WO2020148953A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element Download PDF

Info

Publication number
WO2020148953A1
WO2020148953A1 PCT/JP2019/040133 JP2019040133W WO2020148953A1 WO 2020148953 A1 WO2020148953 A1 WO 2020148953A1 JP 2019040133 W JP2019040133 W JP 2019040133W WO 2020148953 A1 WO2020148953 A1 WO 2020148953A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
group
crystal aligning
solvent
Prior art date
Application number
PCT/JP2019/040133
Other languages
French (fr)
Japanese (ja)
Inventor
哲 平野
恵 中西
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2020566104A priority Critical patent/JP7409325B2/en
Priority to CN201980087149.9A priority patent/CN113260911A/en
Publication of WO2020148953A1 publication Critical patent/WO2020148953A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal element.
  • the liquid crystal element has a liquid crystal alignment film having a function of aligning liquid crystal molecules in a liquid crystal layer in a certain direction.
  • the liquid crystal aligning film is generally formed on the substrate by applying a liquid crystal aligning agent in which a polymer component is dissolved in an organic solvent onto the surface of the substrate, and preferably by heating.
  • a liquid crystal aligning agent in which a polymer component is dissolved in an organic solvent onto the surface of the substrate, and preferably by heating.
  • the solvent component of the liquid crystal aligning agent N-methyl-2-pyrrolidone, ⁇ -butyrolactone and the like are generally used as a solvent (good solvent) having high solubility of the polymer component.
  • the size of the liquid crystal display device can be increased, or by taking a plurality of panels from one substrate, the time and cost of the manufacturing process can be reduced. Are being reduced.
  • the size of the substrate is increased, the application area of the liquid crystal aligning agent becomes large in area, so that it becomes difficult to secure the uniformity of the film quality over the entire application area.
  • a coating method by an inkjet printing method has been introduced in a manufacturing process of a large liquid crystal panel.
  • N-methyl-2-pyrrolidone and ⁇ -butyrolactone are excellent in solubility of the polymer component of the liquid crystal aligning agent, and therefore, when the liquid crystal aligning agent is applied on the substrate by the inkjet printing method in the production of a large liquid crystal panel. Therefore, it is possible to reduce the unevenness of application of the liquid crystal aligning agent.
  • N-methyl-2-pyrrolidone and ⁇ -butyrolactone are likely to cause deterioration of the inkjet head, and the inkjet head is likely to be replaced frequently.
  • the nozzle diameter of an inkjet head has become smaller. If the nozzle diameter becomes smaller, the ejection margin becomes narrower, which may cause deterioration of the inkjet head.
  • the present disclosure has been made in view of the above circumstances, and provides a liquid crystal aligning agent that has good coatability on a substrate, is less likely to deteriorate an inkjet head, and can obtain a liquid crystal element having excellent afterimage characteristics. Is the main purpose.
  • a liquid crystal aligning agent containing a compound in which a hydrogen atom bonded to a ring portion of an aromatic ring is substituted with a hydroxyalkyl group or an alkoxy group having 1 to 3 carbon atoms It was found that the above problems can be solved by doing so. Specifically, according to the present disclosure, the following means are provided. [1] A liquid crystal aligning agent containing a polymer component and a compound [A] represented by the following formula (1).
  • liquid crystal aligning agent that has good coatability on a substrate and that does not easily deteriorate an inkjet head.
  • a liquid crystal element having excellent afterimage characteristics can be manufactured.
  • the liquid crystal aligning agent of the present disclosure contains a polymer component and a solvent component. Below, each component contained in the liquid crystal aligning agent and other components optionally blended as necessary will be described.
  • Polymer component As the polymer component contained in the liquid crystal aligning agent, polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamideimide, polybenzoxazole precursor, polybenzoxazole, cellulose derivative, polyacetal, polymerizable
  • the polymer include a polymer having a structural unit derived from a monomer having an unsaturated bond (hereinafter, also referred to as “polymer (Q)”) as a main skeleton.
  • the polymer component contains at least one selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyamide, and polymer (Q). It is preferable.
  • the polyamic acid can be obtained by reacting a tetracarboxylic dianhydride and a diamine compound.
  • a tetracarboxylic dianhydride examples include aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, aromatic tetracarboxylic dianhydride and the like. ..
  • aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride
  • alicyclic tetracarboxylic acid dianhydride examples include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentyl acetic acid dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1 ,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 3-Oxabicycl
  • diamine compound examples of the diamine compound used for synthesizing the polyamic acid include aliphatic diamine, alicyclic diamine, aromatic diamine, diaminoorganosiloxane and the like. Specific examples of these diamines include aliphatic diamines such as metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine; and alicyclic diamines such as 1,4 -Diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), etc.; Examples of aromatic diamines include dodecaneoxy-2,4-diaminobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanooxy-2,4-diaminobenzene, pentadecanooxy-2,5
  • R I is an alkanediyl group having 1 to 3 carbon atoms
  • R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms
  • a is 0 or 1
  • b is 0.
  • c is an integer of 1 to 20
  • d is 0 or 1.
  • a and b are not 0 at the same time.
  • a compound represented by the following formula, a side chain type diamine such as a diamine having a cinnamic acid structure in its side chain:
  • the polyamic acid can be obtained by reacting the above-mentioned tetracarboxylic acid dianhydride and a diamine compound together with a molecular weight modifier, if necessary.
  • the ratio of the tetracarboxylic acid dianhydride and the diamine compound used for the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic acid dianhydride is 0.2 with respect to 1 equivalent of the amino group of the diamine compound. A ratio of up to 2 equivalents is preferable.
  • the molecular weight modifier examples include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. Can be mentioned.
  • the use ratio of the molecular weight modifier is preferably 20 parts by mass or less based on 100 parts by mass of the total tetracarboxylic dianhydride and diamine compound used.
  • the synthesis reaction of polyamic acid is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably ⁇ 20° C. to 150° C., and the reaction time is preferably 0.1 to 24 hours.
  • the organic solvent used in the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons and hydrocarbons.
  • Particularly preferred organic solvents are N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol.
  • the amount (a) of the organic solvent used is such that the total amount (b) of the tetracarboxylic dianhydride and the diamine becomes 0.1 to 50% by mass with respect to the total amount (a+b) of the reaction solution. Is preferred.
  • the reaction solution obtained by dissolving the polyamic acid may be directly used for preparing the liquid crystal aligning agent, or the polyamic acid contained in the reaction solution may be isolated and then used for preparing the liquid crystal aligning agent.
  • the polyamic acid ester is, for example, [I] a method of reacting the polyamic acid obtained by the above synthetic reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine compound, [III] tetracarboxylic acid. It can be obtained by a method of reacting an acid diester dihalide with a diamine compound.
  • the polyamic acid ester contained in the liquid crystal aligning agent may have only an amic acid ester structure, or may be a partial esterified product having both an amic acid structure and an amic acid ester structure.
  • the reaction solution obtained by dissolving the polyamic acid ester may be directly used for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid ester contained in the reaction solution. Good.
  • the polyimide can be obtained, for example, by subjecting the polyamic acid synthesized as described above to dehydration ring closure to imidize.
  • the polyimide may be a complete imidized product obtained by dehydration ring closure of all of the amic acid structure of the precursor polyamic acid, dehydration ring closure of only a portion of the amic acid structure, amic acid structure and imide It may be a partial imidized product having a ring structure.
  • the imidization ratio of the polyimide is preferably 20 to 99%, more preferably 30 to 90%.
  • This imidization ratio is a percentage of the ratio of the number of imide ring structures to the total of the number of amic acid structures and the number of imide ring structures of polyimide.
  • a part of the imide ring may be an isoimide ring.
  • the dehydration ring closure of the polyamic acid is preferably carried out by a method in which the polyamic acid is dissolved in an organic solvent, a dehydrating agent and a dehydration ring closure catalyst are added to this solution, and heating is carried out if necessary.
  • a dehydrating agent acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 mol per 1 mol of the amic acid structure of the polyamic acid.
  • the dehydration ring-closing catalyst for example, tertiary amines such as pyridine, collidine, lutidine, triethylamine and the like can be used.
  • the amount of the dehydration ring-closing catalyst used is preferably 0.01 to 10 mol per 1 mol of the dehydrating agent used.
  • the organic solvent used for the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid.
  • the reaction temperature for the dehydration ring closure reaction is preferably 0 to 180°C.
  • the reaction time is preferably 1.0 to 120 hours.
  • the reaction solution containing the polyimide may be used as it is for preparing the liquid crystal aligning agent, or may be used for preparing the liquid crystal aligning agent after isolating the polyimide.
  • Polyimide can also be obtained by imidization of polyamic acid ester.
  • the polyorganosiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound.
  • the silane compound include tetramethoxysilane, methyltriethoxysilane, 3-mercaptopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropylmethyl.
  • Examples thereof include dimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, and trimethoxysilylpropylsuccinic anhydride.
  • the hydrolyzable silane compounds may be used alone or in combination of two or more.
  • “(Meth)acryloxy” is meant to include “acryloxy” and “methacryloxy”.
  • the hydrolysis/condensation reaction is carried out by reacting one or more silane compounds with water, preferably in the presence of a suitable catalyst and an organic solvent.
  • the amount of water used is preferably 1 to 30 mol per 1 mol of the silane compound (total amount).
  • the catalyst used include acids, alkali metal compounds, organic bases, titanium compounds and zirconium compounds.
  • the amount of the catalyst used varies depending on the type of the catalyst, reaction conditions such as temperature, and the like, but is, for example, 0.01 to 3 times the mol of the total amount of the silane compound.
  • Examples of the organic solvent used include hydrocarbons, ketones, esters, ethers, alcohols and the like, and it is preferable to use a water-insoluble or slightly water-soluble organic solvent.
  • the use ratio of the organic solvent is preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compound used in the reaction.
  • the above reaction is preferably carried out by heating with an oil bath or the like. The heating temperature at that time is preferably 130° C. or lower, and the heating time is preferably 0.5 to 12 hours.
  • the organic solvent layer separated from the reaction solution is dried with a desiccant, if necessary, and then the solvent is removed to obtain the target polyorganosiloxane.
  • the method for synthesizing the polyorganosiloxane is not limited to the above hydrolysis/condensation reaction, and for example, a method of reacting a hydrolyzable silane compound in the presence of oxalic acid and alcohol may be used.
  • a liquid crystal aligning agent contains a polyorganosiloxane having a side chain having a functional functional group such as a photo-alignment group or a pretilt angle imparting group
  • an epoxy group-containing silane compound is used as at least a part of the raw material.
  • a polyorganosiloxane having an epoxy group in a side chain is synthesized by polymerization, and then an epoxy group-containing polyorganosiloxane is reacted with a carboxylic acid having a functional functional group to obtain a target polyorganosiloxane.
  • Polyamide can be obtained by a method of reacting a dicarboxylic acid and a diamine compound, or the like.
  • the dicarboxylic acid is preferably subjected to acid chloride formation using a suitable chlorinating agent such as thionyl chloride and then subjected to a reaction with a diamine compound.
  • the dicarboxylic acid used in the synthesis of the polyamide is not particularly limited, and examples thereof include aliphatic dicarboxylic acids such as oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid and fumaric acid; cyclobutane.
  • Alicyclic dicarboxylic acids such as dicarboxylic acid, 1-cyclobutenedicarboxylic acid, cyclohexanedicarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 2,5-dimethylterephthalic acid, 4-carboxycinnamic acid, Aromatic dicarboxylic acids such as 3,3′-[4,4′-(methylenedi-p-phenylene)]dipropionic acid and 4,4′-[4,4′-(oxydi-p-phenylene)]dibutyric acid And the like.
  • the diamine compound used for the synthesis include the diamine compounds exemplified in the explanation of polyamic acid.
  • the dicarboxylic acid and diamine compounds may each be used alone or in combination of two or more.
  • the reaction of the dicarboxylic acid and the diamine compound is preferably carried out in an organic solvent in the presence of a base.
  • the use ratio of the dicarboxylic acid and the diamine compound is preferably such that the carboxyl group of the dicarboxylic acid is 0.2 to 2 equivalents relative to 1 equivalent of the amino group of the diamine compound.
  • the reaction temperature is preferably 0°C to 200°C, and the reaction time is preferably 0.5 to 48 hours.
  • the organic solvent for example, tetrahydrofuran, dioxane, toluene, chloroform, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone and the like can be preferably used.
  • tertiary amines such as pyridine, triethylamine and N-ethyl-N,N-diisopropylamine can be preferably used.
  • the amount of the base used is preferably 2 to 4 mol per 1 mol of the diamine compound.
  • the solution obtained by the above reaction may be directly used for preparing the liquid crystal aligning agent, or may be used for preparing the liquid crystal aligning agent after isolating the polyamide contained in the reaction solution.
  • Examples of the monomer having a polymerizable unsaturated bond include compounds having a (meth)acryloyl group, a vinyl group, a vinylphenyl group, a styryl group, a maleimide group and the like. Specific examples of such compounds include unsaturated carboxylic acids such as (meth)acrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid and vinylbenzoic acid: alkyl (meth)acrylate, cycloalkyl (meth)acrylate.
  • Unsaturated carboxylic acid esters such as 3,4-epoxycyclohexylmethyl, (meth)acrylic acid 3,4-epoxybutyl, acrylic acid 4-hydroxybutyl glycidyl ether: Unsaturated polycarboxylic acid anhydrides such as maleic anhydride: (Meth)acrylic compounds such as styrene, methylstyrene, aromatic vinyl compounds such as divinylbenzene; conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene; N-methylmaleimide, N -Maleimide group-containing compounds such as -cyclohexylmaleimide and
  • the polymer (Q) can be obtained by polymerizing a monomer having a polymerizable unsaturated bond in the presence of a polymerization initiator.
  • a polymerization initiator examples include 2,2′-azobis(isobutyronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(4-methoxy-2) , 4-dimethylvaleronitrile) and the like are preferable.
  • the proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all the monomers used in the reaction.
  • the polymerization reaction is preferably carried out in an organic solvent.
  • Examples of the organic solvent used in the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like, with diethylene glycol ethyl methyl ether and propylene glycol monomethyl ether acetate being preferred.
  • the reaction temperature is preferably 30°C to 120°C, and the reaction time is preferably 1 to 36 hours.
  • the amount (a) of the organic solvent used is such that the total amount (b) of the monomers used in the reaction is 0.1 to 60 mass% with respect to the total amount (a+b) of the reaction solution. Is preferred.
  • the polymer solution obtained by the above reaction may be directly used for the preparation of the liquid crystal aligning agent, or the polymer (Q) contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal aligning agent.
  • the polymer used for preparing the liquid crystal aligning agent preferably has a solution viscosity of 10 to 800 mPa ⁇ s, and more preferably 15 to 500 mPa ⁇ s, which is prepared and measured under the conditions described below.
  • the solution viscosity (mPa ⁇ s) is a concentration of 10 mass prepared by using a good solvent for the polymer ( ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc. in the case of polyamic acid, polyamic acid ester and polyimide).
  • the polystyrene-equivalent weight average molecular weight (Mw) of the polymer measured by gel permeation chromatography (GPC) can be appropriately selected according to the type of the polymer, but is preferably 1,000 to 500,000. Yes, and more preferably 2,000 to 300,000.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 7 or less, and more preferably 5 or less.
  • the polymer used for preparing the liquid crystal aligning agent may be one kind or a combination of two or more kinds.
  • the polymer component contained in the liquid crystal aligning agent is selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, and polyorganosiloxane, from the viewpoint of liquid crystal aligning property, affinity with liquid crystal, and mechanical strength. It is preferable that it contains at least one selected. It is particularly preferable that the polymer component contains at least one selected from the group consisting of polyamic acid, polyimide, and polyamic acid ester as a main component.
  • the main component is a component having the largest content on a mass basis, and for example, a component having a content of 50 mass% or more.
  • the polymer component at least one selected from the group consisting of polyamic acid, polyimide, and polyamic acid ester, preferably contains 50% by mass or more, and 60% by mass or more based on the total amount of the polymer components. It is more preferable that the content is 80% by mass or more.
  • the liquid crystal aligning agent of the present disclosure contains a compound [A] represented by the following formula (1).
  • (R 2 )x-Ar 1 -R 1 (1) Ar 1 is a (x+1)-valent aromatic ring group, and R 2 is an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms.
  • x is 0 or 1.
  • R 1 is a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.
  • the (x+1)-valent aromatic ring group of Ar 1 is a group obtained by removing (x+1) hydrogen atoms from the ring portion of the aromatic ring.
  • the aromatic ring includes an aromatic hydrocarbon ring and an aromatic heterocycle. Specific examples of the aromatic ring include an aromatic hydrocarbon ring such as a benzene ring, a naphthalene ring and an anthracene ring; and an aromatic heterocycle such as a pyrrole ring, a pyridine ring, a pyrimidine ring and a pyridazine ring.
  • Ar 1 is preferably a group obtained by removing (x+1) hydrogen atoms from the ring portion of a benzene ring or a 5-membered heterocyclic ring, and (x+1) from the ring portion of a benzene ring or a furan ring. It is particularly preferable that it is a group in which the hydrogen atom of is removed.
  • examples of the hydroxyalkyl group having 1 to 3 carbon atoms include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group and 2-hydroxypropyl group. , 3-hydroxypropyl group, and 2-hydroxy-1-methylethyl group.
  • examples of the alkoxy group having 1 to 3 carbon atoms include a methoxy group, an ethoxy group, a propoxy group and an isopropoxy group.
  • R 1 is preferably linear.
  • the alkyl group having 1 to 3 carbon atoms may be linear or branched, but is preferably linear.
  • R 2 is a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms
  • R 2 is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group. It is preferable that x is 0.
  • Compound [A] is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), and a compound represented by the following formula (1-3) It is particularly preferable that it is at least one selected from the group consisting of (In the formulas (1-1) to (1-3), n and r are each independently an integer of 1 to 3, m is an integer of 0 to 2. R 3 is a carbon number of 1 to 3. Is an alkyl group, a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and y is 0 or 1.)
  • R 3 The bonding position of R 3 is not particularly limited, but it is preferably ortho to the group “—(CH 2 ) n —OH” or the group “—O—(CH 2 ) m —CH 3 ”. It is preferable that y is 0.
  • Preferred specific examples of the compound [A] include compounds represented by the following formulas (1-1-1) to (1-1-3) as the compounds represented by the above formula (1-1).
  • compounds represented by the following formulas (1-2-1) to (1-2-4) are respectively represented by the above formula (1-3)
  • Examples of the compound represented by are the compounds represented by the following formulas (1-3-1) to (1-3-6).
  • the compounds represented by the above formulas (1-1-1) and (1-2-1) are preferable because they are more excellent in ink jet coatability, and are more resistant to deterioration of the ink jet head.
  • Compounds represented by the above formulas (1-1-1) and (1-3-1) are preferable.
  • one type may be used alone, or two or more types may be used in combination.
  • the content ratio of the compound [A] is preferably 100 parts by mass or more, more preferably 300 parts by mass or more, and still more preferably 100 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the liquid crystal aligning agent. It is 600 parts by mass or more.
  • the content ratio of the compound [A] is preferably 2000 parts by mass or less, more preferably 1500 parts by mass or less.
  • the compound [A] Since the compound [A] has excellent solubility in the polymer component of the liquid crystal aligning agent, it is used as an alternative solvent for N-methyl-2-pyrrolidone (NMP) which is generally used as a good solvent for the polymer component. It is useful.
  • NMP N-methyl-2-pyrrolidone
  • the content ratio of NMP in the liquid crystal aligning agent is preferably 10 mass% or less, more preferably 5 mass% or less, and further preferably 1 mass% with respect to the total amount of the solvent component of the liquid crystal aligning agent. % Or less.
  • the liquid crystal aligning agent may further contain a component different from the polymer component and the compound [A] (hereinafter, also referred to as “other component”), if necessary.
  • the liquid crystal aligning agent is an ether-based solvent, an alcohol-based solvent, a chain ester-based solvent, together with the polymer component and the compound [A], for the purpose of enhancing the wettability and spreading property of the liquid crystal aligning agent.
  • at least one solvent selected from the group consisting of ketone solvents hereinafter, also referred to as “solvent [B]”.
  • solvent [B] examples include ether solvents such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve).
  • ether solvents such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve).
  • alcohol solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol, 3-methoxy-3-methylbutanol, benzyl alcohol.
  • chain ester solvents for example, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, diethyl malonate, isoamyl pro Peonate, isoamyl isobutyrate, etc.;
  • the ketone solvent for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cycloheptanone, cyclopentanone, 3-methylcyclohexanone, 4-methylcyclohexanone, diisobutyl ketone, etc., respectively.
  • ketone solvent for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cycloheptanone, cyclopen
  • the solvent [B] at least one selected from the group consisting of ether solvents, alcohol solvents, and ketone solvents is preferable among the above, from the viewpoint that the effect of improving coatability can be further enhanced, and the solvent has 8 or less carbon atoms. At least one selected from the group consisting of ether solvents, alcohol solvents and cyclic ketone solvents is more preferable.
  • the solvent [B] is ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diacetone alcohol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl.
  • Particularly preferred is one selected from the group consisting of ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-1-butanol and cyclopentanone.
  • 1 type can be used individually or in combination of 2 or more types.
  • the liquid crystal aligning agent is a solvent different from the solvent [B] (hereinafter, also referred to as "other solvent") for the purpose of further enhancing the solubility of the polymer component and the wettability and spreadability of the liquid crystal aligning agent. May be further included.
  • the other solvent include aprotic polar solvents, halogenated hydrocarbon solvents, hydrocarbon solvents and the like.
  • Specific examples of the other solvent include aprotic polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, gammabutyrolactone and propylene carbonate.
  • the other solvent is preferably an aprotic polar solvent and is selected from the group consisting of gamma butyrolactone, N-ethyl-2-pyrrolidone, propylene carbonate, and 1,3-dimethyl-2-imidazolidinone. More preferably, it is at least one kind.
  • 1 type can be used individually or in combination of 2 or more types.
  • the content ratio of the compound [A] is such that the solvent (compound [A], solvent [B]) contained in the liquid crystal aligning agent is suitably suppressed from the viewpoint of suitably suppressing deterioration of the inkjet head while improving the coating property of the liquid crystal aligning agent.
  • other solvents is preferably 10% by mass or more.
  • the content ratio is more preferably 15% by mass or more, further preferably 20% by mass or more, and particularly preferably 30% by mass or more, based on the total amount of the solvent.
  • the content ratio of the compound [A] is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 80% by mass or less with respect to the total amount of the solvent contained in the liquid crystal aligning agent. Is.
  • the content ratio of the solvent [B] is preferably 5% by mass or more, and more preferably 10% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent. % Or more. Further, the content ratio of the solvent [B] is preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less based on the total amount of the solvent of the liquid crystal aligning agent.
  • the content ratio of the other solvent is preferably 80% by mass or less, more preferably 70% by mass or less, and 60% by mass or less with respect to the total amount of the solvent contained in the liquid crystal aligning agent. Is more preferable, and particularly preferably 50% by mass or less.
  • liquid crystal aligning agent examples include, in addition to the above components, for example, an epoxy group-containing compound (eg, N,N,N′,N′-tetraglycidyl-m-xylenediamine, N,N,N).
  • an epoxy group-containing compound eg, N,N,N′,N′-tetraglycidyl-m-xylenediamine, N,N,N.
  • the ratio D of the components in the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent other than the solvent is appropriately selected in consideration of viscosity, volatility, etc., but is preferably 1 to 10% by mass. It is a range.
  • the ratio D is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the ratio D exceeds 10% by mass, the film thickness of the coating film becomes excessively large, and it is difficult to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coating property tends to deteriorate. It is in.
  • the liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal aligning agent described above.
  • the liquid crystal element can be effectively applied to various uses, for example, a watch, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, various monitors, a liquid crystal television.
  • a display device such as an information display, a light control film, a retardation film, or the like. When used as a liquid crystal display device, the operation mode of the liquid crystal is not particularly limited.
  • TN type For example, TN type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB. It can be applied to various operation modes such as (Optically Compensated Bend) type.
  • a method of manufacturing a liquid crystal element will be described by taking a liquid crystal display element as an example.
  • the liquid crystal display element can be manufactured by, for example, a method including the following steps 1 to 3.
  • step 1 the substrate used differs depending on the desired operation mode.
  • Steps 2 and 3 are common to each operation mode.
  • a liquid crystal aligning agent is applied onto a substrate, and the applied surface is preferably heated to form a coating film on the substrate.
  • a glass such as float glass or soda glass
  • a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, poly(alicyclic olefin)
  • a transparent conductive film made of tin oxide (SnO 2 ) (registered trademark of PPG Co., USA), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ). Etc.
  • a TN type, STN type, or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with an electrode formed of a comb-shaped patterned transparent conductive film or a metal film, and a counter substrate provided with no electrode To use.
  • a metal film a film made of a metal such as chromium can be used.
  • the coating of the liquid crystal aligning agent on the substrate is preferably performed by an offset printing method, a spin coating method, a roll coater method, a flexo printing method or an inkjet printing method on the electrode formation surface.
  • the liquid crystal aligning agent has good wettability and spreadability, and in that it can suppress deterioration of the resin member constituting the inkjet head, excellent printability can be exhibited when the inkjet printing method is adopted, and product yield is improved. It is preferable in that the decrease can be suppressed and a liquid crystal alignment film having high performance can be obtained.
  • preheating is preferably performed for the purpose of preventing the liquid crystal aligning agent applied from dripping.
  • the prebake temperature is preferably 30 to 200° C., and the prebake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermal imidization of the amic acid structure of the polymer.
  • the baking temperature is preferably 80 to 300° C., and the post bake time is preferably 5 to 200 minutes.
  • the thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • a treatment for imparting a liquid crystal aligning ability to the coating film formed in the above step 1 is carried out.
  • the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film.
  • the orientation treatment for example, a rubbing treatment of rubbing the coating film in a certain direction with a roll wound with a cloth made of fibers such as nylon, rayon, and cotton, or irradiating a coating film formed on a substrate with a liquid crystal aligning agent with light irradiation.
  • a photo-alignment treatment for imparting a liquid crystal aligning ability to the coating film may be mentioned.
  • the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film is subjected to alignment treatment (rubbing treatment, optical alignment treatment). Etc.) may be given.
  • the liquid crystal aligning agent suitable for the vertical alignment type liquid crystal display element can also be suitably used for the PSA (Polymer sustained alignment) type liquid crystal display element.
  • a liquid crystal cell is manufactured by preparing two substrates on which the liquid crystal alignment film is formed as described above, and disposing the liquid crystal between the two substrates facing each other.
  • a liquid crystal cell for example, (1) two substrates are arranged so as to face each other with a gap (spacer) so that the liquid crystal alignment films face each other, and the periphery of the two substrates is sealed with a sealant.
  • a method of applying an agent and further dropping liquid crystal at a predetermined number of points on the surface of the liquid crystal alignment film, and then bonding the other substrate so that the liquid crystal alignment film faces and spreading the liquid crystal over the entire surface of the substrate ODF method.
  • It is desirable that the produced liquid crystal cell is further heated to a temperature at which the liquid crystal used has an isotropic phase and then gradually cooled to room temperature to remove the flow orientation at the time of filling the liquid crystal.
  • a curing agent and an epoxy resin containing aluminum oxide spheres as a spacer can be used.
  • a photo spacer, a bead spacer, or the like can be used.
  • the liquid crystal include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable.
  • a nematic liquid crystal or a smectic liquid crystal may be added with, for example, a cholesteric liquid crystal, a chiral agent, or a ferroelectric liquid crystal.
  • a polymerizable monomer is placed together with a liquid crystal between a pair of substrates, and a light irradiation is performed after a liquid crystal cell is constructed and a voltage is applied between the pair of electrodes.
  • the polarizing plate examples include a polarizing film in which a polarizing film called “H film” in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between cellulose acetate protective films, or a polarizing plate composed of the H film itself.
  • H film a polarizing film in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between cellulose acetate protective films
  • a polarizing plate composed of the H film itself is obtained.
  • the weight average molecular weight Mw of the polymer, the imidization ratio of polyimide in the polymer solution, the solution viscosity of the polymer solution, and the epoxy equivalent were measured by the following methods.
  • the necessary amounts of the raw material compounds and polymers used in the following examples were secured by repeating the synthesis on the synthetic scale shown in the following synthesis examples as needed.
  • the weight average molecular weight Mw is a polystyrene conversion value measured by GPC under the following conditions.
  • Imidization rate of polyimide The polyimide solution was poured into pure water, the obtained precipitate was sufficiently dried under reduced pressure at room temperature, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance.
  • the imidization ratio [%] was calculated by the following mathematical formula (1).
  • Imidization rate [%] (1-(A 1 /(A 2 ⁇ ))) ⁇ 100
  • a 1 is a peak area derived from a proton of an NH group appearing in the vicinity of a chemical shift of 10 ppm
  • a 2 is a peak area derived from another proton
  • is a precursor of a polymer (polyamic acid).
  • Solution viscosity of polymer solution The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25° C. using an E-type rotational viscometer.
  • Epoxy equivalent The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
  • a small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 90 mPa ⁇ s.
  • NMP was added to the obtained polyamic acid solution to obtain a solution having a polyamic acid concentration of 7% by mass, 11.9 g of pyridine and 15.3 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110° C. for 4 hours. ..
  • the solvent in the system was replaced with new NMP (the pyridine and acetic anhydride used in the dehydration ring closure reaction were removed to the outside of the system by this operation.
  • the imidization ratio was about 68.
  • a solution containing 26% by weight of polyimide (PI-1) was obtained.
  • a small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10 mass% was 45 mPa ⁇ s.
  • the reaction solution was poured into a large excess of methanol to precipitate the reaction product.
  • the precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-1).
  • a solution containing a polyamic acid was obtained.
  • a small amount of the obtained polyamic acid solution was sampled, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 60 mPa ⁇ s.
  • 2,700 g of NMP was added to the obtained polyamic acid solution, 390 g of pyridine and 410 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110° C. for 4 hours.
  • the solvent in the system was replaced with new ⁇ -butyrolactone (GBL) to obtain about 2,500 g of a solution containing 15% by mass of polyimide (PI-2) having an imidization ratio of about 95%. Obtained. A small amount of this solution was collected, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10 mass% was 70 mPa ⁇ s. Then, the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-2).
  • GBL ⁇ -butyrolactone
  • a small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10 mass% was 75 mPa ⁇ s.
  • imidization was performed in the same manner as in Synthesis Example 1 above to obtain a solution containing 26% by mass of polyimide (PI-4) having an imidization ratio of about 50%.
  • a small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 40 mPa ⁇ s.
  • the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-4).
  • a small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 80 mPa ⁇ s.
  • imidization was carried out by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-5) having an imidization ratio of about 65%.
  • a small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10 mass% was 50 mPa ⁇ s.
  • the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-5).
  • polyamic acid (PA-4) A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 90 mPa ⁇ s. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-4).
  • PA-4 polyamic acid
  • polyamic acid (PA-6) A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10 mass% was 85 mPa ⁇ s. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-6).
  • PA-6 polyamic acid
  • the weight average molecular weight Mw of the obtained polyamic acid ester (PAE-1) was 34,000.
  • the weight average molecular weight Mw of the obtained reactive polyorganosiloxane was 3,500 and the epoxy equivalent was 180 g/mol. Then, in a 200 mL three-necked flask, 10.0 g of reactive polyorganosiloxane (EPS-1), 30.28 g of methyl isobutyl ketone as a solvent, 3.98 g of 4-(dodecyloxy)benzoic acid as a reactive compound, and a catalyst. was charged with 0.10 g of UCAT 18X (trade name, manufactured by San-Apro Co., Ltd.), and the reaction was carried out at 100° C. for 48 hours with stirring.
  • EPS-1 reactive polyorganosiloxane
  • UCAT 18X trade name, manufactured by San-Apro Co., Ltd.
  • the coating conditions were 2,500 times/(nozzle/minute) and two reciprocations (total 4 times) with a discharge amount of 250 mg/10 seconds.
  • the substrate was heated at 50° C. to form a coating film having an average film thickness of 0.1 ⁇ m.
  • the obtained coating film was visually observed under irradiation of an interference fringe measurement lamp (sodium lamp) to evaluate unevenness and cissing. Further, the same operation as above was performed except that the heating temperature at the time of forming the coating film was changed from 50° C. to 60° C. and 80° C., and the presence or absence of unevenness and cissing of the coating film was observed.
  • the mass of the sample piece after the sample piece was immersed in the solvent was measured, and the mass ratio ⁇ increased from the mass W1 before immersion was calculated by the following mathematical expression (2).
  • ⁇ [%] ((W2-W1)/W1) ⁇ 100 (2)
  • the evaluation was “good A ( ⁇ )” when the ratio ⁇ was less than 10%, “good B ( ⁇ )” when 10% or more and less than 30%, and 30% or more and less than 50%. In each case, it was evaluated as “Fair ( ⁇ )” and when it was 50% or more, it was evaluated as “Poor (X)”. It should be noted that the lower the ratio ⁇ , the better the solvent to be evaluated is because it is less likely to swell the inkjet head constituent member. As a result of the evaluation, in this example, the color change was “good”, the presence or absence of cracks was “good”, the presence or absence of dissolution was “good”, and the mass change was “good”.
  • a liquid crystal aligning agent (S-1) was applied onto a glass substrate with a transparent electrode consisting of a pair (two sheets) of ITO film using a spinner, and prebaked for 1 minute on a hot plate at 80° C. I went. Then, the solvent was removed by heating (post-baking) at 200° C. for 1 hour in an oven purged with nitrogen to form a coating film (liquid crystal alignment film) having a film thickness of 0.08 ⁇ m.
  • the coating film was rubbed by a rubbing machine having a roll around which a rayon cloth was wound, with a roll rotation speed of 400 rpm, a stage moving speed of 3 cm/sec, and a foot pressing length of 0.1 mm. Then, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then drying was performed in a 100° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film. This operation was repeated to obtain a pair (two) of substrates having a liquid crystal alignment film. Note that this rubbing treatment is a weak rubbing treatment performed for the purpose of controlling the collapse of the liquid crystal and performing alignment division by a simple method.
  • An epoxy resin adhesive containing 3.5 ⁇ m diameter aluminum oxide spheres was applied by screen printing to the outer periphery of the surface of one of the substrates having the liquid crystal alignment film, and then the liquid crystal alignment film faces of the pair of substrates were opposed to each other. Then, they were overlapped and pressure-bonded, and heated at 150° C. for 1 hour to thermally cure the adhesive. Next, after filling a negative liquid crystal (MLC-6608 made by Merck) into the gap between the substrates from the liquid crystal injection port, the liquid crystal injection port is sealed with an epoxy adhesive to remove the flow alignment at the time of liquid crystal injection. This was heated at 150° C. for 10 minutes and then gradually cooled to room temperature. Further, a liquid crystal display element was manufactured by bonding two polarizing plates on both outer sides of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other.
  • MLC-6608 negative liquid crystal
  • the pretilt angle of the liquid crystal display device obtained by forming the liquid crystal alignment film at different post-baking temperatures 120° C., 180° C. and 230° C. was measured according to the method of 1.
  • the variation characteristics were evaluated.
  • the measurement of the pretilt angle is based on a method described in a non-patent document (T. J. Scheffer et. al. J. Appl. Phys. vo. 19, p. 2013 (1980)), and He-Ne laser light is used.
  • the value of the tilt angle of the liquid crystal molecule from the substrate surface measured by the crystal rotation method using was used as the pretilt angle [°].
  • the evaluation is “good ( ⁇ )” when ⁇ is 0.2° or less, “good ( ⁇ )” and 0.5° when larger than 0.2° and less than 0.5°.
  • a liquid crystal cell for evaluation was produced by the same method as described above.
  • the liquid crystal cell for evaluation was placed under the condition of 60° C., and an alternating voltage of 10 V was applied to the electrode 1 for 300 hours without applying a voltage to the electrode 2.
  • a voltage of AC 3V was applied to both the electrode 1 and the electrode 2, and the difference ⁇ T [%] in light transmittance between the electrodes was measured.
  • the AC afterimage characteristic is “good ( ⁇ )”, when it is 2% or more and less than 3%, it is “OK”, and when it is 3% or more, it is “good”. It was evaluated as “poor (x)”. As a result, this example was evaluated as “good”.
  • Examples 2 to 9 and Comparative Examples 1 to 10 A liquid crystal aligning agent was prepared in the same manner as in Example 1 except that the compounding formulations were as shown in Table 1 below. Further, various evaluations were performed in the same manner as in Example 1 using the prepared liquid crystal aligning agent. The evaluation results are shown in Table 2 below.
  • Example 10 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-10) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below.
  • the liquid crystal aligning agent (S-10) is mainly used for manufacturing a horizontal alignment type liquid crystal display element. 2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-10) was used. The results are shown in Table 2 below.
  • a rubbing FFS type liquid crystal display element A glass substrate in which a flat plate electrode (bottom electrode), an insulating layer and a comb-teeth-shaped electrode (top electrode) are laminated in this order on one surface, and a counter glass substrate in which no electrode is provided
  • the liquid crystal aligning agent (S-10) was applied onto each surface using a spinner, and heated (prebaked) on a hot plate at 80° C. for 1 minute. Then, it was dried (post-baked) for 1 hour in an oven at 200° C. in which the inside of the chamber was replaced with nitrogen to form a coating film having an average film thickness of 0.08 ⁇ m.
  • the surface of the coating film was rubbed with a rubbing machine having a roll around which a rayon cloth was wound, at a roll rotation speed of 500 rpm, a stage moving speed of 3 cm/sec, and a foot pressing length of 0.4 mm.
  • ultrasonic cleaning was performed in ultrapure water for 1 minute, and then dried in a 100° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film.
  • an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 ⁇ m was applied by screen printing, leaving a liquid crystal injection port at the edge of the surface on which the liquid crystal alignment film was formed.
  • nematic liquid crystal (MLC-6221, manufactured by Merck & Co., Inc.) was filled between the pair of substrates through the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Further, in order to remove the flow orientation at the time of injecting liquid crystal, this was heated at 120° C. and then gradually cooled to room temperature to manufacture a liquid crystal cell.
  • the rubbing directions of the substrates were antiparallel.
  • the polarizing plates were attached so that the polarization directions of the two polarizing plates were parallel and orthogonal to the rubbing direction.
  • the line width of the electrodes was 4 ⁇ m and the distance between the electrodes was 6 ⁇ m.
  • four-system drive electrodes of electrode A, electrode B, electrode C, and electrode D were used as the top electrodes.
  • the bottom electrode acts as a common electrode that acts on all the four-system drive electrodes, and each of the four-system drive electrode regions becomes a pixel region. 4. Evaluation of rubbing FFS type liquid crystal display device The post-bake margin, the AC afterimage characteristic and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the rubbing FFS type liquid crystal display element or the liquid crystal cell manufactured according to the method of 1. was used. The results are shown in Table 2 below.
  • Example 11 and 12 Liquid crystal aligning agents (S-11) and (S-12) were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. Further, the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal aligning agents (S-11) and (S-12) were used, respectively, and the same as in Example 10. Then, a rubbing FFS type liquid crystal display element or liquid crystal cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
  • Example 13 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-13) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below.
  • the liquid crystal aligning agent (S-13) is mainly used for manufacturing a PSA type liquid crystal display device. 2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-13) was used. The results are shown in Table 2 below.
  • Liquid Crystal Composition 5% by mass of a liquid crystal compound represented by the following formula (L1-1) is represented by 10 g of nematic liquid crystal (MLC-6608 manufactured by Merck & Co., Inc.), and represented by the following formula (L2-1).
  • a liquid crystal composition LC1 was obtained by adding 0.3% by mass of a photopolymerizable compound described above and mixing them.
  • an alternating current of 10 V with a frequency of 60 Hz was applied between the electrodes, and while the liquid crystal was driven, an ultraviolet irradiation device using a metal halide lamp as a light source was used to emit 50 Irradiation was performed at an irradiation dose of 000 J/m 2 .
  • this irradiation amount is a value measured using a photometer that measures the wavelength at 365 nm as a reference.
  • a liquid crystal display element was manufactured by bonding two polarizing plates on both outer sides of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other. 5.
  • Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below.
  • inkjet coating properties and long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that each liquid crystal aligning agent was used, and in the same manner as in Example 14, a PSA type liquid crystal display element or liquid crystal cell. was manufactured and various evaluations were performed. The results are shown in Table 2 below.
  • Example 16 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-16) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below.
  • the liquid crystal aligning agent (S-16) is mainly used for manufacturing an optical vertical alignment type liquid crystal display element. 2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-16) was used. The results are shown in Table 2 below.
  • This irradiation amount is a value measured using a photometer that measures the wavelength at 313 nm. 4. Evaluation of vertically aligned liquid crystal display device 3. The post-bake margin, AC afterimage characteristics, and DC afterimage characteristics were evaluated in the same manner as in Example 1 except that the liquid crystal display device or liquid crystal cell of the optical vertical alignment type manufactured according to the method described in 1 above was used. The results are shown in Table 2 below.
  • Example 17 and 18 Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. In addition, the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that each liquid crystal aligning agent was used. A liquid crystal cell was manufactured and post-bake margin, AC afterimage characteristics, and DC afterimage characteristics were evaluated. The results are shown in Table 2 below.
  • Example 19 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-19) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below.
  • the liquid crystal aligning agent (S-19) is mainly used for manufacturing an optical horizontal type liquid crystal display element.
  • the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-19) was used. The results are shown in Table 2 below.
  • optical FFS type liquid crystal display element In addition to using a liquid crystal aligning agent (S-19) and performing rubbing treatment, the film was irradiated with polarized ultraviolet rays using a Hg-Xe lamp and a Glan-Taylor prism. An optical FFS type liquid crystal display element was produced in the same manner as in the method described in “3. Production of rubbing FFS type liquid crystal display element” in Example 10. Irradiation of polarized ultraviolet rays was performed from a direction perpendicular to the substrate, the irradiation amount was 10,000 J/m 2 , and the polarization direction was orthogonal to the rubbing direction in Example 10.
  • This irradiation amount is a value measured using a photometer that measures the wavelength at 254 nm. 4. Evaluation of optical FFS type liquid crystal display device
  • the post-bake margin, the AC afterimage characteristic, and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the optical FFS type liquid crystal display element or the liquid crystal cell manufactured according to the method described in 1. was used. The results are shown in Table 2 below.
  • Example 20 to 24 Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. Further, the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that each liquid crystal aligning agent was used, and in the same manner as in Example 21, an optical FFS type liquid crystal display element or liquid crystal was used. The cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
  • Example 26 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-26) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below.
  • the liquid crystal aligning agent (S-26) is mainly used for manufacturing a TN mode type liquid crystal display device. 2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-26) was used. The results are shown in Table 2 below.
  • a TN type liquid crystal display device was manufactured in the same manner as in Example 1 except that the polarization direction was parallel to the rubbing direction of each substrate. 4. Evaluation of TN type liquid crystal display device The post-bake margin, the AC afterimage characteristic, and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the TN type liquid crystal display element or the liquid crystal cell manufactured according to the method described in 1. was used. The results are shown in Table 2 below.
  • the numerical value of the polymer component indicates the blending ratio (parts by mass) of each polymer to 100 parts by mass in total of the polymer components used for preparing the liquid crystal aligning agent.
  • the numerical value of the solvent composition indicates the compounding ratio (mass ratio) of each compound to the total amount of the solvent (compound [A], solvent [B] and other solvent) used for the preparation of the liquid crystal aligning agent.
  • the compound abbreviations are as follows.
  • the liquid crystal aligning agent containing the compound [A] has a good coating property on the substrate, does not easily deteriorate the inkjet head, and can obtain a liquid crystal element having excellent afterimage characteristics. It was Further, it was revealed that the liquid crystal aligning agent can also improve the post-baking margin.

Abstract

The present invention provides a liquid crystal aligning agent which exhibits good coatability to a substrate but is not likely to deteriorate an inkjet head, and which enables the achievement of a liquid crystal element that has excellent afterimage characteristics. According to the present invention, a liquid crystal aligning agent is configured to contain a polymer component and a component (A) that is represented by formula (1). (1): (R2)x-Ar1-R1 (In formula (1), Ar1 represents an aromatic ring group having a valence of (x + 1); R2 represents an alkyl group having 1-3 carbon atoms, a hydroxyalkyl group having 1-3 carbon atoms or an alkoxy group having 1-3 carbon atoms; x represents 0 or 1; and R1 represents a hydroxyalkyl group having 1-3 carbon atoms or an alkoxy group having 1-3 carbon atoms.)

Description

液晶配向剤、液晶配向膜及び液晶素子Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal element 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年1月17日に出願された日本特許出願番号2019-6186号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2019-6186 filed on January 17, 2019, the content of which is incorporated herein by reference.
 本開示は、液晶配向剤、液晶配向膜及び液晶素子に関する。 The present disclosure relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal element.
 液晶素子は、液晶層中の液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。液晶配向膜は一般に、重合体成分が有機溶媒に溶解されてなる液晶配向剤を基板表面に塗布し、好ましくは加熱することによって基板上に形成される。液晶配向剤の溶剤成分としては、重合体成分の溶解性が高い溶媒(良溶媒)として、N-メチル-2-ピロリドンやγ-ブチロラクトン等が一般に使用されている。また、これらの良溶媒に、ブチルセロソルブ等といった、重合体成分の溶解性が低い溶媒(貧溶媒)を混合して使用することにより基板に対する濡れ広がり性を高めることが行われている(例えば、特許文献1や特許文献2参照)。 The liquid crystal element has a liquid crystal alignment film having a function of aligning liquid crystal molecules in a liquid crystal layer in a certain direction. The liquid crystal aligning film is generally formed on the substrate by applying a liquid crystal aligning agent in which a polymer component is dissolved in an organic solvent onto the surface of the substrate, and preferably by heating. As the solvent component of the liquid crystal aligning agent, N-methyl-2-pyrrolidone, γ-butyrolactone and the like are generally used as a solvent (good solvent) having high solubility of the polymer component. Further, it has been performed to improve wettability and spreadability on a substrate by mixing a solvent (poor solvent) having low solubility of a polymer component such as butyl cellosolve with these good solvents (for example, patent (See Reference 1 and Patent Reference 2).
 近年、大型のラインを使用して基板を大型化することにより、液晶表示装置の大型化に対応させたり、あるいは1枚の基板から複数枚のパネルを取ることによって製造工程の時間の削減及びコストの低減を図ったりすることが行われている。その一方で、基板を大型化すると液晶配向剤の塗布領域が大面積となるため、膜質の均一性を塗布領域全体に亘って確保することが困難になる。こうした塗布性の問題を解消するべく近年では、大型液晶パネルの製造工程においてインクジェット印刷法による塗布方法が導入されている。 In recent years, by using a large line to increase the size of the substrate, the size of the liquid crystal display device can be increased, or by taking a plurality of panels from one substrate, the time and cost of the manufacturing process can be reduced. Are being reduced. On the other hand, if the size of the substrate is increased, the application area of the liquid crystal aligning agent becomes large in area, so that it becomes difficult to secure the uniformity of the film quality over the entire application area. In order to solve such a problem of coating properties, in recent years, a coating method by an inkjet printing method has been introduced in a manufacturing process of a large liquid crystal panel.
特開2017-198975号公報JP, 2017-198975, A 特開2016-206645号公報JP, 2016-206645, A
 N-メチル-2-ピロリドンやγ-ブチロラクトンは、液晶配向剤の重合体成分の溶解性に優れているため、大型液晶パネルの製造に際しインクジェット印刷法により液晶配向剤を基板上に塗布した場合に、液晶配向剤の塗布ムラの低減を図ることが可能である。その一方で、N-メチル-2-ピロリドンやγ-ブチロラクトンはインクジェットヘッドの劣化を招きやすく、インクジェットヘッドの交換頻度が高くなりやすい。特に近年では、表示パネルの狭額縁化が求められており、これに伴いインクジェットヘッドのノズル径がより小さくなっている。ノズル径がより小さくなると吐出マージンが狭くなるため、インクジェットヘッドの劣化をより引き起こしやすくなることが懸念される。 N-methyl-2-pyrrolidone and γ-butyrolactone are excellent in solubility of the polymer component of the liquid crystal aligning agent, and therefore, when the liquid crystal aligning agent is applied on the substrate by the inkjet printing method in the production of a large liquid crystal panel. Therefore, it is possible to reduce the unevenness of application of the liquid crystal aligning agent. On the other hand, N-methyl-2-pyrrolidone and γ-butyrolactone are likely to cause deterioration of the inkjet head, and the inkjet head is likely to be replaced frequently. Particularly in recent years, there has been a demand for a narrower frame of a display panel, and accordingly, the nozzle diameter of an inkjet head has become smaller. If the nozzle diameter becomes smaller, the ejection margin becomes narrower, which may cause deterioration of the inkjet head.
 また、液晶素子の高性能化に対する要求はさらに高まっている。こうした要求から、液晶配向剤の基板に対する塗布性を高めることにより製品歩留まりの低下を抑制するとともに、電圧印加を解除した場合にも残像が生じにくく高品位な液晶素子が求められている。 Demand for higher performance liquid crystal elements is also increasing. From these requirements, there is a demand for a high-quality liquid crystal element that suppresses a reduction in product yield by increasing the coating property of a liquid crystal aligning agent on a substrate and that hardly causes an afterimage even when the voltage application is released.
 本開示は上記事情に鑑みてなされたものであり、基板に対する塗布性が良好であり、インクジェットヘッドを劣化させにくく、しかも残像特性に優れた液晶素子を得ることができる液晶配向剤を提供することを主たる目的とする。 The present disclosure has been made in view of the above circumstances, and provides a liquid crystal aligning agent that has good coatability on a substrate, is less likely to deteriorate an inkjet head, and can obtain a liquid crystal element having excellent afterimage characteristics. Is the main purpose.
 本発明者らは上記課題を解決するために鋭意検討し、芳香環の環部分に結合する水素原子が炭素数1~3のヒドロキシアルキル基又はアルコキシ基で置換された化合物を液晶配向剤に含有させることにより、上記課題を解決できることを見出した。具体的には、本開示によれば以下の手段が提供される。
[1] 重合体成分と、下記式(1)で表される化合物[A]とを含有する、液晶配向剤。
 (R)x-Ar-R  …(1)
(式(1)中、Arは(x+1)価の芳香環基であり、Rは炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基であり、xは0又は1である。Rは炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基である。)
[2] 液晶配向膜を備える液晶素子の製造方法であって、上記[1]の液晶配向剤を用いて前記液晶配向膜を形成する、液晶素子の製造方法。
[3] 上記[1]の液晶配向剤を用いて形成された液晶配向膜。
[4] 上記[3]の液晶配向膜を備える液晶素子。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and include a liquid crystal aligning agent containing a compound in which a hydrogen atom bonded to a ring portion of an aromatic ring is substituted with a hydroxyalkyl group or an alkoxy group having 1 to 3 carbon atoms. It was found that the above problems can be solved by doing so. Specifically, according to the present disclosure, the following means are provided.
[1] A liquid crystal aligning agent containing a polymer component and a compound [A] represented by the following formula (1).
(R 2 )x-Ar 1 -R 1 (1)
(In the formula (1), Ar 1 is a (x+1)-valent aromatic ring group, and R 2 is an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms. And x is 0 or 1. R 1 is a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.)
[2] A method for manufacturing a liquid crystal element including a liquid crystal alignment film, wherein the liquid crystal alignment film is formed using the liquid crystal alignment agent according to [1] above.
[3] A liquid crystal alignment film formed using the liquid crystal alignment agent according to the above [1].
[4] A liquid crystal device including the liquid crystal alignment film of [3].
 本開示によれば、基板に対する塗布性が良好であるとともに、インクジェットヘッドを劣化させにくい液晶配向剤とすることができる。また、残像特性に優れた液晶素子を製造することができる。 According to the present disclosure, it is possible to provide a liquid crystal aligning agent that has good coatability on a substrate and that does not easily deteriorate an inkjet head. In addition, a liquid crystal element having excellent afterimage characteristics can be manufactured.
≪液晶配向剤≫
 本開示の液晶配向剤は、重合体成分と溶剤成分とを含有する。以下に、液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
≪Liquid crystal aligning agent≫
The liquid crystal aligning agent of the present disclosure contains a polymer component and a solvent component. Below, each component contained in the liquid crystal aligning agent and other components optionally blended as necessary will be described.
≪重合体成分≫
 液晶配向剤に含有される重合体成分としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリエステル、ポリアミド、ポリアミドイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、セルロース誘導体、ポリアセタール、重合性不飽和結合を有するモノマーに由来する構造単位を有する重合体(以下、「重合体(Q)」ともいう。)等を主骨格とする重合体が挙げられる。液晶素子の性能を十分に担保する等の観点から、重合体成分は、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリアミド、及び重合体(Q)よりなる群から選ばれる少なくとも一種を含むことが好ましい。
<< Polymer component >>
As the polymer component contained in the liquid crystal aligning agent, polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamideimide, polybenzoxazole precursor, polybenzoxazole, cellulose derivative, polyacetal, polymerizable Examples of the polymer include a polymer having a structural unit derived from a monomer having an unsaturated bond (hereinafter, also referred to as “polymer (Q)”) as a main skeleton. From the viewpoint of sufficiently ensuring the performance of the liquid crystal element, the polymer component contains at least one selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyamide, and polymer (Q). It is preferable.
<ポリアミック酸>
 ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得ることができる。
(テトラカルボン酸二無水物)
 ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物などを;
 脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオン、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物などを;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’-ジクロロ-3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’-ジメチル-3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物などを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
<Polyamic acid>
The polyamic acid can be obtained by reacting a tetracarboxylic dianhydride and a diamine compound.
(Tetracarboxylic acid dianhydride)
Examples of the tetracarboxylic dianhydride used in the synthesis of the polyamic acid include aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, aromatic tetracarboxylic dianhydride and the like. .. Specific examples of these include aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride;
Examples of the alicyclic tetracarboxylic acid dianhydride include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentyl acetic acid dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1 ,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 3-Oxabicyclo[3.2.1]octane-2,4-dione-6-spiro-3'-(tetrahydrofuran-2',5'-dione), 2,4,6,8-tetracarboxybicyclo[ 3.3.0] Octane-2:4,6:8-dianhydride, 4,9-dioxatricyclo[5.3.1.0 2,6 ]undecane-3,5,8,10- Tetraone, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, etc.; As aromatic tetracarboxylic dianhydride, for example, pyromellitic dianhydride, 4,4'-(hexafluoroisopropylidene) Diphthalic anhydride, ethylene glycol bisanhydrotrimate, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 3,3',4,4' -Diphenylsulfone tetracarboxylic dianhydride, 2,2'-dichloro-3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 2,2'-dimethyl-3,3',4 4′-diphenylsulfone tetracarboxylic acid dianhydride and the like can be mentioned, respectively, and the tetracarboxylic acid dianhydride described in JP-A-2010-97188 can be used. In addition, the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
(ジアミン化合物)
 ポリアミック酸の合成に使用するジアミン化合物としては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらジアミンの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどを;脂環式ジアミンとして、例えば1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などを;
 芳香族ジアミンとして、例えば、ドデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,4-ジアミノベンゼン、ヘキサデカノキシ-2,4-ジアミノベンゼン、オクタデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,5-ジアミノベンゼン、オクタデカノキシ-2,5-ジアミノベンゼン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、コレステニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、2,4-ジアミノ-N,N-ジアリルアニリン、4-(4’-トリフルオロメトキシベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、3,5-ジアミノ安息香酸=5ξ-コレスタン-3-イル、下記式(E-1)
Figure JPOXMLDOC01-appb-C000002
(式(E-1)中、XI及びXIIは、それぞれ独立に、単結合、-O-、*-COO-又は*-OCO-(ただし、「*」はXとの結合手を示す。)であり、Rは炭素数1~3のアルカンジイル基であり、RIIは単結合又は炭素数1~3のアルカンジイル基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、dは0又は1である。但し、a及びbが同時に0になることはない。)
で表される化合物、桂皮酸構造を側鎖に有するジアミンなどの側鎖型ジアミン:
(Diamine compound)
Examples of the diamine compound used for synthesizing the polyamic acid include aliphatic diamine, alicyclic diamine, aromatic diamine, diaminoorganosiloxane and the like. Specific examples of these diamines include aliphatic diamines such as metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine; and alicyclic diamines such as 1,4 -Diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), etc.;
Examples of aromatic diamines include dodecaneoxy-2,4-diaminobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanooxy-2,4-diaminobenzene, pentadecanooxy-2,5-diamino. Benzene, octadecanooxy-2,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestenyloxy-2, 4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate, 3,6-bis(4-aminobenzoyloxy)cholestane, 3,6- Bis(4-aminophenoxy)cholestane, 2,4-diamino-N,N-diallylaniline, 4-(4′-trifluoromethoxybenzoyloxy)cyclohexyl-3,5-diaminobenzoate, 1,1-bis( 4-((aminophenyl)methyl)phenyl)-4-butylcyclohexane, 3,5-diaminobenzoic acid=5ξ-cholestan-3-yl, the following formula (E-1)
Figure JPOXMLDOC01-appb-C000002
(In formula (E-1), X I and X II are each independently a single bond, —O—, *—COO— or *—OCO— (where “*” is a bond to X I). R I is an alkanediyl group having 1 to 3 carbon atoms, R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, and b is 0. Is an integer of 2 to 2, c is an integer of 1 to 20, and d is 0 or 1. However, a and b are not 0 at the same time.)
A compound represented by the following formula, a side chain type diamine such as a diamine having a cinnamic acid structure in its side chain:
p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,5-ビス(4-アミノフェノキシ)ペンタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,10-ビス(4-アミノフェノキシ)デカン、1,2-ビス(4-アミノフェニル)エタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,4-ビス(4-アミノフェニルスルファニル)ブタン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、N,N-ビス(4-アミノフェニル)メチルアミン、2,6-ジアミノピリジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4,4’-ジアミノベンズアニリド、4,4’-ジアミノスチルベンゼン、4,4’-ジアミノジフェニルアミン、1,3-ビス(4-アミノフェネチル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,4-ビス(4-アミノフェニル)-ピペラジン、N-(4-アミノフェニルエチル)-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン等の主鎖型ジアミンなどを;ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。 p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 4-aminophenyl-4-aminobenzoate, 4,4'-diaminoazobenzene, 3,5-diaminobenzoic acid, 1, 5-bis(4-aminophenoxy)pentane, 1,2-bis(4-aminophenoxy)ethane, 1,3-bis(4-aminophenoxy)propane, 1,4-bis(4-aminophenoxy)butane, 1,6-bis(4-aminophenoxy)hexane, 1,7-bis(4-aminophenoxy)heptane, 1,10-bis(4-aminophenoxy)decane, 1,2-bis(4-aminophenyl) Ethane, 1,5-bis(4-aminophenyl)pentane, 1,6-bis(4-aminophenyl)hexane, 1,4-bis(4-aminophenylsulfanyl)butane, bis[2-(4-amino) Phenyl)ethyl]hexanedioic acid, N,N-bis(4-aminophenyl)methylamine, 2,6-diaminopyridine, 1,4-bis-(4-aminophenyl)-piperazine, N,N'-bis (4-Aminophenyl)-benzidine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-diamino Diphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4′-(phenylenediisopropylidene)bisaniline, 1, 4-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-[4,4'-propane-1,3-diylbis(piperidine-1,4-) Diyl)] dianiline, 4,4'-diaminobenzanilide, 4,4'-diaminostilbenzene, 4,4'-diaminodiphenylamine, 1,3-bis(4-aminophenethyl)urea, 1,3-bis( 4-aminobenzyl)urea, 1,4-bis(4-aminophenyl)-piperazine, N-(4-aminophenylethyl)-N-methylamine, N,N′-bis(4-aminophenyl)-N , N′-dimethylbenzidine and other main chain type diamines; and diaminoorganosiloxanes such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; 2010-9718 The diamine described in JP-A-8 can be used.
(ポリアミック酸の合成)
 ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤とともに反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n-ブチルアミンなどのモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミン化合物の合計100質量部に対して、20質量部以下とすることが好ましい。
(Synthesis of polyamic acid)
The polyamic acid can be obtained by reacting the above-mentioned tetracarboxylic acid dianhydride and a diamine compound together with a molecular weight modifier, if necessary. The ratio of the tetracarboxylic acid dianhydride and the diamine compound used for the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic acid dianhydride is 0.2 with respect to 1 equivalent of the amino group of the diamine compound. A ratio of up to 2 equivalents is preferable. Examples of the molecular weight modifier include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. Can be mentioned. The use ratio of the molecular weight modifier is preferably 20 parts by mass or less based on 100 parts by mass of the total tetracarboxylic dianhydride and diamine compound used.
 ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。
 反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。特に好ましい有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m-クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と、他の有機溶媒(例えばブチルセロソルブ、ジエチレングリコールジエチルエーテルなど)との混合物を使用することが好ましい。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して、0.1~50質量%になる量とすることが好ましい。ポリアミック酸を溶解してなる反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよい。
The synthesis reaction of polyamic acid is preferably carried out in an organic solvent. The reaction temperature at this time is preferably −20° C. to 150° C., and the reaction time is preferably 0.1 to 24 hours.
Examples of the organic solvent used in the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons and hydrocarbons. Particularly preferred organic solvents are N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol. And at least one selected from the group consisting of halogenated phenols as a solvent, or a mixture of at least one of these with other organic solvents (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.) preferable. The amount (a) of the organic solvent used is such that the total amount (b) of the tetracarboxylic dianhydride and the diamine becomes 0.1 to 50% by mass with respect to the total amount (a+b) of the reaction solution. Is preferred. The reaction solution obtained by dissolving the polyamic acid may be directly used for preparing the liquid crystal aligning agent, or the polyamic acid contained in the reaction solution may be isolated and then used for preparing the liquid crystal aligning agent.
<ポリアミック酸エステル>
 ポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミン化合物とを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミン化合物とを反応させる方法、などによって得ることができる。液晶配向剤に含有させるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
<Polyamic acid ester>
The polyamic acid ester is, for example, [I] a method of reacting the polyamic acid obtained by the above synthetic reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine compound, [III] tetracarboxylic acid. It can be obtained by a method of reacting an acid diester dihalide with a diamine compound. The polyamic acid ester contained in the liquid crystal aligning agent may have only an amic acid ester structure, or may be a partial esterified product having both an amic acid structure and an amic acid ester structure. The reaction solution obtained by dissolving the polyamic acid ester may be directly used for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid ester contained in the reaction solution. Good.
<ポリイミド>
 ポリイミドは、例えば上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。ポリイミドは、そのイミド化率が20~99%であることが好ましく、30~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
<Polyimide>
The polyimide can be obtained, for example, by subjecting the polyamic acid synthesized as described above to dehydration ring closure to imidize. The polyimide may be a complete imidized product obtained by dehydration ring closure of all of the amic acid structure of the precursor polyamic acid, dehydration ring closure of only a portion of the amic acid structure, amic acid structure and imide It may be a partial imidized product having a ring structure. The imidization ratio of the polyimide is preferably 20 to 99%, more preferably 30 to 90%. This imidization ratio is a percentage of the ratio of the number of imide ring structures to the total of the number of amic acid structures and the number of imide ring structures of polyimide. Here, a part of the imide ring may be an isoimide ring.
 ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。この方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0~180℃である。反応時間は、好ましくは1.0~120時間である。ポリイミドを含有する反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。ポリイミドは、ポリアミック酸エステルのイミド化により得ることもできる。 The dehydration ring closure of the polyamic acid is preferably carried out by a method in which the polyamic acid is dissolved in an organic solvent, a dehydrating agent and a dehydration ring closure catalyst are added to this solution, and heating is carried out if necessary. In this method, as the dehydrating agent, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used. The amount of the dehydrating agent used is preferably 0.01 to 20 mol per 1 mol of the amic acid structure of the polyamic acid. As the dehydration ring-closing catalyst, for example, tertiary amines such as pyridine, collidine, lutidine, triethylamine and the like can be used. The amount of the dehydration ring-closing catalyst used is preferably 0.01 to 10 mol per 1 mol of the dehydrating agent used. Examples of the organic solvent used for the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. The reaction temperature for the dehydration ring closure reaction is preferably 0 to 180°C. The reaction time is preferably 1.0 to 120 hours. The reaction solution containing the polyimide may be used as it is for preparing the liquid crystal aligning agent, or may be used for preparing the liquid crystal aligning agent after isolating the polyimide. Polyimide can also be obtained by imidization of polyamic acid ester.
<ポリオルガノシロキサン>
 ポリオルガノシロキサンは、例えば加水分解性のシラン化合物を加水分解・縮合することにより得ることができる。当該シラン化合物としては、例えば、テトラメトキシシラン、メチルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルプロピルコハク酸無水物等を挙げることができる。加水分解性シラン化合物は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。「(メタ)アクリロキシ」は、「アクリロキシ」及び「メタクリロキシ」を含む意味である。
<Polyorganosiloxane>
The polyorganosiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound. Examples of the silane compound include tetramethoxysilane, methyltriethoxysilane, 3-mercaptopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropylmethyl. Examples thereof include dimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, and trimethoxysilylpropylsuccinic anhydride. The hydrolyzable silane compounds may be used alone or in combination of two or more. “(Meth)acryloxy” is meant to include “acryloxy” and “methacryloxy”.
 加水分解・縮合反応は、シラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行う。反応に際し、水の使用割合は、シラン化合物(合計量)1モルに対して、好ましくは1~30モルである。使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物などを挙げることができる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なるが、例えばシラン化合物の合計量に対して0.01~3倍モルである。使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコールなどが挙げられ、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100質量部に対して、好ましくは10~10,000質量部である。上記反応は、油浴などにより加熱して実施することが好ましい。その際の加熱温度は130℃以下とすることが好ましく、加熱時間は0.5~12時間とすることが好ましい。反応終了後において、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、目的とするポリオルガノシロキサンが得られる。なお、ポリオルガノシロキサンの合成方法は上記の加水分解・縮合反応に限らず、例えば加水分解性シラン化合物をシュウ酸及びアルコールの存在下で反応させる方法などにより行ってもよい。 The hydrolysis/condensation reaction is carried out by reacting one or more silane compounds with water, preferably in the presence of a suitable catalyst and an organic solvent. In the reaction, the amount of water used is preferably 1 to 30 mol per 1 mol of the silane compound (total amount). Examples of the catalyst used include acids, alkali metal compounds, organic bases, titanium compounds and zirconium compounds. The amount of the catalyst used varies depending on the type of the catalyst, reaction conditions such as temperature, and the like, but is, for example, 0.01 to 3 times the mol of the total amount of the silane compound. Examples of the organic solvent used include hydrocarbons, ketones, esters, ethers, alcohols and the like, and it is preferable to use a water-insoluble or slightly water-soluble organic solvent. The use ratio of the organic solvent is preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compound used in the reaction. The above reaction is preferably carried out by heating with an oil bath or the like. The heating temperature at that time is preferably 130° C. or lower, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant, if necessary, and then the solvent is removed to obtain the target polyorganosiloxane. The method for synthesizing the polyorganosiloxane is not limited to the above hydrolysis/condensation reaction, and for example, a method of reacting a hydrolyzable silane compound in the presence of oxalic acid and alcohol may be used.
 光配向性基やプレチルト角付与基等の機能性官能基を側鎖に有するポリオルガノシロキサンを液晶配向剤に含有させる場合には、例えば、原料の少なくとも一部にエポキシ基含有シラン化合物を用いた重合によりエポキシ基を側鎖に有するポリオルガノシロキサンを合成し、次いでエポキシ基含有のポリオルガノシロキサンと、機能性官能基を有するカルボン酸とを反応させることにより、目的とするポリオルガノシロキサンを得ることができる。あるいは、機能性官能基を有する加水分解性のシラン化合物をモノマーに用いた重合による方法を採用してもよい。 When a liquid crystal aligning agent contains a polyorganosiloxane having a side chain having a functional functional group such as a photo-alignment group or a pretilt angle imparting group, for example, an epoxy group-containing silane compound is used as at least a part of the raw material. A polyorganosiloxane having an epoxy group in a side chain is synthesized by polymerization, and then an epoxy group-containing polyorganosiloxane is reacted with a carboxylic acid having a functional functional group to obtain a target polyorganosiloxane. You can Alternatively, a method of polymerization using a hydrolyzable silane compound having a functional functional group as a monomer may be adopted.
<ポリアミド>
 ポリアミドは、ジカルボン酸とジアミン化合物とを反応させる方法等によって得ることができる。ジカルボン酸は、塩化チオニル等の適当な塩素化剤を用いて酸クロリド化した後にジアミン化合物との反応に供することが好ましい。
<Polyamide>
Polyamide can be obtained by a method of reacting a dicarboxylic acid and a diamine compound, or the like. The dicarboxylic acid is preferably subjected to acid chloride formation using a suitable chlorinating agent such as thionyl chloride and then subjected to a reaction with a diamine compound.
 ポリアミドの合成に使用するジカルボン酸は特に制限されないが、例えばシュウ酸、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、フマル酸等の脂肪族ジカルボン酸;シクロブタンジカルボン酸、1-シクロブテンジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、2,5-ジメチルテレフタル酸、4-カルボキシ桂皮酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸等の芳香族ジカルボン酸;等が挙げられる。合成に使用するジアミン化合物としては、例えばポリアミック酸の説明で例示したジアミン化合物等が挙げられる。ジカルボン酸及びジアミン化合物は、それぞれ1種を単独で使用してもよく、2種以上を組み合わせて使用することができる。 The dicarboxylic acid used in the synthesis of the polyamide is not particularly limited, and examples thereof include aliphatic dicarboxylic acids such as oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid and fumaric acid; cyclobutane. Alicyclic dicarboxylic acids such as dicarboxylic acid, 1-cyclobutenedicarboxylic acid, cyclohexanedicarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 2,5-dimethylterephthalic acid, 4-carboxycinnamic acid, Aromatic dicarboxylic acids such as 3,3′-[4,4′-(methylenedi-p-phenylene)]dipropionic acid and 4,4′-[4,4′-(oxydi-p-phenylene)]dibutyric acid And the like. Examples of the diamine compound used for the synthesis include the diamine compounds exemplified in the explanation of polyamic acid. The dicarboxylic acid and diamine compounds may each be used alone or in combination of two or more.
 ジカルボン酸とジアミン化合物との反応は、好ましくは塩基の存在下、有機溶媒中において行われる。このとき、ジカルボン酸とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、ジカルボン酸のカルボキシル基が0.2~2当量となる割合が好ましい。反応温度は0℃~200℃とすることが好ましく、反応時間は0.5~48時間とすることが好ましい。有機溶媒としては、例えばテトラヒドロフラン、ジオキサン、トルエン、クロロホルム、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等を好ましく使用することができる。塩基としては、例えばピリジン、トリエチルアミン、N-エチル-N,N-ジイソプロピルアミン等の3級アミンを好ましく使用することができる。塩基の使用割合は、ジアミン化合物1モルに対して2~4モルとすることが好ましい。上記反応により得られる溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミドを単離したうえで液晶配向剤の調製に供してもよい。 The reaction of the dicarboxylic acid and the diamine compound is preferably carried out in an organic solvent in the presence of a base. At this time, the use ratio of the dicarboxylic acid and the diamine compound is preferably such that the carboxyl group of the dicarboxylic acid is 0.2 to 2 equivalents relative to 1 equivalent of the amino group of the diamine compound. The reaction temperature is preferably 0°C to 200°C, and the reaction time is preferably 0.5 to 48 hours. As the organic solvent, for example, tetrahydrofuran, dioxane, toluene, chloroform, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone and the like can be preferably used. As the base, for example, tertiary amines such as pyridine, triethylamine and N-ethyl-N,N-diisopropylamine can be preferably used. The amount of the base used is preferably 2 to 4 mol per 1 mol of the diamine compound. The solution obtained by the above reaction may be directly used for preparing the liquid crystal aligning agent, or may be used for preparing the liquid crystal aligning agent after isolating the polyamide contained in the reaction solution.
<重合体(Q)>
 重合性不飽和結合を有するモノマーとしては、例えば、(メタ)アクリロイル基、ビニル基、ビニルフェニル基、スチリル基、マレイミド基等を有する化合物が挙げられる。こうした化合物の具体例としては、(メタ)アクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、ビニル安息香酸等の不飽和カルボン酸:(メタ)アクリル酸アルキル、(メタ)アクリル酸シクロアルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸3,4-エポキシブチル、アクリル酸4-ヒドロキシブチルグリシジルエーテル等の不飽和カルボン酸エステル:無水マレイン酸等の不飽和多価カルボン酸無水物:などの(メタ)アクリル系化合物;スチレン、メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン等の共役ジエン化合物;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド基含有化合物;などが挙げられる。なお、重合性不飽和結合を有するモノマーは、1種を単独で又は2種以上を組み合わせて使用することができる。本明細書において「(メタ)アクリル」は「アクリル」及び「メタクリル」を含むことを意味する。
<Polymer (Q)>
Examples of the monomer having a polymerizable unsaturated bond include compounds having a (meth)acryloyl group, a vinyl group, a vinylphenyl group, a styryl group, a maleimide group and the like. Specific examples of such compounds include unsaturated carboxylic acids such as (meth)acrylic acid, α-ethylacrylic acid, maleic acid, fumaric acid and vinylbenzoic acid: alkyl (meth)acrylate, cycloalkyl (meth)acrylate. , Benzyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, trimethoxysilylpropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, (meth)acrylic acid Unsaturated carboxylic acid esters such as 3,4-epoxycyclohexylmethyl, (meth)acrylic acid 3,4-epoxybutyl, acrylic acid 4-hydroxybutyl glycidyl ether: Unsaturated polycarboxylic acid anhydrides such as maleic anhydride: (Meth)acrylic compounds such as styrene, methylstyrene, aromatic vinyl compounds such as divinylbenzene; conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene; N-methylmaleimide, N -Maleimide group-containing compounds such as -cyclohexylmaleimide and N-phenylmaleimide; and the like. In addition, the monomer which has a polymerizable unsaturated bond can be used individually by 1 type or in combination of 2 or more types. In the present specification, “(meth)acrylic” is meant to include “acrylic” and “methacrylic”.
 重合体(Q)は、重合性不飽和結合を有するモノマーを重合開始剤の存在下で重合することにより得ることができる。使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物が好ましい。重合開始剤の使用割合は、反応に使用する全モノマー100質量部に対して、0.01~30質量部とすることが好ましい。上記重合反応は、好ましくは有機溶媒中で行われる。反応に使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物などが挙げられ、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどが好ましい。反応温度は30℃~120℃とすることが好ましく、反応時間は、1~36時間とすることが好ましい。有機溶媒の使用量(a)は、反応に使用するモノマーの合計量(b)が、反応溶液の全体量(a+b)に対して、0.1~60質量%になるような量にすることが好ましい。上記反応により得られる重合体溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれる重合体(Q)を単離したうえで液晶配向剤の調製に供してもよい。 The polymer (Q) can be obtained by polymerizing a monomer having a polymerizable unsaturated bond in the presence of a polymerization initiator. Examples of the polymerization initiator used include 2,2′-azobis(isobutyronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(4-methoxy-2) , 4-dimethylvaleronitrile) and the like are preferable. The proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all the monomers used in the reaction. The polymerization reaction is preferably carried out in an organic solvent. Examples of the organic solvent used in the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like, with diethylene glycol ethyl methyl ether and propylene glycol monomethyl ether acetate being preferred. The reaction temperature is preferably 30°C to 120°C, and the reaction time is preferably 1 to 36 hours. The amount (a) of the organic solvent used is such that the total amount (b) of the monomers used in the reaction is 0.1 to 60 mass% with respect to the total amount (a+b) of the reaction solution. Is preferred. The polymer solution obtained by the above reaction may be directly used for the preparation of the liquid crystal aligning agent, or the polymer (Q) contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal aligning agent.
 液晶配向剤の調製に使用する重合体は、後述する条件で調製及び測定した溶液粘度が10~800mPa・sであることが好ましく、15~500mPa・sであることがより好ましい。なお、上記溶液粘度(mPa・s)は、重合体の良溶媒(ポリアミック酸、ポリアミック酸エステル及びポリイミドの場合、γ-ブチロラクトン、N-メチル-2-ピロリドン等)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The polymer used for preparing the liquid crystal aligning agent preferably has a solution viscosity of 10 to 800 mPa·s, and more preferably 15 to 500 mPa·s, which is prepared and measured under the conditions described below. The solution viscosity (mPa·s) is a concentration of 10 mass prepared by using a good solvent for the polymer (γ-butyrolactone, N-methyl-2-pyrrolidone, etc. in the case of polyamic acid, polyamic acid ester and polyimide). % Polymer solution at 25° C. using an E-type rotational viscometer.
 重合体のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、重合体の種類に応じて適宜選択することができるが、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。液晶配向剤の調製に使用する重合体は、1種でもよく又は2種以上を組み合わせてもよい。 The polystyrene-equivalent weight average molecular weight (Mw) of the polymer measured by gel permeation chromatography (GPC) can be appropriately selected according to the type of the polymer, but is preferably 1,000 to 500,000. Yes, and more preferably 2,000 to 300,000. The molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 7 or less, and more preferably 5 or less. The polymer used for preparing the liquid crystal aligning agent may be one kind or a combination of two or more kinds.
 液晶配向剤に含有される重合体成分は、液晶配向性や液晶との親和性、機械的強度の観点から、上記のうち、ポリアミック酸、ポリアミック酸エステル、ポリイミド、及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種を含むものであることが好ましい。また、重合体成分は、ポリアミック酸、ポリイミド、及びポリアミック酸エステルよりなる群から選ばれる少なくとも一種を主成分として含むことが特に好ましい。ここで、主成分とは、質量基準で最も含有量が多い成分であり、例えば含有量が50質量%以上の成分をいう。すなわち、重合体成分は、ポリアミック酸、ポリイミド、及びポリアミック酸エステルよりなる群から選ばれる少なくとも一種が、重合体成分の合計量に対して50質量%以上含むものであることが好ましく、60質量%以上含むものであることがより好ましく、80質量%以上含むものであることが更に好ましい。 The polymer component contained in the liquid crystal aligning agent is selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, and polyorganosiloxane, from the viewpoint of liquid crystal aligning property, affinity with liquid crystal, and mechanical strength. It is preferable that it contains at least one selected. It is particularly preferable that the polymer component contains at least one selected from the group consisting of polyamic acid, polyimide, and polyamic acid ester as a main component. Here, the main component is a component having the largest content on a mass basis, and for example, a component having a content of 50 mass% or more. That is, the polymer component, at least one selected from the group consisting of polyamic acid, polyimide, and polyamic acid ester, preferably contains 50% by mass or more, and 60% by mass or more based on the total amount of the polymer components. It is more preferable that the content is 80% by mass or more.
≪化合物[A]≫
 本開示の液晶配向剤は、下記式(1)で表される化合物[A]を含有する。
 (R)x-Ar-R  …(1)
(式(1)中、Arは(x+1)価の芳香環基であり、Rは炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基であり、xは0又は1である。Rは炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基である。)
 化合物[A]を含有させることにより、重合体成分が溶剤成分に均一に溶解されて、基板に塗布した際の濡れ広がり性が良好であるとともに、樹脂部材(インクジェットヘッド等)の劣化を引き起こしにくい液晶配向剤とすることができる。
<<Compound [A]>>
The liquid crystal aligning agent of the present disclosure contains a compound [A] represented by the following formula (1).
(R 2 )x-Ar 1 -R 1 (1)
(In the formula (1), Ar 1 is a (x+1)-valent aromatic ring group, and R 2 is an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms. And x is 0 or 1. R 1 is a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.)
By including the compound [A], the polymer component is uniformly dissolved in the solvent component, the wettability and spreadability when applied to the substrate are good, and deterioration of the resin member (inkjet head etc.) is less likely to occur. It can be a liquid crystal aligning agent.
 上記式(1)において、Arの(x+1)価の芳香環基は、芳香環の環部分から(x+1)個の水素原子を取り除いた基である。当該芳香環は、芳香族炭化水素環及び芳香族複素環を含む。芳香環の具体例としては、芳香族炭化水素環として、例えばベンゼン環、ナフタレン環、アントラセン環等を;芳香族複素環として、例えばピロール環、ピリジン環、ピリミジン環、ピリダジン環等の窒素含有複素環、フラン環、オキサゾール環等の酸素含有複素環、チオール環、チアゾール環等の硫黄含有複素環等を、それぞれ挙げることができる。なお、上記のうち、オキサゾール環及びチアゾール環は窒素含有複素環でもある。Arとしては、これらのうち、ベンゼン環又はヘテロ5員環の環部分から(x+1)個の水素原子を取り除いた基であることが好ましく、ベンゼン環又はフラン環の環部分から(x+1)個の水素原子を取り除いた基であることが特に好ましい。 In the above formula (1), the (x+1)-valent aromatic ring group of Ar 1 is a group obtained by removing (x+1) hydrogen atoms from the ring portion of the aromatic ring. The aromatic ring includes an aromatic hydrocarbon ring and an aromatic heterocycle. Specific examples of the aromatic ring include an aromatic hydrocarbon ring such as a benzene ring, a naphthalene ring and an anthracene ring; and an aromatic heterocycle such as a pyrrole ring, a pyridine ring, a pyrimidine ring and a pyridazine ring. Examples thereof include a ring, a furan ring, an oxygen-containing heterocycle such as an oxazole ring, and a sulfur-containing heterocycle such as a thiol ring and a thiazole ring. In addition, among the above, the oxazole ring and the thiazole ring are also nitrogen-containing heterocycles. Of these, Ar 1 is preferably a group obtained by removing (x+1) hydrogen atoms from the ring portion of a benzene ring or a 5-membered heterocyclic ring, and (x+1) from the ring portion of a benzene ring or a furan ring. It is particularly preferable that it is a group in which the hydrogen atom of is removed.
 上記式(1)中のRについて、炭素数1~3のヒドロキシアルキル基としては、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、2-ヒドロキシ-1-メチルエチル基が挙げられる。炭素数1~3のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基が挙げられる。Rは、好ましくは直鎖状である。
 Rについて、炭素数1~3のアルキル基は、直鎖状及び分岐状のいずれでもよいが、直鎖状であることが好ましい。Rが炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基である場合の具体例については、上記Rの説明が適用される。Rは、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基である。
 xは0であることが好ましい。
Regarding R 1 in the above formula (1), examples of the hydroxyalkyl group having 1 to 3 carbon atoms include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group and 2-hydroxypropyl group. , 3-hydroxypropyl group, and 2-hydroxy-1-methylethyl group. Examples of the alkoxy group having 1 to 3 carbon atoms include a methoxy group, an ethoxy group, a propoxy group and an isopropoxy group. R 1 is preferably linear.
Regarding R 2 , the alkyl group having 1 to 3 carbon atoms may be linear or branched, but is preferably linear. For specific examples in the case where R 2 is a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, the above description of R 1 is applied. R 2 is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
It is preferable that x is 0.
 化合物[A]は、上記のうち、下記式(1-1)で表される化合物、下記式(1-2)で表される化合物、及び下記式(1-3)で表される化合物よりなる群から選ばれる少なくとも一種であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(1-1)~式(1-3)中、n及びrは、それぞれ独立に1~3の整数であり、mは0~2の整数である。Rは炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基であり、yは0又は1である。)
Compound [A] is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), and a compound represented by the following formula (1-3) It is particularly preferable that it is at least one selected from the group consisting of
Figure JPOXMLDOC01-appb-C000003
(In the formulas (1-1) to (1-3), n and r are each independently an integer of 1 to 3, m is an integer of 0 to 2. R 3 is a carbon number of 1 to 3. Is an alkyl group, a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and y is 0 or 1.)
 上記式(1-1)~式(1-3)において、Rについては、上記Rの具体例及び好ましい例の説明が適用される。Rの結合位置は特に限定されないが、基「-(CH-OH」又は基「-O-(CH-CH」に対してオルト位であることが好ましい。yは0であることが好ましい。 In the above formulas (1-1) to (1-3), the description of the specific examples and preferred examples of R 2 above applies to R 3 . The bonding position of R 3 is not particularly limited, but it is preferably ortho to the group “—(CH 2 ) n —OH” or the group “—O—(CH 2 ) m —CH 3 ”. It is preferable that y is 0.
 化合物[A]の好ましい具体例としては、上記式(1-1)で表される化合物として、下記式(1-1-1)~式(1-1-3)のそれぞれで表される化合物を;上記式(1-2)で表される化合物として、下記式(1-2-1)~式(1-2-4)のそれぞれで表される化合物を;上記式(1-3)で表される化合物として、下記式(1-3-1)~式(1-3-6)のそれぞれで表される化合物を、挙げることができる。
Figure JPOXMLDOC01-appb-C000004
Preferred specific examples of the compound [A] include compounds represented by the following formulas (1-1-1) to (1-1-3) as the compounds represented by the above formula (1-1). As the compound represented by the above formula (1-2), compounds represented by the following formulas (1-2-1) to (1-2-4) are respectively represented by the above formula (1-3) Examples of the compound represented by are the compounds represented by the following formulas (1-3-1) to (1-3-6).
Figure JPOXMLDOC01-appb-C000004
 化合物[A]としては、上記式(1-1)~式(1-3)のそれぞれで表される化合物のうち、y=0である化合物が好ましい。これらの中でも、インクジェット塗布性により優れている点で、上記式(1-1-1)及び式(1-2-1)のそれぞれで表される化合物が好ましく、インクジェットヘッドをより劣化させにくい点で上記式(1-1-1)及び式(1-3-1)のそれぞれで表される化合物が好ましい。なお、化合物[A]としては、1種が単独で使用されてもよく、2種以上が組み合わせて使用されてもよい。 As the compound [A], among the compounds represented by the above formulas (1-1) to (1-3), compounds in which y=0 are preferable. Among these, the compounds represented by the above formulas (1-1-1) and (1-2-1) are preferable because they are more excellent in ink jet coatability, and are more resistant to deterioration of the ink jet head. Compounds represented by the above formulas (1-1-1) and (1-3-1) are preferable. As the compound [A], one type may be used alone, or two or more types may be used in combination.
 化合物[A]の含有割合は、液晶配向剤に含有される重合体成分の合計量100質量部に対し、好ましくは100質量部以上であり、より好ましくは300質量部以上であり、さらに好ましくは600質量部以上である。また、化合物[A]の含有割合は、好ましくは2000質量部以下であり、より好ましくは1500質量部以下である。 The content ratio of the compound [A] is preferably 100 parts by mass or more, more preferably 300 parts by mass or more, and still more preferably 100 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the liquid crystal aligning agent. It is 600 parts by mass or more. The content ratio of the compound [A] is preferably 2000 parts by mass or less, more preferably 1500 parts by mass or less.
 なお、化合物[A]は、液晶配向剤の重合体成分に対する溶解性に優れているため、重合体成分の良溶媒として一般に用いられているN-メチル-2-ピロリドン(NMP)の代替溶剤として有用である。この場合、液晶配向剤中におけるNMPの含有割合は、液晶配向剤の溶剤成分の全量に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは1質量%以下である。 Since the compound [A] has excellent solubility in the polymer component of the liquid crystal aligning agent, it is used as an alternative solvent for N-methyl-2-pyrrolidone (NMP) which is generally used as a good solvent for the polymer component. It is useful. In this case, the content ratio of NMP in the liquid crystal aligning agent is preferably 10 mass% or less, more preferably 5 mass% or less, and further preferably 1 mass% with respect to the total amount of the solvent component of the liquid crystal aligning agent. % Or less.
≪その他の成分≫
 液晶配向剤は、必要に応じて、重合体成分及び化合物[A]とは異なる成分(以下、「その他の成分」ともいう。)を更に含有していてもよい。
≪Other ingredients≫
The liquid crystal aligning agent may further contain a component different from the polymer component and the compound [A] (hereinafter, also referred to as “other component”), if necessary.
<溶剤[B]>
 液晶配向剤は、液晶配向剤の濡れ広がり性を高める目的で、本開示の効果を損なわない範囲において、重合体成分及び化合物[A]と共に、エーテル系溶剤、アルコール系溶剤、鎖状エステル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種の溶剤(以下、「溶剤[B]」ともいう。)を更に含んでいてもよい。
<Solvent [B]>
The liquid crystal aligning agent is an ether-based solvent, an alcohol-based solvent, a chain ester-based solvent, together with the polymer component and the compound [A], for the purpose of enhancing the wettability and spreading property of the liquid crystal aligning agent. And at least one solvent selected from the group consisting of ketone solvents (hereinafter, also referred to as “solvent [B]”).
 溶剤[B]の具体例としては、エーテル系溶剤として、例えばジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブタノール、テトラヒドロフラン、ジイソペンチルエーテル等を;
アルコール系溶剤として、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、ダイアセトンアルコール、3-メトキシ-3-メチルブタノール、ベンジルアルコール等を;鎖状エステル系溶剤として、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、シュウ酸ジエチル、マロン酸ジエチル、イソアミルプロピオネート、イソアミルイソブチレート等を;ケトン系溶剤として、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロヘプタノン、シクロペンタノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、ジイソブチルケトン等を、それぞれ挙げることができる。
Specific examples of the solvent [B] include ether solvents such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve). ), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene Glycol monomethyl ether acetate, 3-methoxy-1-butanol, tetrahydrofuran, diisopentyl ether and the like;
Examples of alcohol solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol, 3-methoxy-3-methylbutanol, benzyl alcohol. As chain ester solvents, for example, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, diethyl malonate, isoamyl pro Peonate, isoamyl isobutyrate, etc.; as the ketone solvent, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cycloheptanone, cyclopentanone, 3-methylcyclohexanone, 4-methylcyclohexanone, diisobutyl ketone, etc., respectively. Can be mentioned.
 溶剤[B]としては、塗布性の改善効果をより高くできる点で、上記のうち、エーテル系溶剤、アルコール系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種が好ましく、炭素数8以下のエーテル系溶剤、アルコール系溶剤及び環状のケトン系溶剤よりなる群から選ばれる少なくとも一種がより好ましい。具体的には、溶剤[B]は、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ダイアセトンアルコール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブタノール及びシクロペンタノンよりなる群から選ばれる一種が特に好ましい。なお、溶剤[B]としては、1種を単独で又は2種以上を組み合わせて使用することができる。 As the solvent [B], at least one selected from the group consisting of ether solvents, alcohol solvents, and ketone solvents is preferable among the above, from the viewpoint that the effect of improving coatability can be further enhanced, and the solvent has 8 or less carbon atoms. At least one selected from the group consisting of ether solvents, alcohol solvents and cyclic ketone solvents is more preferable. Specifically, the solvent [B] is ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diacetone alcohol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl. Particularly preferred is one selected from the group consisting of ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-1-butanol and cyclopentanone. In addition, as a solvent [B], 1 type can be used individually or in combination of 2 or more types.
 液晶配向剤は、その他の成分として、重合体成分の溶解性や液晶配向剤の濡れ広がり性をより高める目的で、溶剤[B]とは異なる溶剤(以下、「他の溶剤」ともいう。)を更に含んでいてもよい。他の溶剤としては、例えば、非プロトン性極性溶媒、ハロゲン化炭化水素系溶剤、炭化水素系溶剤等が挙げられる。他の溶剤の具体例としては、非プロトン性極性溶媒として、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ガンマブチロラクトン、プロピレンカーボネート、3-ブトキシ-N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ヘキシルオキシ-N,N-ジメチルプロパンアミド、イソプロポキシ-N-イソプロピル-プロピオンアミド、n-ブトキシ-N-イソプロピル-プロピオンアミド等を;ハロゲン化炭化水素系溶剤として、例えばジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、トリクロロエタン、クロルベンゼン等を;炭化水素系溶剤として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等を、それぞれ挙げることができる。上記のうち、他の溶剤としては、非プロトン性極性溶媒が好ましく、ガンマブチロラクトン、N-エチル-2-ピロリドン、プロピレンカーボネート、及び1,3-ジメチル-2-イミダゾリジノンよりなる群から選ばれる少なくとも一種であることがより好ましい。なお、他の溶剤としては、1種を単独で又は2種以上を組み合わせて使用できる。 As the other component, the liquid crystal aligning agent is a solvent different from the solvent [B] (hereinafter, also referred to as "other solvent") for the purpose of further enhancing the solubility of the polymer component and the wettability and spreadability of the liquid crystal aligning agent. May be further included. Examples of the other solvent include aprotic polar solvents, halogenated hydrocarbon solvents, hydrocarbon solvents and the like. Specific examples of the other solvent include aprotic polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, gammabutyrolactone and propylene carbonate. , 3-butoxy-N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3-hexyloxy-N,N-dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n- Butoxy-N-isopropyl-propionamide and the like; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene and the like; hydrocarbon solvents such as hexane , Heptane, octane, benzene, toluene, xylene and the like, respectively. Of the above solvents, the other solvent is preferably an aprotic polar solvent and is selected from the group consisting of gamma butyrolactone, N-ethyl-2-pyrrolidone, propylene carbonate, and 1,3-dimethyl-2-imidazolidinone. More preferably, it is at least one kind. In addition, as another solvent, 1 type can be used individually or in combination of 2 or more types.
 化合物[A]の含有割合は、液晶配向剤の塗布性を高くしつつ、インクジェットヘッドの劣化を好適に抑制する観点から、液晶配向剤に含有される溶剤(化合物[A]、溶剤[B]及び他の溶剤)の全量に対し、10質量%以上とすることが好ましい。当該含有割合は、溶剤の全量に対し、より好ましくは15質量%以上であり、さらに好ましくは20質量%以上であり、特に好ましくは30質量%以上である。また、化合物[A]の含有割合は、液晶配向剤に含有される溶剤の全量に対し、好ましくは95質量%以下であり、より好ましくは90質量%以下であり、さらに好ましくは80質量%以下である。 The content ratio of the compound [A] is such that the solvent (compound [A], solvent [B]) contained in the liquid crystal aligning agent is suitably suppressed from the viewpoint of suitably suppressing deterioration of the inkjet head while improving the coating property of the liquid crystal aligning agent. And other solvents) is preferably 10% by mass or more. The content ratio is more preferably 15% by mass or more, further preferably 20% by mass or more, and particularly preferably 30% by mass or more, based on the total amount of the solvent. Further, the content ratio of the compound [A] is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 80% by mass or less with respect to the total amount of the solvent contained in the liquid crystal aligning agent. Is.
 液晶配向剤が溶剤[B]を含有する場合、溶剤[B]の含有割合は、液晶配向剤に含有される溶剤の全量に対して、好ましくは5質量%以上であり、より好ましくは10質量%以上である。また、溶剤[B]の含有割合は、液晶配向剤の溶剤の全量に対し、好ましくは90質量%以下であり、より好ましくは85質量%以下であり、さらに好ましくは80質量%以下である。他の溶剤の含有割合は、液晶配向剤に含有される溶剤の全量に対して、80質量%以下とすることが好ましく、70質量%以下とすることがより好ましく、60質量%以下とすることがさらに好ましく、50質量%以下とすることが特に好ましい。 When the liquid crystal aligning agent contains the solvent [B], the content ratio of the solvent [B] is preferably 5% by mass or more, and more preferably 10% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent. % Or more. Further, the content ratio of the solvent [B] is preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less based on the total amount of the solvent of the liquid crystal aligning agent. The content ratio of the other solvent is preferably 80% by mass or less, more preferably 70% by mass or less, and 60% by mass or less with respect to the total amount of the solvent contained in the liquid crystal aligning agent. Is more preferable, and particularly preferably 50% by mass or less.
 液晶配向剤に含有させてもよいその他の成分としては、上記のほか、例えばエポキシ基含有化合物(例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等)、官能性シラン化合物(例えば、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン等)、酸化防止剤、金属キレート化合物、硬化触媒、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤等の各種添加剤が挙げられる。これら添加剤の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。 Other components that may be contained in the liquid crystal aligning agent include, in addition to the above components, for example, an epoxy group-containing compound (eg, N,N,N′,N′-tetraglycidyl-m-xylenediamine, N,N,N). ',N'-Tetraglycidyl-4,4'-diaminodiphenylmethane etc.), functional silane compounds (eg 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane etc.) ), an antioxidant, a metal chelate compound, a curing catalyst, a curing accelerator, a surfactant, a filler, a dispersant, and a photosensitizer. The mixing ratio of these additives can be appropriately selected according to each compound within a range that does not impair the effects of the present disclosure.
 液晶配向剤中の成分のうち溶剤以外の合計質量が液晶配向剤の全質量に占める割合Dは、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。割合Dが1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、割合Dが10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The ratio D of the components in the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent other than the solvent is appropriately selected in consideration of viscosity, volatility, etc., but is preferably 1 to 10% by mass. It is a range. When the ratio D is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film. On the other hand, when the ratio D exceeds 10% by mass, the film thickness of the coating film becomes excessively large, and it is difficult to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coating property tends to deteriorate. It is in.
 なお、化合物[A]を用いることにより、液晶配向剤の基板に対する塗布性を良好に保ちながらインクジェットヘッドの劣化を抑制する効果を、液晶素子の残像特性を良好に保ちつつ得ることができた理由は定かではないが、その一つの理由として、化合物[A]の化学構造に起因する、より具体的には、液晶配向剤を基板上に塗布した際に、化合物[A]の化学構造(上記式(1)で表される構造)に起因して液晶の配向がある程度制御されたことによることが推測される。ただし、この推測は本開示を限定するものではない。 The reason why the use of the compound [A] made it possible to obtain the effect of suppressing the deterioration of the inkjet head while maintaining good coatability of the liquid crystal aligning agent on the substrate while maintaining good afterimage characteristics of the liquid crystal element. Although it is not clear, one of the reasons is due to the chemical structure of the compound [A], and more specifically, when the liquid crystal aligning agent is applied onto the substrate, the chemical structure of the compound [A] (the above It is assumed that the orientation of the liquid crystal was controlled to some extent due to the structure represented by the formula (1). However, this speculation does not limit the present disclosure.
≪液晶配向膜及び液晶素子≫
 本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等として用いることができる。液晶表示装置として用いる場合、液晶の動作モードは特に限定されず、例えばTN型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、IPS型、FFS型、OCB(Optically Compensated Bend)型など種々の動作モードに適用することができる。
<<Liquid crystal alignment film and liquid crystal element>>
The liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal aligning agent described above. The liquid crystal element can be effectively applied to various uses, for example, a watch, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, various monitors, a liquid crystal television. , A display device such as an information display, a light control film, a retardation film, or the like. When used as a liquid crystal display device, the operation mode of the liquid crystal is not particularly limited. For example, TN type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB. It can be applied to various operation modes such as (Optically Compensated Bend) type.
 液晶素子の製造方法について、液晶表示素子を一例に挙げて説明する。液晶表示素子は、例えば以下の工程1~工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。 A method of manufacturing a liquid crystal element will be described by taking a liquid crystal display element as an example. The liquid crystal display element can be manufactured by, for example, a method including the following steps 1 to 3. In step 1, the substrate used differs depending on the desired operation mode. Steps 2 and 3 are common to each operation mode.
(工程1:塗膜の形成)
 先ず、基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラス等のガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)等のプラスチックからなる透明基板を用いることができる。基板の一方の面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。
(Step 1: Formation of coating film)
First, a liquid crystal aligning agent is applied onto a substrate, and the applied surface is preferably heated to form a coating film on the substrate. As the substrate, for example, a glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, poly(alicyclic olefin) can be used. As the transparent conductive film provided on one surface of the substrate, a NESA film made of tin oxide (SnO 2 ) (registered trademark of PPG Co., USA), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ). Etc. can be used. When manufacturing a TN type, STN type, or VA type liquid crystal element, two substrates provided with a patterned transparent conductive film are used. On the other hand, when manufacturing an IPS-type or FFS-type liquid crystal element, a substrate provided with an electrode formed of a comb-shaped patterned transparent conductive film or a metal film, and a counter substrate provided with no electrode To use. As the metal film, a film made of a metal such as chromium can be used.
 基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法、フレキソ印刷法又はインクジェット印刷法により行う。特に、上記液晶配向剤は濡れ広がり性が良好であり、またインクジェットヘッドを構成する樹脂部材の劣化を抑制できる点で、インクジェット印刷法を採用した場合に優れた印刷性を発揮でき、製品歩留まりの低下を抑制でき、また性能が高い液晶配向膜を得ることができる点で好ましい。 The coating of the liquid crystal aligning agent on the substrate is preferably performed by an offset printing method, a spin coating method, a roll coater method, a flexo printing method or an inkjet printing method on the electrode formation surface. In particular, the liquid crystal aligning agent has good wettability and spreadability, and in that it can suppress deterioration of the resin member constituting the inkjet head, excellent printability can be exhibited when the inkjet printing method is adopted, and product yield is improved. It is preferable in that the decrease can be suppressed and a liquid crystal alignment film having high performance can be obtained.
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体が有するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜又は液晶配向膜となる塗膜が形成される。 After applying the liquid crystal aligning agent, preheating (prebaking) is preferably performed for the purpose of preventing the liquid crystal aligning agent applied from dripping. The prebake temperature is preferably 30 to 200° C., and the prebake time is preferably 0.25 to 10 minutes. After that, a baking (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermal imidization of the amic acid structure of the polymer. The baking temperature (post bake temperature) is preferably 80 to 300° C., and the post bake time is preferably 5 to 200 minutes. The thickness of the film thus formed is preferably 0.001 to 1 μm. After applying the liquid crystal aligning agent on the substrate, the organic solvent is removed to form a liquid crystal alignment film or a coating film to be the liquid crystal alignment film.
(工程2:配向処理)
 TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理や、液晶配向剤を用いて基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理等が挙げられる。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理(ラビング処理、光配向処理等)を施してもよい。垂直配向型の液晶表示素子に好適な液晶配向剤は、PSA(Polymer sustained alignment)型の液晶表示素子にも好適に用いることができる。
(Process 2: Alignment treatment)
When manufacturing a TN-type, STN-type, IPS-type or FFS-type liquid crystal display element, a treatment (alignment treatment) for imparting a liquid crystal aligning ability to the coating film formed in the above step 1 is carried out. Thereby, the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film. As the orientation treatment, for example, a rubbing treatment of rubbing the coating film in a certain direction with a roll wound with a cloth made of fibers such as nylon, rayon, and cotton, or irradiating a coating film formed on a substrate with a liquid crystal aligning agent with light irradiation. A photo-alignment treatment for imparting a liquid crystal aligning ability to the coating film may be mentioned. On the other hand, in the case of producing a vertical alignment type liquid crystal device, the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film is subjected to alignment treatment (rubbing treatment, optical alignment treatment). Etc.) may be given. The liquid crystal aligning agent suitable for the vertical alignment type liquid crystal display element can also be suitably used for the PSA (Polymer sustained alignment) type liquid crystal display element.
(工程3:液晶セルの構築)
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、(1)液晶配向膜が対向するように間隙(スペーサー)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法、(2)液晶配向膜を形成した一方の基板上の所定の場所にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げる方法(ODF方式)等が挙げられる。製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
(Process 3: Construction of liquid crystal cell)
A liquid crystal cell is manufactured by preparing two substrates on which the liquid crystal alignment film is formed as described above, and disposing the liquid crystal between the two substrates facing each other. In order to manufacture a liquid crystal cell, for example, (1) two substrates are arranged so as to face each other with a gap (spacer) so that the liquid crystal alignment films face each other, and the periphery of the two substrates is sealed with a sealant. A method of laminating and injecting liquid crystal into a cell gap defined by a substrate surface and a sealing agent and then sealing the injection hole, (2) sealing at a predetermined place on one substrate on which a liquid crystal alignment film is formed A method of applying an agent and further dropping liquid crystal at a predetermined number of points on the surface of the liquid crystal alignment film, and then bonding the other substrate so that the liquid crystal alignment film faces and spreading the liquid crystal over the entire surface of the substrate (ODF method). ) And the like. It is desirable that the produced liquid crystal cell is further heated to a temperature at which the liquid crystal used has an isotropic phase and then gradually cooled to room temperature to remove the flow orientation at the time of filling the liquid crystal.
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。スペーサーとしては、フォトスペーサー、ビーズスペーサー等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。また、ネマチック液晶又はスメクチック液晶に、例えばコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。PSA型の液晶表示素子を製造する場合には、一対の基板間に液晶とともに重合性モノマーを配置し、液晶セルの構築後に一対の電極間に電圧を印加した状態で光照射する処理を行う。 As the sealant, for example, a curing agent and an epoxy resin containing aluminum oxide spheres as a spacer can be used. As the spacer, a photo spacer, a bead spacer, or the like can be used. Examples of the liquid crystal include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable. In addition, a nematic liquid crystal or a smectic liquid crystal may be added with, for example, a cholesteric liquid crystal, a chiral agent, or a ferroelectric liquid crystal. In the case of manufacturing a PSA type liquid crystal display element, a polymerizable monomer is placed together with a liquid crystal between a pair of substrates, and a light irradiation is performed after a liquid crystal cell is constructed and a voltage is applied between the pair of electrodes.
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板が挙げられる。こうして液晶表示素子が得られる。 Next, attach a polarizing plate to the outer surface of the liquid crystal cell if necessary. Examples of the polarizing plate include a polarizing film in which a polarizing film called “H film” in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between cellulose acetate protective films, or a polarizing plate composed of the H film itself. Thus, a liquid crystal display device is obtained.
 以下、実施例に基づき実施形態をより詳しく説明するが、以下の実施例によって本開示が限定的に解釈されるものではない。 Hereinafter, the embodiments will be described in more detail based on examples, but the present disclosure is not limitedly interpreted by the following examples.
 以下の例において、重合体の重量平均分子量Mw、重合体溶液中のポリイミドのイミド化率、重合体溶液の溶液粘度、及びエポキシ当量は以下の方法により測定した。以下の実施例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。 In the following examples, the weight average molecular weight Mw of the polymer, the imidization ratio of polyimide in the polymer solution, the solution viscosity of the polymer solution, and the epoxy equivalent were measured by the following methods. The necessary amounts of the raw material compounds and polymers used in the following examples were secured by repeating the synthesis on the synthetic scale shown in the following synthesis examples as needed.
[重合体の重量平均分子量Mw]
 重量平均分子量Mwは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン、又はリチウムブロミド及びリン酸含有のN,N-ジメチルホルムアミド溶液
 温度:40℃
 圧力:68kgf/cm
[ポリイミドのイミド化率]
 ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH-NMRを測定した。得られたH-NMRスペクトルから、下記数式(1)によりイミド化率[%]を求めた。
イミド化率[%]=(1-(A/(A×α)))×100  …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
[重合体溶液の溶液粘度]
 重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
[Weight average molecular weight Mw of polymer]
The weight average molecular weight Mw is a polystyrene conversion value measured by GPC under the following conditions.
Column: Tosoh Corp., TSKgelGRCXLII
Solvent: Tetrahydrofuran, or N,N-dimethylformamide solution containing lithium bromide and phosphoric acid Temperature: 40°C
Pressure: 68 kgf/cm 2
[Imidization rate of polyimide]
The polyimide solution was poured into pure water, the obtained precipitate was sufficiently dried under reduced pressure at room temperature, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. From the obtained 1 H-NMR spectrum, the imidization ratio [%] was calculated by the following mathematical formula (1).
Imidization rate [%]=(1-(A 1 /(A 2 ×α)))×100 (1)
(In Formula (1), A 1 is a peak area derived from a proton of an NH group appearing in the vicinity of a chemical shift of 10 ppm, A 2 is a peak area derived from another proton, and α is a precursor of a polymer (polyamic acid). The ratio of the number of other protons to one proton of the NH group in ).)
[Solution viscosity of polymer solution]
The solution viscosity (mPa·s) of the polymer solution was measured at 25° C. using an E-type rotational viscometer.
[Epoxy equivalent]
The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
 化合物の略号は以下の通りである。なお、以下では、式(X)で表される化合物を単に「化合物(X)」と表すことがある。 The compound abbreviations are as follows. In the following, the compound represented by the formula (X) may be simply referred to as “compound (X)”.
・テトラカルボン酸二無水物及びジアミン化合物
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
・Tetracarboxylic dianhydride and diamine compound
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
・化合物[A]
Figure JPOXMLDOC01-appb-C000007
・Compound [A]
Figure JPOXMLDOC01-appb-C000007
<重合体の合成>
[合成例1:ポリイミド(PI-1)の合成]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物(TCA)22.4g(0.1モル)、ジアミンとしてp-フェニレンジアミン(PDA)8.6g(0.08モル)、及び3,5-ジアミノ安息香酸コレスタニル10.5g(0.02モル)を、N-メチル-2-ピロリドン(NMP)166gに溶解し、60℃で6時間反応を行い、ポリアミック酸を20質量%含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は90mPa・sであった。
 次いで、得られたポリアミック酸溶液に、NMPを追加してポリアミック酸濃度7質量%の溶液とし、ピリジン11.9g及び無水酢酸15.3gを添加して110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなNMPで溶媒置換(本操作によって脱水閉環反応に使用したピリジン及び無水酢酸を系外に除去した。以下同じ。)することにより、イミド化率約68%のポリイミド(PI-1)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は45mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-1)を得た。
<Synthesis of polymer>
[Synthesis Example 1: Synthesis of Polyimide (PI-1)]
22.4 g (0.1 mol) of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride (TCA) as tetracarboxylic dianhydride, and 8.6 g (0.08 mol) of p-phenylenediamine (PDA) as diamine ), and 10.5 g (0.02 mol) of cholestanil 3,5-diaminobenzoate are dissolved in 166 g of N-methyl-2-pyrrolidone (NMP) and reacted at 60° C. for 6 hours to give polyamic acid of 20%. A solution containing mass% was obtained. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 90 mPa·s.
Next, NMP was added to the obtained polyamic acid solution to obtain a solution having a polyamic acid concentration of 7% by mass, 11.9 g of pyridine and 15.3 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110° C. for 4 hours. .. After the dehydration ring closure reaction, the solvent in the system was replaced with new NMP (the pyridine and acetic anhydride used in the dehydration ring closure reaction were removed to the outside of the system by this operation. The same applies hereinafter), and the imidization ratio was about 68. A solution containing 26% by weight of polyimide (PI-1) was obtained. A small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10 mass% was 45 mPa·s. Then, the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-1).
[合成例2:ポリイミド(PI-2)の合成]
 テトラカルボン酸二無水物として、TCA110g(0.50モル)及び1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン160g(0.50モル)、ジアミンとして、PDA91g(0.85モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン25g(0.10モル)、及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン25g(0.040モル)、並びにモノアミンとしてアニリン1.4g(0.015モル)を、NMP960gに溶解し、60℃で6時間反応を行うことにより、ポリアミック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は60mPa・sであった。
 次いで、得られたポリアミック酸溶液にNMP2,700gを追加し、ピリジン390g及び無水酢酸410gを添加して110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなγ-ブチロラクトン(GBL)で溶媒置換することにより、イミド化率約95%のポリイミド(PI-2)を15質量%含有する溶液約2,500gを得た。この溶液を少量分取し、NMPを加え、ポリイミド濃度10質量%の溶液として測定した溶液粘度は70mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-2)を得た。
[Synthesis Example 2: Synthesis of Polyimide (PI-2)]
As tetracarboxylic dianhydride, TCA 110 g (0.50 mol) and 1,3,3a,4,5,9b-hexahydro-8-methyl-5-(tetrahydro-2,5-dioxo-3-furanyl)naphtho 160 g (0.50 mol) of [1,2-c]furan-1,3-dione, 91 g (0.85 mol) of PDA as a diamine, 25 g of 1,3-bis(3-aminopropyl)tetramethyldisiloxane ( 0.10 mol), and 25 g (0.040 mol) of 3,6-bis(4-aminobenzoyloxy)cholestane and 1.4 g (0.015 mol) of aniline as a monoamine were dissolved in 960 g of NMP, and the mixture was mixed at 60° C. By carrying out the reaction for 6 hours, a solution containing a polyamic acid was obtained. A small amount of the obtained polyamic acid solution was sampled, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 60 mPa·s.
Next, 2,700 g of NMP was added to the obtained polyamic acid solution, 390 g of pyridine and 410 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new γ-butyrolactone (GBL) to obtain about 2,500 g of a solution containing 15% by mass of polyimide (PI-2) having an imidization ratio of about 95%. Obtained. A small amount of this solution was collected, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10 mass% was 70 mPa·s. Then, the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-2).
[合成例3:ポリイミド(PI-3)の合成]
 使用するジアミンを、3,5-ジアミノ安息香酸(化合物(DA-12))0.08モル及びコレスタニルオキシ-2,4-ジアミノベンゼン0.02モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は80mPa・sであった。次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI-3)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は40mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-3)を得た。
[Synthesis Example 3: Synthesis of Polyimide (PI-3)]
As in Synthesis Example 1 above, except that the diamine used was changed to 0.08 mol of 3,5-diaminobenzoic acid (compound (DA-12)) and 0.02 mol of cholestanyloxy-2,4-diaminobenzene. A polyamic acid solution was obtained by the same method. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 80 mPa·s. Then, imidization was carried out by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-3) having an imidization ratio of about 65%. A small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 40 mPa·s. Then, the reaction solution was poured into a large excess of methanol to precipitate the reaction product. This precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-3).
[合成例4:ポリイミド(PI-4)の合成]
 使用するテトラカルボン酸二無水物を、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物0.04モル、及びピロメリット酸二無水物0.02モルに変更するとともに、使用するジアミンを、化合物(DA-2)0.06モル、及び化合物(DA-1) 0.04モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は75mPa・sであった。次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約50%のポリイミド(PI-4)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は40mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-4)を得た。
[Synthesis Example 4: Synthesis of Polyimide (PI-4)]
The tetracarboxylic acid dianhydride used was 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride 0.04 mol, and pyromellitic acid. Same as Synthesis Example 1 except that the dianhydride was changed to 0.02 mol and the diamine used was changed to 0.06 mol of the compound (DA-2) and 0.04 mol of the compound (DA-1). A polyamic acid solution was obtained by the same method. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10 mass% was 75 mPa·s. Then, imidization was performed in the same manner as in Synthesis Example 1 above to obtain a solution containing 26% by mass of polyimide (PI-4) having an imidization ratio of about 50%. A small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 40 mPa·s. Then, the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-4).
[合成例5:ポリイミド(PI-5)の合成]
 使用するテトラカルボン酸二無水物を、1,2,3,4-シクロブタンテトラカルボン酸二無水物0.08モル及びピロメリット酸二無水物0.02モルに変更するとともに、使用するジアミンを、4-アミノフェニル-4-アミノベンゾエート(化合物(DA-3))0.098モル、及び化合物(DA-4)0.002モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は80mPa・sであった。次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI-5)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は50mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-5)を得た。
[Synthesis Example 5: Synthesis of Polyimide (PI-5)]
The tetracarboxylic dianhydride used was changed to 0.08 mol of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 0.02 mol of pyromellitic dianhydride, and the diamine used was 4-Aminophenyl-4-aminobenzoate (Compound (DA-3)) 0.098 mol and Compound (DA-4) 0.002 mol except that the polyamic acid was prepared in the same manner as in Synthesis Example 1 above. A solution was obtained. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 80 mPa·s. Then, imidization was carried out by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-5) having an imidization ratio of about 65%. A small amount of the obtained polyimide solution was added, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10 mass% was 50 mPa·s. Then, the reaction solution was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyimide (PI-5).
[合成例6:ポリアミック酸(PA-1)の合成]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物(CB)200g(1.0モル)、ジアミンとして2,2’-ジメチル-4,4’-ジアミノビフェニル210g(1.0モル)を、NMP370g及びγ-ブチロラクトン(GBL)3,300gの混合溶媒に溶解し、40℃で3時間反応を行い、固形分濃度10質量%、溶液粘度160mPa・sのポリアミック酸溶液を得た。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-1)を得た。
[Synthesis Example 6: Synthesis of polyamic acid (PA-1)]
1,2,3,4-Cyclobutane tetracarboxylic dianhydride (CB) 200 g (1.0 mol) as tetracarboxylic dianhydride, 2,2'-dimethyl-4,4'-diaminobiphenyl 210 g as diamine (1.0 mol) was dissolved in a mixed solvent of 370 g of NMP and 3,300 g of γ-butyrolactone (GBL) and reacted at 40° C. for 3 hours to give a polyamic acid having a solid content concentration of 10% by mass and a solution viscosity of 160 mPa·s. A solution was obtained. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-1).
[合成例7:ポリアミック酸(PA-2)の合成]
 テトラカルボン酸二無水物としてTCA7.0g(0.031モル)、ジアミンとして化合物(DA-5)13g(TCA1モルに対して1モルに相当する。)を、NMP80gに溶解し、60℃で4時間反応を行うことにより、ポリアミック酸(PA-2)を20質量%含有する溶液を得た。このポリアミック酸溶液の溶液粘度は2,000mPa・sであった。なお、化合物(DA-5)は、特開2011-100099号公報の記載に従って合成した。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-2)を得た。
[Synthesis Example 7: Synthesis of polyamic acid (PA-2)]
As tetracarboxylic dianhydride, 7.0 g (0.031 mol) of TCA and 13 g of compound (DA-5) as diamine (corresponding to 1 mol per 1 mol of TCA) were dissolved in 80 g of NMP, and the mixture was mixed at 60° C. for 4 hours. By carrying out the reaction for time, a solution containing 20% by mass of polyamic acid (PA-2) was obtained. The solution viscosity of this polyamic acid solution was 2,000 mPa·s. The compound (DA-5) was synthesized according to the description in JP-A-2011-10099. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-2).
[合成例8:ポリアミック酸(PA-3)の合成]
 使用するジアミンを、1,3-ビス(4-アミノフェネチル)ウレア(化合物(DA-6))0.7モル、及び化合物(DA-7)0.3モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は100mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-3)を得た。
[Synthesis Example 8: Synthesis of polyamic acid (PA-3)]
The above synthetic example except that the diamine used was changed to 0.7 mol of 1,3-bis(4-aminophenethyl)urea (compound (DA-6)) and 0.3 mol of compound (DA-7). A polyamic acid solution was obtained in the same manner as in 6. A small amount of the obtained polyamic acid solution was sampled, NMP was added thereto, and the solution viscosity measured as a solution having a polyamic acid concentration of 10 mass% was 100 mPa·s. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-3).
[合成例9:ポリアミック酸(PA-4)の合成]
 使用するテトラカルボン酸二無水物を、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物1.0モルに変更するとともに、使用するジアミンを、p-フェニレンジアミン0.3モル、化合物(DA-7)0.2モル、及び1,2-ビス(4-アミノフェノキシ)エタン(化合物(DA-9))0.5モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は90mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-4)を得た。
[Synthesis Example 9: Synthesis of polyamic acid (PA-4)]
The tetracarboxylic acid dianhydride used was changed to 1.0 mol of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, and the diamine used was p-phenylenediamine 0. Synthetic Example 6 above except that the amount was changed to 0.3 mol, the compound (DA-7) 0.2 mol, and 1,2-bis(4-aminophenoxy)ethane (compound (DA-9)) 0.5 mol. A polyamic acid solution was obtained by the same method as described above. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 90 mPa·s. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-4).
[合成例10:ポリアミック酸(PA-5)の合成]
 使用するジアミンを、2,4-ジアミノ-N,N-ジアリルアニリン0.2モル、4,4’-ジアミノジフェニルアミン0.2モル、及び4,4’-ジアミノジフェニルメタン0.6モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は95mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-5)を得た。
[Synthesis Example 10: Synthesis of polyamic acid (PA-5)]
Diamine used was changed to 0.2 mol of 2,4-diamino-N,N-diallylaniline, 0.2 mol of 4,4′-diaminodiphenylamine, and 0.6 mol of 4,4′-diaminodiphenylmethane. In the same manner as in Synthesis Example 6 above, a polyamic acid solution was obtained. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 95 mPa·s. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-5).
[合成例11:ポリアミック酸(PA-6)の合成]
 使用するテトラカルボン酸二無水物を、化合物(TA-1)0.2モル、及び2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物0.8モルに変更するとともに、使用するジアミンを、3,5-ジアミノ安息香酸0.4モル、化合物(DA-11)0.25モル、及び化合物(DA-1)0.35モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は85mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-6)を得た。
[Synthesis Example 11: Synthesis of polyamic acid (PA-6)]
The tetracarboxylic dianhydride used was compounded with 0.2 mol of the compound (TA-1) and 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8- The diamine was changed to 0.8 mol, and the diamine used was 0.4 mol of 3,5-diaminobenzoic acid, 0.25 mol of compound (DA-11), and 0.35 compound (DA-1). A polyamic acid solution was obtained in the same manner as in Synthesis Example 6 except that the molar amount was changed. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10 mass% was 85 mPa·s. Next, this polyamic acid solution was poured into a large excess of methanol to precipitate a reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40° C. for 15 hours to obtain polyamic acid (PA-6).
[合成例12:ポリアミック酸エステル(PAE-1)の合成]
 2,4-ビス(メトキシカルボニル)-1,3-ジメチルシクロブタン-1,3-ジカルボン酸0.035モルを塩化チオニル20mlに加え、N,N-ジメチルホルムアミドを触媒量添加し、その後80℃にて1時間攪拌した。その後、反応液を濃縮し、残留物をγ-ブチロラクトン(GBL)113gに溶解した(この溶液を反応液Aとした。)。別途、p-フェニレンジアミン0.01モル、1,2-ビス(4-アミノフェノキシ)エタン0.01モル、及び化合物(DA-8)0.014モルをピリジン6.9g、NMP44.5g及びGBL33.5gに加えて溶解させ、これを0℃に冷却した。次いで、この溶液へ反応液Aを1時間かけてゆっくりと滴下し、滴下終了後、室温にて4時間撹拌した。得られたポリアミック酸エステルの溶液を800mlの純水に撹拌しながら滴下し、析出した沈殿物をろ過した。続いて、400mlのイソプロピルアルコール(IPA)で5回洗浄し、乾燥することでポリマー粉末15.5gを得た。得られたポリアミック酸エステル(PAE-1)の重量平均分子量Mwは34,000であった。
[Synthesis Example 12: Synthesis of polyamic acid ester (PAE-1)]
0.035 mol of 2,4-bis(methoxycarbonyl)-1,3-dimethylcyclobutane-1,3-dicarboxylic acid was added to 20 ml of thionyl chloride, N,N-dimethylformamide was added in a catalytic amount, and then the mixture was heated to 80°C. And stirred for 1 hour. Then, the reaction solution was concentrated, and the residue was dissolved in 113 g of γ-butyrolactone (GBL) (this solution was referred to as reaction solution A). Separately, 0.01 mol of p-phenylenediamine, 0.01 mol of 1,2-bis(4-aminophenoxy)ethane, and 0.014 mol of compound (DA-8) were added to 6.9 g of pyridine, 44.5 g of NMP and GBL33. 0.5 g was added and dissolved, and this was cooled to 0°C. Then, the reaction solution A was slowly added dropwise to this solution over 1 hour, and after completion of the addition, the mixture was stirred at room temperature for 4 hours. The obtained solution of polyamic acid ester was added dropwise to 800 ml of pure water while stirring, and the deposited precipitate was filtered. Subsequently, the polymer powder was washed 5 times with 400 ml of isopropyl alcohol (IPA) and dried to obtain 15.5 g of polymer powder. The weight average molecular weight Mw of the obtained polyamic acid ester (PAE-1) was 34,000.
[合成例13:ポリオルガノシロキサン(APS-1)の合成]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で撹拌しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により、洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、反応性ポリオルガノシロキサン(EPS-1)を粘調な透明液体として得た。この反応性ポリオルガノシロキサン(EPS-1)について、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。得られた反応性ポリオルガノシロキサンの重量平均分子量Mwは3,500、エポキシ当量は180g/モルであった。
 次いで、200mLの三口フラスコに、反応性ポリオルガノシロキサン(EPS-1)を10.0g、溶媒としてメチルイソブチルケトン30.28g、反応性化合物として4-(ドデシルオキシ)安息香酸3.98g、及び触媒としてUCAT 18X(商品名、サンアプロ(株)製)0.10gを仕込み、100℃で48時間撹拌下に反応を行った。反応終了後、反応混合物に酢酸エチルを加えて得た溶液を3回水洗し、有機層を硫酸マグネシウムを用いて乾燥した後、溶剤を留去することにより、液晶配向性ポリオルガノシロキサン(APS-1)を9.0g得た。得られた重合体の重量平均分子量Mwは9,900であった。
[Synthesis Example 13: Synthesis of polyorganosiloxane (APS-1)]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (100.0 g), methylisobutylketone (500 g) and triethylamine (10.0 g) at room temperature. Mixed in. Next, 100 g of deionized water was added dropwise from the dropping funnel over 30 minutes, and then the reaction was carried out at 80° C. for 6 hours while stirring under reflux. After completion of the reaction, the organic layer was taken out, washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing became neutral, and then the solvent and water were distilled off under reduced pressure to obtain a reactive polyorganosiloxane. (EPS-1) was obtained as a viscous transparent liquid. When 1 H-NMR analysis was performed on this reactive polyorganosiloxane (EPS-1), a peak based on an epoxy group was obtained in the vicinity of the chemical shift (δ)=3.2 ppm according to the theoretical intensity, and during the reaction, It was confirmed that the side reaction of the epoxy group did not occur. The weight average molecular weight Mw of the obtained reactive polyorganosiloxane was 3,500 and the epoxy equivalent was 180 g/mol.
Then, in a 200 mL three-necked flask, 10.0 g of reactive polyorganosiloxane (EPS-1), 30.28 g of methyl isobutyl ketone as a solvent, 3.98 g of 4-(dodecyloxy)benzoic acid as a reactive compound, and a catalyst. Was charged with 0.10 g of UCAT 18X (trade name, manufactured by San-Apro Co., Ltd.), and the reaction was carried out at 100° C. for 48 hours with stirring. After completion of the reaction, the solution obtained by adding ethyl acetate to the reaction mixture was washed 3 times with water, the organic layer was dried over magnesium sulfate, and the solvent was distilled off to give a liquid crystal aligning polyorganosiloxane (APS- 9.0 g of 1) was obtained. The weight average molecular weight Mw of the obtained polymer was 9,900.
<液晶配向剤の調製及び評価>
[実施例1]
1.液晶配向剤の調製
 上記合成例1で得たポリイミド(PI-1)に、3-フェニルプロパン-1-オール(化合物a)、γ-ブチロラクトン(γBL)及びブチルセロソルブ(BC)を加えて、重合体濃度3.5質量%、溶剤の混合比が、化合物a:γBL:BC=40:30:30(質量比)の溶液とした。この溶液を十分に撹拌した後、孔径0.2μmのフィルターで濾過することにより液晶配向剤(S-1)を調製した。なお、液晶配向剤(S-1)は、主に垂直配向型の液晶表示素子の製造用である。
<Preparation and evaluation of liquid crystal aligning agent>
[Example 1]
1. Preparation of Liquid Crystal Alignment Agent To the polyimide (PI-1) obtained in Synthesis Example 1 above, 3-phenylpropan-1-ol (compound a), γ-butyrolactone (γBL) and butylcellosolve (BC) were added to prepare a polymer. A solution having a concentration of 3.5% by mass and a solvent mixing ratio of compound a:γBL:BC=40:30:30 (mass ratio) was prepared. After sufficiently stirring this solution, a liquid crystal aligning agent (S-1) was prepared by filtering with a filter having a pore size of 0.2 μm. The liquid crystal aligning agent (S-1) is mainly used for manufacturing a vertical alignment type liquid crystal display element.
2.インクジェット塗布性の評価
 液晶配向剤を塗布する基板として、ITOからなる透明電極付きガラス基板を200℃のホットプレート上で1分間加熱し、次いで紫外線/オゾン洗浄を行って、透明電極面の水の接触角を10°以下とした直後のものを用いた。この基板に、上記1.で調製した液晶配向剤(S-1)を、インクジェット塗布機(芝浦メカトロニクス(株)製)を用いて、上記透明電極付きガラス基板の透明電極面上に塗布した。このときの塗布条件は、2,500回/(ノズル・分)、吐出量250mg/10秒にて2往復(計4回)塗布とした。塗布後に1分間静置した後、基板を50℃で加熱することにより平均膜厚0.1μmの塗膜を形成した。得られた塗膜につき、干渉縞計測ランプ(ナトリウムランプ)の照射下、肉眼で観察し、ムラ及びハジキの評価を行った。
 また、塗膜形成時の加熱温度を50℃から60℃及び80℃に変更した以外は上記と同様の操作を行い、塗膜のムラ及びハジキの有無を観察した。50℃、60℃及び80℃のいずれの加熱温度でもムラ及びハジキの両方とも見られなかった場合をインクジェット塗布性「良好A(◎)」とし、50℃、60℃及び80℃のうち1つの加熱温度でムラ及びハジキの少なくとも一方が見られた場合を「良好B(○)」、2つの加熱温度でムラ及びハジキの少なくとも一方が見られた場合を「可(△)」、全ての加熱温度でムラ及びハジキの少なくとも一方が見られた場合は「不良(×)」とした。その結果、この実施例では「良好B」の評価であった。
2. Evaluation of Inkjet Coating Property As a substrate on which the liquid crystal aligning agent is coated, a glass substrate with a transparent electrode made of ITO is heated on a hot plate at 200° C. for 1 minute, and then UV/ozone cleaning is performed to remove water on the transparent electrode surface. The one immediately after the contact angle was set to 10° or less was used. On this substrate, the above 1. The liquid crystal aligning agent (S-1) prepared in (3) was applied on the transparent electrode surface of the above-mentioned glass substrate with a transparent electrode using an inkjet coating machine (manufactured by Shibaura Mechatronics Co., Ltd.). At this time, the coating conditions were 2,500 times/(nozzle/minute) and two reciprocations (total 4 times) with a discharge amount of 250 mg/10 seconds. After the coating was allowed to stand for 1 minute, the substrate was heated at 50° C. to form a coating film having an average film thickness of 0.1 μm. The obtained coating film was visually observed under irradiation of an interference fringe measurement lamp (sodium lamp) to evaluate unevenness and cissing.
Further, the same operation as above was performed except that the heating temperature at the time of forming the coating film was changed from 50° C. to 60° C. and 80° C., and the presence or absence of unevenness and cissing of the coating film was observed. When neither unevenness nor cissing was observed at any heating temperature of 50° C., 60° C. and 80° C., the ink jet coatability was “good A (⊚)”, and one of 50° C., 60° C. and 80° C. When at least one of unevenness and cissing is observed at the heating temperature, "Good B (○)" is given. When at least one of unevenness and cissing is seen at two heating temperatures, "Available (△)" is given and all heating is performed. When at least one of unevenness and cissing was observed at the temperature, it was determined as "poor (x)". As a result, this example was evaluated as "good B".
3.インクジェットヘッドの長期安定性の評価
 以下の手法により、インクジェットヘッドの長期安定性を評価することにより液晶配向剤がインクジェットヘッドに及ぼす影響を評価した。評価には、コニカミノルタ社製KM1024iマテコンキットを使用した。なお、マテコンキットとは、インクジェットヘッド構成部材の溶媒耐性を試験するためのサンプル片である。ここでは、複数種あるサンプル片のうち樹脂硬化物を試験に用いた。
 まず、サンプル片の色及び表面状態を確認した後に、サンプル片の質量(浸漬前質量W1)を測定した。次に、液晶配向剤の調製に使用した溶剤(化合物a:γBL:BC=40:30:30(質量比))100mlを密閉可能なガラス瓶に秤量した後、サンプル片を浸漬し、50℃で4週間保管した。4週間経過後にサンプル片をガラス瓶から取り出し、エアーブローによってサンプル片の表面に付着している溶媒を除去した後、色変化、割れの有無、及び溶解の有無を目視にて確認し、浸漬前に対する変化により評価した。評価は以下のように行った。
・色変化について:色の変化がなかった場合を「良好(○)」、色が僅かに変化した場合を「可(△)」、色が著しく変化した場合を「不良(×)」とした。
・割れの有無について:割れが発生しなかった場合を「良好(○)」とし、割れが発生した場合を「不良(×)」とした。
・溶解の有無について:触診により樹脂の溶解が確認されなかった場合を「良好(○)」、溶解が観察された場合を「不良(×)」とした。
 また、サンプル片を溶媒中に浸漬した後のサンプル片の質量(浸漬後質量W2)を測定し、浸漬前質量W1から増加した質量の比率αを下記数式(2)により算出した。
α[%]=((W2-W1)/W1)×100  …(2)
評価は、比率αが10%未満であった場合に「良好A(◎)」、10%以上30%未満であった場合に「良好B(○)」、30%以上50%未満であった場合に「可(△)」、50%以上であった場合に「不良(×)」とした。なお、比率αが低いほど、評価対象の溶媒がインクジェットヘッド構成部材を膨潤させにくく良好であることを表す。評価の結果、この実施例では、色変化は「良好」、割れの有無は「良好」、溶解の有無については「良好」、質量変化は「可」であった。
3. Evaluation of long-term stability of inkjet head The effect of the liquid crystal aligning agent on the inkjet head was evaluated by evaluating the long-term stability of the inkjet head by the following method. For evaluation, a KM1024i matecon kit manufactured by Konica Minolta was used. Note that the material management kit is a sample piece for testing the solvent resistance of the inkjet head constituent member. Here, a resin cured product was used for the test among a plurality of sample pieces.
First, after confirming the color and surface state of the sample piece, the mass of the sample piece (weight W1 before immersion) was measured. Next, 100 ml of the solvent (compound a:γBL:BC=40:30:30 (mass ratio)) used for the preparation of the liquid crystal aligning agent was weighed in a sealable glass bottle, and the sample piece was dipped at 50° C. Stored for 4 weeks. After 4 weeks, the sample piece was taken out of the glass bottle, the solvent adhering to the surface of the sample piece was removed by air blow, and then the color change, the presence or absence of cracks, and the presence or absence of dissolution were visually confirmed. The change was evaluated. The evaluation was performed as follows.
-Regarding color change: When there is no color change, it is "good (○)", when the color changes slightly, it is "good (△)", and when the color changes significantly, it is "poor (x)" ..
-Presence or absence of cracks: When no cracks occurred, the result was "good", and when cracks occurred, the result was "bad".
-Regarding the presence or absence of dissolution: When dissolution of the resin was not confirmed by palpation, "good (○)" was set, and when dissolution was observed, "bad (x)" was set.
Further, the mass of the sample piece after the sample piece was immersed in the solvent (mass W2 after immersion) was measured, and the mass ratio α increased from the mass W1 before immersion was calculated by the following mathematical expression (2).
α [%]=((W2-W1)/W1)×100 (2)
The evaluation was “good A (⊚)” when the ratio α was less than 10%, “good B (◯)” when 10% or more and less than 30%, and 30% or more and less than 50%. In each case, it was evaluated as “Fair (Δ)” and when it was 50% or more, it was evaluated as “Poor (X)”. It should be noted that the lower the ratio α, the better the solvent to be evaluated is because it is less likely to swell the inkjet head constituent member. As a result of the evaluation, in this example, the color change was “good”, the presence or absence of cracks was “good”, the presence or absence of dissolution was “good”, and the mass change was “good”.
4.垂直配向型液晶表示素子の製造
 液晶配向剤(S-1)を、一対(2枚)のITO膜からなる透明電極付きガラス基板にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、窒素に置換したオーブン中、200℃で1時間加熱(ポストベーク)して溶媒を除去し、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数400rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.1mmでラビング処理を行った。その後、超純水中で1分間、超音波洗浄を行い、次いで、100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)得た。なお、このラビング処理は、液晶の倒れ込みを制御し、配向分割を簡易な方法で行う目的で行った弱いラビング処理である。
 上記基板のうちの1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、重ね合わせて圧着し、150℃で1時間加熱して接着剤を熱硬化させた。次いで、液晶注入口より基板の間隙にネガ型液晶(メルク製、MLC-6608) を充填した後、エポキシ系接着剤で液晶注入口を封止し、さらに液晶注入時の流動配向を除くために、これを150℃で10分間加熱した後に室温まで徐冷した。さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより液晶表示素子を製造した。
4. Manufacture of Vertical Alignment Type Liquid Crystal Display Device A liquid crystal aligning agent (S-1) was applied onto a glass substrate with a transparent electrode consisting of a pair (two sheets) of ITO film using a spinner, and prebaked for 1 minute on a hot plate at 80° C. I went. Then, the solvent was removed by heating (post-baking) at 200° C. for 1 hour in an oven purged with nitrogen to form a coating film (liquid crystal alignment film) having a film thickness of 0.08 μm. The coating film was rubbed by a rubbing machine having a roll around which a rayon cloth was wound, with a roll rotation speed of 400 rpm, a stage moving speed of 3 cm/sec, and a foot pressing length of 0.1 mm. Then, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then drying was performed in a 100° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film. This operation was repeated to obtain a pair (two) of substrates having a liquid crystal alignment film. Note that this rubbing treatment is a weak rubbing treatment performed for the purpose of controlling the collapse of the liquid crystal and performing alignment division by a simple method.
An epoxy resin adhesive containing 3.5 μm diameter aluminum oxide spheres was applied by screen printing to the outer periphery of the surface of one of the substrates having the liquid crystal alignment film, and then the liquid crystal alignment film faces of the pair of substrates were opposed to each other. Then, they were overlapped and pressure-bonded, and heated at 150° C. for 1 hour to thermally cure the adhesive. Next, after filling a negative liquid crystal (MLC-6608 made by Merck) into the gap between the substrates from the liquid crystal injection port, the liquid crystal injection port is sealed with an epoxy adhesive to remove the flow alignment at the time of liquid crystal injection. This was heated at 150° C. for 10 minutes and then gradually cooled to room temperature. Further, a liquid crystal display element was manufactured by bonding two polarizing plates on both outer sides of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other.
5.ポストベークの温度ムラに対するプレチルト角のばらつき特性(ポストベークマージン)の評価
 上記4.の方法に従い、異なるポストベーク温度(120℃、180℃及び230℃)で液晶配向膜を作製して得られた液晶表示素子のプレチルト角をそれぞれ測定した。ポストベーク温度を230℃としたときの測定値を基準プレチルト角θpとし、基準プレチルト角θpと測定値θaとの差Δθ(=|θp-θa|)により、ポストベークの温度ムラに対するプレチルト角のばらつき特性を評価した。なお、Δθが小さいほど、温度ムラに対するプレチルト角のばらつきが小さく優れていると言える。プレチルト角の測定は、非特許文献(T. J. Scheffer et.al. J.Appl.Phys. vo.19, p.2013(1980))に記載の方法に準拠して、He-Neレーザー光を用いる結晶回転法により測定した液晶分子の基板面からの傾き角の値をプレチルト角[°]とした。評価は、Δθが0.2°以下であった場合を「良好(○)」、0.2°よりも大きく0.5°未満であった場合を「可(△)」、0.5°以上であった場合を「不良(×)」とした。その結果、この実施例では、ポストベーク温度を180℃とした場合にはポストベークマージン「良好」、120℃とした場合には「可」の評価であった。
5. 4. Evaluation of variation characteristic of pretilt angle with respect to temperature unevenness of postbake (postbake margin) The pretilt angle of the liquid crystal display device obtained by forming the liquid crystal alignment film at different post-baking temperatures (120° C., 180° C. and 230° C.) was measured according to the method of 1. The measured value when the post-baking temperature was 230° C. was set as the reference pretilt angle θp, and the difference Δθ (=|θp−θa|) between the reference pretilt angle θp and the measured value θa indicates the pretilt angle with respect to the temperature unevenness of the post-bake. The variation characteristics were evaluated. It can be said that the smaller Δθ is, the smaller the variation in the pretilt angle with respect to the temperature unevenness is, and the better. The measurement of the pretilt angle is based on a method described in a non-patent document (T. J. Scheffer et. al. J. Appl. Phys. vo. 19, p. 2013 (1980)), and He-Ne laser light is used. The value of the tilt angle of the liquid crystal molecule from the substrate surface measured by the crystal rotation method using was used as the pretilt angle [°]. The evaluation is “good (◯)” when Δθ is 0.2° or less, “good (Δ)” and 0.5° when larger than 0.2° and less than 0.5°. The case where it was above was regarded as “poor (x)”. As a result, in this example, when the post-baking temperature was 180° C., the post-baking margin was “good”, and when it was 120° C., the evaluation was “good”.
6.AC残像特性の評価
 電極構造を、電圧の印加/無印加を別個に切替可能な2系統のITO電極(電極1及び電極2)とした点、及び偏光板を貼り合わせなかった点以外は、上記4.と同様の方法により評価用液晶セルを作製した。この評価用液晶セルを60℃の条件下に置き、電極2には電圧をかけずに、電極1に交流電圧10Vを300時間印加した。300時間が経過した後、直ちに電極1及び電極2の双方に交流3Vの電圧を印加して、両電極間の光透過率の差ΔT[%]を測定した。このとき、ΔTが2%未満であった場合をAC残像特性「良好(○)」、2%以上3%未満であった場合を「可(△)」、3%以上であった場合を「不良(×)」と評価した。その結果、この実施例では「良好」の評価であった。
6. Evaluation of AC afterimage characteristics Except for the point that the electrode structure was two-system ITO electrodes (electrode 1 and electrode 2) capable of independently switching application/non-application of voltage, and that a polarizing plate was not attached 4. A liquid crystal cell for evaluation was produced by the same method as described above. The liquid crystal cell for evaluation was placed under the condition of 60° C., and an alternating voltage of 10 V was applied to the electrode 1 for 300 hours without applying a voltage to the electrode 2. Immediately after 300 hours had elapsed, a voltage of AC 3V was applied to both the electrode 1 and the electrode 2, and the difference ΔT [%] in light transmittance between the electrodes was measured. At this time, when the ΔT is less than 2%, the AC afterimage characteristic is “good (◯)”, when it is 2% or more and less than 3%, it is “OK”, and when it is 3% or more, it is “good”. It was evaluated as "poor (x)". As a result, this example was evaluated as “good”.
7.DC残像特性の評価
 上記6.で作製した評価用液晶セルを60℃の条件下に置き、電極1に直流0.5Vの電圧を24時間印加し、直流電圧を切った直後の電極1に残留した電圧(残留DC電圧)をフリッカー消去法により求めた。このとき、残留DC電圧が100mV未満であった場合をDC残像特性「良好(○)」、100mV以上300mV未満であった場合を「可(△)」、300mV以上であった場合を「不良(×)」と評価した。その結果、この実施例では「良好」の評価であった。
7. Evaluation of DC afterimage characteristic 6. The evaluation liquid crystal cell prepared in 1. was placed under the condition of 60° C., a voltage of DC 0.5 V was applied to the electrode 1 for 24 hours, and the voltage (residual DC voltage) remaining on the electrode 1 immediately after the DC voltage was cut off was measured. It was determined by the flicker elimination method. At this time, when the residual DC voltage is less than 100 mV, the DC afterimage characteristic is “good (◯)”, when it is 100 mV or more and less than 300 mV is “OK”, and when it is 300 mV or more is “poor ( X)" was evaluated. As a result, this example was evaluated as “good”.
[実施例2~9及び比較例1~10]
 配合処方をそれぞれ下記表1に記載の通りとしたほかは実施例1と同様にして、液晶配向剤を調製した。また、調製した液晶配向剤を用いて実施例1と同様にして各種評価を行った。評価結果を下記表2に示した。
[Examples 2 to 9 and Comparative Examples 1 to 10]
A liquid crystal aligning agent was prepared in the same manner as in Example 1 except that the compounding formulations were as shown in Table 1 below. Further, various evaluations were performed in the same manner as in Example 1 using the prepared liquid crystal aligning agent. The evaluation results are shown in Table 2 below.
[実施例10]
1.液晶配向剤の調製
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S-10)を調製した。なお、液晶配向剤(S-10)は、主に水平配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-10)を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価した。それらの結果を下記表2に示した。
[Example 10]
1. Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-10) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal aligning agent (S-10) is mainly used for manufacturing a horizontal alignment type liquid crystal display element.
2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-10) was used. The results are shown in Table 2 below.
3.ラビングFFS型液晶表示素子の製造
 平板電極(ボトム電極)、絶縁層及び櫛歯状電極(トップ電極)がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、液晶配向剤(S-10)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間加熱(プレベーク)した。その後、庫内を窒素置換した200℃のオーブンで1時間乾燥(ポストベーク)を行い、平均膜厚0.08μmの塗膜を形成した。次いで、塗膜表面に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数500rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.4mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行い、次いで100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。
 次いで、液晶配向膜を有する一対の基板につき、液晶配向膜を形成した面の縁に液晶注入口を残して、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した。その後、基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-6221)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷し、液晶セルを製造した。なお、一対の基板を重ねあわせる際には、それぞれの基板のラビング方向が反平行となるようにした。また、2枚の偏光板の偏光方向が各々、ラビング方向と平行及び直交方向となるように偏光板を貼り合わせた。なお、トップ電極については、電極の線幅を4μm、電極間の距離を6μmとした。また、トップ電極としては、電極A、電極B、電極C及び電極Dの4系統の駆動電極を用いた。この場合、ボトム電極は、4系統の駆動電極のすべてに作用する共通電極として働き、4系統の駆動電極の領域のそれぞれが画素領域となる。
4.ラビングFFS型液晶表示素子の評価
 上記3.の方法に従い作製したラビングFFS型の液晶表示素子又は液晶セルを使用した以外は実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
3. Manufacture of a rubbing FFS type liquid crystal display element A glass substrate in which a flat plate electrode (bottom electrode), an insulating layer and a comb-teeth-shaped electrode (top electrode) are laminated in this order on one surface, and a counter glass substrate in which no electrode is provided The liquid crystal aligning agent (S-10) was applied onto each surface using a spinner, and heated (prebaked) on a hot plate at 80° C. for 1 minute. Then, it was dried (post-baked) for 1 hour in an oven at 200° C. in which the inside of the chamber was replaced with nitrogen to form a coating film having an average film thickness of 0.08 μm. Then, the surface of the coating film was rubbed with a rubbing machine having a roll around which a rayon cloth was wound, at a roll rotation speed of 500 rpm, a stage moving speed of 3 cm/sec, and a foot pressing length of 0.4 mm. After that, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then dried in a 100° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film.
Then, with respect to the pair of substrates having the liquid crystal alignment film, an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm was applied by screen printing, leaving a liquid crystal injection port at the edge of the surface on which the liquid crystal alignment film was formed. Then, the substrates were superposed and pressure-bonded, and the adhesive was thermoset at 150° C. for 1 hour. Next, nematic liquid crystal (MLC-6221, manufactured by Merck & Co., Inc.) was filled between the pair of substrates through the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Further, in order to remove the flow orientation at the time of injecting liquid crystal, this was heated at 120° C. and then gradually cooled to room temperature to manufacture a liquid crystal cell. When the pair of substrates were stacked, the rubbing directions of the substrates were antiparallel. In addition, the polarizing plates were attached so that the polarization directions of the two polarizing plates were parallel and orthogonal to the rubbing direction. Regarding the top electrodes, the line width of the electrodes was 4 μm and the distance between the electrodes was 6 μm. In addition, as the top electrodes, four-system drive electrodes of electrode A, electrode B, electrode C, and electrode D were used. In this case, the bottom electrode acts as a common electrode that acts on all the four-system drive electrodes, and each of the four-system drive electrode regions becomes a pixel region.
4. Evaluation of rubbing FFS type liquid crystal display device The post-bake margin, the AC afterimage characteristic and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the rubbing FFS type liquid crystal display element or the liquid crystal cell manufactured according to the method of 1. was used. The results are shown in Table 2 below.
[実施例11,12]
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S-11)、(S-12)をそれぞれ調製した。また、液晶配向剤(S-11)、(S-12)をそれぞれ使用した以外は、実施例1と同様にしてインクジェット塗布性及びインクジェットヘッドの長期安定性を評価するとともに、実施例10と同様にしてラビングFFS型の液晶表示素子又は液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[Examples 11 and 12]
Liquid crystal aligning agents (S-11) and (S-12) were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. Further, the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal aligning agents (S-11) and (S-12) were used, respectively, and the same as in Example 10. Then, a rubbing FFS type liquid crystal display element or liquid crystal cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
[実施例13]
1.液晶配向剤の調製
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S-13)を調製した。なお、液晶配向剤(S-13)は、主にPSA型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-13)を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価した。それらの結果を下記表2に示した。
[Example 13]
1. Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-13) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal aligning agent (S-13) is mainly used for manufacturing a PSA type liquid crystal display device.
2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-13) was used. The results are shown in Table 2 below.
3.液晶組成物の調製
 ネマチック液晶(メルク社製、MLC-6608)10gに対し、下記式(L1-1) で表される液晶性化合物を5質量%、及び下記式(L2-1)で表される光重合性化合物 を0.3質量%添加して混合することにより液晶組成物LC1を得た。
Figure JPOXMLDOC01-appb-C000008
3. Preparation of Liquid Crystal Composition 5% by mass of a liquid crystal compound represented by the following formula (L1-1) is represented by 10 g of nematic liquid crystal (MLC-6608 manufactured by Merck & Co., Inc.), and represented by the following formula (L2-1). A liquid crystal composition LC1 was obtained by adding 0.3% by mass of a photopolymerizable compound described above and mixing them.
Figure JPOXMLDOC01-appb-C000008
4.PSA型液晶表示素子の製造
 液晶配向剤(S-13)を用いたほかは、実施例1の「4.垂直配向型液晶表示素子の製造」に記載の方法と同様にして、液晶配向膜を有する基板を一対(2枚)得た。次いで、MLC-6608に代えて、上記で調製した液晶組成物LC1を用いた点、及び偏光板を貼り合わせなかった点以外は実施例1と同様にして液晶セルを製造した。次いで、上記で得た液晶セルに対し、電極間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、紫外線を50,000J/mの照射量にて照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて計測した値である。さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより液晶表示素子を製造した。
5.PSA型液晶表示素子の評価
 上記4.に記載の方法に従って作製したPSA型の液晶表示素子又は液晶セルを使用した以外は実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
4. Production of PSA type liquid crystal display device A liquid crystal alignment film was formed in the same manner as in the method described in "4. Production of vertical alignment type liquid crystal display device" of Example 1 except that the liquid crystal aligning agent (S-13) was used. A pair (two) of substrates having the above-mentioned materials were obtained. Then, a liquid crystal cell was produced in the same manner as in Example 1 except that the liquid crystal composition LC1 prepared above was used instead of MLC-6608, and that no polarizing plate was attached. Next, with the liquid crystal cell obtained above, an alternating current of 10 V with a frequency of 60 Hz was applied between the electrodes, and while the liquid crystal was driven, an ultraviolet irradiation device using a metal halide lamp as a light source was used to emit 50 Irradiation was performed at an irradiation dose of 000 J/m 2 . It should be noted that this irradiation amount is a value measured using a photometer that measures the wavelength at 365 nm as a reference. Further, a liquid crystal display element was manufactured by bonding two polarizing plates on both outer sides of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other.
5. Evaluation of PSA type liquid crystal display device The post-bake margin, the AC afterimage characteristic, and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the PSA type liquid crystal display element or the liquid crystal cell produced according to the method described in 1. was used. The results are shown in Table 2 below.
[実施例14,15,25,27]
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は、実施例1と同様にしてインクジェット塗布性及びインクジェットヘッドの長期安定性を評価するとともに、実施例14と同様にしてPSA型の液晶表示素子又は液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[Examples 14, 15, 25, 27]
Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. In addition, inkjet coating properties and long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that each liquid crystal aligning agent was used, and in the same manner as in Example 14, a PSA type liquid crystal display element or liquid crystal cell. Was manufactured and various evaluations were performed. The results are shown in Table 2 below.
[実施例16]
1.液晶配向剤の調製
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S-16)を調製した。なお、液晶配向剤(S-16)は、主に光垂直配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-16)を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価した。それらの結果を下記表2に示した。
[Example 16]
1. Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-16) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal aligning agent (S-16) is mainly used for manufacturing an optical vertical alignment type liquid crystal display element.
2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-16) was used. The results are shown in Table 2 below.
3.光垂直配向型液晶表示素子の製造
 液晶配向剤(S-16)を用い、ラビング処理に代えて、Hg-Xeランプ及びグランテーラープリズムを用いて膜に偏光紫外線を照射する処理を行ったほかは、実施例1の「4.垂直配向型液晶表示素子の製造」に記載の方法と同様にして、光垂直配向型液晶表示素子を製造した。なお、偏光紫外線の照射は、基板法線から40°傾いた方向から行い、照射量は200J/mとし、偏光方向はp-偏光とした。この照射量は、波長313nm基準で計測される光量計を用いて計測した値である。
4.光垂直配向型液晶表示素子の評価
 上記3.に記載の方法に従って作製した光垂直配向型の液晶表示素子又は液晶セルを使用した以外は実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
3. Manufacture of Vertically Aligned Liquid Crystal Display Device A liquid crystal aligning agent (S-16) was used, and instead of the rubbing treatment, the film was irradiated with polarized ultraviolet rays using a Hg-Xe lamp and a Glan-Taylor prism. An optical vertical alignment type liquid crystal display element was manufactured in the same manner as in the method described in "4. Manufacturing of vertical alignment type liquid crystal display element" of Example 1. The polarized ultraviolet rays were irradiated from a direction inclined by 40° from the substrate normal, the irradiation amount was 200 J/m 2 , and the polarization direction was p-polarized light. This irradiation amount is a value measured using a photometer that measures the wavelength at 313 nm.
4. Evaluation of vertically aligned liquid crystal display device 3. The post-bake margin, AC afterimage characteristics, and DC afterimage characteristics were evaluated in the same manner as in Example 1 except that the liquid crystal display device or liquid crystal cell of the optical vertical alignment type manufactured according to the method described in 1 above was used. The results are shown in Table 2 below.
[実施例17及び18]
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価するとともに、実施例18と同様にして光垂直配向型の液晶表示素子又は液晶セルを製造してポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
[Examples 17 and 18]
Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. In addition, the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that each liquid crystal aligning agent was used. A liquid crystal cell was manufactured and post-bake margin, AC afterimage characteristics, and DC afterimage characteristics were evaluated. The results are shown in Table 2 below.
[実施例19]
1.液晶配向剤の調製
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S-19)を調製した。なお、液晶配向剤(S-19)は、主に光水平型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-19)を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価した。それらの結果を下記表2に示した。
[Example 19]
1. Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-19) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal aligning agent (S-19) is mainly used for manufacturing an optical horizontal type liquid crystal display element.
2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-19) was used. The results are shown in Table 2 below.
3.光FFS型液晶表示素子の製造
 液晶配向剤(S-19)を用い、ラビング処理に代えて、Hg-Xeランプ及びグランテーラープリズムを用いて膜に偏光紫外線を照射する処理を行ったほかは、実施例10の「3.ラビングFFS型液晶表示素子の製造」に記載の方法と同様にして、光FFS型液晶表示素子を製造した。なお、偏光紫外線の照射は、基板から垂直方向から行い、照射量は10,000J/mとし、偏光方向は、実施例10におけるラビング処理の方向と直交する方向とした。この照射量は、波長254nm基準で計測される光量計を用いて計測した値である。
4.光FFS型液晶表示素子の評価
 上記3.に記載の方法に従って作製した光FFS型の液晶表示素子又は液晶セルを使用した以外は、実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
3. Manufacture of optical FFS type liquid crystal display element In addition to using a liquid crystal aligning agent (S-19) and performing rubbing treatment, the film was irradiated with polarized ultraviolet rays using a Hg-Xe lamp and a Glan-Taylor prism. An optical FFS type liquid crystal display element was produced in the same manner as in the method described in “3. Production of rubbing FFS type liquid crystal display element” in Example 10. Irradiation of polarized ultraviolet rays was performed from a direction perpendicular to the substrate, the irradiation amount was 10,000 J/m 2 , and the polarization direction was orthogonal to the rubbing direction in Example 10. This irradiation amount is a value measured using a photometer that measures the wavelength at 254 nm.
4. Evaluation of optical FFS type liquid crystal display device The post-bake margin, the AC afterimage characteristic, and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the optical FFS type liquid crystal display element or the liquid crystal cell manufactured according to the method described in 1. was used. The results are shown in Table 2 below.
[実施例20~24]
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価するとともに、実施例21と同様にして光FFS型の液晶表示素子又は液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[Examples 20 to 24]
Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the compounding formulation was changed as shown in Table 1 below. Further, the inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that each liquid crystal aligning agent was used, and in the same manner as in Example 21, an optical FFS type liquid crystal display element or liquid crystal was used. The cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
[実施例26]
1.液晶配向剤の調製
 配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S-26)を調製した。なお、液晶配向剤(S-26)は、主にTNモード型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-26)を使用した以外は実施例1と同様にして、インクジェット塗布性及びインクジェットヘッドの長期安定性を評価した。それらの結果を下記表2に示した。
[Example 26]
1. Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-26) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal aligning agent (S-26) is mainly used for manufacturing a TN mode type liquid crystal display device.
2. Evaluation of Liquid Crystal Alignment Agent The inkjet coatability and the long-term stability of the inkjet head were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-26) was used. The results are shown in Table 2 below.
3.TN型液晶表示素子の製造
 液晶配向剤(S-26)を用い、ラビング処理を、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数500rpm 、ステージ移動速度3cm/秒、毛足押しこみ長さ0.4mmの条件で行ったほかは、実施例1の「4.垂直配向型液晶表示素子の製造」に記載の方法と同様にして、液晶配向膜を有する基板を一対(2枚)得た。次に、MLC-6608に代えて、ポジ型液晶(メルク製、MLC-6221)を用い、一対の基板を重ね合わせる際にそれぞれの基板のラビング方向が直交するようにし、2枚の偏光板の偏光方向が各々の基板のラビング方向と平行方向となるようにしたほかは実施例1と同様にして、TN型液晶表示素子を製造した。
4.TN型液晶表示素子の評価
 上記3.に記載の方法に従って作製したTN型の液晶表示素子又は液晶セルを使用した以外は、実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
3. Manufacture of TN type liquid crystal display device Using a liquid crystal aligning agent (S-26), rubbing treatment was performed by a rubbing machine having a roll around which rayon cloth was wound, roll rotation speed was 500 rpm, stage moving speed was 3 cm/sec, and hair was pressed. A pair of substrates (two sheets) having a liquid crystal alignment film was prepared in the same manner as in the method described in "4. Manufacture of vertical alignment type liquid crystal display element" of Example 1 except that the condition was 0.4 mm in length. Obtained. Next, in place of MLC-6608, a positive type liquid crystal (MLC-6221 manufactured by Merck) was used so that the rubbing directions of the substrates were orthogonal to each other when the pair of substrates were stacked. A TN type liquid crystal display device was manufactured in the same manner as in Example 1 except that the polarization direction was parallel to the rubbing direction of each substrate.
4. Evaluation of TN type liquid crystal display device The post-bake margin, the AC afterimage characteristic, and the DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the TN type liquid crystal display element or the liquid crystal cell manufactured according to the method described in 1. was used. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1中、重合体成分の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体の配合割合(質量部)を示す。溶剤組成の数値は、液晶配向剤の調製に使用した溶剤(化合物[A]、溶剤[B]及び他の溶剤)の合計量に対する各化合物の配合割合(質量比)を示す。化合物の略号は以下の通りである。
(化合物[A])
 a:3-フェニルプロパン-1-オール
 b:2-フェニルエタン-1-オール
 c:フェニルメタノール
 d:アニソール
 e:エトキシベンゼン
 f:プロポキシベンゼン
 g:2-フラニルメタノール
 h:2-フラニルエタノール
 i:2-フラニルプロパノール
(溶剤[B]及び他の溶剤)
 L:プロピレンカーボネート
 m:4-フェニルブタン-1-オール
 n:ブトキシベンゼン
 o:2-フラニルブタノール
 p:γ-ブチロラクトン
 q:ジメチルイミダゾリジノン
 r:N-メチル-2-ピロリドン
 s:ブチルセロソルブ
 t:ダイアセトンアルコール
 u:ジエチレングリコールジエチルエーテル
 v:N-エチル-2-ピロリドン
 w:フェノール
 x:酢酸フェニル
In Table 1, the numerical value of the polymer component indicates the blending ratio (parts by mass) of each polymer to 100 parts by mass in total of the polymer components used for preparing the liquid crystal aligning agent. The numerical value of the solvent composition indicates the compounding ratio (mass ratio) of each compound to the total amount of the solvent (compound [A], solvent [B] and other solvent) used for the preparation of the liquid crystal aligning agent. The compound abbreviations are as follows.
(Compound [A])
a: 3-phenylpropan-1-ol b: 2-phenylethane-1-ol c: phenylmethanol d: anisole e: ethoxybenzene f: propoxybenzene g: 2-furanylmethanol h: 2-furanylethanol i : 2-furanyl propanol (solvent [B] and other solvents)
L: propylene carbonate m: 4-phenylbutan-1-ol n: butoxybenzene o: 2-furanylbutanol p: γ-butyrolactone q: dimethylimidazolidinone r: N-methyl-2-pyrrolidone s: butylcellosolve t: Diacetone alcohol u: Diethylene glycol diethyl ether v: N-ethyl-2-pyrrolidone w: Phenol x: Phenyl acetate
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2から分かるように、化合物[A]を含む実施例1~27は、インクジェット塗布性、インクジェットヘッド長期安定性、ポストベークマージン、及び残像特性の各種特性がバランス良く改善された。これに対し、化合物[A]を含まず、代わりにNMP、γ-ブチロラクトン、ジメチルイミダゾリジノン、フェノール、酢酸フェニルを含有する例(比較例1~3、8~9)では、インクジェットヘッド長期安定性が実施例よりも劣っていた。また、化合物[A]を含まず、代わりにプロピレンカーボネート、4-フェニルブタン-1-オール、ブトキシベンゼン、2-フラニルブタノールを含有する例(比較例4~7)では、インクジェット塗布性が実施例よりも劣っていた。 As can be seen from Table 2, in Examples 1 to 27 containing the compound [A], various properties such as inkjet coating property, inkjet head long-term stability, post bake margin, and afterimage property were improved in a well-balanced manner. On the other hand, in the examples (Comparative Examples 1 to 3 and 8 to 9) not containing the compound [A] but containing NMP, γ-butyrolactone, dimethylimidazolidinone, phenol and phenyl acetate, the inkjet head was stable for a long time. The sex was inferior to the example. In addition, in the examples (Comparative Examples 4 to 7) which did not contain the compound [A] but instead contained propylene carbonate, 4-phenylbutan-1-ol, butoxybenzene, and 2-furanylbutanol, the inkjet coatability was improved. It was inferior to the example.
 以上の結果から、化合物[A]を含有する液晶配向剤によれば、基板に対する塗布性が良好であり、インクジェットヘッドを劣化させにくく、残像特性に優れた液晶素子が得られることが明らかとなった。また、当該液晶配向剤によれば、ポストベークマージンも良好にできることが明らかとなった。 From the above results, it has been clarified that the liquid crystal aligning agent containing the compound [A] has a good coating property on the substrate, does not easily deteriorate the inkjet head, and can obtain a liquid crystal element having excellent afterimage characteristics. It was Further, it was revealed that the liquid crystal aligning agent can also improve the post-baking margin.

Claims (8)

  1.  重合体成分と、下記式(1)で表される化合物[A]とを含有する、液晶配向剤。
     (R)x-Ar-R  …(1)
    (式(1)中、Arは(x+1)価の芳香環基であり、Rは炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基であり、xは0又は1である。Rは炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基である。)
    A liquid crystal aligning agent comprising a polymer component and a compound [A] represented by the following formula (1).
    (R 2 )x-Ar 1 -R 1 (1)
    (In the formula (1), Ar 1 is a (x+1)-valent aromatic ring group, and R 2 is an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms. And x is 0 or 1. R 1 is a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.)
  2.  前記化合物[A]は、下記式(1-1)で表される化合物、下記式(1-2)で表される化合物、及び下記式(1-3)で表される化合物よりなる群から選ばれる少なくとも一種である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1-1)~式(1-3)中、n及びrは、それぞれ独立に1~3の整数であり、mは0~2の整数である。Rは炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基又は炭素数1~3のアルコキシ基であり、yは0又は1である。)
    The compound [A] is selected from the group consisting of a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), and a compound represented by the following formula (1-3). The liquid crystal aligning agent according to claim 1, which is at least one selected.
    Figure JPOXMLDOC01-appb-C000001
    (In the formulas (1-1) to (1-3), n and r are each independently an integer of 1 to 3, m is an integer of 0 to 2. R 3 is a carbon number of 1 to 3. Is an alkyl group, a hydroxyalkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and y is 0 or 1.)
  3.  エーテル系溶剤、アルコール系溶剤、鎖状エステル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種である溶剤[B]を含有する、請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, which contains at least one solvent [B] selected from the group consisting of an ether solvent, an alcohol solvent, a chain ester solvent, and a ketone solvent.
  4.  前記化合物[A]の含有割合は、前記液晶配向剤に含有される溶剤の全量に対して10質量%以上である、請求項1~3のいずれか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the content ratio of the compound [A] is 10% by mass or more based on the total amount of the solvent contained in the liquid crystal aligning agent.
  5.  前記重合体成分として、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリアミド、及び重合性不飽和結合を有するモノマーに由来する構造単位を有する重合体よりなる群から選ばれる少なくとも一種を含む、請求項1~4のいずれか一項に記載の液晶配向剤。 As the polymer component, polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyamide, and at least one selected from the group consisting of a polymer having a structural unit derived from a monomer having a polymerizable unsaturated bond, The liquid crystal aligning agent according to any one of claims 1 to 4.
  6.  液晶配向膜を備える液晶素子の製造方法であって、
     請求項1~5のいずれか一項に記載の液晶配向剤を用いて前記液晶配向膜を形成する、液晶素子の製造方法。
    A method of manufacturing a liquid crystal device including a liquid crystal alignment film,
    A method for manufacturing a liquid crystal element, comprising forming the liquid crystal alignment film using the liquid crystal alignment agent according to claim 1.
  7.  請求項1~5のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal alignment agent according to any one of claims 1 to 5.
  8.  請求項7に記載の液晶配向膜を備える液晶素子。 A liquid crystal device comprising the liquid crystal alignment film according to claim 7.
PCT/JP2019/040133 2019-01-17 2019-10-10 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element WO2020148953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020566104A JP7409325B2 (en) 2019-01-17 2019-10-10 Liquid crystal aligning agent and method for manufacturing liquid crystal elements
CN201980087149.9A CN113260911A (en) 2019-01-17 2019-10-10 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006186 2019-01-17
JP2019-006186 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020148953A1 true WO2020148953A1 (en) 2020-07-23

Family

ID=71614094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040133 WO2020148953A1 (en) 2019-01-17 2019-10-10 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element

Country Status (4)

Country Link
JP (1) JP7409325B2 (en)
CN (1) CN113260911A (en)
TW (1) TWI819102B (en)
WO (1) WO2020148953A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211086A1 (en) * 2021-04-02 2022-10-06 旭化成株式会社 Polyimide, resin composition, polyimide film, and production method therefor
WO2023286733A1 (en) * 2021-07-12 2023-01-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265096A (en) * 1996-03-27 1997-10-07 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
JP2002322278A (en) * 2001-04-26 2002-11-08 Hitachi Cable Ltd Solvent-soluble polyimide composition
JP2012180483A (en) * 2011-03-02 2012-09-20 Jnc Corp Composition containing polymer having amino group and side chain in molecule and solvent, and novel substance
WO2019159470A1 (en) * 2018-02-13 2019-08-22 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165355A1 (en) 2011-05-27 2012-12-06 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2014059545A (en) * 2012-08-21 2014-04-03 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
JP7063270B2 (en) * 2016-09-29 2022-05-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265096A (en) * 1996-03-27 1997-10-07 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
JP2002322278A (en) * 2001-04-26 2002-11-08 Hitachi Cable Ltd Solvent-soluble polyimide composition
JP2012180483A (en) * 2011-03-02 2012-09-20 Jnc Corp Composition containing polymer having amino group and side chain in molecule and solvent, and novel substance
WO2019159470A1 (en) * 2018-02-13 2019-08-22 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211086A1 (en) * 2021-04-02 2022-10-06 旭化成株式会社 Polyimide, resin composition, polyimide film, and production method therefor
JP7174199B1 (en) * 2021-04-02 2022-11-17 旭化成株式会社 Polyimide, resin composition, polyimide film, and method for producing the same
JP7436606B2 (en) 2021-04-02 2024-02-21 旭化成株式会社 Polyimide, resin composition, polyimide film, and manufacturing method thereof
WO2023286733A1 (en) * 2021-07-12 2023-01-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Also Published As

Publication number Publication date
TWI819102B (en) 2023-10-21
TW202037714A (en) 2020-10-16
JPWO2020148953A1 (en) 2021-12-02
CN113260911A (en) 2021-08-13
JP7409325B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
JP6447209B2 (en) Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and method for producing liquid crystal display element
JP2017138575A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer and diamine
JP2018054761A (en) Liquid crystal element and method for manufacturing the same
JP7409325B2 (en) Liquid crystal aligning agent and method for manufacturing liquid crystal elements
JP6561475B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and method for producing the same, liquid crystal display element, retardation film and method for producing the same
JP2017032608A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, polymer and compound
TWI786195B (en) Liquid crystal alignment agent, method for manufacturing liquid crystal element, liquid crystal alignment film, and liquid crystal element
JP7139950B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2017040721A (en) Liquid crystal aligning agent, liquid crystal alignment film, production method of liquid crystal alignment film, liquid crystal display element, polymer and compound
JP2016118573A (en) Liquid crystal alignment agent, manufacturing method of liquid crystal display device, liquid crystal alignment film, liquid crystal display device, polymer, and compound
JP6962440B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP2017126060A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element, and liquid crystal alignment film and method for manufacturing liquid crystal element
WO2019193855A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and production method for liquid crystal element
JP7409378B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
CN111542779B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
TWI788550B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and method for manufacturing liquid crystal element
JP7322875B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2019171776A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
JP2023107736A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for producing liquid crystal element
JP2023170991A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909978

Country of ref document: EP

Kind code of ref document: A1