent. It is acceptable to contain to some extent.
  • the liquid crystal aligning agent may contain other components as necessary in addition to the polymer component and the solvent component.
  • the other components include antioxidants, metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, and photosensitizers.
  • the blend ratio of the other components can be appropriately selected according to each compound, as long as the effects of the present disclosure are not impaired.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film is too small, and it is difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes too large to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coating property decreases.
  • This radiation sensitive resin composition contains a [Q] polymer and a [R] photosensitizer.
  • the polymer preferably has a structural unit having a polymerizable group.
  • the polymerizable group contained in the polymer is preferably at least one selected from the group consisting of an oxetanyl group, an oxiranyl group, a (meth) acryloyl group, and a vinyl group.
  • the main skeleton of the polymer [Q] is not particularly limited, but is preferably at least one selected from the group consisting of (meth) acrylic polymers, polyamic acids, polyamic esters, polyimides, and polyorganosiloxanes.
  • (meth) acrylic polymers are particularly preferable.
  • the (meth) acrylic polymer may have only a structural unit derived from a monomer having a (meth) acryloyl group, or a structure derived from a monomer having a (meth) acryloyl group You may have a unit and the structural unit derived from the other monomer different from the monomer which has a (meth) acryloyl group.
  • the content ratio of structural units derived from other monomers in the (meth) acrylic polymer is preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 30 mol% or less. It is.
  • the [Q] polymer is mainly composed of a first structural unit having an acidic group, a second structural unit having an oxetanyl group or an oxiranyl group, and a main component different from the first structural unit and the second structural unit. It is preferable that it is a polymer which has the 3rd structural unit which forms chain structure.
  • bonded with the carbon atom serves as an electron withdrawing group
  • examples thereof include substituted hydroxyalkyl groups and the like.
  • a carboxy group, a sulfo group, a phenolic hydroxyl group, a fluorine-containing alcoholic hydroxyl group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group or a combination thereof is preferable as the acidic group from the viewpoint of alkali developability.
  • a carboxy group or a phenolic hydroxyl group is more preferable, and a carboxy group is particularly preferable.
  • the first structural unit is preferably a structural unit derived from at least one compound selected from the group consisting of (meth) acrylic acid or unsaturated carboxylic acid anhydride, and at least one of (meth) acrylic acid and maleic anhydride is preferred. Particularly preferred.
  • the content ratio of the first structural unit in the [Q] polymer is preferably 1 to 50 mol%, preferably 15 to 30 mol%, with respect to all structural units constituting the [Q] polymer. More preferable.
  • the first structural unit may be used alone or in combination of two or more.
  • glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3- (meth) acryloyloxymethyl-3- Preferred is a structural unit derived from at least one compound selected from the group consisting of ethyl oxetane.
  • the content ratio of the second structural unit in the [Q] polymer is preferably 1 to 15 mol%, and preferably 3 to 10 mol%, with respect to all structural units constituting the [Q] polymer. More preferable.
  • the second structural unit may be used alone or in combination of two or more.
  • the third structural unit is not particularly limited as long as it is a structural unit derived from a monomer forming a main chain structure different from the first structural unit and the second structural unit, but the development adhesion and the resistance to heat and peeling solution It is preferable that it is a structural unit derived from at least one compound selected from the group consisting of styrene, ⁇ -methylstyrene, 4-methylstyrene, and 4-hydroxystyrene, in that it can be better.
  • the content ratio of the third structural unit in the [Q] polymer is preferably 25 to 80 mol%, more preferably 30 to 65 mol%, based on all structural units constituting the [Q] polymer. More preferable.
  • the third structural unit may be used alone or in combination of two or more.
  • the [Q] polymer may further have other structural units other than the first structural unit, the second structural unit, and the third structural unit.
  • structural units include alkyl (meth) acrylate and the like.
  • the polymer can be synthesized according to a conventional method such as radical polymerization using a monomer giving the first to third structural units and the like. The details of the synthesis conditions can be appropriately set with reference to, for example, various conditions described in JP-A-2015-92233.
  • photo radical polymerization initiators for example, O-acyl oxime compound, acetophenone compound, biimidazole compound etc .
  • photoacid generator include oxime sulfonate compounds, onium salts, sulfoneimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, carboxylic acid ester compounds, quinonediazide compounds and the like
  • the photobase generator include transition metal complexes such as cobalt, ortho-nitrobenzyl carbamates, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl carbamates, and acyloxyiminos.
  • the proportion of the photosensitizer used varies depending on the type of compound to be used.
  • a photo radical polymerization initiator it is preferably 1 to 40 parts by mass, and more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the [Q] polymer.
  • the proportion of the photoacid generator used is preferably 0.1 to 50 parts by mass, and more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the [Q] polymer.
  • the use ratio of the photoacid base is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the [Q] polymer.
  • the radiation sensitive resin composition may further contain a curing accelerator, a polymerizable unsaturated compound, a surfactant, a storage stabilizer, and an adhesion assistant, in addition to the above-mentioned [Q] polymer and [R] photosensitizer. Can.
  • a curing accelerator a polymerizable unsaturated compound
  • a surfactant a storage stabilizer
  • an adhesion assistant in addition to the above-mentioned [Q] polymer and [R] photosensitizer.
  • an adhesion assistant in addition to the above-mentioned [Q] polymer and [R] photosensitizer.
  • Each of these optional components may be used alone or in combination of two or more.
  • the radiation sensitive resin composition is prepared by mixing other optional components blended as needed in addition to the [Q] polymer and the [R] photosensitizer.
  • the radiation sensitive resin composition is preferably dissolved in a suitable solvent and used in a solution state.
  • the solvent for example, alcohol, glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, propylene glycol monoalkyl ether Propionates, ketones, esters and the like can be mentioned.
  • the total concentration of the components excluding the solvent of the radiation sensitive resin composition is 5 to 50% by mass from the viewpoint of the coatability, stability, etc. of the radiation sensitive resin composition to be obtained Preferably, the amount is 10 to 40% by mass.
  • the liquid crystal device 10 can be manufactured by a method including the following steps A to E.
  • Process A A process of forming an interlayer insulating film 21 on a substrate.
  • Step B A step of forming the pixel electrode 19 on the interlayer insulating film 21.
  • Step C A step of forming a liquid crystal alignment film (first alignment film 32) on the pixel electrode 19 so as to be in contact with a part of the interlayer insulating film 21.
  • Step D A step of forming a liquid crystal cell by opposingly arranging the array substrate 15 and the opposite substrate 16 via a liquid crystal layer containing a photopolymerizable monomer.
  • Step E A step of irradiating the liquid crystal cell with light.
  • liquid crystal device 10 shown in FIGS. 1 and 2 In order to manufacture the liquid crystal device 10 shown in FIGS. 1 and 2, first, thin film transistors 14, scanning signal lines 12, and video signal lines 13 are formed on a transparent substrate 18 such as a glass substrate by a known method such as photolithography. Form. Subsequently, on the surface of the transparent substrate 18 on which the thin film transistor 14 and the signal line are to be formed, a radiation sensitive resin composition for forming an interlayer insulating film is applied to form an interlayer insulating film 21 (Step A).
  • the application method of the radiation sensitive resin composition is not particularly limited, for example, an appropriate method such as a spray method, a roll coating method, a spin coating method, a slit coating method, a bar coating method, an inkjet coating method can be adopted.
  • the spin coating method or the slit coating method is preferable in that a film having a uniform thickness can be formed.
  • the coated surface is preferably heated (prebaked), and if necessary, exposed to light through a photomask having a predetermined pattern, followed by development and postbaking.
  • the interlayer insulating film 21 as a cured film is obtained.
  • the various conditions for forming the interlayer insulating film 21 for example, the conditions described in JP-A-2015-92233 can be adopted.
  • the pixel electrode 19 is formed on the interlayer insulating film 21 formed in the process A of the transparent substrate 18.
  • the pixel electrode 19 is formed by forming an ITO (indium tin oxide) film or an IZO (indium zinc oxide) film with a film thickness of 50 to 200 nm, more preferably 100 to 150 nm, using a known method such as sputtering. It is patterned in a fish bone shape (also referred to as “comb shape”) by a lithography method. Thereby, the fishbone-type pixel electrode 19 is formed on the substrate, and the array substrate 15 is manufactured.
  • a color filter layer 29, an overcoat layer (not shown) and a common electrode 31 are formed in this order on a transparent substrate 28 such as a glass substrate using a known method such as photolithography. , And the opposing substrate 16 are manufactured.
  • a liquid crystal aligning agent is applied on the substrate on which the electrode is formed, and preferably a coated surface is formed to form a coating film on the substrate.
  • the application of the liquid crystal aligning agent to the substrate is preferably performed by an offset printing method, a spin coating method, a roll coater method, a flexographic printing method, or an ink jet printing method on the electrode formation surface.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal alignment agent.
  • the prebake temperature is preferably 30 to 200 ° C.
  • the prebake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is carried out to completely remove the solvent and, if necessary, thermally imidize the amic acid structure present in the polymer.
  • the baking temperature (post-baking temperature) at this time is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes.
  • the thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • a liquid crystal aligning agent is applied on the electrode formation surface of the substrate on which the pattern electrode (pixel electrode 19) having a large number of slits 19c is formed on the interlayer insulating film 21. Therefore, the liquid crystal alignment agent in liquid form comes in contact with the interlayer insulating film 21 through the opening of the slit portion 19c.
  • the liquid crystal alignment film (first alignment film 32) formed on the substrate is in contact with the interlayer insulating film 21 in the display region of the liquid crystal device 10 via the slit portion 19c.
  • the coating film formed above may be used as a liquid crystal aligning film as it is, you may perform the process (alignment process) which provides liquid crystal aligning ability.
  • rubbing treatment is performed by rubbing the coating film in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon and cotton, or light irradiation to the coating film formed on the substrate using a liquid crystal alignment agent.
  • the optical alignment processing etc. which carry out and provide liquid crystal aligning ability to a coating film are mentioned.
  • the array substrate 15 on which the interlayer insulating film 21, the pixel electrode 19 and the first alignment film 32 are formed in this order, and the opposing substrate 16 on which the common electrode 31 and the second alignment film 33 are formed in this order The alignment film forming surfaces are arranged to face each other.
  • a liquid crystal layer 17 in which a photopolymerizable monomer is mixed is disposed between the array substrate 15 and the counter substrate 16 to construct a liquid crystal cell.
  • the liquid crystal layer 17 is, for example, a method in which a liquid crystal composition is dropped or applied onto one of the substrates coated with a sealing agent, and then the other substrate is bonded (ODF method). Peripheral portions of the pair of substrates are attached by a sealing agent, and the liquid crystal composition is injected and filled in a cell gap surrounded by the substrate surface and the sealing agent, and then the injection holes are formed by a method such as sealing.
  • the obtained liquid crystal cell is further heated to a temperature at which the liquid crystal used has an isotropic phase, and then annealing treatment is preferably performed to gradually cool to room temperature to remove the flow alignment at the time of filling the liquid crystal.
  • a compound having two or more (meth) acryloyl groups can be preferably used, from the viewpoint of high polymerizability by light.
  • Specific examples thereof include, for example, di (meth) acrylate having a biphenyl structure, di (meth) acrylate having a phenyl-cyclohexyl structure, di (meth) acrylate having a 2,2-diphenylpropane structure, and di having a diphenylmethane structure.
  • Examples include (meth) acrylates and di-thio (meth) acrylates having a diphenyl thioether structure.
  • the proportion of the photopolymerizable monomer is preferably 0.1 to 0.5% by mass relative to the total amount of the liquid crystal composition used to form the liquid crystal layer 17.
  • the photopolymerizable monomer one type may be used alone, or two or more types may be used in combination.
  • the liquid crystal cell obtained in step B is irradiated with light.
  • the light irradiation to the liquid crystal cell may be performed in a state where no voltage is applied between the electrodes, may be performed in a state where a predetermined voltage not driving liquid crystal molecules in the liquid crystal layer 17 is applied, or the liquid crystal molecules are driven. And a predetermined voltage may be applied between the electrodes.
  • light irradiation is performed in a state where a voltage is applied between the electrodes of the pair of substrates.
  • the voltage to be applied may be, for example, 5 to 50 V direct current or alternating current.
  • the light to be irradiated for example, ultraviolet light and visible light including light of a wavelength of 150 to 800 nm can be used, but ultraviolet light including light of a wavelength of 300 to 400 nm is preferable.
  • the radiation used is linearly polarized light or partially polarized light, the light may be emitted from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof.
  • the irradiation direction is oblique.
  • a light source of irradiation light a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser etc. can be used, for example.
  • the ultraviolet-ray of said preferable wavelength area can be obtained by the means etc. which use a light source, for example together with a filter diffraction grating etc.
  • the light irradiation amount is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
  • the polarizing plates 36 and 37 are attached to the outer surface of the liquid crystal cell to obtain the liquid crystal device 10.
  • a polarizing plate called a “H film” obtained by absorbing iodine while drawing and orienting polyvinyl alcohol is sandwiched by a cellulose acetate protective film, or a polarizing plate made of the H film itself, etc. Can be mentioned.
  • the first alignment film 32 is formed using a liquid crystal alignment agent containing a specific solvent as a solvent component.
  • a liquid crystal alignment agent containing a specific solvent as a solvent component.
  • the liquid crystal aligning agent contacts the interlayer insulating film 21, and when the interlayer insulating film 21 swells and the thickness of the film slightly changes, the pixel electrode 19 is also formed. It is conceivable that deformation is likely to occur, leading to a decrease in device performance. In this respect, according to the specific solvent, the swelling of the interlayer insulating film 21 can be suppressed, and the influence on the pixel electrode 19 can be reduced as much as possible, whereby it is presumed that the deterioration of the device performance can be sufficiently suppressed.
  • the second embodiment will be described focusing on differences from the first embodiment.
  • the present embodiment is different from the first embodiment in that a color filter layer is provided on the array substrate 15.
  • FIG. 3 is a cross-sectional view schematically showing a part of the element structure of the second embodiment. Similar to the liquid crystal device of the first embodiment, the liquid crystal device 10 shown in FIG. 3 has a structure in which the array substrate 15 and the counter substrate 16 are disposed to face each other via the liquid crystal layer 17.
  • the array substrate 15 has the TFT 14 and the color filter layer 29 configured to include the colored pattern 29 a and the interlayer insulating film 29 b on the transparent substrate 18.
  • the colored pattern 29a is composed of sub-pixels colored with red (R), green (G) and blue (B), and is produced by a known method such as photolithography.
  • the interlayer insulating film 29 b is formed using the radiation sensitive resin composition described in the first embodiment.
  • the interlayer insulating film 29 b is provided for the purpose of protecting the colored pattern 29 a and forming the pixel electrode 19 exhibiting excellent characteristics.
  • the pixel electrode 19 is disposed on the interlayer insulating film 29 b.
  • the first alignment film 32 is formed on the electrode formation surface of the substrate in which the fishbone-shaped pattern electrode (pixel electrode 19) is formed on the interlayer insulating film 29b. Is in contact with the interlayer insulating film 29b at the slit portion 19c.
  • the liquid crystal device 10 having excellent reliability can be obtained.
  • the pixel electrode 19 on the array substrate 15 side is used as a pattern electrode, and the interlayer insulating film 21 and the first alignment film 32 are in contact with each other in the slit portion 19c.
  • An electrode and an interlayer insulating film may be provided, and the pattern electrode and the interlayer insulating film may be in contact with each other in the slit portion.
  • the liquid crystal device 10 of the present invention described in detail above can be effectively applied to various applications, for example, watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones It can be used as various display devices such as smartphones, various monitors, liquid crystal televisions, information displays, light control devices and the like.
  • the imidation ratio of the polyimide in the polymer solution was measured by the following methods.
  • [Imidation rate of polyimide] The solution of the polyimide was poured into pure water, and the obtained precipitate was sufficiently dried under reduced pressure at room temperature, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance.
  • the imidation ratio [%] was determined from the obtained 1 H-NMR spectrum by the following formula (1).
  • Imidation ratio [%] (1 ⁇ (A 1 / (A 2 ⁇ ⁇ ))) ⁇ 100 (1)
  • a 1 is a proton-derived peak area of an NH group appearing in the vicinity of a chemical shift of 10 ppm
  • a 2 is a peak area derived from other protons
  • is a precursor of a polymer (polyamic acid It is the number ratio of other protons to one proton of NH group in).
  • Weight average molecular weight of polymer The weight average molecular weight is a polystyrene conversion value measured by gel permeation chromatography under the following conditions. Column: Tosoh Corp.
  • Synthesis Example 2 Synthesis of Polymer (Q-2)
  • a flask equipped with a condenser and a stirrer 8 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by mass of diethylene glycol methyl ethyl ether were charged.
  • 15 parts by mass of methacrylic acid, 40 parts by mass of 3,4-epoxycyclohexyl methacrylate, 20 parts by mass of styrene, 15 parts by mass of tetrahydrofurfuryl methacrylate, and 10 parts by mass of n-lauryl methacrylate are charged and replaced with nitrogen, and then relaxed.
  • the temperature of the solution was raised to 70.degree. C., and the temperature was maintained for 5 hours while performing polymerization to obtain a solution containing a polymer (Q-2).
  • the Mw of the polymer (Q-2) was 8,000.
  • Synthesis Example 3 Synthesis of Polymer (Q-3)
  • 8 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by mass of diethylene glycol methyl ethyl ether were charged.
  • 40 parts by mass of glycidyl methacrylate, 20 parts by mass of 4- ( ⁇ -hydroxyhexafluoroisopropyl) styrene, 10 parts by mass of styrene and 30 parts by mass of N-cyclohexylmaleimide are charged, and after substituting with nitrogen, they are gently stirred.
  • the temperature of the solution was raised to 70 ° C., and the temperature was maintained for 5 hours to carry out polymerization to obtain a solution containing a polymer (Q-3).
  • Mw of the polymer (Q-3) was 8,000.
  • V-1 Diethylene glycol ethyl methyl ether was added and dissolved so that the solid content concentration was 30% by mass, followed by filtration with a membrane filter of 0.2 ⁇ m in diameter to prepare a radiation sensitive resin composition (V-1).
  • R-1 1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Irgacure (registered trademark) OXE01)
  • R-2 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide- Condensate with 5-sulfonic acid chloride (2.0 mol)
  • U-1 mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.)
  • polymer (PI-1) The imidation ratio of the obtained polyimide (referred to as polymer (PI-1)) was about 75%.
  • Synthesis Examples 6 to 8 A polyimide (polymer (PI-2) to polymer (PI-4)) was prepared in the same manner as in Synthesis Example 5 except that the type and amount of tetracarboxylic acid dianhydride and diamine used were changed as shown in Table 2 below. Was synthesized. In Table 2, the numerical values in the parentheses represent the use ratio [mol part] of each compound to the total of 100 mol parts of tetracarboxylic acid dianhydride used in the synthesis of the polymer.
  • Synthesis Example 9 Synthesis of Polymer (PAA-1) 70 molar parts of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic acid dianhydride, and 30 molar parts of 1,2,3,4-cyclopentane tetracarboxylic acid dianhydride, and coreless as diamine 20 mol parts of tanyloxy-2,4-diaminobenzene, 30 mol parts of compound (d-12), 40 mol parts of 4,4′-diaminodiphenylmethane, and 4,4 ′-[4,4′-propane-1, Ten parts by mole of 3-diylbis (piperidine-1,4-diyl) dianiline was dissolved in NMP and reacted at room temperature for 6 hours to obtain a solution containing 20% by mass of polyamic acid.
  • PAA-1 Polymer
  • the polyamic acid obtained here was used as a polymer (PAA-1).
  • Synthesis Example 10 A polyamic acid (this is referred to as a polymer (PAA-2)) is synthesized in the same manner as in Synthesis Example 9 except that the type and amount of tetracarboxylic acid dianhydride and diamine used are changed as shown in Table 2 below. did.
  • Synthesis Example 11 In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 100 g of compound (s-1), 500 g of methyl isobutyl ketone and 10 g of triethylamine were charged and mixed at room temperature. Next, 100 g of deionized water was added dropwise over 30 minutes from the dropping funnel, and then reaction was performed at 80 ° C. for 6 hours while stirring under reflux.
  • the organic layer is taken out and washed with a 0.2 mass% aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain a reactive polyorganosiloxane (
  • the ESSQ-1) was obtained as a viscous transparent liquid.
  • the weight average molecular weight Mw of the obtained reactive polyorganosiloxane (ESSQ-1) was 3000, and the epoxy equivalent was 190 g / mol.
  • Synthesis Example 14 In a 500 mL three-necked flask, 10.0 g of reactive polyorganosiloxane (ESSQ-1), 300 g of methyl isobutyl ketone as a solvent, 16 g of compound (c-1) as a modifying component and 16 g of compound (c-3), As a catalyst, 0.10 g of UCAT 18X (trade name, manufactured by San-Apro Co., Ltd.) was charged, and the reaction was performed at 100 ° C. for 48 hours with stirring.
  • ESSQ-1 reactive polyorganosiloxane
  • c-1 methyl isobutyl ketone
  • W-1 liquid crystal aligning agent
  • an ITO electrode patterned in a fishbone shape was formed on the glass substrate on which the interlayer insulating film was formed.
  • the electrode pattern of the ITO electrode used here is shown in FIG.
  • the glass substrate which has an ITO electrode which does not have a pattern was prepared by performing the same operation.
  • a 3.5 ⁇ m column spacer was formed on the electrode side surface of a glass substrate having an ITO electrode having no pattern.
  • a liquid crystal composition (the inner surface of the epoxy resin adhesive) LC-11) was dropped at 6 points (2 points vertically ⁇ 3 points horizontally, the distance between the points was 10 mm in the vertical and horizontal directions, and the amount of application at each point was 0.6 mg).
  • the substrate and another glass substrate were laminated so as to face each other and pressed, and the adhesive was cured to manufacture a liquid crystal cell.
  • the obtained liquid crystal cell was irradiated with ultraviolet light and annealed in accordance with “PSA process 1” described later to prepare a liquid crystal cell for evaluation.
  • PSA process-1 For the liquid crystal cell, an alternating current 20 Vpp of frequency 60 Hz is applied between the electrodes, and while the liquid crystal is driven, ultraviolet light of 80 mW is irradiated for 50 seconds using an ultraviolet irradiation device using a metal halide lamp as a light source. Subsequently, in a state where no voltage is applied, 3.5 mW of ultraviolet light is irradiated for 30 minutes using an ultraviolet irradiation device using a metal halide lamp as a light source. Finally, the liquid crystal cell is placed in a clean oven at 120 ° C. for 10 minutes to perform annealing. The irradiation amount is a value measured using an actinometer measured at a wavelength of 365 nm.
  • VHR voltage holding ratio
  • Examples 2 to 22, Comparative Examples 1 and 2 The same procedure as described above was carried out except that the type and amount of the polymer and solvent used were changed as shown in Table 5 below, to prepare liquid crystal aligning agents. Moreover, except that the radiation sensitive resin composition used for preparation of the interlayer insulating film was changed to the composition shown in Table 5 below and that the liquid crystal alignment film was prepared using the liquid crystal aligning agent prepared in each example The liquid crystal cell for evaluation was manufactured in the same manner as described above, and the voltage holding ratio was evaluated using the obtained liquid crystal cell for evaluation. The results are shown in Table 5 below.
  • the numerical values in the parenthesis of the polymer column show the proportions [parts by mass] of each polymer with respect to a total of 100 parts by mass of the polymer components used for the preparation of the liquid crystal aligning agent.
  • the numerical values in the solvent composition column indicate the blending proportions (parts by mass) of the respective compounds with respect to 100 parts by mass of the solvent used for the preparation of the liquid crystal aligning agent.
  • Abbreviated solvents are as follows (the same applies to Table 6 below).
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • DMI 1,3-dimethyl-2-imidazolidinone
  • EQM 3-methoxy-N, N-dimethylpropanamide
  • BC butyl cellosolve
  • DE DG diethylene glycol Diethyl ether
  • PGDAc Propylene glycol diacetate
  • DPM Dipropylene glycol monomethyl ether
  • DAA Diacetone alcohol
  • PG Propylene glycol monobutyl ether
  • DIPE Diisopentyl ether
  • the liquid crystal alignment film was formed using the liquid crystal alignment agent not containing the specific solvent.
  • the liquid crystal display device was more reliable than the above.
  • the liquid crystal aligning agent containing the [A] solvent and the [B] solvent was used, it was evaluated as "very good” and was particularly excellent.
  • the liquid crystal display element was manufactured and evaluated in the same manner as described above except that the pattern of the ITO electrode of the glass substrate was changed to the pattern shown in FIG. The same effect as described above was obtained in
  • a solvent (Z-1) was prepared.
  • the glass substrate which distributed the pattern electrode which consists of ITO on the interlayer insulation film was prepared by performing operation similar to (3) of the said Example 1.
  • FIG. The glass substrate was immersed in a solvent for evaluation (Z-1) at 80 ° C. for 30 minutes, and the degree of swelling of the interlayer insulating film and the degree of deformation of the ITO electrode were evaluated according to the criteria shown below.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention makes it possible to obtain a liquid crystal element that exhibits superior reliability with an element structure in which an interlayer insulating film, patterned electrodes, and a liquid crystal alignment film are formed in this order on a substrate. In a method for manufacturing a liquid crystal element, the method including: a step for forming an interlayer insulating film 21 on at least one of a pair of substrates; a step for forming patterned electrodes (pixel electrodes 19) on the interlayer insulating film 21; and a step for forming a liquid crystal alignment film (first alignment film 32) on the patterned electrodes such that the liquid crystal alignment film is in contact with at least a portion of the interlayer insulating film 21, the liquid crystal alignment film is formed by using a liquid crystal alignment agent containing a polymer component and at least one kind of solvent selected from a specific set of solvents.

Description

液晶素子の製造方法Method of manufacturing liquid crystal device 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年11月20日に出願された日本出願番号2017-223114号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-223114 filed on November 20, 2017, the contents of which are incorporated herein by reference.
 本開示は、液晶素子の製造方法に関する。 The present disclosure relates to a method of manufacturing a liquid crystal element.
 液晶装置としては、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型などに代表される、正の誘電性異方性を有するネマチック液晶を用いる水平配向モードや、負の誘電性異方性を有するネマチック液晶を用いる垂直(ホメオトロピック)配向モードのVA(Vertical Alignment)型液晶装置など、各種装置が知られている。また、一対の電極が一方の基板に設けられたセル構造を有するIPS(In-Plane Switching)型、FFS(Fringe Field Switching)型などの横電界モードの液晶装置も知られている。 As a liquid crystal device, a horizontal alignment mode using a nematic liquid crystal having a positive dielectric anisotropy represented by a TN (Twisted Nematic) type, an STN (Super Twisted Nematic) type or the like, or a negative dielectric anisotropy Various devices are known such as a VA (Vertical Alignment) liquid crystal device using a nematic liquid crystal having a vertical alignment (homeotropic) alignment mode. In addition, a liquid crystal device of a lateral electric field mode such as an IPS (In-Plane Switching) type or an FFS (Fringe Field Switching) type having a cell structure in which a pair of electrodes is provided on one substrate is also known.
 液晶素子の配向処理方式の一つとして、PSA(Polymer Sustained Alignment)方式が知られている(例えば、特許文献1参照)。PSA方式は、一対の基板の間隙に液晶とともに光重合性モノマーを予め混入しておき、液晶セルを構築した後に、基板間に電圧を印加した状態で紫外線を照射して光重合性モノマーを重合することによりポリマー層を形成し、このポリマー層により液晶の初期配向を制御しようとする技術である。この技術によると、視野角の拡大及び液晶分子応答の高速化を図ることができ、MVA型パネルにおいて透過率及びコントラストの不足の問題を解消することが可能である。 As one of alignment processing methods of liquid crystal elements, a PSA (Polymer Sustained Alignment) method is known (see, for example, Patent Document 1). In the PSA method, a photopolymerizable monomer is mixed in advance with liquid crystal in the gap between a pair of substrates, and after a liquid crystal cell is constructed, ultraviolet light is irradiated in a state where a voltage is applied between the substrates to polymerize the photopolymerizable monomer. To form a polymer layer and control the initial alignment of the liquid crystal by the polymer layer. According to this technique, it is possible to increase the viewing angle and speed up the liquid crystal molecule response, and to solve the problem of the insufficient transmittance and contrast in the MVA type panel.
 また、特許文献1には、PSA技術において、多数の開口部(スリット部)を有する櫛歯形状(フィッシュボーン形状ともいう。)となるようにパターニングされたパターン電極を画素電極として用いることが開示されている。この特許文献1の液晶装置では、アレイ基板側のガラス基板上にドレインバスラインが形成され、その上に層間絶縁膜が形成されている。また、層間絶縁膜上にはフィッシュボーン形状の画素電極が形成されており、画素電極上に液晶配向膜が形成されている。液晶配向膜は、通常、ポリアミック酸やポリイミド、ポリオルガノシロキサン、(メタ)アクリル系重合体、ポリアミド等の重合体成分を溶剤に溶解し、この重合体組成物を基板上に塗布して溶剤を除去することにより形成される。 Further, Patent Document 1 discloses that, in the PSA technology, a pattern electrode patterned to have a comb-tooth shape (also referred to as a fishbone shape) having a large number of openings (slit portions) is used as a pixel electrode. It is done. In the liquid crystal device of Patent Document 1, a drain bus line is formed on a glass substrate on the array substrate side, and an interlayer insulating film is formed thereon. Further, a fishbone-shaped pixel electrode is formed on the interlayer insulating film, and a liquid crystal alignment film is formed on the pixel electrode. The liquid crystal alignment film generally dissolves polymer components such as polyamic acid, polyimide, polyorganosiloxane, (meth) acrylic polymer, polyamide and the like in a solvent, applies the polymer composition on a substrate and It is formed by removing.
特開2003-149647号公報Japanese Patent Application Publication No. 2003-149647
 層間絶縁膜上に多数のスリット部を有するパターン電極を配置し、その上に液晶配向膜を形成する場合、液晶装置の画素領域(すなわち表示領域)では、スリット部において液晶配向剤と層間絶縁膜とが接触する。この場合、層間絶縁膜が液晶配向剤の影響を受けてその特性が変化したり、層間絶縁膜に含まれる不純物成分等が液晶配向剤へ溶出して液晶配向膜の性能が低下したりすることによって液晶装置の信頼性が低下することが懸念される。 When a pattern electrode having a large number of slits is disposed on an interlayer insulating film and a liquid crystal alignment film is formed thereon, the liquid crystal alignment agent and the interlayer insulating film are formed in the slit in the pixel region (that is, the display region) of the liquid crystal device. And contact. In this case, the characteristics of the interlayer insulating film may change due to the influence of the liquid crystal aligning agent, or impurity components contained in the interlayer insulating film may be eluted into the liquid crystal aligning agent to deteriorate the performance of the liquid crystal alignment film. There is a concern that the reliability of the liquid crystal device may be reduced.
 本開示は上記課題に鑑みなされたものであり、基板上に層間絶縁膜とパターン電極と液晶配向膜とがこの順に形成された素子構造において、信頼性に優れた液晶素子を得ることができる液晶素子の製造方法を提供することを一つの目的とする。 The present disclosure has been made in view of the above problems, and in a device structure in which an interlayer insulating film, a pattern electrode, and a liquid crystal alignment film are formed in this order on a substrate, a liquid crystal that can obtain a liquid crystal device with excellent reliability. It is an object to provide a method of manufacturing a device.
 本開示は上記課題を解決するために、以下の手段を採用した。 The present disclosure adopts the following means in order to solve the problems.
<1> 対向配置された一対の基板と、前記一対の基板間に配置された液晶層と、一対の電極と、を備える液晶素子の製造方法であって、前記一対の電極のうち少なくとも一方は、複数の開口部を有するパターン電極であり、前記一対の基板のうち少なくとも一方に層間絶縁膜を形成する工程と、前記層間絶縁膜上に前記パターン電極を形成する工程と、前記パターン電極上に、前記層間絶縁膜の少なくとも一部に接触するように液晶配向膜を形成する工程と、を含み、前記液晶配向膜を、重合体成分と、下記に示す溶剤群から選ばれる少なくとも一種の溶剤とを含有する液晶配向剤を用いて形成する、液晶素子の製造方法。
溶剤群:
 [A]溶剤:下記式(1)で表される化合物、下記式(2)で表される化合物、N,N,2-トリメチルプロピオンアミド、及び1,3-ジメチル-2-イミダゾリジノン。
 [B]溶剤:ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン、2-メチル-2-ヘキサノール、2,6-ジメチル-4-ヘプタノール、ジイソブチルケトン、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジイソペンチルエーテル、ダイアセトンアルコール、及びプロピレングリコールモノブチルエーテル。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、炭素数2~5の1価の炭化水素基、又は当該炭化水素基における炭素-炭素結合間に「-O-」を有する1価の基である。)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R及びRは、それぞれ独立に、水素原子、炭素数1~6の1価の炭化水素基、又は当該炭化水素基の炭素-炭素結合間に「-O-」を有する1価の基であり、RとRとが互いに結合して環構造を形成してもよい。Rは、炭素数1~6のアルキル基である。)
<1> A method of manufacturing a liquid crystal device, comprising: a pair of substrates disposed opposite to each other, a liquid crystal layer disposed between the pair of substrates, and a pair of electrodes, wherein at least one of the pair of electrodes is A pattern electrode having a plurality of openings, forming an interlayer insulating film on at least one of the pair of substrates, forming the pattern electrode on the interlayer insulating film, and forming the pattern electrode on the pattern electrode. Forming a liquid crystal alignment film to be in contact with at least a part of the interlayer insulating film, the liquid crystal alignment film comprising: a polymer component; and at least one solvent selected from the following solvent group: The manufacturing method of a liquid crystal element formed using the liquid crystal aligning agent containing.
Solvent group:
[A] Solvent: a compound represented by the following formula (1), a compound represented by the following formula (2), N, N, 2-trimethylpropionamide, and 1,3-dimethyl-2-imidazolidinone.
[B] Solvent: dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diethylene glycol monoethyl ether, 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, 2-methyl-2-hexanol, 2 6, 6-dimethyl-4-heptanol, diisobutyl ketone, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and propylene glycol monobutyl ether.
Figure JPOXMLDOC01-appb-C000003
In the formula (1), R 1 is a monovalent hydrocarbon group having 2 to 5 carbon atoms, or a monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group. )
Figure JPOXMLDOC01-appb-C000004
(In formula (2), R 2 and R 3 each independently represent a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, or “—O— between carbon-carbon bonds of the hydrocarbon group. R 2 and R 3 may be bonded to each other to form a ring structure. R 4 is an alkyl group having 1 to 6 carbon atoms.
 上記構成によれば、液晶配向膜を形成する際にパターン電極の開口部において層間絶縁膜と液晶配向剤とが接触しても層間絶縁膜や液晶配向膜の性能が低下しにくく、信頼性に優れた液晶素子を得ることができる。 According to the above configuration, when forming the liquid crystal alignment film, even if the interlayer insulating film and the liquid crystal alignment agent come in contact with each other at the opening of the pattern electrode, the performance of the interlayer insulating film or the liquid crystal alignment film does not easily deteriorate. An excellent liquid crystal element can be obtained.
図1は、液晶装置の一部を模式的に示す図である。FIG. 1 is a view schematically showing a part of a liquid crystal device. 図2は、第1実施形態の液晶装置の一部を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a part of the liquid crystal device according to the first embodiment. 図3は、第2実施形態の液晶装置の一部を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a part of the liquid crystal device of the second embodiment. 図4は、実施例で使用した電極の構造を示す図である。FIG. 4 is a view showing the structure of the electrode used in the example. 図5は、実施例で使用した電極の構造を示す図である。FIG. 5 is a view showing the structure of the electrode used in the example.
 以下に、実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 Embodiments will be described below with reference to the drawings. In addition, in the following each embodiment, the same code | symbol is attached | subjected to the mutually same or equal part in the figure, and the description is used about the part of the same code | symbol.
(液晶装置10の構成)
 液晶装置10は、PSA(Polymer Sustained Alignment)方式の垂直配向型液晶表示素子である。液晶装置10の表示部には、複数の画素11がマトリクス状に配置されている。図1に示すように、画素11は、互いに交差する走査信号線12及び映像信号線13に囲まれた領域に形成されている。各画素11には、液晶駆動用素子として機能する薄膜トランジスタ(TFT)14が配置されている。液晶装置10は、図2に示すように、アレイ基板15と、対向基板16と、液晶層17とを備えている。
(Configuration of Liquid Crystal Device 10)
The liquid crystal device 10 is a vertical alignment type liquid crystal display element of a PSA (Polymer Sustained Alignment) type. In the display unit of the liquid crystal device 10, a plurality of pixels 11 are arranged in a matrix. As shown in FIG. 1, the pixels 11 are formed in a region surrounded by the scanning signal lines 12 and the video signal lines 13 which cross each other. In each pixel 11, a thin film transistor (TFT) 14 that functions as a liquid crystal driving element is disposed. As shown in FIG. 2, the liquid crystal device 10 includes an array substrate 15, an opposing substrate 16, and a liquid crystal layer 17.
 アレイ基板15は、ガラス基板やプラスチック基板等の透明基板18、走査信号線12、映像信号線13、薄膜トランジスタ14、画素電極19、及び層間絶縁膜21を有している(図2参照)。薄膜トランジスタ14は、走査信号線12からなるゲート電極22、シリコン(Si)で構成される半導体層23、映像信号線13からなるソース電極24、及び、画素電極19に接続されるドレイン電極25を含んで構成されている。薄膜トランジスタ14は、フォトリソグラフィー等の公知の方法により設けられている。薄膜トランジスタ14の各部を構成する具体的な材料としては公知の材料を用いることができる。 The array substrate 15 has a transparent substrate 18 such as a glass substrate or a plastic substrate, scanning signal lines 12, video signal lines 13, thin film transistors 14, pixel electrodes 19, and an interlayer insulating film 21 (see FIG. 2). The thin film transistor 14 includes a gate electrode 22 formed of the scanning signal line 12, a semiconductor layer 23 formed of silicon (Si), a source electrode 24 formed of the video signal line 13, and a drain electrode 25 connected to the pixel electrode 19. It consists of The thin film transistor 14 is provided by a known method such as photolithography. A known material can be used as a specific material that constitutes each part of the thin film transistor 14.
 画素電極19は、ITO等の透明導電体により形成されている。画素電極19は、図1に示すように、平面状の電極に複数のスリット部(細長い矩形状の開口部)19cが設けられたパターン電極である。具体的には、画素電極19は、互いに直交する2つの方向に延びる幹ライン部19aと、幹ライン部19aから斜め方向に延びる複数の分岐ライン部19bと、複数の分岐ライン部19bの間に形成された複数のスリット部19cとを備え、導電部と非導電部との繰り返しパターンを有している。画素電極19は、薄膜トランジスタ14に電気的に接続されている。薄膜トランジスタ14は、走査信号線12及び映像信号線13に電気的に接続されており、各種信号が供給される。 The pixel electrode 19 is formed of a transparent conductor such as ITO. As shown in FIG. 1, the pixel electrode 19 is a pattern electrode in which a plurality of slits (long and narrow rectangular openings) 19 c are provided on a planar electrode. Specifically, the pixel electrode 19 is provided between a trunk line portion 19a extending in two directions orthogonal to each other, a plurality of branch line portions 19b extending in an oblique direction from the trunk line portion 19a, and a plurality of branch line portions 19b. A plurality of formed slit portions 19c are provided, and a repeated pattern of a conductive portion and a nonconductive portion is provided. The pixel electrode 19 is electrically connected to the thin film transistor 14. The thin film transistor 14 is electrically connected to the scanning signal line 12 and the video signal line 13 and is supplied with various signals.
 アレイ基板15は、複数の画素11がマトリクス状に配置された表示領域において、透明基板18、層間絶縁膜21及び画素電極19がこの順に積層された構造を有する。画素電極19は、層間絶縁膜21に設けられたコンタクトホール27を介してドレイン電極25に接続されている。層間絶縁膜21は、後述する感放射線性樹脂組成物を用いてフォトリソグラフィー法により形成されている。層間絶縁膜21を設けることによって、画素電極19と信号線との間の容量カップリングが増大することを抑制するようにしている。 The array substrate 15 has a structure in which a transparent substrate 18, an interlayer insulating film 21 and a pixel electrode 19 are stacked in this order in a display area in which a plurality of pixels 11 are arranged in a matrix. The pixel electrode 19 is connected to the drain electrode 25 through a contact hole 27 provided in the interlayer insulating film 21. The interlayer insulating film 21 is formed by photolithography using a radiation sensitive resin composition described later. By providing the interlayer insulating film 21, the increase in capacitive coupling between the pixel electrode 19 and the signal line is suppressed.
 対向基板16は、ガラス基板28、カラーフィルタ層29、絶縁層としてのオーバーコート層(図示略)、及び共通電極31を含んで構成されている。カラーフィルタ層29は、赤(R)、緑(G)及び青(B)で着色されたサブ画素により構成されている。カラーフィルタ層29は、フォトリソグラフィー等の公知の方法により作製される。共通電極31は、ITO等の透明導電体により形成された平面状の電極であり、複数の画素11に亘って設けられている。 The counter substrate 16 includes a glass substrate 28, a color filter layer 29, an overcoat layer (not shown) as an insulating layer, and a common electrode 31. The color filter layer 29 is composed of sub-pixels colored with red (R), green (G) and blue (B). The color filter layer 29 is produced by a known method such as photolithography. The common electrode 31 is a planar electrode formed of a transparent conductor such as ITO, and is provided across the plurality of pixels 11.
 アレイ基板15の電極形成面には第1配向膜32が形成されており、対向基板16の電極形成面には第2配向膜33が形成されている。第1配向膜32及び第2配向膜33は、液晶層17中の液晶分子の配向を規制する液晶配向膜であり、重合体成分を含有する重合体組成物である液晶配向剤を用いて基板上に形成されている。第1配向膜32は、表示領域のうち少なくともスリット部19cにおいて層間絶縁膜21に接触している。 A first alignment film 32 is formed on the electrode formation surface of the array substrate 15, and a second alignment film 33 is formed on the electrode formation surface of the counter substrate 16. The first alignment film 32 and the second alignment film 33 are liquid crystal alignment films that regulate the alignment of liquid crystal molecules in the liquid crystal layer 17, and are substrates using a liquid crystal alignment agent that is a polymer composition containing a polymer component. It is formed on top. The first alignment film 32 is in contact with the interlayer insulating film 21 at least in the slit portion 19 c in the display area.
 アレイ基板15及び対向基板16は、アレイ基板15の配向膜形成面と、対向基板16の配向膜形成面とが対向するように所定の間隙(セルギャップ)を設けて配置されている。対向配置された一対の基板の周縁部は、シール剤(図示略)によって貼り合わされている。シール剤の材料としては、液晶装置用のシール剤として公知の材料(例えば、熱硬化性樹脂や光硬化性樹脂)が用いられている。アレイ基板15、対向基板16及びシール剤によって囲まれた空間には液晶組成物が充填されており、これにより、第1配向膜32及び第2配向膜33に接するようにして液晶層17が配置されている。 The array substrate 15 and the counter substrate 16 are arranged with a predetermined gap (cell gap) such that the alignment film forming surface of the array substrate 15 and the alignment film forming surface of the counter substrate 16 face each other. The peripheral portions of the pair of opposed substrates are bonded together by a sealing agent (not shown). As a material of the sealing agent, a known material (for example, a thermosetting resin or a photocurable resin) is used as the sealing agent for a liquid crystal device. The liquid crystal composition is filled in a space surrounded by the array substrate 15, the counter substrate 16 and the sealing agent, whereby the liquid crystal layer 17 is disposed in contact with the first alignment film 32 and the second alignment film 33. It is done.
 液晶層17は、負の誘電率異方性を有している。液晶層17は、アレイ基板15との界面及び対向基板16との界面のそれぞれにおいて、ポリマー層であるPSA層34、35を有している。PSA層34、35は、液晶層17に予め混入させた光重合性モノマーを、液晶セルの構築後に液晶分子をプレチルト配向させた状態で光重合することによって形成されている。液晶装置10においては、PSA層34、35により液晶層17中の液晶分子の初期配向が制御される。 The liquid crystal layer 17 has negative dielectric anisotropy. The liquid crystal layer 17 has PSA layers 34 and 35 which are polymer layers at the interface with the array substrate 15 and the interface with the counter substrate 16 respectively. The PSA layers 34 and 35 are formed by photopolymerizing photopolymerizable monomers previously mixed in the liquid crystal layer 17 in a state in which liquid crystal molecules are pretilted and aligned after construction of a liquid crystal cell. In the liquid crystal device 10, the initial alignment of liquid crystal molecules in the liquid crystal layer 17 is controlled by the PSA layers 34 and 35.
 液晶装置10において、アレイ基板15及び対向基板16のそれぞれの外側には偏光板36、37が配置されている。アレイ基板15の外縁部には端子領域が設けられており、この端子領域に液晶を駆動するためのドライバIC等が接続されることにより液晶装置10が駆動される。 In the liquid crystal device 10, polarizers 36 and 37 are disposed outside the array substrate 15 and the counter substrate 16, respectively. A terminal area is provided at the outer edge of the array substrate 15. A liquid crystal device 10 is driven by connecting a driver IC or the like for driving liquid crystal to the terminal area.
<液晶配向剤>
 次に、液晶配向膜(第1配向膜32、第2配向膜33)を形成するために用いる液晶配向剤について説明する。液晶配向剤は、重合体成分と溶剤成分とを含有する。
<Liquid crystal alignment agent>
Next, the liquid crystal aligning agent used in order to form a liquid crystal aligning film (1st alignment film 32, 2nd alignment film 33) is demonstrated. The liquid crystal aligning agent contains a polymer component and a solvent component.
(重合体成分)
 液晶配向剤に含有される重合体は、その主骨格は特に限定されず、例えばポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリエステル、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリル系重合体等の主骨格が挙げられる。これらの中でも、ポリアミック酸、ポリアミック酸エステル、ポリイミド及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種の重合体(以下、[P]重合体ともいう。)であることが好ましい。なお、液晶配向剤の調製に際し、重合体としては1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。本明細書において「(メタ)アクリル」は、「アクリル」及び「メタクリル」を含む意味である。
(Polymer component)
The main skeleton of the polymer contained in the liquid crystal aligning agent is not particularly limited. For example, polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) Main skeletons of derivatives, poly (meth) acrylic polymers and the like). Among these, at least one polymer (hereinafter, also referred to as [P] polymer) selected from the group consisting of polyamic acid, polyamic acid ester, polyimide and polyorganosiloxane is preferable. In addition, in preparation of a liquid crystal aligning agent, it may be used individually by 1 type as a polymer, and may be used combining 2 or more types. In the present specification, "(meth) acrylic" is meant to include "acrylic" and "methacrylic".
 [P]重合体を合成する方法は特に限定されない。例えば、[P]重合体がポリアミック酸の場合、当該ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることによって得ることができる。 [P] The method for synthesizing the polymer is not particularly limited. For example, when the [P] polymer is a polyamic acid, the polyamic acid can be obtained by reacting tetracarboxylic acid dianhydride with a diamine.
(ポリアミック酸)
 ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等を挙げることができる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物、エチレンジアミン四酢酸二無水物等を;
脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物等を;
芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)等を、それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
(Polyamic acid)
Examples of tetracarboxylic acid dianhydrides used in the synthesis of polyamic acids include aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, and aromatic tetracarboxylic acid dianhydrides. . As specific examples of these, as aliphatic tetracarboxylic acid dianhydride, for example, 1,2,3,4-butanetetracarboxylic acid dianhydride, ethylenediaminetetraacetic acid dianhydride etc .;
Examples of alicyclic tetracarboxylic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2- c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2- c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2,4-dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 5- (2,5-dioxotetrahydro 3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 2,4,6,8-tetracarboxybicyclo [3.3.0] octane-2: 4,6: 8- Dianhydride, cyclohexanetetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid dianhydride etc .;
As aromatic tetracarboxylic acid dianhydride, for example, pyromellitic acid dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, p-phenylene bis (trimellitic acid monoester anhydride), ethylene glycol In addition to bis (anhydrotrimellitate), 1,3-propylene glycol bis (anhydrotrimellitate), etc., tetracarboxylic acid dianhydrides described in JP-A-2010-97188 can be mentioned. It can be used. In addition, tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
 合成に使用するテトラカルボン酸二無水物は、得られる重合体の溶剤に対する溶解性をより高くできる点で、脂環式テトラカルボン酸二無水物を含むことが好ましく、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の環構造を有するテトラカルボン酸二無水物(以下、「特定テトラカルボン酸二無水物」ともいう。)を含むことがより好ましい。特定テトラカルボン酸二無水物の使用割合は、ポリアミック酸の合成に使用するテトラカルボン酸二無水物の全量に対して、10モル%以上であることが好ましく、20~100モル%であることがより好ましい。 The tetracarboxylic acid dianhydride used in the synthesis preferably contains an alicyclic tetracarboxylic acid dianhydride from the viewpoint that the solubility of the resulting polymer in a solvent can be further increased, and a cyclobutane ring, a cyclopentane ring and It is more preferable to include a tetracarboxylic acid dianhydride having at least one ring structure selected from the group consisting of cyclohexane rings (hereinafter, also referred to as “specific tetracarboxylic acid dianhydride”). The use ratio of the specific tetracarboxylic acid dianhydride is preferably 10 mol% or more, preferably 20 to 100 mol%, with respect to the total amount of tetracarboxylic acid dianhydride used in the synthesis of the polyamic acid. More preferable.
 ポリアミック酸の合成に使用するジアミンとしては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサン等が挙げられる。これらの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサンなどを;脂環式ジアミンとして、例えば1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などを;
芳香族ジアミンとして、例えばp-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、1,5-ジアミノナフタレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-(p-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,6-ジアミノピリジン、3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)-ベンジジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン、3,5-ジアミノ安息香酸、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、4-(4’-トリフルオロメトキシベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ヘプチルシクロヘキサン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-(4-ヘプチルシクロヘキシル)シクロヘキサン、2,4-ジアミノ-N,N-ジアリルアニリン、4-アミノベンジルアミン、N-[4-(2-アミノエチル)フェニル]ベンゼン-1,4-ジアミン、N-[4-(アミノメチル)フェニル]ベンゼン-1,4-ジアミン、1,3-ビス(4-アミノフェニチル)ウレア、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、2-プロピニルオキシ-2,4-フェニレンジアミン及び下記式(D-1)
Figure JPOXMLDOC01-appb-C000005
(式(D-1)中、XI及びXIIは、それぞれ独立に、単結合、-O-、*-COO-、*-OCO-又は*-NH-CO-(但し、「*」を付した結合手がジアミノフェニル基と結合する。)であり、R及びRIIは、それぞれ独立に、炭素数1~3のアルカンジイル基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、nは0又は1であり、mは0又は1である。但し、a及びbが同時に0になることはなく、Xが*-NH-CO-の場合、nは0である。)
で表される化合物などを;
 ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどを、それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。なお、ポリアミック酸の合成に際し、ジアミンは1種を単独で又は2種以上組み合わせて使用することができる。
Examples of the diamine used for the synthesis of the polyamic acid include aliphatic diamines, alicyclic diamines, aromatic diamines, diamino organosiloxanes and the like. As specific examples of these, as aliphatic diamines, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane and the like; alicyclic diamines As, for example, 1,4-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine) etc .;
As aromatic diamines, for example, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-Diamino-2,2'-bis (trifluoromethyl) biphenyl, 4,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) ethane, 1,3-bis (4-amino) Phenoxy) propane, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 4,4 '-(p-phenylenediisopropylidene) Bisaniline, 1,4-bis (4-aminophenoxy) benzene, 2,6-diaminopyridine, 3,6-diaminocar Azole, N, N'-bis (4-aminophenyl) -benzidine, 1,4-bis- (4-aminophenyl) -piperazine, 1- (4-aminophenyl) -2,3-dihydro-1,3 , 3-Trimethyl-1H-inden-5-amine, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-inden-6-amine, 3,5-diaminobenzoic acid Acid, cholestanyloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, 3,5-diaminobenzoic acid Acid cholestenyl acid, lanostanyl 3,5-diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestane, 4- (4'-trifluoromethoxy) 1-bis (4-((aminophenyl) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenyl) methyl) phenyl) ) -4- (4-Heptylcyclohexyl) cyclohexane, 2,4-diamino-N, N-diallylaniline, 4-aminobenzylamine, N- [4- (2-aminoethyl) phenyl] benzene-1,4- Diamine, N- [4- (aminomethyl) phenyl] benzene-1,4-diamine, 1,3-bis (4-aminophenytyl) urea, 4,4 '-[4,4'-propane-1, 3-Diylbis (piperidine-1,4-diyl)] dianiline, 2-propynyloxy-2,4-phenylenediamine and the following formula (D-1)
Figure JPOXMLDOC01-appb-C000005
(In Formula (D-1), X I and X II each independently represent a single bond, -O-, * -COO-, * -OCO- or * -NH-CO- (where "*" represents subjected the bond is bound to the diamino phenyl group.), and, R I and R II are each independently an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, b is 0 C is an integer of 1 to 20, n is 0 or 1, and m is 0 or 1. However, a and b do not simultaneously become 0, and X I is In the case of * -NH-CO-, n is 0.)
Compounds and the like;
Examples of diaminoorganosiloxanes include, for example, 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like, and diamines described in JP-A-2010-97188 can be used. In the synthesis of the polyamic acid, one kind of diamine may be used alone, or two or more kinds thereof may be used in combination.
 ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミンとを、必要に応じて分子量調整剤とともに反応させることによって得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n-ブチルアミンなどのモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミンの合計量に対して20質量%以下とすることが好ましい。 The polyamic acid can be obtained by reacting the above-mentioned tetracarboxylic acid dianhydride and diamine with a molecular weight modifier as required. The ratio of tetracarboxylic acid dianhydride and diamine used in the synthesis reaction of the polyamic acid is such that the acid anhydride group of tetracarboxylic acid dianhydride is 0.2 to 2 per 1 equivalent of amino group of diamine. The ratio which becomes equivalent is preferable. Examples of the molecular weight modifier include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. It can be mentioned. The proportion of the molecular weight modifier used is preferably 20% by mass or less based on the total amount of tetracarboxylic acid dianhydride and diamine used.
 ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。
 反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。好ましい有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m-クレゾール、キシレノール、ハロゲン化フェノール、及び後述する特定溶剤よりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と他の有機溶媒(例えば、ブチルセロソルブ、ジエチレングリコールジエチルエーテルなど)との混合物を使用することが好ましい。有機溶媒の使用量は、テトラカルボン酸二無水物及びジアミンの合計量が、反応溶液の全量に対して、0.1~50質量%になる量とすることが好ましい。以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよい。
The synthesis reaction of polyamic acid is preferably carried out in an organic solvent. The reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
Examples of the organic solvent used for the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like. Preferred organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol, One or more selected from the group consisting of halogenated phenols and specific solvents described later are used as a solvent, or a mixture of one or more of these and other organic solvents (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.) It is preferred to use The amount of the organic solvent used is preferably such that the total amount of tetracarboxylic acid dianhydride and diamine is 0.1 to 50% by mass with respect to the total amount of the reaction solution. As described above, a reaction solution in which the polyamic acid is dissolved is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparation of a liquid crystal aligning agent after the polyamic acid contained in the reaction solution is isolated.
(ポリイミド)
 ポリイミドは、上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造が併存する部分イミド化物であってもよい。ポリイミドは、そのイミド化率が30%以上であることが好ましく、40~99%であることがより好ましく、60~99%であることが更に好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
(Polyimide)
The polyimide can be obtained by dehydration ring closure and imidization of the polyamic acid synthesized as described above. The polyimide may be a completely imidized product obtained by dehydrating and ring closing all of the amic acid structure of the precursor polyamic acid, and only a part of the amic acid structure may be dehydrating and ring closing, and the amic acid structure and the imide. It may be a partial imidate in which ring structures coexist. The imidation ratio of the polyimide is preferably 30% or more, more preferably 40 to 99%, and still more preferably 60 to 99%. The imidation ratio is a percentage representing the ratio of the number of imide ring structures to the total number of amic acid structures of polyimide and the number of imide ring structures. Here, part of the imide ring may be an isoimide ring.
 ポリアミック酸の脱水閉環は、好ましくは、ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。この方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。使用する有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0~180℃であり、反応時間は、好ましくは1.0~120時間である。得られた反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。 The dehydration ring closure of polyamic acid is preferably carried out by a method of dissolving polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary. In this method, as the dehydrating agent, for example, an acid anhydride such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be used. The amount of the dehydrating agent used is preferably 0.01 to 20 moles per mole of the polyamic acid's amic acid structure. As the dehydration ring closure catalyst, for example, tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used. The amount of the dehydrating ring-closing catalyst used is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used. As an organic solvent to be used, the organic solvent illustrated as what is used for the synthesis | combination of a polyamic acid can be mentioned. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours. The obtained reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparing a liquid crystal aligning agent after isolating a polyimide.
(ポリアミック酸エステル)
 ポリアミック酸エステルは、例えば、[I]上記反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、等によって得ることができる。ここで、上記[I]のエステル化剤としては、例えばメタノール、エタノール等が挙げられる。上記[II]で使用するテトラカルボン酸ジエステルは、テトラカルボン酸二無水物をアルコール類などで開環することにより得ることができる。上記[III]で使用するテトラカルボン酸ジエステルジハロゲン化物は、上記の如くして得たテトラカルボン酸ジエステルを、塩化チオニル等の適当な塩素化剤と反応させることにより得ることができる。得られるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
(Polyamic acid ester)
The polyamic acid ester is, for example, a method of reacting a polyamic acid obtained by the above reaction with an esterification agent, a method of reacting a [II] tetracarboxylic acid diester with a diamine, a [III] tetracarboxylic acid diester It can be obtained by a method of reacting a dihalide with a diamine, or the like. Here, as an esterifying agent of said [I], methanol, ethanol etc. are mentioned, for example. The tetracarboxylic acid diester used in the above [II] can be obtained by ring-opening tetracarboxylic acid dianhydride with an alcohol or the like. The tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with a suitable chlorinating agent such as thionyl chloride. The resulting polyamic acid ester may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist. The reaction solution obtained by dissolving the polyamic acid ester may be used as it is for the preparation of a liquid crystal aligning agent, or the polyamic acid ester contained in the reaction solution may be isolated for the preparation of a liquid crystal aligning agent.
 以上のようにして得られるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10質量%の溶液としたときに、10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。ポリアミック酸、ポリアミック酸エステル及びポリイミドについて、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量は、500~100,000であることが好ましく、1,000~50,000であることがより好ましい。 The polyamic acid, polyamic acid ester and polyimide obtained as described above preferably have a solution viscosity of 10 to 800 mPa · s when this is made into a solution with a concentration of 10% by mass, preferably 15 to 500 mPa. More preferably, it has a solution viscosity of s. In addition, the solution viscosity (mPa · s) of the above-mentioned polymer is a polymer solution having a concentration of 10% by mass prepared using a good solvent (for example, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.) of the polymer. It is the value measured at 25 ° C. using an E-type viscometer. The weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) for polyamic acid, polyamic acid ester and polyimide is preferably 500 to 100,000, and 1,000 to 50,000. Is more preferred.
(ポリオルガノシロキサン)
 ポリオルガノシロキサンは、例えば加水分解性のシラン化合物を、好ましくは適当な有機溶媒、水及び触媒の存在下において、加水分解又は加水分解・縮合することにより得ることができる。
(Polyorganosiloxane)
Polyorganosiloxane can be obtained, for example, by hydrolysis or hydrolysis / condensation of a hydrolyzable silane compound, preferably in the presence of a suitable organic solvent, water and a catalyst.
 ポリオルガノシロキサンの合成に使用する加水分解性のシラン化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、トリメトキシシリルプロピルコハク酸無水物、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のアルコキシシラン化合物;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(3-シクロヘキシルアミノ)プロピルトリメトキシシラン等の窒素・硫黄含有アルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン化合物;3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、p-スチリルトリメトキシシラン等の不飽和結合含有アルコキシシラン化合物、などを挙げることができる。加水分解性シラン化合物は、これらのうちの1種を単独で又は2種以上を組み合わせて使用することができる。なお、本明細書において「(メタ)アクリロ」は、「アクリロ」及び「メタクリロ」を含む意味である。 Examples of hydrolyzable silane compounds used for the synthesis of polyorganosiloxanes include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane and trimethoxysilylpropyl. Alkoxysilane compounds such as succinic anhydride, dimethyldimethoxysilane, dimethyldiethoxysilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, 3-ureido Propyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (3-cyclohexylamino) propylto Nitrogen and sulfur containing alkoxysilane compounds such as methoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy Epoxy group-containing silane compounds such as cyclohexyl) ethyltriethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyl Examples thereof include unsaturated bond-containing alkoxysilane compounds such as dimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane and the like. The hydrolyzable silane compounds can be used alone or in combination of two or more of them. In the present specification, “(meth) acrylo” is a meaning including “acrylo” and “methacrylo”.
 上記の加水分解・縮合反応は、上記の如きシラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行う。反応に際し、水の使用割合は、シラン化合物(合計量)1モルに対して、好ましくは1~30モルである。使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基(例えばトリエチルアミンやテトラメチルアンモニウムヒドロキシドなど)、チタン化合物、ジルコニウム化合物などを挙げることができる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なり、適宜に設定されるべきであるが、例えばシラン化合物の合計量に対して、好ましくは0.01~3倍モルである。使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコールなどが挙げられ、これらのうち、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100質量部に対して、好ましくは50~1,000質量部である。 The above-mentioned hydrolysis / condensation reaction is carried out by reacting one or more silane compounds as described above with water, preferably in the presence of a suitable catalyst and an organic solvent. In the reaction, the proportion of water used is preferably 1 to 30 moles relative to 1 mole of the silane compound (total amount). As a catalyst to be used, an acid, an alkali metal compound, an organic base (for example, triethylamine, tetramethyl ammonium hydroxide etc.), a titanium compound, a zirconium compound etc. can be mentioned, for example. The amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, etc., and should be set appropriately. For example, it is preferably 0.01 to 3 times the molar amount of the total amount of silane compounds. . Examples of the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols and the like, and among these, it is preferable to use a water insoluble or poorly water soluble organic solvent. The proportion of the organic solvent used is preferably 50 to 1,000 parts by mass with respect to a total of 100 parts by mass of the silane compound used for the reaction.
 上記の加水分解・縮合反応は、例えば油浴などにより加熱して実施することが好ましい。その際、加熱温度は130℃以下とすることが好ましく、加熱時間は、0.5~12時間とすることが好ましい。反応終了後において、反応液から分取した有機溶媒層につき、溶媒を除去することによりポリシロキサンを得ることができる。 The above hydrolysis / condensation reaction is preferably carried out, for example, by heating with an oil bath or the like. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the solvent can be removed from the organic solvent layer separated from the reaction solution to obtain a polysiloxane.
 ポリオルガノシロキサンの側鎖に、プレチルト角付与基や光配向性基などの機能性基を導入する場合、その合成方法は特に限定されないが、例えば、エポキシ基含有シラン化合物、又はエポキシ基含有シラン化合物とその他のシラン化合物との混合物を加水分解縮合して、エポキシ基を有するポリオルガノシロキサンを合成し、次いで、得られたエポキシ基含有ポリオルガノシロキサンと、上記機能性基を有するカルボン酸とを反応させる方法などが挙げられる。エポキシ基含有ポリオルガノシロキサンとカルボン酸との反応は公知の方法に従って行うことができる。 When functional groups such as a pretilt angle imparting group and a photoalignable group are introduced into the side chain of the polyorganosiloxane, the synthesis method is not particularly limited. For example, epoxy group-containing silane compounds or epoxy group-containing silane compounds Hydrolysis condensation of a mixture of this and other silane compounds to synthesize an epoxy group-containing polyorganosiloxane, and then reacting the obtained epoxy group-containing polyorganosiloxane with a carboxylic acid having the above functional group And the like. The reaction of the epoxy group-containing polyorganosiloxane with the carboxylic acid can be carried out according to a known method.
 ポリオルガノシロキサンは、GPCで測定したポリスチレン換算の重量平均分子量(Mw)が500~100,000の範囲にあることが好ましく、1,000~30,000の範囲にあることがより好ましく、1,000~20,000であることが更に好ましい。ポリオルガノシロキサンの重量平均分子量が上記範囲にあると、液晶配向膜を製造する際に取り扱いやすく、また十分な材料強度及び特性を有する液晶配向膜が得られる。 The polyorganosiloxane preferably has a polystyrene equivalent weight average molecular weight (Mw) measured by GPC in the range of 500 to 100,000, more preferably in the range of 1,000 to 30,000, 1, More preferably, it is from 000 to 20,000. When the weight average molecular weight of the polyorganosiloxane is in the above range, it is easy to handle when producing a liquid crystal alignment film, and a liquid crystal alignment film having sufficient material strength and characteristics can be obtained.
 液晶配向剤中における[P]重合体の含有割合(2種以上含有する場合には合計量)は、液晶配向剤中の重合体成分の合計量に対して、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。また、液晶配向剤は、信頼性により優れた液晶素子を得ることができる点で、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種である[p]重合体を含むことが好ましい。液晶配向剤中における[p]重合体の含有割合(2種以上含む場合にはその合計量)は、液晶配向剤中の重合体成分の合計量に対して、40質量%以上であることが好ましく、60質量%以上であることがより好ましい。 The content ratio of the [P] polymer in the liquid crystal aligning agent (total amount when two or more are contained) is 60% by mass or more based on the total amount of the polymer components in the liquid crystal aligning agent Preferably, it is 80% by mass or more. In addition, it is preferable that the liquid crystal aligning agent contains at least one kind of [p] polymer, which is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide, in that a liquid crystal element more excellent in reliability can be obtained. . The content ratio of the [p] polymer in the liquid crystal aligning agent (in the case of containing two or more, the total amount thereof) is 40% by mass or more based on the total amount of the polymer components in the liquid crystal aligning agent Preferably, it is 60% by mass or more.
 液晶配向剤に含有される重合体成分の少なくとも一部は、下記式(3)で表される部分構造を有する重合体であることが好ましい。
  *-L-R11-R12-R13-R14   …(3)
(式(3)中、Lは、-O-、-CO-、-COO-*、-OCO-*、-NR15-、-NR15-CO-*、-CO-NR15-*、炭素数1~6のアルカンジイル基、-O-R16-*、又は-R16-O-*(ただし、R15は水素原子又は炭素数1~10の1価の炭化水素基であり、R16は炭素数1~3のアルカンジイル基である。「*」は、R11との結合手であることを示す。)である。R11及びR13は、それぞれ独立に、単結合、フェニレン基又はシクロアルキレン基であり、R12は、単結合、フェニレン基、シクロアルキレン基、-R17-B-*、又は-B-R17-*(ただし、R17はフェニレン基又はシクロアルキレン基であり、Bは-COO-*、-OCO-*、又は炭素数1~3のアルカンジイル基である。「*」は、R13との結合手であることを示し、「*」は、R17との結合手であることを示す。)である。R14は、水素原子、フッ素原子、炭素数1~18のアルキル基、炭素数1~18のフルオロアルキル基、炭素数1~18のアルコキシ基、炭素数1~18のフルオロアルコキシ基、又はステロイド骨格を有する炭素数17~51の炭化水素基であり、ラジカル重合性基又は光開始剤基を有していてもよい。ただし、R14が水素原子、フッ素原子又は炭素数1~3の基である場合、R11、R12及びR13の全部が単結合になることはない。「*」は結合手であることを示す。)
It is preferable that at least a part of the polymer component contained in the liquid crystal aligning agent is a polymer having a partial structure represented by the following formula (3).
* -L 1 -R 11 -R 12 -R 13 -R 14 (3)
(In the formula (3), L 1 is, -O -, - CO -, - COO- * 1, -OCO- * 1, -NR 15 -, - NR 15 -CO- * 1, -CO-NR 15 -* 1 , an alkanediyl group having 1 to 6 carbon atoms, -O-R 16- * 1 , or -R 16 -O- * 1 (provided that R 15 is a hydrogen atom or a monovalent group having 1 to 10 carbon atoms) a hydrocarbon group, R 16 is an alkanediyl group of 1 to 3 carbon atoms. "* 1" indicates that the bond between R 11.) a is .R 11 and R 13, each independently represent a single bond, a phenylene group or a cycloalkylene group, R 12 represents a single bond, a phenylene group, a cycloalkylene group, -R 17 -B 1 - * 2 , or -B 1 -R 17 - * 2 (However, R 17 is a phenylene group or a cycloalkylene group, B 1 is -CO -. * 3, -OCO- * 3, or alkanediyl group having a carbon number of 1 to 3 "* 2" indicates that the bond to R 13, "* 3", and R 17 R 14 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. Or a fluoroalkoxy group having 1 to 18 carbon atoms or a hydrocarbon group having 17 to 51 carbon atoms having a steroid skeleton, and may have a radically polymerizable group or a photoinitiator group, provided that R 14 is In the case of a hydrogen atom, a fluorine atom or a group having 1 to 3 carbon atoms, all of R 11 , R 12 and R 13 will not be single bonds. "*" Indicates that it is a bond.)
 上記式(3)において、L、Bのアルカンジイル基、並びにR14のアルキル基、フルオロアルキル基、アルコキシ基及びフルオロアルコキシ基は、直鎖状であることが好ましい。R14のステロイド骨格を有する基としては、例えばコレスタニル基、コレステリル基、ラノスタニル基等が挙げられる。R11、R12、R13及びR17のフェニレン基は1,4-フェニレン基が好ましく、シクロアルキレン基は1,4-シクロヘキシレン基が好ましい。R11及びR13は、これらのうち少なくとも1個がフェニレン基又はシクロアルキレン基であることが好ましい。R12は、フェニレン基、シクロアルキレン基、-R17-B-*、又は-B-R17-*であることが好ましい。上記式(3)で表される部分構造を有する重合体の主骨格は特に限定されないが、[P]重合体であることが好ましい。
 重合体中における上記式(3)で表される部分構造の含有割合は、重合体の主鎖に応じて適宜設定されるが、液晶の応答速度を十分に速くする観点から、重合体の全モノマー単位に対して1~50モル%とすることが好ましく、2~40モル%とすることがより好ましい。
In the above formula (3), the L 1 and B 1 alkanediyl groups, and the R 14 alkyl group, fluoroalkyl group, alkoxy group and fluoroalkoxy group are preferably linear. Examples of the group having a steroid skeleton of R 14 include cholestanyl group, cholesteryl group, lanostanyl group and the like. The phenylene group of R 11 , R 12 , R 13 and R 17 is preferably a 1,4-phenylene group, and the cycloalkylene group is preferably a 1,4-cyclohexylene group. Among R 11 and R 13 , at least one of them is preferably a phenylene group or a cycloalkylene group. R 12 is a phenylene group, a cycloalkylene group, -R 17 -B 1 - * 2, or -B 1 -R 17 - is preferably a * 2. The main skeleton of the polymer having a partial structure represented by the above formula (3) is not particularly limited, but is preferably a [P] polymer.
The content ratio of the partial structure represented by the above formula (3) in the polymer is appropriately set according to the main chain of the polymer, but from the viewpoint of sufficiently increasing the response speed of the liquid crystal, the entire content of the polymer The amount is preferably 1 to 50 mol%, and more preferably 2 to 40 mol%, based on the monomer unit.
 また、残像が生じにくく、かつ液晶の応答速度が速い液晶素子を得ることができる点で、液晶配向剤は、重合体成分として、ラジカル重合性基、光開始剤基、ラジカル重合禁止剤基、窒素含有複素環(ただし、ポリイミドが有するイミド環を除く。)、アミノ基、及び保護されたアミノ基よりなる群から選ばれる少なくとも一種(以下、「特定部分構造」ともいう。)を有する重合体を含有していることが好ましい。 In addition, a liquid crystal aligning agent has a radical polymerizable group, a photoinitiator group, a radical polymerization inhibitor group, and a polymer component as a polymer component, in that a liquid crystal element in which an afterimage hardly occurs and a response speed of liquid crystal can be obtained A polymer having at least one selected from the group consisting of nitrogen-containing heterocycles (but excluding the imide ring possessed by polyimide), an amino group, and a protected amino group (hereinafter, also referred to as “specific partial structure”) Is preferably contained.
 ラジカル重合性基としては、例えば(メタ)アクリロイル基、ビニル基、アリル基、ビニルフェニル基、マレイミド基、ビニルオキシ基、エチニル基等が挙げられる。これらのうち、反応性が高い点で(メタ)アクリロイル基が特に好ましい。
 光開始剤基は、光により重合開始能を生じる部位又は光増感作用を持つ部位であり、可視光線、紫外線、遠紫外線、電子線、X線等の放射線の照射により重合性成分の重合を開始可能な化合物(光開始剤)に由来する構造を有する基である。光開始剤基としては、光照射によってラジカルを発生可能なラジカル重合開始剤に由来する構造を有する基であることが好ましい。具体的には、例えばアセトフェノン系化合物、オキシムエステル系化合物、ジベンゾイル系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、アルキルフェノン系化合物、又はアシルフォスフィンオキサイド系化合物に由来する構造を有する基などが挙げられる。光開始剤基は、これらの中でも、アセトフェノン構造を有する基であることが好ましい。重合体がラジカル重合性基及び光開始剤基の少なくともいずれかを有する場合、これらの基を側鎖に有していることが好ましい。
 ラジカル重合禁止剤基は、紫外線や熱などのエネルギーがきっかけとなって発生したペルオキシラジカルやヒドロペルオキシドを無効化する過酸化物分解剤、又は重合途中のラジカル性中間体を補足して重合反応の進行を抑制するラジカル捕捉剤として機能する。こうした重合禁止剤基を有する重合体を液晶配向膜中に含有させることにより、PSAモードにおいて液晶層中に混入させた光重合性化合物が光照射により反応することを抑制することができる。重合禁止剤基は、ヒンダードアミン構造、ヒンダードフェノール構造及びアニリン構造よりなる群から選ばれる少なくとも一種を有する基であることが好ましい。
Examples of the radical polymerizable group include (meth) acryloyl group, vinyl group, allyl group, vinylphenyl group, maleimide group, vinyloxy group, ethynyl group and the like. Among these, a (meth) acryloyl group is particularly preferable in terms of high reactivity.
The photoinitiator group is a site that generates polymerization initiation ability by light or a site having a photosensitizing function, and polymerizes a polymerizable component by irradiation with radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam, and X-ray. It is a group having a structure derived from a startable compound (photoinitiator). The photoinitiator group is preferably a group having a structure derived from a radical polymerization initiator capable of generating radicals by light irradiation. Specifically, for example, a group having a structure derived from an acetophenone compound, an oxime ester compound, a dibenzoyl compound, a benzoin compound, a benzophenone compound, an alkylphenone compound, or an acylphosphine oxide compound can be mentioned. . Among these, the photoinitiator group is preferably a group having an acetophenone structure. When the polymer has at least one of a radically polymerizable group and a photoinitiator group, it is preferable to have these groups in the side chain.
The radical polymerization inhibitor group is a polymerization initiator by capturing a peroxide decomposition agent that neutralizes the peroxy radical or hydroperoxide generated due to energy such as ultraviolet light and heat, or a radical intermediate during polymerization. It functions as a radical scavenger that suppresses the progress. By including a polymer having such a polymerization inhibitor group in the liquid crystal alignment film, it is possible to suppress the reaction of the photopolymerizable compound mixed in the liquid crystal layer in the PSA mode with light irradiation. The polymerization inhibitor group is preferably a group having at least one selected from the group consisting of a hindered amine structure, a hindered phenol structure and an aniline structure.
 上記窒素含有複素環としては、例えばピロール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、インドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、ナフチリジン、キノキサリン、フタラジン、トリアジン、カルバゾール、アクリジン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン等が挙げられる。中でも、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、キノリン、カルバゾール及びアクリジンよりなる群から選ばれる少なくとも一種を有することが好ましい。 Examples of the nitrogen-containing heterocycle include pyrrole, imidazole, pyrazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, indole, benzimidazole, purine, quinoline, isoquinoline, naphthyridine, quinoxaline, phthalazine, triazine, carbazole, acridine, piperidine, And piperazine, pyrrolidine, hexamethyleneimine and the like. Among them, it is preferable to have at least one selected from the group consisting of pyridine, pyrimidine, pyrazine, piperidine, piperazine, quinoline, carbazole and acridine.
 上記アミノ基及び保護されたアミノ基は、下記式(N-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(N-1)中、R50は、水素原子又は1価の有機基である。「*」は炭化水素基に結合する結合手である。)
The amino group and the protected amino group are preferably a group represented by the following formula (N-1).
Figure JPOXMLDOC01-appb-C000006
(In formula (N-1), R 50 is a hydrogen atom or a monovalent organic group. “*” Is a bond that bonds to a hydrocarbon group.)
 上記式(N-1)において、R50の1価の有機基は、1価の炭化水素基又は保護基であることが好ましい。1価の炭化水素基は炭素数1~10が好ましく、具体的には、例えばメチル基、エチル基、プロピル基、ブチル基等の直鎖状又は分岐状のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、メチルフェニル等のアリール基;ベンジル基等のアラルキル基等が挙げられる。R50が有していてもよい置換基としては、例えばハロゲン原子、シアノ基、アルキルシリル基、アルコキシシリル基等が挙げられる。R50は、好ましくは炭素数1~5のアルキル基、シクロヘキシル基、フェニル基又はベンジル基である。上記式(N-1)中の「*」が結合する炭化水素基としては、例えばアルカンジイル基、シクロへキシレン基、フェニレン基等が挙げられる。 In the above formula (N-1), the monovalent organic group of R 50 is preferably a monovalent hydrocarbon group or a protecting group. The monovalent hydrocarbon group preferably has 1 to 10 carbon atoms, and specific examples thereof include linear or branched alkyl groups such as methyl, ethyl, propyl and butyl; and cycloalkyl such as cyclohexyl and the like And groups; aryl groups such as phenyl group and methylphenyl; and aralkyl groups such as benzyl group. Examples of the substituent which R 50 may have include a halogen atom, a cyano group, an alkylsilyl group, an alkoxysilyl group and the like. R 50 is preferably an alkyl group having 1 to 5 carbon atoms, a cyclohexyl group, a phenyl group or a benzyl group. Examples of the hydrocarbon group to which “*” in the above formula (N-1) is bonded include alkanediyl group, cyclohexylene group, phenylene group and the like.
 保護基は、熱により脱離する基であることが好ましく、例えばカルバメート系保護基、アミド系保護基、イミド系保護基、スルホンアミド系保護基、下記式(8-1)~式(8-5)のそれぞれで表される基などが挙げられる。中でも、熱による脱離性が高い点や、脱保護した部分の膜中での残存量を少なくする点で、tert-ブトキシカルボニル基が好ましい。
Figure JPOXMLDOC01-appb-C000007
(式(8-1)~式(8-5)中、Ar11は、置換又は無置換の芳香環から1個の水素原子を取り除いた炭素数6~10の1価の基であり、R61は炭素数1~12のアルキル基であり、R62はメチレン基又はエチレン基である。「*」は窒素原子に結合する結合手を示す。)
The protective group is preferably a group which is released by heat, and examples thereof include a carbamate type protective group, an amide type protective group, an imide type protective group, a sulfonamide type protective group, and the following formulas (8-1) to (8-) Groups represented by each of 5) and the like can be mentioned. Among them, tert-butoxycarbonyl group is preferable in that it is highly removable by heat and in that the remaining amount of the deprotected portion in the film is reduced.
Figure JPOXMLDOC01-appb-C000007
In the formulas (8-1) to (8-5), Ar 11 is a monovalent group having 6 to 10 carbon atoms in which one hydrogen atom has been removed from a substituted or unsubstituted aromatic ring, and 61 represents an alkyl group having 1 to 12 carbon atoms, R 62 represents a methylene group or an ethylene group, and "*" represents a bond bonded to a nitrogen atom.)
 上記特定部分構造を有する重合体の主骨格は特に限定されないが、[P]重合体であることが好ましく、[p]重合体であることがより好ましい。重合体中における上記特定部分構造の含有割合(2種以上含有する場合にはその合計量)は、重合体の全モノマー単位に対して5モル%とすることが好ましく、10~80モル%とすることがより好ましい。 The main skeleton of the polymer having the above specific partial structure is not particularly limited, but it is preferably a [P] polymer, and more preferably a [p] polymer. The content ratio of the above-mentioned specific partial structure in the polymer (the total amount of two or more when it is contained) is preferably 5 mol% to the total monomer units of the polymer, and 10 to 80 mol%. It is more preferable to do.
(溶剤)
 液晶配向剤は、溶剤成分として、下記に示す溶剤群([A]溶剤と[B]溶剤とからなる群)から選ばれる少なくとも一種である特定溶剤を含有する。
溶剤群:
 [A]溶剤:下記式(1)で表される化合物、下記式(2)で表される化合物、N,N,2-トリメチルプロピオンアミド、及び1,3-ジメチル-2-イミダゾリジノン。
 [B]溶剤:ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン、2-メチル-2-ヘキサノール、2,6-ジメチル-4-ヘプタノール、ジイソブチルケトン、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジイソペンチルエーテル、ダイアセトンアルコール、及びプロピレングリコールモノブチルエーテル。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Rは、炭素数2~5の1価の炭化水素基、又は当該炭化水素基における炭素-炭素結合間に「-O-」を有する1価の基である。)
Figure JPOXMLDOC01-appb-C000009
(式(2)中、R及びRは、それぞれ独立に、水素原子、炭素数1~6の1価の炭化水素基、又は当該炭化水素基の炭素-炭素結合間に「-O-」を有する1価の基であり、RとRとが互いに結合して環構造を形成してもよい。Rは、炭素数1~6のアルキル基である。)
(solvent)
The liquid crystal aligning agent contains, as a solvent component, at least one specific solvent selected from the group of solvents shown below (a group consisting of [A] solvent and [B] solvent).
Solvent group:
[A] Solvent: a compound represented by the following formula (1), a compound represented by the following formula (2), N, N, 2-trimethylpropionamide, and 1,3-dimethyl-2-imidazolidinone.
[B] Solvent: dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diethylene glycol monoethyl ether, 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, 2-methyl-2-hexanol, 2 6, 6-dimethyl-4-heptanol, diisobutyl ketone, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and propylene glycol monobutyl ether.
Figure JPOXMLDOC01-appb-C000008
In the formula (1), R 1 is a monovalent hydrocarbon group having 2 to 5 carbon atoms, or a monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group. )
Figure JPOXMLDOC01-appb-C000009
(In formula (2), R 2 and R 3 each independently represent a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, or “—O— between carbon-carbon bonds of the hydrocarbon group. R 2 and R 3 may be bonded to each other to form a ring structure. R 4 is an alkyl group having 1 to 6 carbon atoms.
・[A]溶剤について
(式(1)で表される化合物)
 上記式(1)で表される化合物について、Rの炭素数2~5の1価の炭化水素基は鎖状炭化水素基であることが好ましく、例えば炭素数2~5のアルキル基、アルケニル基、アルキニル基が挙げられる。また、当該炭化水素基における炭素-炭素結合間に「-O-」を有する1価の基としては、例えば炭素数2~5のアルコキシアルキル基が挙げられる。
 これらの具体例としては、炭素数2~5のアルキル基として、例えばエチル基、プロピル基、ブチル基、ペンチル基などを;炭素数2~5のアルケニル基として、例えばビニル基、1-プロペニル基、2-プロペニル基、3-ブテニル基などを;炭素数2~5のアルキニル基として、例えばエチニル基、2-プロピニル基、2-ブチニル基などを;炭素数2~5のアルコキシアルキル基として、例えばメトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、エトキシメチル基、エトキシエチル基などを、それぞれ挙げることができ、これらは直鎖状であっても分岐状であってもよい。Rとしては、上記の中でも炭素数2~5のアルキル基又はアルコキシアルキル基であることが好ましい。
-[A] solvent (compound represented by formula (1))
In the compound represented by the above formula (1), the monovalent hydrocarbon group having 2 to 5 carbon atoms of R 1 is preferably a chain hydrocarbon group, and for example, an alkyl group having 2 to 5 carbon atoms, alkenyl And alkynyl groups. In addition, as the monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group, for example, an alkoxyalkyl group having 2 to 5 carbon atoms can be mentioned.
Specific examples thereof include, as the alkyl group having 2 to 5 carbon atoms, for example, an ethyl group, a propyl group, a butyl group, a pentyl group and the like; and an alkenyl group having 2 to 5 carbon atoms, for example, a vinyl group and 1-propenyl group 2-propenyl group, 3-butenyl group, etc. as an alkynyl group having 2 to 5 carbon atoms, such as ethynyl group, 2-propynyl group, 2-butynyl group, etc. as an alkoxyalkyl group having 2 to 5 carbon atoms, For example, a methoxymethyl group, a methoxyethyl group, a methoxypropyl group, a methoxybutyl group, an ethoxymethyl group, an ethoxyethyl group etc. can be mentioned respectively, These may be linear or branched. Among the above, R 1 is preferably an alkyl group having 2 to 5 carbon atoms or an alkoxyalkyl group.
 上記式(1)で表される化合物の具体例としては、例えばN-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドンなどが挙げられる。これらの中でも、N-エチル-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドンを特に好ましく使用することができる。なお、上記式(1)で表される化合物は、これら例示の化合物を1種単独で又は2種以上を組み合わせて使用することができる。 Specific examples of the compound represented by the above formula (1) include, for example, N-ethyl-2-pyrrolidone, N- (n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n-) Butyl) -2-pyrrolidone, N- (t-butyl) -2-pyrrolidone, N- (n-pentyl) -2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N And-methoxybutyl-2-pyrrolidone and the like. Among these, N-ethyl-2-pyrrolidone, N- (n-pentyl) -2-pyrrolidone, N- (t-butyl) -2-pyrrolidone and N-methoxypropyl-2-pyrrolidone are particularly preferably used. Can. In addition, the compound represented by the said Formula (1) can be used individually by 1 type or in combination of 2 or more types of these exemplary compounds.
(式(2)で表される化合物)
 上記式(2)で表される化合物について、R及びRの炭素数1~6の1価の炭化水素基としては、例えば炭素数1~6の鎖状炭化水素基、炭素数3~6の脂環式炭化水素基、炭素数5又は6の芳香族炭化水素基などが挙げられる。また、当該炭化水素基の炭素-炭素結合間に「-O-」を有する1価の基としては、例えば炭素数2~6のアルコキシアルキル基等が挙げられる。
 これらの具体例としては、炭素数1~6の鎖状炭化水素基として、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などを挙げることができ、これらは直鎖状であっても分岐状であってもよい。また、炭素数3~6の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等を;芳香族炭化水素基としては、例えばフェニル基等を;炭素数2~6のアルコキシアルキル基としては、例えばRで挙げたアルコキシアルキル基等を;それぞれ挙げることができる。なお、式(2)におけるR及びRは互いに同じでも異なっていてもよい。また、R及びRは、互いに結合することにより、R及びRが結合する窒素原子と共に環を形成してもよい。R,Rが互いに結合して形成される環としては、例えばピロリジン環、ピペリジン環等を挙げることができ、これらの環にはメチル基等の1価の鎖状炭化水素基が結合されていてもよい。
 R及びRとして好ましくは、水素原子又は炭素数1~6のアルキル基であり、より好ましくは、水素原子又は炭素数1~3のアルキル基であり、更に好ましくは水素原子又はメチル基である。
 Rの炭素数1~6のアルキル基としては、上記R及びRの炭素数1~6のアルキル基の説明で例示した基を挙げることができる。好ましくは、炭素数1~4のアルキル基であり、より好ましくはメチル基又はエチル基である。
(Compound represented by formula (2))
As the monovalent hydrocarbon group having 1 to 6 carbon atoms for R 2 and R 3 in the compound represented by the above formula (2), for example, a linear hydrocarbon group having 1 to 6 carbon atoms, 3 to 6 carbon atoms Examples thereof include six alicyclic hydrocarbon groups and aromatic hydrocarbon groups having 5 or 6 carbon atoms. Further, examples of the monovalent group having “—O—” between carbon-carbon bonds of the hydrocarbon group include, for example, an alkoxyalkyl group having 2 to 6 carbon atoms.
As specific examples of these, as the chain hydrocarbon group having 1 to 6 carbon atoms, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and the like can be mentioned, and these are linear Or may be branched. Further, examples of the alicyclic hydrocarbon group having 3 to 6 carbon atoms include, for example, a cyclopentyl group and a cyclohexyl group; and examples of an aromatic hydrocarbon group include, for example, a phenyl group and the like; and an alkoxyalkyl group having 2 to 6 carbon atoms. For example, the alkoxyalkyl group mentioned for R 1 and the like can be mentioned respectively. R 2 and R 3 in the formula (2) may be the same or different. In addition, R 2 and R 3 may bond to each other to form a ring together with the nitrogen atom to which R 2 and R 3 are bonded. Examples of the ring formed by bonding R 2 and R 3 to each other include a pyrrolidine ring, a piperidine ring and the like, and a monovalent chain hydrocarbon group such as a methyl group is bonded to these rings. It may be
R 2 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom or a methyl group is there.
Examples of the alkyl group having 1 to 6 carbon atoms of R 4 include the groups exemplified in the description of the alkyl group having 1 to 6 carbon atoms of R 2 and R 3 above. Preferably, it is an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group or an ethyl group.
 上記式(2)で表される化合物の具体例としては、例えば3-ブトキシ-N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ヘキシルオキシ-N,N-ジメチルプロパンアミド、イソプロポキシ-N-イソプロピル-プロピオンアミド、n-ブトキシ-N-イソプロピル-プロピオンアミドなどが挙げられる。なお、上記式(2)で表される化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。 Specific examples of the compound represented by the above formula (2) include, for example, 3-butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-hexyloxy-N, N- Dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n-butoxy-N-isopropyl-propionamide and the like. In addition, the compound represented by the said Formula (2) can be used individually by 1 type or in combination of 2 or more types.
 [A]溶剤としては、層間絶縁膜21に及ぼす影響をより小さくできる点で、中でも上記式(1)で表される化合物、上記式(2)で表される化合物及び1,3-ジメチル-2-イミダゾリジノンよりなる群から選ばれる少なくとも一種であることが好ましく、上記式(1)で表される化合物においてRが炭素数2~5のアルキル基又はアルコキシアルキル基である化合物、3-メトキシ-N,N-ジメチルプロパンアミド及び1,3-ジメチル-2-イミダゾリジノンよりなる群から選ばれる少なくとも一種であることがより好ましく、N-エチル-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド及び1,3-ジメチル-2-イミダゾリジノンよりなる群から選ばれる少なくとも一種であることが特に好ましい。 [A] Among the solvents, the compound represented by the above formula (1), the compound represented by the above formula (2), and 1,3-dimethyl-in that the influence on the interlayer insulating film 21 can be further reduced. A compound selected from the group consisting of 2-imidazolidinone, preferably a compound represented by the above formula (1), wherein R 1 is an alkyl group having 2 to 5 carbon atoms or an alkoxyalkyl group, It is more preferable that it is at least one selected from the group consisting of -methoxy-N, N-dimethylpropanamide and 1,3-dimethyl-2-imidazolidinone, and N-ethyl-2-pyrrolidone, N- (n- Pentyl) -2-pyrrolidone, N- (t-butyl) -2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropane It is particularly preferable that it is at least one selected from the group consisting of imid and 1,3-dimethyl-2-imidazolidinone.
 [B]溶剤としては、層間絶縁膜21に及ぼす影響をより小さくできる点で、上記のうち、ジプロピレングリコールモノメチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジイソペンチルエーテル、ダイアセトンアルコール、及びプロピレングリコールモノブチルエーテルよりなる群から選ばれる少なくとも一種であることが好ましい。 [B] Among the above solvents, dipropylene glycol monomethyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and diacetone alcohol, as the solvent, in that the influence on interlayer insulating film 21 can be further reduced. It is preferably at least one selected from the group consisting of propylene glycol monobutyl ether.
 溶剤成分としては、特定溶剤のみを用いてもよいが、特定溶剤以外のその他の溶剤を併用してもよい。かかるその他の溶剤としては、重合体の溶解性及びレベリング性が高い溶剤(以下、「第1溶剤」ともいう。)、及び濡れ広がり性が良好な溶剤(以下、「第2溶剤」ともいう。)が挙げられる。
 これらの具体例としては、第1溶剤として、例えばN-メチル-2-ピロリドン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレンカーボネート、プロピレンカーボネート等を;
第2溶剤として、例えばエチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテルアセテート、イソアミルプロピオネート、イソアミルイソブチレート等を、それぞれ挙げることができる。なお、その他の溶剤としては、上記のうちの1種を単独で使用してもよく、2種以上を混合して使用してもよい。
As a solvent component, although only a specific solvent may be used, you may use together other solvents other than a specific solvent. As such other solvents, it is also referred to as a solvent having high polymer solubility and leveling ability (hereinafter, also referred to as "first solvent"), and a solvent having good wettability and spreadability (hereinafter, "second solvent"). Can be mentioned.
As specific examples of these, as the first solvent, for example, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-butyrolactam, N, N-dimethylformamide, N, N-dimethylacetamide, 4-hydroxy-4-methyl -2-pentanone, ethylene carbonate, propylene carbonate etc.
As the second solvent, for example, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxy propionate, ethyl ethoxy propionate, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene Glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diethyl ether acetate Iso Mill propionate, isoamyl isobutyrate, etc., can be exemplified respectively. In addition, as another solvent, 1 type in the above may be used independently, and 2 or more types may be mixed and used.
 液晶配向剤の調製に際し、特定溶剤としては、[A]溶剤及び[B]溶剤のいずれかのみを使用してもよいが、液晶配向膜を形成する際に液晶配向剤と層間絶縁膜21とが接触された状態において層間絶縁膜21に与える影響を抑制できるとともに、層間絶縁膜21からの不純物成分の溶出を抑制できる効果が高い点で、[A]溶剤の少なくとも一種と、[B]溶剤の少なくとも一種とが含有されていることが好ましい。 When preparing the liquid crystal aligning agent, only one of the [A] solvent and the [B] solvent may be used as the specific solvent, but when forming the liquid crystal alignment film, the liquid crystal aligning agent and the interlayer insulating film 21 In addition, at least one of the [A] solvent and the [B] solvent is capable of suppressing the influence exerted on the interlayer insulating film 21 in the state where it is in contact and at the same time the elution of the impurity component from the interlayer insulating film 21 can be suppressed. It is preferable that at least one of
 [A]溶剤の使用割合(2種以上使用する場合にはその合計量)は、層間絶縁膜21に与える影響の抑制効果と層間絶縁膜21からの不純物成分の溶出の抑制効果とを十分に得つつ、重合体成分の析出を抑制する観点から、液晶配向剤に含まれる溶剤の全体量に対して、10質量%以上とすることが好ましく、20質量%以上とすることがより好ましい。また、その使用割合の上限は、[B]溶剤による塗布性の改善効果を得る観点から、液晶配向剤に含まれる溶剤の全体量に対して、90質量%以下とすることが好ましく、80質量%以下とすることがより好ましい。なお、[A]溶剤は1種を単独で使用してもよく、又は2種以上を組み合わせて使用してもよい。 [A] The proportion of the solvent used (total amount when two or more are used) is sufficient to suppress the effect on the interlayer insulating film 21 and the effect of suppressing the elution of the impurity component from the interlayer insulating film 21. From the viewpoint of suppressing the precipitation of the polymer component while obtaining, the content is preferably 10% by mass or more, and more preferably 20% by mass or more based on the total amount of the solvent contained in the liquid crystal aligning agent. The upper limit of the use ratio is preferably 90% by mass or less, based on the total amount of the solvent contained in the liquid crystal aligning agent, from the viewpoint of obtaining the effect of improving the coatability by the [B] solvent, and 80% It is more preferable to make it% or less. In addition, [A] solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
 [B]溶剤の使用割合(2種以上使用する場合にはその合計量)は、層間絶縁膜21に与える影響及び層間絶縁膜21からの不純物成分の溶出を抑制するとともに液晶配向剤の塗布性を良好にする観点から、液晶配向剤に含まれる溶剤の全体量に対して、10質量%以上とすることが好ましく、20質量%以上とすることがより好ましい。また、その使用割合の上限は、液晶配向剤に含まれる溶剤の全体量に対して、80質量%以下とすることが好ましく、70質量%以下とすることがより好ましい。なお、[B]溶剤は1種を単独で使用してもよく、又は2種以上を組み合わせて使用してもよい。 [B] The proportion of the solvent used (total amount when two or more are used) has an effect on the interlayer insulating film 21 and suppresses the elution of the impurity component from the interlayer insulating film 21 and the coatability of the liquid crystal aligning agent From the viewpoint of making the property better, the content is preferably 10% by mass or more, and more preferably 20% by mass or more based on the total amount of the solvent contained in the liquid crystal aligning agent. The upper limit of the use ratio is preferably 80% by mass or less, and more preferably 70% by mass or less, based on the total amount of the solvent contained in the liquid crystal aligning agent. In addition, a [B] solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
 特定溶剤の使用割合(2種以上使用する場合にはその合計量)は、層間絶縁膜21に与える影響を抑制する効果及び層間絶縁膜21からの不純物成分の溶出を低減させる効果を十分に得る観点から、液晶配向剤に含まれる溶剤の全体量に対して、50質量%以上とすることが好ましく、70質量%以上とすることがより好ましく、90質量%以上とすることがさらに好ましく、95質量%以上とすることが特に好ましい。 The ratio of use of the specific solvent (total amount when two or more types are used) sufficiently achieves the effect of suppressing the influence on the interlayer insulating film 21 and the effect of reducing the elution of the impurity component from the interlayer insulating film 21 From the viewpoint, the content is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, based on the total amount of the solvent contained in the liquid crystal aligning agent. It is particularly preferable to set it as mass% or more.
 また、[A]溶剤と[B]溶剤とその他の溶剤とを使用する場合、その他の溶剤の使用割合(2種以上使用する場合にはその合計量)は、本開示の効果を十分に得る観点から、液晶配向剤に含まれる溶剤の全体量に対して、50質量%以下とすることが好ましく、30質量%以下とすることがより好ましく、10質量%以下とすることがより好ましく、5質量%以下とすることが特に好ましい。
 液晶配向剤は、溶剤成分が[A]溶剤と[B]溶剤とからなることが特に好ましい。ただし、本明細書において「溶剤成分が[A]溶剤と[B]溶剤とからなる」とは、[A]溶剤及び[B]溶剤以外のその他の溶剤を、本開示の効果の妨げにならない程度に含有することを許容するものである。
Moreover, when [A] solvent, [B] solvent, and other solvents are used, the proportions of use of the other solvents (the total amount of two or more solvents used) sufficiently obtain the effects of the present disclosure. From the viewpoint, the content is preferably 50% by mass or less, more preferably 30% by mass or less, and more preferably 10% by mass or less, based on the total amount of the solvent contained in the liquid crystal aligning agent. It is particularly preferable to set the content to less than mass%.
In the liquid crystal aligning agent, it is particularly preferable that the solvent component is composed of the [A] solvent and the [B] solvent. However, in the present specification, “the solvent component is composed of the [A] solvent and the [B] solvent” does not interfere with the effects of the present disclosure other solvents other than the [A] solvent and the [B] solvent. It is acceptable to contain to some extent.
 液晶配向剤は、重合体成分及び溶剤成分のほか、必要に応じてその他の成分を含有していてもよい。その他の成分としては、例えば、酸化防止剤、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤等が挙げられる。その他の成分の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。 The liquid crystal aligning agent may contain other components as necessary in addition to the polymer component and the solvent component. Examples of the other components include antioxidants, metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, and photosensitizers. The blend ratio of the other components can be appropriately selected according to each compound, as long as the effects of the present disclosure are not impaired.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得られにくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得られにくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. When the solid content concentration is less than 1% by mass, the film thickness of the coating film is too small, and it is difficult to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes too large to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coating property decreases. Tend to
<感放射線性樹脂組成物>
 次に、層間絶縁膜21を形成するために用いる感放射線性樹脂組成物について詳しく説明する。この感放射線性樹脂組成物は、[Q]重合体と[R]感光剤とを含有する。
Radiation-sensitive resin composition
Next, the radiation sensitive resin composition used to form the interlayer insulating film 21 will be described in detail. This radiation sensitive resin composition contains a [Q] polymer and a [R] photosensitizer.
([Q]重合体)
 [Q]重合体は、重合性基を有する構成単位を有していることが好ましい。[Q]重合体が有する重合性基は、オキセタニル基、オキシラニル基、(メタ)アクリロイル基、及びビニル基よりなる群から選ばれる少なくとも一種であることが好ましい。このような重合性基を有することで、感放射線性樹脂組成物の硬化を容易に行うことができ、良好な層間絶縁膜21を得ることができる点で好ましい。
([Q] polymer)
[Q] The polymer preferably has a structural unit having a polymerizable group. [Q] The polymerizable group contained in the polymer is preferably at least one selected from the group consisting of an oxetanyl group, an oxiranyl group, a (meth) acryloyl group, and a vinyl group. By having such a polymerizable group, curing of the radiation sensitive resin composition can be easily performed, which is preferable in that a favorable interlayer insulating film 21 can be obtained.
 [Q]重合体の主骨格は特に限定されないが、(メタ)アクリル系重合体、ポリアミック酸、ポリアミック酸エステル、ポリイミド、及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種であることが好ましい。これらの中でも、(メタ)アクリル系重合体であることが特に好ましい。なお、(メタ)アクリル系重合体は、(メタ)アクリロイル基を有する単量体に由来する構造単位のみを有していてもよいし、(メタ)アクリロイル基を有する単量体に由来する構造単位と、(メタ)アクリロイル基を有する単量体とは異なるその他の単量体に由来する構造単位とを有していてもよい。(メタ)アクリル系重合体における、その他の単量体に由来する構造単位の含有割合は、好ましくは50モル%以下であり、より好ましくは40モル%以下であり、さらに好ましくは30モル%以下である。 The main skeleton of the polymer [Q] is not particularly limited, but is preferably at least one selected from the group consisting of (meth) acrylic polymers, polyamic acids, polyamic esters, polyimides, and polyorganosiloxanes. Among these, (meth) acrylic polymers are particularly preferable. The (meth) acrylic polymer may have only a structural unit derived from a monomer having a (meth) acryloyl group, or a structure derived from a monomer having a (meth) acryloyl group You may have a unit and the structural unit derived from the other monomer different from the monomer which has a (meth) acryloyl group. The content ratio of structural units derived from other monomers in the (meth) acrylic polymer is preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 30 mol% or less. It is.
 具体的には、[Q]重合体は、酸性基を有する第1構造単位と、オキセタニル基又はオキシラニル基を有する第2構造単位と、前記第1構造単位及び前記第2構造単位とは異なる主鎖構造を形成する第3構造単位とを有する重合体であることが好ましい。 Specifically, the [Q] polymer is mainly composed of a first structural unit having an acidic group, a second structural unit having an oxetanyl group or an oxiranyl group, and a main component different from the first structural unit and the second structural unit. It is preferable that it is a polymer which has the 3rd structural unit which forms chain structure.
 第1構造単位が有する酸性基としては、カルボキシ基、スルホ基、フェノール性水酸基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホンアミド基、炭素原子に結合した水素原子が電子求引基に置換されたヒドロキシアルキル基等を挙げることができる。酸性基としては、アルカリ現像性の点から、これらのうち、カルボキシ基、スルホ基、フェノール性水酸基、フッ素含有アルコール性水酸基、リン酸基、ホスホン酸基、ホスフィン酸基又はこれらの組み合わせが好ましく、カルボキシ基又はフェノール性水酸基がより好ましく、カルボキシ基が特に好ましい。 As an acidic group which a 1st structural unit has, a carboxy group, a sulfo group, a phenolic hydroxyl group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonamide group, the hydrogen atom couple | bonded with the carbon atom serves as an electron withdrawing group Examples thereof include substituted hydroxyalkyl groups and the like. Among these, a carboxy group, a sulfo group, a phenolic hydroxyl group, a fluorine-containing alcoholic hydroxyl group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group or a combination thereof is preferable as the acidic group from the viewpoint of alkali developability. A carboxy group or a phenolic hydroxyl group is more preferable, and a carboxy group is particularly preferable.
 第1構造単位としては、(メタ)アクリル酸又は不飽和カルボン酸無水物よりなる群から選ばれる少なくとも一種の化合物に由来する構造単位が好ましく、(メタ)アクリル酸及び無水マレイン酸の少なくとも一種が特に好ましい。
 [Q]重合体における第1構造単位の含有割合は、[Q]重合体を構成する全構造単位に対して、1~50モル%であることが好ましく、15~30モル%であることがより好ましい。第1構造単位は、1種単独でもよく、又は2種以上を組み合わせてもよい。
The first structural unit is preferably a structural unit derived from at least one compound selected from the group consisting of (meth) acrylic acid or unsaturated carboxylic acid anhydride, and at least one of (meth) acrylic acid and maleic anhydride is preferred. Particularly preferred.
The content ratio of the first structural unit in the [Q] polymer is preferably 1 to 50 mol%, preferably 15 to 30 mol%, with respect to all structural units constituting the [Q] polymer. More preferable. The first structural unit may be used alone or in combination of two or more.
 第2構造単位としては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、及び3-(メタ)アクリロイルオキシメチル-3-エチルオキセタンよりなる群から選ばれる少なくとも一種の化合物に由来する構造単位が好ましい。
 [Q]重合体における第2構造単位の含有割合は、[Q]重合体を構成する全構造単位に対して、1~15モル%であることが好ましく、3~10モル%であることがより好ましい。第2構造単位は、1種単独でもよく、又は2種以上を組み合わせてもよい。
As the second structural unit, glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3- (meth) acryloyloxymethyl-3- Preferred is a structural unit derived from at least one compound selected from the group consisting of ethyl oxetane.
The content ratio of the second structural unit in the [Q] polymer is preferably 1 to 15 mol%, and preferably 3 to 10 mol%, with respect to all structural units constituting the [Q] polymer. More preferable. The second structural unit may be used alone or in combination of two or more.
 第3構造単位は、第1構造単位及び第2構造単位とは異なる主鎖構造を形成する単量体に由来する構造単位であれば特に限定されないが、現像密着性及び熱や剥離溶液に対する耐性をより良好にできる点で、スチレン、α-メチルスチレン、4-メチルスチレン、及び4-ヒドロキシスチレンよりなる群から選ばれる少なくとも一種の化合物に由来する構造単位であることが好ましい。
 [Q]重合体における第3構造単位の含有割合は、[Q]重合体を構成する全構造単位に対して、25~80モル%であることが好ましく、30~65モル%であることがより好ましい。第3構造単位は、1種単独でもよく、又は2種以上を組み合わせてもよい。
The third structural unit is not particularly limited as long as it is a structural unit derived from a monomer forming a main chain structure different from the first structural unit and the second structural unit, but the development adhesion and the resistance to heat and peeling solution It is preferable that it is a structural unit derived from at least one compound selected from the group consisting of styrene, α-methylstyrene, 4-methylstyrene, and 4-hydroxystyrene, in that it can be better.
The content ratio of the third structural unit in the [Q] polymer is preferably 25 to 80 mol%, more preferably 30 to 65 mol%, based on all structural units constituting the [Q] polymer. More preferable. The third structural unit may be used alone or in combination of two or more.
 なお、[Q]重合体は、第1構造単位、第2構造単位及び第3構造単位以外のその他の構造単位をさらに有していてもよい。こうした構造単位としては、例えば(メタ)アクリル酸アルキル等が挙げられる。
 [Q]重合体は、第1~第3構造単位等を与える単量体を用い、ラジカル重合等の常法に従って合成することができる。合成条件の詳細については、例えば特開2015-92233号公報に記載の各種条件を参照して適宜設定することができる。
The [Q] polymer may further have other structural units other than the first structural unit, the second structural unit, and the third structural unit. Examples of such structural units include alkyl (meth) acrylate and the like.
[Q] The polymer can be synthesized according to a conventional method such as radical polymerization using a monomer giving the first to third structural units and the like. The details of the synthesis conditions can be appropriately set with reference to, for example, various conditions described in JP-A-2015-92233.
([R]感光剤)
 [R]感光剤としては、光ラジカル重合開始剤、光酸発生剤及び光塩基発生剤よりなる群から選ばれる少なくとも一種を好ましく用いることができる。
 これらの具体例としては、光ラジカル重合開始剤として、例えばO-アシルオキシム化合物、アセトフェノン化合物、ビイミダゾール化合物等を;
光酸発生剤として、例えばオキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、キノンジアジド化合物等を;
光塩基発生剤として、例えばコバルト等の遷移金属錯体、オルトニトロベンジルカルバメート類、α,α-ジメチル-3,5-ジメトキシベンジルカルバメート類、アシルオキシイミノ類等を、それぞれ挙げることができる。
 [R]感光剤の使用割合は、使用する化合物の種類に応じて異なる。例えば、光ラジカル重合開始剤の場合、[Q]重合体100質量部に対して、1~40質量部が好ましく、5~30質量部とすることがより好ましい。
 光酸発生剤の使用割合は、[Q]重合体100質量部に対して、0.1~50質量部が好ましく、1~30質量部がより好ましい。
 光酸塩基剤の使用割合は、[Q]重合体100質量部に対して、0.1~20質量部が好ましく、1~10質量部であることがより好ましい。
([R] photosensitizer)
[R] As the photosensitizer, at least one selected from the group consisting of photo radical polymerization initiators, photo acid generators and photo base generators can be preferably used.
As specific examples of these, as a photo radical polymerization initiator, for example, O-acyl oxime compound, acetophenone compound, biimidazole compound etc .;
Examples of the photoacid generator include oxime sulfonate compounds, onium salts, sulfoneimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, carboxylic acid ester compounds, quinonediazide compounds and the like;
Examples of the photobase generator include transition metal complexes such as cobalt, ortho-nitrobenzyl carbamates, α, α-dimethyl-3,5-dimethoxybenzyl carbamates, and acyloxyiminos.
[R] The proportion of the photosensitizer used varies depending on the type of compound to be used. For example, in the case of a photo radical polymerization initiator, it is preferably 1 to 40 parts by mass, and more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the [Q] polymer.
The proportion of the photoacid generator used is preferably 0.1 to 50 parts by mass, and more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the [Q] polymer.
The use ratio of the photoacid base is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the [Q] polymer.
 感放射線性樹脂組成物は、上述した[Q]重合体及び[R]感光剤に加え、さらに硬化促進剤、重合性不飽和化合物、界面活性剤、保存安定剤、接着助剤を含有させることができる。これら各任意成分は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The radiation sensitive resin composition may further contain a curing accelerator, a polymerizable unsaturated compound, a surfactant, a storage stabilizer, and an adhesion assistant, in addition to the above-mentioned [Q] polymer and [R] photosensitizer. Can. Each of these optional components may be used alone or in combination of two or more.
 感放射線性樹脂組成物は、[Q]重合体及び[R]感光剤の他、必要に応じて配合されるその他の任意成分を混合することにより調製される。感放射線性樹脂組成物は、好ましくは適当な溶媒に溶解されて溶液状態で用いられる。当該溶媒としては、例えば、アルコール、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルプロピオネート、ケトン、エステル等が挙げられる。
 溶媒の含有量は、得られる感放射線性樹脂組成物の塗布性、安定性等の観点から、感放射線性樹脂組成物の溶媒を除いた各成分の合計濃度が、5~50質量%となる量が好ましく、10~40質量%となる量がより好ましい。
The radiation sensitive resin composition is prepared by mixing other optional components blended as needed in addition to the [Q] polymer and the [R] photosensitizer. The radiation sensitive resin composition is preferably dissolved in a suitable solvent and used in a solution state. As the solvent, for example, alcohol, glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, propylene glycol monoalkyl ether Propionates, ketones, esters and the like can be mentioned.
The total concentration of the components excluding the solvent of the radiation sensitive resin composition is 5 to 50% by mass from the viewpoint of the coatability, stability, etc. of the radiation sensitive resin composition to be obtained Preferably, the amount is 10 to 40% by mass.
(液晶装置10の製造方法)
 液晶装置10は、以下の工程A~工程Eを含む方法によって製造することができる。
 工程A:基板上に層間絶縁膜21を形成する工程。
 工程B:層間絶縁膜21上に画素電極19を形成する工程。
 工程C:画素電極19上に、層間絶縁膜21の一部に接触するように液晶配向膜(第1配向膜32)を形成する工程。
 工程D:アレイ基板15と対向基板16とを、光重合性モノマーを含む液晶層を介して対向配置して液晶セルを構築する工程。
 工程E:液晶セルに光照射する工程。
(Method of Manufacturing Liquid Crystal Device 10)
The liquid crystal device 10 can be manufactured by a method including the following steps A to E.
Process A: A process of forming an interlayer insulating film 21 on a substrate.
Step B: A step of forming the pixel electrode 19 on the interlayer insulating film 21.
Step C: A step of forming a liquid crystal alignment film (first alignment film 32) on the pixel electrode 19 so as to be in contact with a part of the interlayer insulating film 21.
Step D: A step of forming a liquid crystal cell by opposingly arranging the array substrate 15 and the opposite substrate 16 via a liquid crystal layer containing a photopolymerizable monomer.
Step E: A step of irradiating the liquid crystal cell with light.
 図1及び図2に示す液晶装置10を製造するには、まず、ガラス基板等の透明基板18上に、フォトリソグラフィー法等の公知の方法により薄膜トランジスタ14、走査信号線12、映像信号線13を形成する。続いて、透明基板18のうち薄膜トランジスタ14及び信号線の形成面上に、層間絶縁膜形成用の感放射線性樹脂組成物を塗布し、層間絶縁膜21を形成する(工程A)。 In order to manufacture the liquid crystal device 10 shown in FIGS. 1 and 2, first, thin film transistors 14, scanning signal lines 12, and video signal lines 13 are formed on a transparent substrate 18 such as a glass substrate by a known method such as photolithography. Form. Subsequently, on the surface of the transparent substrate 18 on which the thin film transistor 14 and the signal line are to be formed, a radiation sensitive resin composition for forming an interlayer insulating film is applied to form an interlayer insulating film 21 (Step A).
 感放射線性樹脂組成物の塗布方法は特に限定されないが、例えばスプレー法、ロールコート法、スピンコート法、スリット塗布法、バー塗布法、インクジェット塗布法等の適宜の方法を採用することができる。これらのうち、均一な厚みの膜を形成できる点から、スピンコート法又はスリット塗布法が好ましい。感放射線性樹脂組成物の塗布後は、好ましくは塗布面を加熱(プレベーク)し、必要に応じて所定のパターンを有するフォトマスクを介して塗膜に露光した後、現像及びポストベークを行うことにより、硬化膜としての層間絶縁膜21が得られる。層間絶縁膜21を形成する際の各種条件については、例えば特開2015-92233号公報に記載の条件を採用することができる。 Although the application method of the radiation sensitive resin composition is not particularly limited, for example, an appropriate method such as a spray method, a roll coating method, a spin coating method, a slit coating method, a bar coating method, an inkjet coating method can be adopted. Among these, the spin coating method or the slit coating method is preferable in that a film having a uniform thickness can be formed. After application of the radiation sensitive resin composition, the coated surface is preferably heated (prebaked), and if necessary, exposed to light through a photomask having a predetermined pattern, followed by development and postbaking. Thus, the interlayer insulating film 21 as a cured film is obtained. As the various conditions for forming the interlayer insulating film 21, for example, the conditions described in JP-A-2015-92233 can be adopted.
 続く工程Bでは、透明基板18のうち工程Aで形成した層間絶縁膜21上に画素電極19を形成する。画素電極19は、スパッタリング法等の公知の方法を用いて、膜厚50~200nm、より好ましくは100~150nmのITO(酸化インジウム錫)膜やIZO(酸化インジウム亜鉛)膜を形成した後、フォトリソグラフィー法によってフィッシュボーン形状(「櫛歯形状」ともいう。)にパターニングする。これにより、フィッシュボーン型の画素電極19を基板上に形成し、アレイ基板15を作製する。 In the subsequent process B, the pixel electrode 19 is formed on the interlayer insulating film 21 formed in the process A of the transparent substrate 18. The pixel electrode 19 is formed by forming an ITO (indium tin oxide) film or an IZO (indium zinc oxide) film with a film thickness of 50 to 200 nm, more preferably 100 to 150 nm, using a known method such as sputtering. It is patterned in a fish bone shape (also referred to as “comb shape”) by a lithography method. Thereby, the fishbone-type pixel electrode 19 is formed on the substrate, and the array substrate 15 is manufactured.
 また、上記とは別に、ガラス基板等の透明基板28上に、フォトリソグラフィー法等の公知の方法を用いて、カラーフィルタ層29、オーバーコート層(図示略)及び共通電極31をこの順に形成し、対向基板16を作製する。 Further, separately from the above, a color filter layer 29, an overcoat layer (not shown) and a common electrode 31 are formed in this order on a transparent substrate 28 such as a glass substrate using a known method such as photolithography. , And the opposing substrate 16 are manufactured.
 続く工程Cでは、まず、電極が形成された基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法、フレキソ印刷法又はインクジェット印刷法により行う。液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。このようにして形成される膜の厚さは、好ましくは0.001~1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜又は液晶配向膜となる塗膜が形成される。 In the subsequent step C, first, a liquid crystal aligning agent is applied on the substrate on which the electrode is formed, and preferably a coated surface is formed to form a coating film on the substrate. The application of the liquid crystal aligning agent to the substrate is preferably performed by an offset printing method, a spin coating method, a roll coater method, a flexographic printing method, or an ink jet printing method on the electrode formation surface. After the application of the liquid crystal alignment agent, preheating (pre-baking) is preferably performed for the purpose of preventing dripping of the applied liquid crystal alignment agent. The prebake temperature is preferably 30 to 200 ° C., and the prebake time is preferably 0.25 to 10 minutes. Thereafter, a baking (post-baking) step is carried out to completely remove the solvent and, if necessary, thermally imidize the amic acid structure present in the polymer. The baking temperature (post-baking temperature) at this time is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes. The thickness of the film thus formed is preferably 0.001 to 1 μm. After the liquid crystal aligning agent is applied onto the substrate, the organic solvent is removed to form a liquid crystal alignment film or a coating film to be the liquid crystal alignment film.
 ここでは、層間絶縁膜21上に、多数のスリット部19cを有するパターン電極(画素電極19)が形成された基板の電極形成面上に液晶配向剤が塗布される。そのため、液体状の液晶配向剤が、スリット部19cの開口を介して層間絶縁膜21に接触することとなる。基板上に形成された液晶配向膜(第1配向膜32)は、液晶装置10の表示領域においてスリット部19cを介して層間絶縁膜21に接触している。
 なお、上記で形成した塗膜をそのまま液晶配向膜として使用してもよいが、液晶配向能を付与する処理(配向処理)を施してもよい。配向処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理や、液晶配向剤を用いて基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理等が挙げられる。
Here, a liquid crystal aligning agent is applied on the electrode formation surface of the substrate on which the pattern electrode (pixel electrode 19) having a large number of slits 19c is formed on the interlayer insulating film 21. Therefore, the liquid crystal alignment agent in liquid form comes in contact with the interlayer insulating film 21 through the opening of the slit portion 19c. The liquid crystal alignment film (first alignment film 32) formed on the substrate is in contact with the interlayer insulating film 21 in the display region of the liquid crystal device 10 via the slit portion 19c.
In addition, although the coating film formed above may be used as a liquid crystal aligning film as it is, you may perform the process (alignment process) which provides liquid crystal aligning ability. For example, rubbing treatment is performed by rubbing the coating film in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon and cotton, or light irradiation to the coating film formed on the substrate using a liquid crystal alignment agent. The optical alignment processing etc. which carry out and provide liquid crystal aligning ability to a coating film are mentioned.
 続く工程Dでは、層間絶縁膜21、画素電極19及び第1配向膜32がこの順に形成されたアレイ基板15と、共通電極31及び第2配向膜33がこの順に形成された対向基板16とを、互いの配向膜形成面が対向するように配置する。アレイ基板15と対向基板16との間には、光重合性モノマーが混入された液晶層17が配置されるようにし、これにより液晶セルを構築する。 In the subsequent step D, the array substrate 15 on which the interlayer insulating film 21, the pixel electrode 19 and the first alignment film 32 are formed in this order, and the opposing substrate 16 on which the common electrode 31 and the second alignment film 33 are formed in this order The alignment film forming surfaces are arranged to face each other. A liquid crystal layer 17 in which a photopolymerizable monomer is mixed is disposed between the array substrate 15 and the counter substrate 16 to construct a liquid crystal cell.
 液晶層17は、例えば、シール剤を塗布した一方の基板上に液晶組成物を滴下又は塗布し、その後、他方の基板を貼り合わせる方法(ODF方式)や、セルギャップを介して対向配置された一対の基板の周縁部をシール剤により貼り合わせ、基板表面及びシール剤によって囲まれたセルギャップ内に液晶組成物を注入充填した後、注入孔を封止する方法等により形成する。得られた液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷するアニール処理を行うことにより、液晶充填時の流動配向を除去することが好ましい。 The liquid crystal layer 17 is, for example, a method in which a liquid crystal composition is dropped or applied onto one of the substrates coated with a sealing agent, and then the other substrate is bonded (ODF method). Peripheral portions of the pair of substrates are attached by a sealing agent, and the liquid crystal composition is injected and filled in a cell gap surrounded by the substrate surface and the sealing agent, and then the injection holes are formed by a method such as sealing. The obtained liquid crystal cell is further heated to a temperature at which the liquid crystal used has an isotropic phase, and then annealing treatment is preferably performed to gradually cool to room temperature to remove the flow alignment at the time of filling the liquid crystal.
 光重合性モノマーとしては、光による重合性が高い点で、(メタ)アクリロイル基を2個以上有する化合物を好ましく用いることができる。その具体例としては、例えば、ビフェニル構造を有するジ(メタ)アクリレート、フェニル-シクロヘキシル構造を有するジ(メタ)アクリレート、2,2-ジフェニルプロパン構造を有するジ(メタ)アクリレート、ジフェニルメタン構造を有するジ(メタ)アクリレート、ジフェニルチオエーテル構造を有するジ-チオ(メタ)アクリレート等が挙げられる。光重合性モノマーの配合割合は、液晶層17の形成に使用される液晶組成物の全体量に対して、0.1~0.5質量%とすることが好ましい。なお、光重合性モノマーとしては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 As the photopolymerizable monomer, a compound having two or more (meth) acryloyl groups can be preferably used, from the viewpoint of high polymerizability by light. Specific examples thereof include, for example, di (meth) acrylate having a biphenyl structure, di (meth) acrylate having a phenyl-cyclohexyl structure, di (meth) acrylate having a 2,2-diphenylpropane structure, and di having a diphenylmethane structure. Examples include (meth) acrylates and di-thio (meth) acrylates having a diphenyl thioether structure. The proportion of the photopolymerizable monomer is preferably 0.1 to 0.5% by mass relative to the total amount of the liquid crystal composition used to form the liquid crystal layer 17. As the photopolymerizable monomer, one type may be used alone, or two or more types may be used in combination.
 続く工程Eでは、工程Bで得られた液晶セルに光照射する。液晶セルに対する光照射は、電極間に電圧を印加しない状態で行ってもよく、液晶層17中の液晶分子が駆動しない所定電圧を印加した状態で行ってもよく、あるいは、液晶分子が駆動される所定電圧を電極間に印加した状態で行ってもよい。好ましくは、一対の基板の有する電極間に電圧を印加した状態で光照射する。印加する電圧は、例えば5~50Vの直流又は交流とすることができる。照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。光の照射方向は、用いる放射線が直線偏光又は部分偏光である場合には、基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射方向は斜め方向とする。 In the subsequent step E, the liquid crystal cell obtained in step B is irradiated with light. The light irradiation to the liquid crystal cell may be performed in a state where no voltage is applied between the electrodes, may be performed in a state where a predetermined voltage not driving liquid crystal molecules in the liquid crystal layer 17 is applied, or the liquid crystal molecules are driven. And a predetermined voltage may be applied between the electrodes. Preferably, light irradiation is performed in a state where a voltage is applied between the electrodes of the pair of substrates. The voltage to be applied may be, for example, 5 to 50 V direct current or alternating current. As the light to be irradiated, for example, ultraviolet light and visible light including light of a wavelength of 150 to 800 nm can be used, but ultraviolet light including light of a wavelength of 300 to 400 nm is preferable. When the radiation used is linearly polarized light or partially polarized light, the light may be emitted from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof. When non-polarized radiation is irradiated, the irradiation direction is oblique.
 照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザー等を使用することができる。なお、上記の好ましい波長領域の紫外線は、光源を、例えばフィルター回折格子などと併用する手段等により得ることができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。 As a light source of irradiation light, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser etc. can be used, for example. In addition, the ultraviolet-ray of said preferable wavelength area can be obtained by the means etc. which use a light source, for example together with a filter diffraction grating etc. The light irradiation amount is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
 そして、液晶セルの外側表面に偏光板36、37を貼り合わせることにより液晶装置10が得られる。偏光板36、37としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板等が挙げられる。 Then, the polarizing plates 36 and 37 are attached to the outer surface of the liquid crystal cell to obtain the liquid crystal device 10. As the polarizing plates 36 and 37, a polarizing plate called a “H film” obtained by absorbing iodine while drawing and orienting polyvinyl alcohol is sandwiched by a cellulose acetate protective film, or a polarizing plate made of the H film itself, etc. Can be mentioned.
 本実施形態では、溶剤成分として特定溶剤を含有する液晶配向剤を用いて第1配向膜32が形成されている。これにより、スリット部19cを介して第1配向膜32が層間絶縁膜21に接触している場合にも、信頼性に優れた液晶装置10を得ることができる。こうした効果が得られた理由は定かではないが、一つの理由として、液晶配向剤の調製に用いた特定溶剤は層間絶縁膜21に与える影響が小さく、これにより層間絶縁膜21の性能低下が抑制されたことが考えられる。特に、PSA技術では、MVAモードの応答特性を改善するために、例えば数μm程度の微細なストライプ状の電極パターンが形成される。こうした微細な電極パターンが基板上に形成されている場合、液晶配向剤が層間絶縁膜21に接触することによって層間絶縁膜21が膨潤して膜の厚みが僅かでも変化すると、画素電極19にも変形が起きやすく、素子性能の低下を招くことが考えられる。この点、特定溶剤によれば、層間絶縁膜21の膨潤が抑制されることによって画素電極19への影響を極力低減することができ、これにより素子性能の低下を十分抑制できたと推測される。また、液晶配向剤が層間絶縁膜21に接触している状態において層間絶縁膜21から液晶配向剤への不純物成分の溶出を抑制でき、これにより素子性能の低下を十分に抑制できたことも推測される。 In the present embodiment, the first alignment film 32 is formed using a liquid crystal alignment agent containing a specific solvent as a solvent component. Thereby, even when the first alignment film 32 is in contact with the interlayer insulating film 21 through the slit portion 19 c, the liquid crystal device 10 having excellent reliability can be obtained. The reason why such an effect is obtained is not clear, but one of the reasons is that the specific solvent used for the preparation of the liquid crystal alignment agent has little influence on the interlayer insulating film 21 and thereby the performance deterioration of the interlayer insulating film 21 is suppressed It is thought that it was done. In particular, in PSA technology, in order to improve the response characteristics of the MVA mode, for example, a fine stripe-like electrode pattern of about several μm is formed. When such a fine electrode pattern is formed on the substrate, the liquid crystal aligning agent contacts the interlayer insulating film 21, and when the interlayer insulating film 21 swells and the thickness of the film slightly changes, the pixel electrode 19 is also formed. It is conceivable that deformation is likely to occur, leading to a decrease in device performance. In this respect, according to the specific solvent, the swelling of the interlayer insulating film 21 can be suppressed, and the influence on the pixel electrode 19 can be reduced as much as possible, whereby it is presumed that the deterioration of the device performance can be sufficiently suppressed. In addition, it is presumed that the elution of the impurity component from the interlayer insulating film 21 to the liquid crystal aligning agent can be suppressed in the state where the liquid crystal aligning agent is in contact with the interlayer insulating film 21 and thereby the deterioration of the element performance can be sufficiently suppressed. Be done.
(第2実施形態)
 次に、第2実施形態について、第1実施形態との相違点を中心に説明する。本実施形態では、アレイ基板15にカラーフィルタ層が設けられている点で上記第1実施形態と相違する。
Second Embodiment
Next, the second embodiment will be described focusing on differences from the first embodiment. The present embodiment is different from the first embodiment in that a color filter layer is provided on the array substrate 15.
 図3は、第2実施形態の素子構造の一部を模式的に示す断面図である。図3に示す液晶装置10は、第1実施形態の液晶装置と同様に、アレイ基板15と対向基板16とが液晶層17を介して対向配置された構造を有する。アレイ基板15は、透明基板18上にTFT14と、着色パターン29a及び層間絶縁膜29bを含んで構成されるカラーフィルタ層29と、を有する。着色パターン29aは、赤(R)、緑(G)及び青(B)で着色されたサブ画素により構成され、フォトリソグラフィー等の公知の方法により作製されている。層間絶縁膜29bは、第1実施形態で説明した感放射線性樹脂組成物を用いて形成されている。この層間絶縁膜29bは、着色パターン29aを保護するとともに、優れた特性を示す画素電極19を形成することを目的として設けられている。画素電極19は、層間絶縁膜29b上に配置される。 FIG. 3 is a cross-sectional view schematically showing a part of the element structure of the second embodiment. Similar to the liquid crystal device of the first embodiment, the liquid crystal device 10 shown in FIG. 3 has a structure in which the array substrate 15 and the counter substrate 16 are disposed to face each other via the liquid crystal layer 17. The array substrate 15 has the TFT 14 and the color filter layer 29 configured to include the colored pattern 29 a and the interlayer insulating film 29 b on the transparent substrate 18. The colored pattern 29a is composed of sub-pixels colored with red (R), green (G) and blue (B), and is produced by a known method such as photolithography. The interlayer insulating film 29 b is formed using the radiation sensitive resin composition described in the first embodiment. The interlayer insulating film 29 b is provided for the purpose of protecting the colored pattern 29 a and forming the pixel electrode 19 exhibiting excellent characteristics. The pixel electrode 19 is disposed on the interlayer insulating film 29 b.
 この場合にも、層間絶縁膜29b上にフィッシュボーン形状のパターン電極(画素電極19)が形成された基板の電極形成面上に第1配向膜32が形成されることにより、第1配向膜32がスリット部19cにおいて層間絶縁膜29bに接触することとなる。この点、上述した液晶配向剤を用いて第1配向膜32を形成することにより、信頼性に優れた液晶装置10が得られる。 Also in this case, the first alignment film 32 is formed on the electrode formation surface of the substrate in which the fishbone-shaped pattern electrode (pixel electrode 19) is formed on the interlayer insulating film 29b. Is in contact with the interlayer insulating film 29b at the slit portion 19c. In this respect, by forming the first alignment film 32 using the liquid crystal alignment agent described above, the liquid crystal device 10 having excellent reliability can be obtained.
(他の実施形態)
 ・上記第1実施形態では、アレイ基板15側の画素電極19をパターン電極とし、スリット部19cで層間絶縁膜21と第1配向膜32とが接触していたが、対向電極16側についてもパターン電極及び層間絶縁膜を設け、スリット部においてパターン電極と層間絶縁膜とが接触しているようにしてもよい。
(Other embodiments)
In the first embodiment, the pixel electrode 19 on the array substrate 15 side is used as a pattern electrode, and the interlayer insulating film 21 and the first alignment film 32 are in contact with each other in the slit portion 19c. An electrode and an interlayer insulating film may be provided, and the pattern electrode and the interlayer insulating film may be in contact with each other in the slit portion.
 以上詳述した本発明の液晶装置10は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光装置等として用いることができる。 The liquid crystal device 10 of the present invention described in detail above can be effectively applied to various applications, for example, watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones It can be used as various display devices such as smartphones, various monitors, liquid crystal televisions, information displays, light control devices and the like.
 以下、実施例に基づき本発明の実施形態をより詳しく説明するが、以下の実施例によって本発明が限定的に解釈されるものではない。 Hereinafter, although an embodiment of the present invention is described in more detail based on an example, the present invention is not limitedly interpreted by the following example.
 以下の例において、重合体溶液中のポリイミドのイミド化率、重合体溶液の溶液粘度、重合体の重量平均分子量、及びエポキシ当量は以下の方法により測定した。
[ポリイミドのイミド化率]
 ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH-NMRを測定した。得られたH-NMRスペクトルから、下記数式(1)によりイミド化率[%]を求めた。
  イミド化率[%]=(1-(A/(A×α)))×100  …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
[重合体の重量平均分子量]
 重量平均分子量は、以下の条件におけるゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン
 温度:40℃
 圧力:68kgf/cm
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
In the following examples, the imidation ratio of the polyimide in the polymer solution, the solution viscosity of the polymer solution, the weight average molecular weight of the polymer, and the epoxy equivalent were measured by the following methods.
[Imidation rate of polyimide]
The solution of the polyimide was poured into pure water, and the obtained precipitate was sufficiently dried under reduced pressure at room temperature, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. The imidation ratio [%] was determined from the obtained 1 H-NMR spectrum by the following formula (1).
Imidation ratio [%] = (1− (A 1 / (A 2 × α))) × 100 (1)
(In the formula (1), A 1 is a proton-derived peak area of an NH group appearing in the vicinity of a chemical shift of 10 ppm, A 2 is a peak area derived from other protons, and α is a precursor of a polymer (polyamic acid It is the number ratio of other protons to one proton of NH group in).
[Weight average molecular weight of polymer]
The weight average molecular weight is a polystyrene conversion value measured by gel permeation chromatography under the following conditions.
Column: Tosoh Corp. TSKgel GRC XLII
Solvent: Tetrahydrofuran Temperature: 40 ° C.
Pressure: 68 kgf / cm 2
[Epoxy equivalent]
The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
 以下の例で使用する略号を示す。なお、以下では、式Xで表される化合物を単に「化合物X」と示すことがある。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
The abbreviations used in the following examples are shown. In the following, the compound represented by the formula X may be simply referred to as “compound X”.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
1.感放射線性樹脂組成物(層間絶縁膜形成用)の調製
(1)[Q]重合体の合成
[合成例1:重合体(Q-1)の合成]
 冷却管及び撹拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)8質量部、及びジエチレングリコールメチルエチルエーテル220質量部を仕込んだ。引き続き、メタクリル酸25質量部、メタクリル酸3,4-エポキシシクロヘキシル45質量部、及びスチレン30質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を70℃に上昇させ、この温度を5時間保持して重合することにより重合体(Q-1)を含有する溶液を得た。重合体(Q-1)のMwは8000であった。
1. Preparation of radiation sensitive resin composition (for formation of interlayer insulating film) (1) Synthesis of [Q] polymer [Synthesis example 1: Synthesis of polymer (Q-1)]
In a flask equipped with a condenser and a stirrer, 8 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by mass of diethylene glycol methyl ethyl ether were charged. Subsequently, 25 parts by mass of methacrylic acid, 45 parts by mass of 3,4-epoxycyclohexyl methacrylate and 30 parts by mass of styrene are charged, and after nitrogen substitution, the temperature of the solution is raised to 70 ° C. while gently stirring. Polymerization was carried out by maintaining the temperature for 5 hours to obtain a solution containing a polymer (Q-1). The Mw of the polymer (Q-1) was 8,000.
[合成例2:重合体(Q-2)の合成]
 冷却管及び撹拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)8質量部、及びジエチレングリコールメチルエチルエーテル220質量部を仕込んだ。引き続き、メタクリル酸15質量部、メタクリル酸3,4-エポキシシクロヘキシル40質量部、スチレン20質量部、テトラヒドロフルフリルメタクリレート15質量部、及びn-ラウリルメタクリレート10質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を70℃に上昇させ、この温度を5時間保持して重合することにより重合体(Q-2)を含有する溶液を得た。重合体(Q-2)のMwは8000であった。
Synthesis Example 2: Synthesis of Polymer (Q-2)
In a flask equipped with a condenser and a stirrer, 8 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by mass of diethylene glycol methyl ethyl ether were charged. Subsequently, 15 parts by mass of methacrylic acid, 40 parts by mass of 3,4-epoxycyclohexyl methacrylate, 20 parts by mass of styrene, 15 parts by mass of tetrahydrofurfuryl methacrylate, and 10 parts by mass of n-lauryl methacrylate are charged and replaced with nitrogen, and then relaxed. The temperature of the solution was raised to 70.degree. C., and the temperature was maintained for 5 hours while performing polymerization to obtain a solution containing a polymer (Q-2). The Mw of the polymer (Q-2) was 8,000.
[合成例3:重合体(Q-3)の合成]
 冷却管及び撹拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)8質量部、及びジエチレングリコールメチルエチルエーテル220質量部を仕込んだ。引き続き、メタクリル酸グリシジル40質量部、4-(α-ヒドロキシヘキサフルオロイソプロピル)スチレン20質量部、スチレン10質量部、及びN-シクロヘキシルマレイミド30質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を70℃に上昇させ、この温度を5時間保持して重合することにより重合体(Q-3)を含有する溶液を得た。重合体(Q-3)のMwは8000であった。
Synthesis Example 3: Synthesis of Polymer (Q-3)
In a flask equipped with a condenser and a stirrer, 8 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by mass of diethylene glycol methyl ethyl ether were charged. Subsequently, 40 parts by mass of glycidyl methacrylate, 20 parts by mass of 4- (α-hydroxyhexafluoroisopropyl) styrene, 10 parts by mass of styrene and 30 parts by mass of N-cyclohexylmaleimide are charged, and after substituting with nitrogen, they are gently stirred. The temperature of the solution was raised to 70 ° C., and the temperature was maintained for 5 hours to carry out polymerization to obtain a solution containing a polymer (Q-3). Mw of the polymer (Q-3) was 8,000.
(2)感放射線性樹脂組成物の調製
[調製例1]
 上記合成例1で得られた重合体(Q-1)を含有する溶液(重合体(Q-1)が100質量部(固形分)に相当する量)に、1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 イルガキュア(登録商標)OXE01)を20質量部加え、さらにジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物(KAYARAD(登録商標)DPHA、日本化薬社製)を100質量部加えて混合した。固形分濃度が30質量%となるようにジエチレングリコールエチルメチルエーテルを加えて溶解させた後、口径0.2μmのメンブランフィルタで濾過して、感放射線性樹脂組成物(V-1)を調製した。
[調製例2~4]
 配合組成を下記表1に記載の通りに変更した点以外は調製例1と同様にして感放射線性樹脂組成物(V-2)~(V-4)をそれぞれ調製した。なお、下記表1において、「-」は該当成分を配合していないことを意味する(以下の表についても同じ)。
(2) Preparation of radiation sensitive resin composition [Preparation Example 1]
In a solution containing the polymer (Q-1) obtained in the above Synthesis Example 1 (an amount corresponding to 100 parts by mass (solid content) of the polymer (Q-1)), 1,2-octanedione 1- 20 parts by mass of [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF, IRGACURE (registered trademark) OXE01) was added, and a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (KAYARAD) 100 parts by mass of (registered trademark) DPHA (manufactured by Nippon Kayaku Co., Ltd.) was added and mixed. Diethylene glycol ethyl methyl ether was added and dissolved so that the solid content concentration was 30% by mass, followed by filtration with a membrane filter of 0.2 μm in diameter to prepare a radiation sensitive resin composition (V-1).
Preparation Examples 2 to 4
Radiation sensitive resin compositions (V-2) to (V-4) were prepared in the same manner as in Preparation Example 1 except that the composition was changed as described in Table 1 below. In Table 1 below, "-" means that the corresponding component is not blended (the same applies to the following tables).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1中、化合物の略称は以下に示す通りである。
 R-1:1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製  イルガキュア(登録商標)OXE01)
 R-2:4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と、1,2-ナフトキノンジアジド-5-スルホン酸クロリド(2.0モル)との縮合物
 U-1:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物(KAYARAD(登録商標)DPHA、日本化薬社製)
In Table 1, the abbreviation of the compounds is as follows.
R-1: 1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Irgacure (registered trademark) OXE01)
R-2: 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide- Condensate with 5-sulfonic acid chloride (2.0 mol) U-1: mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.)
2.重合体の合成(液晶配向剤用)
[合成例5:重合体(PI-1)の合成]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物100モル部、並びに、ジアミンとしてコレスタニルオキシ-2,4-ジアミノベンゼン20モル部、3,5-ジアミノ安息香酸50モル部、及び化合物(d-8)30モル部をN-メチル-2-ピロリドン(NMP)に溶解し、室温で6時間反応を行い、ポリアミック酸を20質量%含有する溶液を得た。次いで、得られたポリアミック酸溶液にピリジン及び無水酢酸を添加し、化学イミド化を行った。化学イミド化後の反応溶液を濃縮し、濃度が10質量%となるようにNMPにて調製した。得られたポリイミド(重合体(PI-1)とする。)のイミド化率は約75%であった。
[合成例6~8]
 使用するテトラカルボン酸二無水物及びジアミンの種類及び量を下記表2の通りに変更した以外は合成例5と同様にしてポリイミド(重合体(PI-2)~重合体(PI-4))を合成した。なお、表2中、括弧内の数値は、重合体の合成に使用したテトラカルボン酸二無水物の合計100モル部に対する各化合物の使用割合[モル部]を表す。
2. Polymer synthesis (for liquid crystal aligning agent)
Synthesis Example 5 Synthesis of Polymer (PI-1)
100 moles of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic acid dianhydride, 20 moles of cholestanyloxy-2,4-diaminobenzene as diamine, 50 moles of 3,5-diaminobenzoic acid A molar part and 30 molar parts of compound (d-8) were dissolved in N-methyl-2-pyrrolidone (NMP), and reaction was carried out at room temperature for 6 hours to obtain a solution containing 20% by mass of polyamic acid. Subsequently, pyridine and acetic anhydride were added to the obtained polyamic acid solution to carry out chemical imidation. The reaction solution after chemical imidization was concentrated and prepared with NMP so that the concentration was 10% by mass. The imidation ratio of the obtained polyimide (referred to as polymer (PI-1)) was about 75%.
Synthesis Examples 6 to 8
A polyimide (polymer (PI-2) to polymer (PI-4)) was prepared in the same manner as in Synthesis Example 5 except that the type and amount of tetracarboxylic acid dianhydride and diamine used were changed as shown in Table 2 below. Was synthesized. In Table 2, the numerical values in the parentheses represent the use ratio [mol part] of each compound to the total of 100 mol parts of tetracarboxylic acid dianhydride used in the synthesis of the polymer.
[合成例9:重合体(PAA-1)の合成]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物70モル部、及び1,2,3,4-シクロペンタンテトラカルボン酸二無水物30モル部、並びに、ジアミンとしてコレスタニルオキシ-2,4-ジアミノベンゼン20モル部、化合物(d-12)30モル部、4,4’-ジアミノジフェニルメタン40モル部、及び4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン10モル部をNMPに溶解し、室温で6時間反応を行い、ポリアミック酸を20質量%含有する溶液を得た。ここで得られたポリアミック酸を重合体(PAA-1)とした。
[合成例10]
 使用するテトラカルボン酸二無水物及びジアミンの種類及び量を下記表2の通りに変更した以外は合成例9と同様にしてポリアミック酸(これを重合体(PAA-2)とする。)を合成した。
Synthesis Example 9 Synthesis of Polymer (PAA-1)
70 molar parts of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic acid dianhydride, and 30 molar parts of 1,2,3,4-cyclopentane tetracarboxylic acid dianhydride, and coreless as diamine 20 mol parts of tanyloxy-2,4-diaminobenzene, 30 mol parts of compound (d-12), 40 mol parts of 4,4′-diaminodiphenylmethane, and 4,4 ′-[4,4′-propane-1, Ten parts by mole of 3-diylbis (piperidine-1,4-diyl) dianiline was dissolved in NMP and reacted at room temperature for 6 hours to obtain a solution containing 20% by mass of polyamic acid. The polyamic acid obtained here was used as a polymer (PAA-1).
Synthesis Example 10
A polyamic acid (this is referred to as a polymer (PAA-2)) is synthesized in the same manner as in Synthesis Example 9 except that the type and amount of tetracarboxylic acid dianhydride and diamine used are changed as shown in Table 2 below. did.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[合成例11]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、化合物(s-1)100g、メチルイソブチルケトン500g、及びトリエチルアミン10gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で撹拌しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、反応性ポリオルガノシロキサン(ESSQ-1)を粘調な透明液体として得た。この反応性ポリオルガノシロキサンについて、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。得られた反応性ポリオルガノシロキサン(ESSQ-1)の重量平均分子量Mwは3000、エポキシ当量は190g/モルであった。
[合成例12,13]
 使用するモノマーの種類及び量を下記表3の通りに変更した以外は合成例11と同様にして反応性ポリオルガノシロキサン(重合体(ESSQ-2)及び重合体(ESSQ-3))を合成した。なお、表3中、括弧内の数値は、重合体の合成に使用したモノマーの合計100モル部に対する各化合物の使用割合[モル部]を表す。
Synthesis Example 11
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 100 g of compound (s-1), 500 g of methyl isobutyl ketone and 10 g of triethylamine were charged and mixed at room temperature. Next, 100 g of deionized water was added dropwise over 30 minutes from the dropping funnel, and then reaction was performed at 80 ° C. for 6 hours while stirring under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2 mass% aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain a reactive polyorganosiloxane ( The ESSQ-1) was obtained as a viscous transparent liquid. 1 H-NMR analysis of this reactive polyorganosiloxane shows that a peak based on epoxy group is obtained around chemical shift (δ) = 3.2 ppm, and no side reaction of epoxy group occurs during the reaction That was confirmed. The weight average molecular weight Mw of the obtained reactive polyorganosiloxane (ESSQ-1) was 3000, and the epoxy equivalent was 190 g / mol.
[Synthesis example 12, 13]
Reactive polyorganosiloxanes (polymer (ESSQ-2) and polymer (ESSQ-3)) were synthesized in the same manner as in Synthesis Example 11 except that the type and amount of monomers used were changed as shown in Table 3 below. . In Table 3, the numerical values in the parentheses represent the use ratio [mol part] of each compound to the total 100 mol parts of the monomers used for the synthesis of the polymer.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[合成例14]
 500mLの三口フラスコに、反応性ポリオルガノシロキサン(ESSQ-1)を10.0g、溶媒としてメチルイソブチルケトン300g、変性成分として化合物(c-1)を16g及び化合物(c-3)を16g、並びに触媒としてUCAT 18X(商品名、サンアプロ(株)製)0.10gを仕込み、100℃で48時間撹拌下に反応を行った。反応終了後、反応混合物に酢酸エチルを加えて得た溶液を3回水洗し、硫酸マグネシウムを用いて有機層を乾燥した後、溶剤を留去することにより、重合性基含有ポリオルガノシロキサン(PSQ-1)を75g得た。得られた重合体の重量平均分子量Mwは6000であった。
[合成例15,16]
 使用する反応性ポリオルガノシロキサン及び変性成分の種類及び量を下記表4の通りに変更した以外は合成例14と同様にして重合性基含有ポリオルガノシロキサン(重合体(PSQ-2)及び重合体(PSQ-3))を合成した。表4中、括弧内の数値は、重合体の合成に使用したモノマーの合計100モル部に対する各化合物の使用割合[モル部]を表す。
Synthesis Example 14
In a 500 mL three-necked flask, 10.0 g of reactive polyorganosiloxane (ESSQ-1), 300 g of methyl isobutyl ketone as a solvent, 16 g of compound (c-1) as a modifying component and 16 g of compound (c-3), As a catalyst, 0.10 g of UCAT 18X (trade name, manufactured by San-Apro Co., Ltd.) was charged, and the reaction was performed at 100 ° C. for 48 hours with stirring. After completion of the reaction, a solution obtained by adding ethyl acetate to the reaction mixture is washed three times with water, dried using magnesium sulfate, and then the solvent is distilled off to obtain a polymerizable group-containing polyorganosiloxane (PSQ). Obtained 75 g of -1). The weight average molecular weight Mw of the obtained polymer was 6000.
Synthesis Examples 15 and 16
Polymerizable group-containing polyorganosiloxane (polymer (PSQ-2) and polymer) in the same manner as in Synthesis Example 14 except that the type and amount of reactive polyorganosiloxane and modifying component used were changed as shown in Table 4 below. (PSQ-3)) was synthesized. In Table 4, the numerical values in the parenthesis represent the use ratio [mol part] of each compound to the total 100 mol parts of the monomers used for the synthesis of the polymer.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
3.液晶配向剤及び液晶表示素子の評価
[実施例1]
(1)液晶配向剤の調製
 重合体成分として重合体(PI-1)を含有する溶液に、重合体(PSQ-1)を、重合体(PI-1):重合体(PSQ-1)=95:5(質量比)となるように加え、さらに溶剤としてNMP、ジエチレングリコールジエチルエーテル(DEDG)及びダイアセトンアルコール(DAA)を加えて十分に撹拌し、溶媒組成がNMP:DEDG:DAA=50:30:20(質量比)、固形分濃度6.5質量%の溶液とした。この溶液を孔径1μmのフィルターを用いてろ過することにより液晶配向剤(W-1)を調製した。
3. Evaluation of Liquid Crystal Alignment Agent and Liquid Crystal Display Device [Example 1]
(1) Preparation of Liquid Crystal Alignment Agent In a solution containing a polymer (PI-1) as a polymer component, a polymer (PSQ-1) is prepared by using a polymer (PI-1): a polymer (PSQ-1) = Further, NMP, diethylene glycol diethyl ether (DEDG) and diacetone alcohol (DAA) are added as a solvent so as to be 95: 5 (mass ratio), and the mixture is sufficiently stirred, and the solvent composition is NMP: DEDG: DAA = 50: It was set as a solution of 30:20 (mass ratio) and solid content concentration 6.5 mass%. The solution was filtered using a filter with a pore size of 1 μm to prepare a liquid crystal aligning agent (W-1).
(2)液晶組成物(LC-1)の調製
 ネマチック液晶(メルク社製、MLC-6608)10gに対し、下記式(RM-1)で表される化合物が液晶組成物の全構成成分の全量に対して0.3質量%となるように添加し、混合することにより液晶組成物(LC-1)を得た。
Figure JPOXMLDOC01-appb-C000018
(2) Preparation of Liquid Crystal Composition (LC-1) To 10 g of Nematic Liquid Crystal (MLC-6608, manufactured by Merck), the compound represented by the following formula (RM-1) is the total amount of all components of the liquid crystal composition The liquid crystal composition (LC-1) was obtained by adding so as to be 0.3% by mass with respect to and mixing.
Figure JPOXMLDOC01-appb-C000018
(3)液晶表示素子の製造
 スピンナーを用い、ガラス基板(「コーニング7059」(コーニング社製))上に感放射線性樹脂組成物(V-1)を塗布した後、90℃のクリーンオーブン内で10分間プレベークを行い、ガラス基板上に膜厚2.0μmの塗膜をそれぞれ形成した。次いで、UV(紫外)露光機(TOPCON Deep-UV露光機TME-400PRJ)を用い、パターンマスクを介してUV光を100mJ照射した。その後、2.38質量%の濃度のテトラメチルアンモニウムヒドロキシド水溶液(現像液)を用い、液盛り法によって25℃で100秒間の現像処理を行った。現像処理後、超純水で1分間、塗膜を流水洗浄し、乾燥させて基板上にパターニングされた塗膜を形成した後、オーブンにて230℃で30分間加熱(ポストベーク)して硬化させた。次に、キャノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、フォトマスクを介さずに各塗膜の全面に500J/mの露光量で露光を行った。その後、230℃で30分間ポストベークを行って各塗膜を硬化させ、層間絶縁膜を形成した。
(3) Production of Liquid Crystal Display Device After the radiation sensitive resin composition (V-1) was applied on a glass substrate ("Corning 7059" (manufactured by Corning)) using a spinner, it was then carried out in a clean oven at 90.degree. Prebaking was performed for 10 minutes to form a coating film having a film thickness of 2.0 μm on a glass substrate. Then, 100 mJ of UV light was irradiated through a pattern mask using a UV (ultraviolet) exposure device (TOPCON Deep-UV exposure device TME-400PRJ). Thereafter, using a tetramethylammonium hydroxide aqueous solution (developing solution) having a concentration of 2.38% by mass, development was carried out at 25 ° C. for 100 seconds by the liquid deposition method. After development processing, the coated film is washed with running ultrapure water for 1 minute with running water, dried to form a patterned coated film on a substrate, and then heated (post-baked) at 230 ° C. for 30 minutes in an oven for curing I did. Next, using a PLA-501F exposure apparatus (super high pressure mercury lamp) manufactured by Canon Inc., the entire surface of each coating was exposed at an exposure amount of 500 J / m 2 without using a photomask. Thereafter, post-baking was performed at 230 ° C. for 30 minutes to cure each coating film, thereby forming an interlayer insulating film.
 次いで、層間絶縁膜が形成されたガラス基板上に、フィッシュボーン状にパターニングされたITO電極を形成した。本実施例では、ITO電極の電極パターンを、ライン/スペース=3.5μm/3.5μmのフィッシュボーン状とした。ここで使用したITO電極の電極パターンを図4に示した。また、同様の操作を行うことにより、パターンを有さないITO電極を有するガラス基板を準備した。これら一対の基板のうち、パターンを有さないITO電極を有するガラス基板の電極側表面に、3.5μmカラムスペーサーを形成した。 Next, an ITO electrode patterned in a fishbone shape was formed on the glass substrate on which the interlayer insulating film was formed. In this example, the electrode pattern of the ITO electrode was in a fishbone shape of line / space = 3.5 μm / 3.5 μm. The electrode pattern of the ITO electrode used here is shown in FIG. Moreover, the glass substrate which has an ITO electrode which does not have a pattern was prepared by performing the same operation. Of the pair of substrates, a 3.5 μm column spacer was formed on the electrode side surface of a glass substrate having an ITO electrode having no pattern.
 次いで、一対の基板のそれぞれの電極形成面上に液晶配向剤(W-1)をスピンコートした後、80℃のホットプレート上で1分間加熱(プレベーク)して溶媒を除去し、その後、230℃のホットプレート上で15分間加熱(ポストベーク)して、平均膜厚100nmの塗膜を形成した。この塗膜につき、超純水中で1分間超音波洗浄を行った後、100℃クリーンオーブン中で10分間乾燥し、液晶配向膜を有する一対の基板を得た。 Subsequently, after spin-coating a liquid crystal aligning agent (W-1) on the electrode formation surface of each of a pair of board | substrates, heating (prebaking) is carried out for 1 minute on a hot plate at 80 degreeC, Then, 230 The film was heated (post-baked) on a hot plate for 15 minutes to form a coating having an average film thickness of 100 nm. The coated film was subjected to ultrasonic cleaning in ultrapure water for 1 minute and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a pair of substrates having a liquid crystal alignment film.
 次に、パターニングされたITO電極を有するガラス基板のITO面の外縁に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、エポキシ樹脂接着剤の内側の面に、液晶組成物(LC-1)を6点滴下(縦2点×横3点とし、各点の間隔は上下左右10mmとし、各点の塗布量は0.6mgとした。)した。この基板ともう1枚のガラス基板とが相対するように重ね合わせて圧着し、接着剤を硬化させて液晶セルを製造した。得られた液晶セルにつき、後述する「PSAプロセス-1」に従って紫外線照射及びアニールを行うことにより評価用液晶セルを作製した。
(PSAプロセス-1)
 液晶セルにつき、電極間に周波数60Hzの交流20Vppを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、80mWの紫外線を50秒間照射する。続いて、電圧を印加していない状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、3.5mWの紫外線を30分間照射する。
最後に、液晶セルを120℃のクリーンオーブンに10分間入れ、アニールを行う。なお、照射量は、波長365nm基準で計測される光量計を用いて計測した値である。
Next, after applying an aluminum oxide sphere-containing epoxy resin adhesive having a diameter of 5.5 μm to the outer edge of the ITO surface of the glass substrate having a patterned ITO electrode, a liquid crystal composition (the inner surface of the epoxy resin adhesive) LC-1) was dropped at 6 points (2 points vertically × 3 points horizontally, the distance between the points was 10 mm in the vertical and horizontal directions, and the amount of application at each point was 0.6 mg). The substrate and another glass substrate were laminated so as to face each other and pressed, and the adhesive was cured to manufacture a liquid crystal cell. The obtained liquid crystal cell was irradiated with ultraviolet light and annealed in accordance with “PSA process 1” described later to prepare a liquid crystal cell for evaluation.
(PSA process-1)
For the liquid crystal cell, an alternating current 20 Vpp of frequency 60 Hz is applied between the electrodes, and while the liquid crystal is driven, ultraviolet light of 80 mW is irradiated for 50 seconds using an ultraviolet irradiation device using a metal halide lamp as a light source. Subsequently, in a state where no voltage is applied, 3.5 mW of ultraviolet light is irradiated for 30 minutes using an ultraviolet irradiation device using a metal halide lamp as a light source.
Finally, the liquid crystal cell is placed in a clean oven at 120 ° C. for 10 minutes to perform annealing. The irradiation amount is a value measured using an actinometer measured at a wavelength of 365 nm.
(4)電圧保持率(VHR)の評価
 上記(3)で製造した評価用液晶セルを恒温槽中に置き、60℃において5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率(VHR)を、東陽テクニカ社製の「VHR-1」により測定した。このとき、VHRが96%以上であった場合を「非常に良好(◎)」、93%以上96%未満であった場合を「良好(○)」、90%以上93%未満であった場合を「可(△)」、90%以下であった場合を「不良(×)」と評価した。その結果、この実施例ではVHR=97%であり、「非常に良好(◎)」の評価であった。
(4) Evaluation of voltage holding ratio (VHR) The liquid crystal cell for evaluation manufactured in (3) above is placed in a thermostatic chamber, and a voltage of 5 V is applied at 60 ° C. for 60 microseconds and a span of 167 milliseconds. After that, the voltage holding ratio (VHR) after 167 milliseconds from the release of the application was measured using “VHR-1” manufactured by Toyo Corporation. At this time, "very good (◎)" when VHR is 96% or more, "good (○)" when 93% or more and less than 96%, and 90% or more and less than 93% The case where it was "Poor" (△) and 90% or less was evaluated as "Defect (x)". As a result, in this example, VHR = 97%, which is an evaluation of “very good (◎)”.
[実施例2~22、比較例1、2]
 使用する重合体及び溶剤の種類及び量を下記表5の通り変更した点以外は上記と同様の操作を行い、液晶配向剤をそれぞれ調製した。また、層間絶縁膜の作製に用いた感放射線性樹脂組成物を下記表5に示す組成物に変更した点、及び各例で調製した液晶配向剤を用いて液晶配向膜を作製した点以外は上記と同様にして評価用液晶セルを製造するとともに、得られた評価用液晶セルを用いて電圧保持率の評価を行った。その結果を下記表5に示した。
[Examples 2 to 22, Comparative Examples 1 and 2]
The same procedure as described above was carried out except that the type and amount of the polymer and solvent used were changed as shown in Table 5 below, to prepare liquid crystal aligning agents. Moreover, except that the radiation sensitive resin composition used for preparation of the interlayer insulating film was changed to the composition shown in Table 5 below and that the liquid crystal alignment film was prepared using the liquid crystal aligning agent prepared in each example The liquid crystal cell for evaluation was manufactured in the same manner as described above, and the voltage holding ratio was evaluated using the obtained liquid crystal cell for evaluation. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表5中、重合体欄の括弧内の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体の配合割合[質量部]を示す。溶剤組成欄の数値は、液晶配向剤の調製に使用した溶剤の全体100質量部に対する各化合物の配合割合[質量部]を示す。溶剤の略称は以下の通りである(下記表6についても同じ)。
NMP:N-メチル-2-ピロリドン
NEP:N-エチル-2-ピロリドン
DMI:1,3-ジメチル-2-イミダゾリジノン
EQM:3-メトキシ-N,N-ジメチルプロパンアミド
BC:ブチルセロソルブ
DEDG:ジエチレングリコールジエチルエーテル
PGDAc:プロピレングリコールジアセテート
DPM:ジプロピレングリコールモノメチルエーテル
DAA:ダイアセトンアルコール
PG:プロピレングリコールモノブチルエーテル
DIPE:ジイソペンチルエーテル
In Table 5, the numerical values in the parenthesis of the polymer column show the proportions [parts by mass] of each polymer with respect to a total of 100 parts by mass of the polymer components used for the preparation of the liquid crystal aligning agent. The numerical values in the solvent composition column indicate the blending proportions (parts by mass) of the respective compounds with respect to 100 parts by mass of the solvent used for the preparation of the liquid crystal aligning agent. Abbreviated solvents are as follows (the same applies to Table 6 below).
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone DMI: 1,3-dimethyl-2-imidazolidinone EQM: 3-methoxy-N, N-dimethylpropanamide BC: butyl cellosolve DE DG: diethylene glycol Diethyl ether PGDAc: Propylene glycol diacetate DPM: Dipropylene glycol monomethyl ether DAA: Diacetone alcohol PG: Propylene glycol monobutyl ether DIPE: Diisopentyl ether
 表5に示すように、特定溶剤を含む液晶配向剤を用いて液晶配向膜を形成した実施例1~22では、特定溶剤を含まない液晶配向剤を用いて液晶配向膜を形成した比較例1,2よりも信頼性に優れた液晶表示素子が得られた。これらの中でも、[A]溶剤と[B]溶剤とを含む液晶配向剤を用いた実施例1~18では「非常に良好」の評価であり、特に優れていた。 As shown in Table 5, in Examples 1 to 22 in which the liquid crystal alignment film was formed using the liquid crystal alignment agent containing the specific solvent, the liquid crystal alignment film was formed using the liquid crystal alignment agent not containing the specific solvent. The liquid crystal display device was more reliable than the above. Among these, in Examples 1 to 18 in which the liquid crystal aligning agent containing the [A] solvent and the [B] solvent was used, it was evaluated as "very good" and was particularly excellent.
 さらに、上記実施例1~22において、ガラス基板の有するITO電極のパターンを図5に示したパターンに変更したほかは上記と同様にして液晶表示素子を製造して評価したところ、いずれの実施例においても上記と同様の効果が得られた。 Furthermore, in Examples 1 to 22 above, the liquid crystal display element was manufactured and evaluated in the same manner as described above except that the pattern of the ITO electrode of the glass substrate was changed to the pattern shown in FIG. The same effect as described above was obtained in
[実施例23]
(1)ITO配線変形の評価
 N-エチル-2-ピロリドン(NEP)及びジエチレングリコールジエチルエーテル(DEDG)を混合して十分に撹拌し、溶剤組成がNEP:DEDG=50:50(質量比)の評価用溶剤(Z-1)を調製した。
 また、上記実施例1の(3)と同様の操作を行うことにより、層間絶縁膜上にITOからなるパターン電極を配したガラス基板を準備した。このガラス基板を80℃の評価用溶剤(Z-1)中に30分間浸漬し、層間絶縁膜の膨潤度合い及びITO電極の変形度合いについて下記に示す基準により評価した。液晶配向剤の溶剤成分と接触させた場合に層間絶縁膜の膨潤が小さく電極の変形が小さいほど、その溶剤が層間絶縁膜及びITO電極に与える影響が小さく、液晶素子の信頼性を担保できるため、液晶配向剤の溶剤として好適であると言える。その結果、この実施例は「A」の評価であった。
(評価基準)
  A:層間絶縁膜の膨潤はなく電極の異常なし
  B:層間絶縁膜の膨潤は見られるが、電極には異常なし
  C:層間絶縁膜の膨潤により電極の変形などの軽微な異常あり
  D:層間絶縁膜の膨潤により電極の断線などの重篤な異常あり
[Example 23]
(1) Evaluation of deformation of ITO wiring N-ethyl-2-pyrrolidone (NEP) and diethylene glycol diethyl ether (DEDG) are mixed and sufficiently stirred, and the solvent composition is evaluated as NEP: DEDG = 50: 50 (mass ratio) A solvent (Z-1) was prepared.
Moreover, the glass substrate which distributed the pattern electrode which consists of ITO on the interlayer insulation film was prepared by performing operation similar to (3) of the said Example 1. FIG. The glass substrate was immersed in a solvent for evaluation (Z-1) at 80 ° C. for 30 minutes, and the degree of swelling of the interlayer insulating film and the degree of deformation of the ITO electrode were evaluated according to the criteria shown below. The smaller the swelling of the interlayer insulating film and the smaller the deformation of the electrode when contacted with the solvent component of the liquid crystal aligning agent, the smaller the influence of the solvent on the interlayer insulating film and the ITO electrode is, and the reliability of the liquid crystal element can be secured. And as a solvent for liquid crystal alignment agents. As a result, this example was an evaluation of "A".
(Evaluation criteria)
A: There is no swelling of the interlayer insulating film and no abnormality of the electrode B: Swelling of the interlayer insulating film is observed but there is no abnormality in the electrode Swelling of insulating film causes serious abnormality such as disconnection of electrode
[実施例24~44、比較例3、4]
 溶剤組成、及び使用する感放射線性樹脂組成物の種類を下記表6の通り変更した点以外は上記と同様の操作を行い、各溶剤についてITO配線変形を評価した。その結果を下記表6に示した。
[Examples 24 to 44, Comparative Examples 3 and 4]
The same procedure as described above was carried out except that the solvent composition and the type of radiation sensitive resin composition used were changed as shown in Table 6 below, and the ITO wiring deformation was evaluated for each solvent. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表6の結果から、特定溶剤を用いた実施例23~44では、層間絶縁膜の膨潤は見られなかったか又は膨潤してもその程度が小さく、電極の異常は見られなかった。これらの結果から、特定溶剤によれば、微細なストライプ状の電極パターン上に液晶配向膜を形成した場合にも電極の形状が変化しにくく、液晶素子の信頼性を担保できることが分かった。 From the results in Table 6, in Examples 23 to 44 in which the specific solvent was used, swelling of the interlayer insulating film was not observed or the degree was small even if swelling was observed, and no abnormality of the electrode was observed. From these results, it was found that according to the specific solvent, even when the liquid crystal alignment film is formed on the fine stripe-shaped electrode pattern, the shape of the electrode hardly changes, and the reliability of the liquid crystal element can be secured.
 1…ITO電極、2…スリット部、3…遮光膜、10…液晶装置、14…薄膜トランジスタ、15…アレイ基板、16…対向基板、17…液晶層、19…画素電極、19c…スリット部、21…層間絶縁膜、29…カラーフィルタ層、29a…着色パターン、29b…層間絶縁膜、31…共通電極、32…第1配向膜、33…第2配向膜、34,35…PSA層(配向制御層) DESCRIPTION OF SYMBOLS 1 ... ITO electrode, 2 ... slit part, 3 ... light shielding film, 10 ... liquid crystal device, 14 ... thin-film transistor, 15 ... array substrate, 16 ... opposing board | substrate, 17 ... liquid crystal layer, 19 ... pixel electrode, 19c ... slit part, 21 ... interlayer insulating film, 29 ... color filter layer, 29a ... colored pattern, 29b ... interlayer insulating film, 31 ... common electrode, 32 ... first alignment film, 33 ... second alignment film, 34, 35 ... PSA layer (alignment control layer)

Claims (15)

  1.  対向配置された一対の基板と、前記一対の基板間に配置された液晶層と、一対の電極と、を備える液晶素子の製造方法であって、
     前記一対の電極のうち少なくとも一方は、複数の開口部を有するパターン電極であり、
     前記一対の基板のうち少なくとも一方に層間絶縁膜を形成する工程と、
     前記層間絶縁膜上に前記パターン電極を形成する工程と、
     前記パターン電極上に、前記層間絶縁膜の少なくとも一部に接触するように液晶配向膜を形成する工程と、を含み、
     前記液晶配向膜を、重合体成分と、下記に示す溶剤群から選ばれる少なくとも一種の溶剤とを含有する液晶配向剤を用いて形成する、液晶素子の製造方法。
    溶剤群:
     [A]溶剤:下記式(1)で表される化合物、下記式(2)で表される化合物、N,N,2-トリメチルプロピオンアミド、及び1,3-ジメチル-2-イミダゾリジノン。
     [B]溶剤:ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン、2-メチル-2-ヘキサノール、2,6-ジメチル-4-ヘプタノール、ジイソブチルケトン、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジイソペンチルエーテル、ダイアセトンアルコール、及びプロピレングリコールモノブチルエーテル。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、炭素数2~5の1価の炭化水素基、又は当該炭化水素基における炭素-炭素結合間に「-O-」を有する1価の基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R及びRは、それぞれ独立に、水素原子、炭素数1~6の1価の炭化水素基、又は当該炭化水素基の炭素-炭素結合間に「-O-」を有する1価の基であり、RとRとが互いに結合して環構造を形成してもよい。Rは、炭素数1~6のアルキル基である。)
    A method of manufacturing a liquid crystal device, comprising: a pair of substrates disposed opposite to each other; a liquid crystal layer disposed between the pair of substrates; and a pair of electrodes,
    At least one of the pair of electrodes is a pattern electrode having a plurality of openings,
    Forming an interlayer insulating film on at least one of the pair of substrates;
    Forming the pattern electrode on the interlayer insulating film;
    Forming a liquid crystal alignment film on the pattern electrode so as to be in contact with at least a part of the interlayer insulating film,
    The manufacturing method of a liquid crystal element which forms the said liquid crystal aligning film using the liquid crystal aligning agent containing a polymer component and at least 1 type of solvent chosen from the solvent group shown below.
    Solvent group:
    [A] Solvent: a compound represented by the following formula (1), a compound represented by the following formula (2), N, N, 2-trimethylpropionamide, and 1,3-dimethyl-2-imidazolidinone.
    [B] Solvent: dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diethylene glycol monoethyl ether, 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, 2-methyl-2-hexanol, 2 6, 6-dimethyl-4-heptanol, diisobutyl ketone, propylene glycol diacetate, diethylene glycol diethyl ether, diisopentyl ether, diacetone alcohol, and propylene glycol monobutyl ether.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 is a monovalent hydrocarbon group having 2 to 5 carbon atoms, or a monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group. )
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), R 2 and R 3 each independently represent a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, or “—O— between carbon-carbon bonds of the hydrocarbon group. R 2 and R 3 may be bonded to each other to form a ring structure. R 4 is an alkyl group having 1 to 6 carbon atoms.
  2.  前記液晶層中に混入された光重合性モノマーを重合することにより、前記液晶層中の各基板側の界面に、前記液晶の配向を制御する配向制御層を形成する工程をさらに含む、請求項1に記載の液晶素子の製造方法。 The method further includes the step of forming an alignment control layer for controlling the alignment of the liquid crystal at the interface on each substrate side in the liquid crystal layer by polymerizing the photopolymerizable monomer mixed in the liquid crystal layer. The manufacturing method of the liquid crystal element as described in 1.
  3.  前記液晶配向剤は、前記[A]溶剤の少なくとも一種と、前記[B]溶剤の少なくとも一種とを含有する、請求項1又は2に記載の液晶素子の製造方法。 The method according to claim 1, wherein the liquid crystal aligning agent contains at least one of the [A] solvent and at least one of the [B] solvent.
  4.  前記液晶配向剤は、ポリアミック酸、ポリアミック酸エステル、ポリイミド及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種である[P]重合体を含有する、請求項1~3のいずれか一項に記載の液晶素子の製造方法。 The said liquid crystal aligning agent contains the [P] polymer which is at least 1 type chosen from the group which consists of a polyamic acid, polyamic acid ester, a polyimide, and a polyorganosiloxane, It is described in any one of Claims 1-3. Method of manufacturing liquid crystal element.
  5.  前記液晶配向剤は、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種である[p]重合体を含有し、
     前記[p]重合体は、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の環構造を有するテトラカルボン酸誘導体に由来する部分構造を有する、請求項1~4のいずれか一項に記載の液晶素子の製造方法。
    The liquid crystal aligning agent contains a [p] polymer which is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide,
    The polymer according to any one of claims 1 to 4, wherein the polymer [p] has a partial structure derived from a tetracarboxylic acid derivative having at least one ring structure selected from the group consisting of cyclobutane ring, cyclopentane ring and cyclohexane ring. A manufacturing method of a liquid crystal element given in one paragraph.
  6.  前記液晶配向剤は、ラジカル重合性基、光開始剤基、ラジカル重合禁止剤基、窒素含有複素環(ただし、ポリイミドが有するイミド環を除く。)、アミノ基、及び保護されたアミノ基よりなる群から選ばれる少なくとも一種を有する重合体を含有する、請求項1~5のいずれか一項に記載の液晶素子の製造方法。 The liquid crystal aligning agent comprises a radical polymerizable group, a photoinitiator group, a radical polymerization inhibitor group, a nitrogen-containing heterocycle (but excluding the imide ring possessed by the polyimide), an amino group, and a protected amino group. The method for producing a liquid crystal device according to any one of claims 1 to 5, comprising a polymer having at least one selected from the group consisting of
  7.  前記液晶配向剤は、下記式(3)で表される部分構造を有する重合体を含有する、請求項1~6のいずれか一項に記載の液晶素子の製造方法。
      *-L-R11-R12-R13-R14   …(3)
    (式(3)中、Lは、-O-、-CO-、-COO-*、-OCO-*、-NR15-、-NR15-CO-*、-CO-NR15-*、炭素数1~6のアルカンジイル基、-O-R16-*、又は-R16-O-*(ただし、R15は水素原子又は炭素数1~10の1価の炭化水素基であり、R16は炭素数1~3のアルカンジイル基である。「*」は、R11との結合手であることを示す。)である。R11及びR13は、それぞれ独立に、単結合、フェニレン基又はシクロアルキレン基であり、R12は、単結合、フェニレン基、シクロアルキレン基、-R17-B-*、又は-B-R17-*(ただし、R17はフェニレン基又はシクロアルキレン基であり、Bは-COO-*、-OCO-*、又は炭素数1~3のアルカンジイル基である。「*」は、R13との結合手であることを示し、「*」は、R17との結合手であることを示す。)である。R14は、水素原子、フッ素原子、炭素数1~18のアルキル基、炭素数1~18のフルオロアルキル基、炭素数1~18のアルコキシ基、炭素数1~18のフルオロアルコキシ基、又はステロイド骨格を有する炭素数17~51の炭化水素基であり、ラジカル重合性基又は光開始剤基を有していてもよい。ただし、R14が水素原子、フッ素原子又は炭素数1~3の基である場合、R11、R12及びR13の全部が単結合になることはない。「*」は結合手であることを示す。)
    The method for producing a liquid crystal device according to any one of claims 1 to 6, wherein the liquid crystal aligning agent contains a polymer having a partial structure represented by the following formula (3).
    * -L 1 -R 11 -R 12 -R 13 -R 14 (3)
    (In the formula (3), L 1 is, -O -, - CO -, - COO- * 1, -OCO- * 1, -NR 15 -, - NR 15 -CO- * 1, -CO-NR 15 -* 1 , an alkanediyl group having 1 to 6 carbon atoms, -O-R 16- * 1 , or -R 16 -O- * 1 (provided that R 15 is a hydrogen atom or a monovalent group having 1 to 10 carbon atoms) a hydrocarbon group, R 16 is an alkanediyl group of 1 to 3 carbon atoms. "* 1" indicates that the bond between R 11.) a is .R 11 and R 13, each independently represent a single bond, a phenylene group or a cycloalkylene group, R 12 represents a single bond, a phenylene group, a cycloalkylene group, -R 17 -B 1 - * 2 , or -B 1 -R 17 - * 2 (However, R 17 is a phenylene group or a cycloalkylene group, B 1 is -CO -. * 3, -OCO- * 3, or alkanediyl group having a carbon number of 1 to 3 "* 2" indicates that the bond to R 13, "* 3", and R 17 R 14 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. Or a fluoroalkoxy group having 1 to 18 carbon atoms or a hydrocarbon group having 17 to 51 carbon atoms having a steroid skeleton, and may have a radically polymerizable group or a photoinitiator group, provided that R 14 is In the case of a hydrogen atom, a fluorine atom or a group having 1 to 3 carbon atoms, all of R 11 , R 12 and R 13 will not be single bonds. "*" Indicates that it is a bond.)
  8.  前記層間絶縁膜を形成する基板に、液晶駆動用素子及びカラーフィルタ層が形成されている、請求項1~7のいずれか一項に記載の液晶素子の製造方法。 The method for manufacturing a liquid crystal device according to any one of claims 1 to 7, wherein a liquid crystal driving element and a color filter layer are formed on a substrate on which the interlayer insulating film is formed.
  9.  前記層間絶縁膜は、[Q]重合体と[R]感光剤とを含有する感放射線性樹脂組成物を用いて形成される、請求項1~8のいずれか一項に記載の液晶素子の製造方法。 The liquid crystal device according to any one of claims 1 to 8, wherein the interlayer insulating film is formed using a radiation sensitive resin composition containing a [Q] polymer and a [R] photosensitizer. Production method.
  10.  前記[Q]重合体は、オキセタニル基、オキシラニル基、(メタ)アクリロイル基及びビニル基よりなる群から選ばれる少なくとも一種を有する、請求項9に記載の液晶素子の製造方法。 The method for manufacturing a liquid crystal device according to claim 9, wherein the [Q] polymer has at least one selected from the group consisting of oxetanyl group, oxiranyl group, (meth) acryloyl group and vinyl group.
  11.  前記[R]感光剤は、光ラジカル重合開始剤、光酸発生剤、及び光塩基発生剤よりなる群から選ばれる少なくとも一種である、請求項9又は10に記載の液晶素子の製造方法。 The method for producing a liquid crystal device according to claim 9, wherein the [R] photosensitizer is at least one selected from the group consisting of photo radical polymerization initiators, photo acid generators, and photo base generators.
  12.  前記[Q]重合体は、酸性基を有する第1構造単位と、オキセタニル基又はオキシラニル基を有する第2構造単位と、前記第1構造単位及び前記第2構造単位とは異なる主鎖構造を形成する第3構造単位とを有する重合体である、請求項9~11のいずれか一項に記載の液晶素子の製造方法。 The [Q] polymer forms a main chain structure different from the first structural unit having an acidic group, the second structural unit having an oxetanyl group or an oxiranyl group, and the first structural unit and the second structural unit. The method for producing a liquid crystal device according to any one of claims 9 to 11, which is a polymer having a third structural unit.
  13.  前記第1構造単位は、(メタ)アクリル酸及び不飽和カルボン酸無水物よりなる群から選ばれる少なくとも一種の化合物に由来する構造単位である、請求項12に記載の液晶素子の製造方法。 The method of manufacturing a liquid crystal device according to claim 12, wherein the first structural unit is a structural unit derived from at least one compound selected from the group consisting of (meth) acrylic acid and unsaturated carboxylic acid anhydride.
  14.  前記第2構造単位は、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、及び3-(メタ)アクリロイルオキシメチル-3-エチルオキセタンよりなる群から選ばれる少なくとも一種の化合物に由来する構造単位である、請求項12又は13に記載の液晶素子の製造方法。 The second structural unit is glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3- (meth) acryloyloxymethyl-3- The method for producing a liquid crystal device according to claim 12 or 13, which is a structural unit derived from at least one compound selected from the group consisting of ethyl oxetane.
  15.  前記第3構造単位は、スチレン、α-メチルスチレン、4-メチルスチレン、及び4-ヒドロキシスチレンよりなる群から選ばれる少なくとも一種の化合物に由来する構造単位である、請求項12~14のいずれか一項に記載の液晶素子の製造方法。  The third structural unit is a structural unit derived from at least one compound selected from the group consisting of styrene, α-methylstyrene, 4-methylstyrene, and 4-hydroxystyrene. A manufacturing method of a liquid crystal element given in one paragraph.
PCT/JP2018/037583 2017-11-20 2018-10-09 Method for manufacturing liquid crystal element WO2019097902A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880060453.XA CN111108433B (en) 2017-11-20 2018-10-09 Method for manufacturing liquid crystal element
KR1020207009462A KR102321076B1 (en) 2017-11-20 2018-10-09 Method for manufacturing a liquid crystal element
JP2019553745A JP7074142B2 (en) 2017-11-20 2018-10-09 Manufacturing method of liquid crystal element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-223114 2017-11-20
JP2017223114 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019097902A1 true WO2019097902A1 (en) 2019-05-23

Family

ID=66540139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037583 WO2019097902A1 (en) 2017-11-20 2018-10-09 Method for manufacturing liquid crystal element

Country Status (5)

Country Link
JP (1) JP7074142B2 (en)
KR (1) KR102321076B1 (en)
CN (1) CN111108433B (en)
TW (1) TWI776974B (en)
WO (1) WO2019097902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880574A (en) * 2019-11-28 2020-03-13 衡阳市鑫晟新能源有限公司 Lithium battery isolation film and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227106A (en) * 2010-04-15 2011-11-10 Jsr Corp Positive radiation-sensitive composition, interlayer insulating film and formation method of the same
JP2014029465A (en) * 2012-06-29 2014-02-13 Jsr Corp Liquid crystal photo-aligning agent, liquid crystal alignment film and manufacturing method therefor, liquid crystal display element, compound, and polymer
JP2014074886A (en) * 2012-09-14 2014-04-24 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
US20140327866A1 (en) * 2013-05-02 2014-11-06 Samsung Display Co., Ltd. Photosensitive resin composition, method of forming pattern, and liquid crystal display using the same
WO2015046374A1 (en) * 2013-09-26 2015-04-02 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2015053394A1 (en) * 2013-10-10 2015-04-16 日産化学工業株式会社 Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
JP2017129768A (en) * 2016-01-21 2017-07-27 富士フイルム株式会社 Photosensitive resin composition, method for producing cured product, cured film, display device, and touch panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113241B2 (en) * 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4595417B2 (en) * 2004-07-16 2010-12-08 チッソ株式会社 Phenylenediamine, alignment film formed using the same, and liquid crystal display device including the alignment film
JP2006119401A (en) * 2004-10-22 2006-05-11 Seiko Epson Corp Method and device for manufacturing electrooptical device, electrooptical device, and electronic equipment
JP5105113B2 (en) * 2010-03-05 2012-12-19 Jsr株式会社 Manufacturing method of liquid crystal display element
KR102425044B1 (en) * 2014-11-12 2022-07-25 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN104635393A (en) * 2015-02-09 2015-05-20 昆山龙腾光电有限公司 Thin film transistor array substrate and liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227106A (en) * 2010-04-15 2011-11-10 Jsr Corp Positive radiation-sensitive composition, interlayer insulating film and formation method of the same
JP2014029465A (en) * 2012-06-29 2014-02-13 Jsr Corp Liquid crystal photo-aligning agent, liquid crystal alignment film and manufacturing method therefor, liquid crystal display element, compound, and polymer
JP2014074886A (en) * 2012-09-14 2014-04-24 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
US20140327866A1 (en) * 2013-05-02 2014-11-06 Samsung Display Co., Ltd. Photosensitive resin composition, method of forming pattern, and liquid crystal display using the same
WO2015046374A1 (en) * 2013-09-26 2015-04-02 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2015053394A1 (en) * 2013-10-10 2015-04-16 日産化学工業株式会社 Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
JP2017129768A (en) * 2016-01-21 2017-07-27 富士フイルム株式会社 Photosensitive resin composition, method for producing cured product, cured film, display device, and touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880574A (en) * 2019-11-28 2020-03-13 衡阳市鑫晟新能源有限公司 Lithium battery isolation film and preparation method thereof

Also Published As

Publication number Publication date
CN111108433B (en) 2022-07-12
KR20200042002A (en) 2020-04-22
KR102321076B1 (en) 2021-11-02
JPWO2019097902A1 (en) 2020-07-16
TWI776974B (en) 2022-09-11
JP7074142B2 (en) 2022-05-24
CN111108433A (en) 2020-05-05
TW201928478A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
KR101985259B1 (en) Liquid crystal aligning agent and compound
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
TWI621662B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6672821B2 (en) Method for producing liquid crystal alignment agent and liquid crystal alignment film
JP2008033244A (en) Overcoat film composition, color filter substrate and liquid crystal display element
US10948780B2 (en) Liquid crystal element and method of producing the same
JP6547461B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and method of producing retardation film
KR102225385B1 (en) Polymer composition, liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, manufacturing method for the liquid crystal display device, and polymer
KR20160112926A (en) Liquid crystal display device and manufacturing method thereof, and liquid crystal aligning agent
JP6507937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing the same, liquid crystal display device, retardation film and method for manufacturing the same
JP7363891B2 (en) Film-forming composition, cured film and retardation film
WO2020148953A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
JP7074142B2 (en) Manufacturing method of liquid crystal element
JPWO2018124166A1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
TWI785018B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and polyorganosiloxane
KR102404080B1 (en) A liquid crystal aligning agent, a liquid crystal aligning film, a liquid crystal element, and the manufacturing method of a liquid crystal element
JP7322875B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
TWI814748B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and manufacturing method of liquid crystal alignment film
JP6756141B2 (en) Liquid crystal alignment agent, polymer composition for forming a protective film, protective film and its manufacturing method, and liquid crystal element
WO2018016263A1 (en) Method for manufacturing liquid crystal element
JP7322694B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
CN112400135B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for manufacturing liquid crystal element
WO2018168440A1 (en) Liquid crystal element and method for producing same
JP2017187647A (en) Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal clement, polymer and compound
JP2023107736A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for producing liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553745

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009462

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18878467

Country of ref document: EP

Kind code of ref document: A1