WO2018016263A1 - Method for manufacturing liquid crystal element - Google Patents

Method for manufacturing liquid crystal element Download PDF

Info

Publication number
WO2018016263A1
WO2018016263A1 PCT/JP2017/023099 JP2017023099W WO2018016263A1 WO 2018016263 A1 WO2018016263 A1 WO 2018016263A1 JP 2017023099 W JP2017023099 W JP 2017023099W WO 2018016263 A1 WO2018016263 A1 WO 2018016263A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
solvent
coating film
contact
Prior art date
Application number
PCT/JP2017/023099
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 井上
孝人 加藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2018016263A1 publication Critical patent/WO2018016263A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a method for manufacturing a liquid crystal element.
  • liquid crystal element in addition to a horizontal alignment mode liquid crystal element using a nematic liquid crystal having a positive dielectric anisotropy, such as a TN (Twisted Nematic) type and an STN (Super Twisted Nematic) type, a negative dielectric different Various liquid crystal elements are known, such as a VA (Vertical Alignment) type liquid crystal element in a vertical (homeotropic) alignment mode using a nematic liquid crystal having a directivity. These liquid crystal elements include a liquid crystal alignment film having a function of aligning liquid crystal molecules in a certain direction.
  • VA Vertical Alignment
  • the material constituting the liquid crystal alignment film polyamic acid, polyimide, polyamic acid ester, polyamide, polyester, polyorganosiloxane, and the like are known, and in particular, the liquid crystal alignment film made of polyamic acid or polyimide is heat resistant, mechanical It has been used preferably for a long time because of its excellent mechanical strength and affinity with liquid crystal molecules (see Patent Documents 1 to 3).
  • a PSA (Polymer Sustained Alignment) method is known as an alignment treatment method.
  • a PSA method a pre-tilt angle characteristic is obtained by allowing a liquid crystal layer provided in a gap between a pair of substrates to contain a polymerizable compound and irradiating ultraviolet rays with a voltage applied between the substrates to polymerize the polymerizable compound.
  • This is a technique that attempts to control the orientation direction of the liquid crystal. According to this technique, it is possible to increase the viewing angle and speed up the liquid crystal molecule response, and it is possible to solve the problem of lack of transmittance and contrast that is inevitable in the MVA panel.
  • a polymerizable compound is contained in a liquid crystal alignment film, and the alignment direction of the liquid crystal is controlled by irradiating ultraviolet rays with a voltage applied between the substrates.
  • a curved display is generally manufactured by bonding a pair of substrates so that a liquid crystal layer is disposed between the substrates to form a liquid crystal cell, and then bending the liquid crystal cell.
  • a region in which a pretilt angle shifts between one substrate and the other substrate in a pair of substrates may occur. In this case, there is a concern that the image quality is degraded.
  • JP-A-4-153622 JP 56-91277 A Japanese Patent Laid-Open No. 11-258605 Japanese Patent Laid-Open No. 2005-26074
  • Patent Document 4 it is difficult to generate a sufficient difference in pretilt angle between one substrate and the other substrate by the method of irradiating ultraviolet rays or the method of varying the baking temperature during film formation. Therefore, there is a problem that it is difficult to ensure sufficient image quality.
  • the present disclosure has been made in view of the above circumstances, and one object of the present disclosure is to manufacture a liquid crystal element capable of sufficiently causing a difference in pretilt angle between one substrate and the other substrate in a pair of substrates. It is to provide a method.
  • a difference in pretilt angle between one substrate and the other substrate in a pair of substrates can be sufficiently generated.
  • the difference in the pretilt angle between the substrates due to the difference in the contact treatment with the solvent after forming the coating film on the substrate, even when the liquid crystal alignment film is formed using the same liquid crystal alignment agent It is possible to cause a sufficient difference in pretilt angle between the substrates, and the productivity is also good.
  • the schematic diagram for demonstrating the orientation shift which arises in a curved-surface display (A) is a liquid crystal cell before being bent, (b) is a liquid crystal cell after being bent, and (c) is a liquid crystal cell of one embodiment of the present disclosure.
  • the method for manufacturing a liquid crystal element of the present disclosure includes the following step A, step B, and step C.
  • Step A a step of forming a coating film by applying a liquid crystal aligning agent on each surface of a pair of substrates including a first substrate and a second substrate.
  • Step B The coating film formed on only one of the pair of substrates obtained in Step A is brought into contact with a solvent or formed on each of the first substrate and the second substrate.
  • Step C After Step B, a step of constructing a liquid crystal cell by arranging the first substrate and the second substrate to face each other so that the coating films face each other.
  • a liquid crystal aligning agent is applied on a pair of substrates including a first substrate and a second substrate, and a coating film is formed on the substrate, preferably by heating the application surface.
  • the substrate for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, poly (cycloaliphatic olefin) can be used.
  • a NESA film (registered trademark of US PPG) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc.
  • a TN type, STN type, or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with an electrode patterned in a comb shape and a counter substrate provided with no electrode are used.
  • Application of the liquid crystal aligning agent to the substrate is preferably performed on the electrode forming surface by an offset printing method, a spin coating method, a roll coater method or an ink jet printing method.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • a coating film is formed on the substrate by pre-baking.
  • the pre-bake temperature is preferably 30 to 200 ° C., and the pre-bake time is preferably 0.25 to 10 minutes.
  • baking is performed for the purpose of completely removing the solvent.
  • the firing temperature (post-bake temperature) at this time is preferably 80 to 300 ° C., and the post-bake time is preferably 5 to 200 minutes.
  • the film thickness after post-baking is preferably 0.001 to 1 ⁇ m.
  • liquid crystal aligning agent used with the manufacturing method of this indication contains a polymer component, and also contains another component as needed.
  • the main skeleton of the polymer is not particularly limited.
  • (meth) acrylate means to include acrylate and methacrylate.
  • polyamic acid selected from the group consisting of polyamic acid, polyamic acid, polyamic acid ester, polyamide, polyorganosiloxane, and (meth) acrylate
  • polyamic acid selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, and polyorganosiloxane
  • 1 type may be used independently and may be used in combination of 2 or more type.
  • a compound having at least one epoxy group in the molecule examples thereof include resins, curing accelerators, surfactants, fillers, dispersants, photosensitizers, and polymerizable compounds.
  • the mixture ratio of another component can be suitably selected according to each compound in the range which does not impair the effect of this indication.
  • the liquid crystal aligning agent in the production method of the present disclosure may be a one-component system, but even when the same liquid crystal aligning agent is used between the substrates, a sufficient difference in the pretilt angle between the substrates by the following contact process It is preferable that it is a multiple component system containing the 1st component and the 2nd component different from the said 1st component at the point which can produce.
  • the liquid crystal aligning agent contains, as the first component, a compound [A] having at least one selected from the group consisting of a crosslinkable group, a photoalignable group and a radical generating group, and a polymer as the second component [P] (excluding those corresponding to the compound [A]).
  • the compound [A] has at least one selected from the group consisting of a crosslinkable group, a photoalignable group, and a radical generating group.
  • the crosslinkable group is preferably a group capable of forming a covalent bond between the same or different molecules by light or heat.
  • (meth) acrylic acid or a derivative thereof is used as a basic skeleton ( Examples include meth) acryl-containing groups, groups having vinyl groups (alkenyl groups, vinylphenyl groups, etc.), ethynyl groups, epoxy groups (oxiranyl groups, oxetanyl groups), and the like.
  • the photo-alignment group is a functional group that imparts anisotropy to the film by a photoisomerization reaction, a photodimerization reaction, or a photolysis reaction by light irradiation.
  • Specific examples of the photo-alignment group include an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure-containing group containing a cinnamic acid or a derivative thereof (cinnamic acid structure) as a basic skeleton, a chalcone or a derivative thereof.
  • Examples include a polyimide structure containing a derivative as a basic skeleton.
  • a cinnamic acid structure-containing group is particularly preferable in terms of high sensitivity to light.
  • the radical generating group is not particularly limited as long as it is a functional group that generates radicals by light or heat.
  • a functional group derived from a known radical generating agent can be used.
  • the radical generator include radical-generating group-containing compounds such as alkylphenone compounds, benzoin compounds, ketal compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, and anthraquinone compounds.
  • Compound [A] is capable of more sufficiently providing a difference in pretilt angle (tilt difference) between the first substrate and the second substrate.
  • at least one of a crosslinkable group and a photoalignable group is present. It preferably has, and more preferably has a total of at least two of at least one of a crosslinkable group and a photoalignable group.
  • compound [A] has at least one of a crosslinkable group and a photoalignable group
  • the crosslinkable group or photoalignable group remaining in the liquid crystal alignment film interacts with the liquid crystal molecules, and the pretilt angle is stabilized. This is thought to be due to the increase in performance.
  • the compound [A] may be a low molecular compound (for example, a compound having a molecular weight of less than 1,000) or a polymer obtained by polymerizing monomers.
  • the compound [A] is a crosslinkable group, a photo-alignment, in that a sufficient tilt difference is generated between the first substrate and the second substrate, and a decrease in display quality due to the inflow of impurities into the liquid crystal layer can be suppressed.
  • a polymer having at least one selected from the group consisting of a functional group and a radical generating group is preferred.
  • the compound [A] is a polymer
  • its main skeleton is not particularly limited, but is preferably at least one of (meth) acrylate and polyorganosiloxane from the viewpoint that the effects of the present disclosure are sufficiently obtained, Of these, polyorganosiloxane is particularly preferred.
  • the polyorganosiloxane as the compound [A] can be synthesized according to a known method.
  • a monomer containing a hydrolyzable silane compound having an epoxy group hereinafter also referred to as “epoxy group-containing silane compound”
  • epoxy group-containing silane compound is hydrolyzed and condensed to synthesize an epoxy group-containing polyorganosiloxane
  • the obtained epoxy group-containing polyorganosiloxane is reacted with a carboxylic acid having at least one selected from the group consisting of a crosslinkable group, a photoalignable group and a radical generating group. According to such a reaction, it is convenient, and it is easy to adjust the introduction rate of the functional group, which is preferable.
  • epoxy group-containing silane compound examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • examples include triethoxysilane. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • other silane compounds may be used together with the epoxy group-containing silane compound.
  • the other silane compounds include alkoxysilane compounds such as tetramethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane; Nitrogen / sulfur-containing alkoxysilane compounds such as 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (3-cyclohexylamino) propyltrimethoxysilane; 3- (meth) acryl Roxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth)
  • (Meth) acryloxy means “acryloxy” and “methacryloxy”.
  • the proportion of other silane compounds used is preferably 70 mol% or less, more preferably 50 mol% or less, based on the total amount of silane compounds used for polymerization.
  • the hydrolysis / condensation reaction is carried out by reacting one or more of the above silane compounds with water, preferably in the presence of a suitable catalyst and organic solvent.
  • the amount of water used is preferably 1 to 30 mol with respect to 1 mol of the silane compound (total amount).
  • the catalyst to be used include acids, alkali metal compounds, organic bases, titanium compounds, zirconium compounds and the like.
  • the amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, and the like, and should be set appropriately. For example, the amount is 0.01 to 3 times the total amount of the silane compound.
  • organic solvent to be used examples include hydrocarbons, ketones, esters, ethers, alcohols, and the like, and among these, it is preferable to use a water-insoluble or slightly water-soluble organic solvent.
  • the organic solvent is used in an amount of preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compounds used in the reaction.
  • the above hydrolysis / condensation reaction is preferably carried out by heating with, for example, an oil bath. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain the desired polyorganosiloxane.
  • the method for synthesizing the polyorganosiloxane is not limited to the hydrolysis / condensation reaction described above, and may be performed by, for example, a method in which a hydrolyzable silane compound is reacted in the presence of oxalic acid and alcohol.
  • the reaction between the epoxy group-containing polyorganosiloxane and the carboxylic acid is preferably carried out in an organic solvent in the presence of a suitable catalyst.
  • the carboxylic acid is preferably used in an amount of 1 to 70 mol% based on the epoxy group of the epoxy group-containing polyorganosiloxane. % Is more preferable.
  • a catalyst generally used as an epoxy group curing accelerator can be used as the catalyst.
  • the catalyst include tertiary amines, imidazole derivatives, organic phosphorus compounds, quaternary phosphonium salts, diazabicycloalkenes, organometallic compounds, quaternary ammonium halides, metal halide compounds, and latent curing accelerators.
  • the ratio of the catalyst used is preferably 0.01 to 100 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy group-containing polyorganosiloxane.
  • Examples of the organic solvent used in the above reaction include ketones, ethers, esters, amides, alcohols and the like.
  • the proportion of the organic solvent used is preferably such that the total mass of components other than the organic solvent in the reaction solution is 0.1 to 50% by mass as the proportion of the total amount of the reaction solution. It is more preferable to set the ratio to be%.
  • the reaction temperature of the above reaction is preferably ⁇ 20 ° C. to 200 ° C., more preferably 0 ° C. to 160 ° C.
  • the reaction time is preferably 1 hour to 48 hours, more preferably 2 hours to 12 hours.
  • the resulting reaction solution may be used for preparing a liquid crystal aligning agent after isolating the polyorganosiloxane contained in the reaction solution using a known isolation method.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably in the range of 1,000 to 50,000, More preferably, it is in the range of 200 to 10,000.
  • compound [A] may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polymer [P] is a polymer different from the compound [A], that is, a polymer having no crosslinkable group, photoalignable group, or radical generating group.
  • the polymer [P] is preferably a polymer having a main chain different from that of the compound [A].
  • the polymer [P] is more preferably at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide.
  • a combination in which the compound [A] is polyorganosiloxane and the polymer [P] is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide is particularly preferable.
  • polyamic acid, polyamic acid ester and polyimide The polyamic acid, polyamic acid ester and polyimide contained in the liquid crystal aligning agent can be synthesized according to a conventionally known method.
  • polyamic acid can be obtained by reacting tetracarboxylic dianhydride and diamine.
  • the polyamic acid ester can be obtained by, for example, a method of reacting the polyamic acid obtained above with an esterifying agent (for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, or the like).
  • the polyimide can be obtained, for example, by dehydrating and ring-closing the polyamic acid obtained above to imidize.
  • the imidation ratio is preferably 20 to 95%, more preferably 30 to 90%.
  • This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of polyimide amic acid structures and the number of imide ring structures in percentage.
  • tetracarboxylic dianhydride used for the polymerization examples include aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride and ethylenediaminetetraacetic acid dianhydride; 2,3,5-tricarboxycyclopentylacetic acid Dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2, 5-Dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 2,4,6,8-tetracarboxy Bicyclo [3.3.0] octane-2: 4,6: 8-dianhydride, cyclopentanetetracarboxylic dian
  • Rubonic acid dianhydride pyromellitic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, p-phenylenebis (trimellitic acid monoester anhydride), ethylene glycol bis (anhydrotri) And aromatic tetracarboxylic dianhydrides such as 1,3-propylene glycol bis (anhydrotrimellitate) and the like, and tetracarboxylic acids described in JP 2010-97188 A A A dianhydride can be used.
  • tetracarboxylic dianhydride may be used individually by 1 type, and may be used in combination of 2 or more type.
  • diamine used in the polymerization examples include aliphatic diamines such as ethylenediamine and tetramethylenediamine; alicyclic diamines such as p-cyclohexanediamine and 4,4′-methylenebis (cyclohexylamine); hexadecanoxy Diaminobenzene, cholestanyloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, lanostannyl diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butylcyclohexane, 2,5-diamino-N, N-diallylaniline, the following formulas (8-1) to (8-3) )
  • a side chain type aromatic diamine such as a compound represented by each of the following: p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylamine, 4-aminophenyl-4′-aminobenzoate, 4 , 4'-diaminoazobenzene, 3,5-diaminobenzoic acid, 1,5-bis (4-aminophenoxy) pentane, bis [2- (4-aminophenyl) ethyl] hexanedioic acid, bis (4-aminophenyl) ) Amine, N, N-bis (4-aminophenyl) methylamine, N, N′-bis (4-aminophenyl) -benzidine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2 '-Bis (trifluoromethyl) -4,4'-diaminobiphenyl,
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC is preferably 1,000 to 500,000, more preferably 2,000 to 300,000.
  • the molecular weight distribution (Mw / Mn) is preferably 7 or less, more preferably 5 or less.
  • the polyamic acid, polyamic acid ester, and polyimide which are contained in the liquid crystal aligning agent may be only one kind, or may be a combination of two or more kinds.
  • the compounding ratio of the compound [A] and the polymer [P] is such that the compound [A] is contained in 100 parts by mass of the polymer [P] contained in the liquid crystal aligning agent from the viewpoint of sufficiently producing a tilt difference.
  • the blending ratio is preferably 1 to 100 parts by mass, more preferably 3 to 50 parts by mass, and even more preferably 5 to 40 parts by mass.
  • the liquid crystal aligning agent is prepared as a solution composition in which a polymer component and other components optionally blended as necessary are preferably dissolved or dispersed in an organic solvent.
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, and N, N-dimethylformamide.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
  • Step B is a step of causing a tilt difference between the substrates by making the contact mode with the solvent different from the coating film formed on each substrate. Specifically, (1) one of the first substrate and the second substrate is not subjected to the treatment of bringing the coating film into contact with the solvent, and only the other substrate is brought into contact with the coating film with the solvent. And a process of bringing the coating film and the solvent into contact with each other on both the first substrate and the second substrate. The conditions for contacting the solvent are the same as those of the first substrate. And a method (hereinafter, also referred to as “second method”) under different conditions between the first substrate and the second substrate.
  • an organic solvent or an alkaline aqueous solution is preferably used.
  • the organic solvent is preferably at least one selected from the group consisting of alcohols, ethers, ketones and hydrocarbons. Specific examples thereof include alcohols such as ethanol, propanol, isopropyl alcohol, 1-methoxy-2-propanol, diacetone alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, butyl cellosolve (ethylene glycol monobutyl ether), propylene glycol. Monoethyl ether, ethyl lactate, 1-hexanol, 4-methyl-2-pentanol, etc .;
  • ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monoethyl ether.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, and methyl isoamyl ketone;
  • the hydrocarbon include hexane, heptane, octane, benzene, toluene, xylene, mesitylene, and cyclohexane;
  • the organic solvent is preferably at least one selected from the group consisting of alcohol and ketone, and is selected from the group consisting of ethanol, propanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone. It is more preferable to use at least one type, and it is particularly preferable to use at least one of isopropanol and acetone.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol.
  • An alkaline aqueous solution in which 3,0] -5-nonane and the like are dissolved may be mentioned.
  • the solvent used for contact with the coating film it is preferable to use a solvent having different solubility in the first component and different solubility in the second component in the liquid crystal aligning agent.
  • the solvent used for contact with the coating film is a good solvent for the first component and a poorly or insoluble solvent for the second component.
  • the first component is polyorganosiloxane
  • the second component is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide
  • the solvent used for contact with the coating film is alcohol or ketone
  • the difference in tilt between the substrates caused by different contact modes of the solvent with the solvent between the substrates is that the surface of the coating film is washed by contact with the solvent, and the components of the surface of the coating film between the substrates. It is thought that this is caused by the difference.
  • the first component is polyorganosiloxane and the second component is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide
  • the polyorganosiloxane is By remaining in the film, it is considered that a pretilt angle is developed under the influence of polyorganosiloxane (that is, compound [A]).
  • the polyorganosiloxane is eluted by the contact treatment, and a pretilt angle derived from polyamic acid, polyamic acid ester or polyimide (that is, polymer [P]) is expressed. Conceivable. Thereby, it is estimated that the tilt difference between the first substrate and the second substrate is increased. However, this is just a guess, and does not limit the content of the present disclosure.
  • the “contact with the solvent under different conditions between the substrates” may be any as long as it can cause a tilt difference between the first substrate and the second substrate.
  • changing the composition of the solvent used for contact with the coating film between a pair of substrates, changing the contact time between the coating film and the solvent between a pair of substrates, changing the contact temperature between the coating film and the solvent, Or the method etc. which perform these combining 2 or more types are mentioned.
  • substrates is preferable.
  • the solvent compositions are different” means that at least one of the types and component ratios of the components constituting the solvent to be brought into contact with the coating film is different. Specifically, (i) a method in which the type of solvent to be brought into contact with the coating film is different between the first substrate and the second substrate, and (ii) a component ratio of a plurality of components contained in the solvent to be brought into contact with the coating film. Examples thereof include a method of making the first substrate different from the second substrate.
  • one of the first substrate and the second substrate is brought into contact with the solvent exemplified in the first method, and the other coating is applied to the liquid crystal.
  • the first component and the second component in the alignment agent are brought into contact with a poorly soluble or insoluble solvent.
  • the solvent exemplified in the first method is a poorly soluble or insoluble solvent (for example, water) with respect to the first component and the second component in the liquid crystal aligning agent. This is done by adjusting the density. From the viewpoint of increasing the tilt difference between the first substrate and the second substrate, among these, the method (i) is more preferable.
  • one of the first substrate and the second substrate is brought into contact with a solvent having different solubility for the first component and different solubility for the second component.
  • a sufficient tilt difference between the pair of substrates can be generated by a simple method with respect to the coating film formed using the liquid crystal aligning agent containing the first component and the second component.
  • the first component in the liquid crystal aligning agent is polyorganosiloxane and the second component is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide
  • the coating film of one of the two substrates is brought into contact with at least one selected from the group consisting of alcohol and ketone, and the coating film of the other substrate is made to the first component and the second component in the liquid crystal aligning agent.
  • the method of making it contact with poorly soluble or insoluble solvents (water etc.) etc. are mentioned.
  • the method for bringing the solvent into contact with the coating film on the substrate is not particularly limited, and examples thereof include spraying treatment, shower treatment, immersion treatment, liquid piling treatment, and the like. Preferably, it is spraying treatment, showering treatment or immersion treatment, and spraying treatment is particularly preferred.
  • the spray treatment is preferable in that a tilt difference can be sufficiently generated while minimizing the amount of the solvent brought into contact with the coating film. In contacting the coating film with the solvent, a part of the coating film may be brought into contact with the solvent, but it is preferable to bring the entire surface of the coating film into contact with the solvent.
  • a series of treatments for supplying and contacting the solvent to the coating film on the substrate are performed a plurality of times, or in the case of immersion treatment, the solvent is stirred. Alternatively, shaking is also effective.
  • the contact treatment between the coating film and the solvent may be performed at a timing after pre-baking and before post-baking, or may be performed at a timing after post-baking. From the viewpoint of increasing the cleaning efficiency due to contact with the solvent and causing a sufficient difference in pretilt angle between the substrates, it is preferable to carry out at a timing after pre-baking and before post-baking.
  • the temperature when contacting with the solvent is preferably 10 to 50 ° C., more preferably 20 to 30 ° C.
  • the contact time with the solvent is preferably 5 seconds to 30 minutes, more preferably 5 seconds to 15 minutes.
  • the amount of the solvent to be brought into contact with the coating film is appropriately selected in consideration of the contact method and the like. After the contact between the coating film and the solvent, the solvent may be completely removed from the coating film by further heating or the like. In the contact treatment, the contact time and the contact temperature with the solvent may be the same or different between the substrates.
  • Step C two substrates having a coating film formed using a liquid crystal aligning agent are prepared, and a liquid crystal cell is manufactured by disposing a liquid crystal between the two substrates disposed to face each other.
  • the liquid crystal cell may be constructed using the substrate after the coating film is brought into contact with the solvent as it is, or before or after the coating film is brought into contact with the solvent, rubbing treatment or light on the coating film surface as necessary.
  • a liquid crystal cell may be constructed after performing the alignment treatment.
  • a liquid crystal cell for example, two substrates are arranged to face each other with a gap so that the liquid crystal alignment films face each other, and the peripheral portions of the two substrates are bonded together using a sealant
  • a sealant examples thereof include a method in which a liquid crystal layer is formed by injecting and filling a liquid crystal in a cell gap surrounded by a sealing agent, and then the injection hole is sealed, a method using an ODF method, and the like.
  • the sealant for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • the liquid crystal include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable.
  • the liquid crystal cell may be subjected to light irradiation in a state where a voltage is applied between the conductive films of the pair of substrates.
  • a liquid crystal compound and a photopolymerizable compound are present in a liquid crystal layer, and a voltage is applied between conductive films of a pair of substrates after the liquid crystal cell is constructed. In this state, the liquid crystal cell is irradiated with light.
  • the photopolymerizable compound for example, a compound having a functional group capable of radical polymerization such as a (meth) acryloyl group and a vinyl group is used.
  • the blending ratio of the photopolymerizable compound is preferably 0.1 to 0.5% by mass with respect to the total amount of the liquid crystal compound to be used.
  • the liquid crystal compound nematic liquid crystal having negative dielectric anisotropy can be preferably used.
  • the liquid crystalline compound preferably contains an alkenyl liquid crystal in that the response speed of the PSA liquid crystal element can be further increased.
  • the alkenyl-based liquid crystal conventionally known ones can be used, and among them, those including a monofunctional alkenyl-based liquid crystal having one of an alkenyl group and a fluoroalkenyl group are preferable.
  • Specific examples of the alkenyl liquid crystal include compounds represented by the following formulas (L1-1) to (L1-9).
  • the blending ratio of the alkenyl-based liquid crystal is preferably 0.1 to 10% by mass with respect to the total amount of the liquid crystal compound to be used.
  • the light irradiated to the liquid crystal cell for example, ultraviolet light or visible light including light having a wavelength of 150 to 800 nm can be used. Of these, ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • a light source for irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, an excimer laser, or the like is used.
  • the amount of light irradiation is preferably 1,000 to 100,000 J / m 2 and more preferably 1,000 to 50,000 J / m 2 .
  • a liquid crystal alignment film contains a compound having a polymerizable group (low molecule or polymer), and after the liquid crystal cell is constructed, the liquid crystal is applied in a state where a voltage is applied between the conductive films of the pair of substrates.
  • the liquid crystal cell When applied to a curved display, it can be manufactured by bending the liquid crystal cell obtained above.
  • the liquid crystal cell when the liquid crystal cell is curved, there may occur a region where a pretilt angle shift occurs between one substrate and the other of the pair of substrates.
  • the liquid crystal molecules 15 between the one substrate 11 and the other substrate 12 are aligned by the liquid crystal alignment films 13 and 14. The liquid crystal alignment is not disturbed by the control.
  • the liquid crystal cell 10 of FIG. 1A is curved, as shown in FIG.
  • the pretilt angle of the liquid crystal alignment film 13 formed on one substrate 11 and the other substrate 12 are A region ⁇ in which a deviation from the pretilt angle of the formed liquid crystal alignment film 14 may occur. In this case, there is a concern that the image quality may be deteriorated.
  • the liquid crystal cell 10 before being bent has a tilt angle on one of the pair of substrates 11 and 12 (substrate 12 in FIG. 1C).
  • the liquid crystal cell 10 is curved, it is possible to prevent the pretilt angle from shifting between the substrates.
  • the manufacturing method of the present disclosure it is possible to generate a sufficient tilt difference between the substrates, and thus it is possible to sufficiently ensure image quality even when applied to a curved display.
  • the same liquid crystal aligning agent may be used, and the above effect can be achieved by a simple method.
  • a polarizing plate is bonded to the outer surface of the liquid crystal cell as necessary to obtain a liquid crystal element.
  • the polarizing plate include a polarizing plate comprising a polarizing film called an “H film” in which iodine is absorbed while stretching and orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself.
  • the liquid crystal element in the present disclosure can be effectively applied to various uses, such as a watch, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, and various types. It can be used for various display devices such as monitors, liquid crystal televisions, information displays, and light control films. Moreover, the liquid crystal element formed using the liquid crystal aligning agent of this indication can also be applied to retardation film.
  • the weight average molecular weight Mw of the polymer and the imidization ratio of the polyimide were measured by the following methods.
  • Weight average molecular weight Mw The weight average molecular weight Mw is a polystyrene equivalent value measured by gel permeation chromatography under the following conditions.
  • Imidation ratio [%] (1-A 1 / A 2 ⁇ ⁇ ) ⁇ 100 (1)
  • a 1 is a peak area derived from protons of NH groups appearing near a chemical shift of 10 ppm
  • a 2 is a peak area derived from other protons
  • is a precursor of a polymer (polyamic acid). The number ratio of other protons to one proton of NH group in)
  • NMP was added to the obtained polyamic acid solution to make a polyamic acid concentration of 7% by mass, and pyridine and acetic anhydride were added in an amount of 0.1-fold each with respect to the total amount of tetracarboxylic dianhydride used. Then, dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new NMP to obtain a solution containing 15% by mass of a polyimide having an imidization ratio of about 60% (this is referred to as polymer (PI-1)). Obtained.
  • PI-1 polymer
  • polymer (BP-1) a methacrylic polymer
  • polymer (B-1) a binder resin (referred to as polymer (B-1)) solution.
  • A-1 Compound represented by the above formula (A-1)
  • A-2 Irgacure 369 (manufactured by BASF, alkylphenone photopolymerization initiator)
  • C-1 N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane
  • Example 1 Manufacture of liquid crystal display element
  • the liquid crystal aligning agent (AL-1) prepared above is applied on each electrode surface of two glass substrates each having a conductive film made of an ITO electrode.
  • the solvent was removed by heating (prebaking) for 2 minutes on a hot plate at 80 ° C.
  • substrate A One of the two substrates obtained (referred to as “substrate A”) was pre-baked and then heated (post-baked) on a hot plate at 150 ° C. for 10 minutes to give an average film thickness of 0.06 ⁇ m.
  • a film was formed.
  • spray cleaning is performed for 90 seconds by discharging isopropanol as a cleaning liquid at a pressure of 1 kgf / cm 2 (nozzle diameter 1 mm) after pre-baking to the other substrate (hereinafter referred to as “substrate B”). It was.
  • the spraying process using the cleaning liquid corresponds to the “contact process”.
  • post-baking post-baking
  • an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 ⁇ m is provided on each outer edge of the pair of substrates having the liquid crystal alignment film. After coating, the adhesive was cured by overlapping and pressing so that the liquid crystal alignment film faces each other. Next, the liquid crystal composition LC1 prepared above was filled between the pair of substrates from the liquid crystal inlet, and then the liquid crystal inlet was sealed with an acrylic photo-curing adhesive to produce a liquid crystal cell.
  • an alternating current of 10 Hz is applied between the conductive films of the liquid crystal cell, and the liquid crystal is driven, and an ultraviolet irradiation device using a metal halide lamp as the light source is used, and the irradiation amount is 100,000 J / m 2 . And irradiated with ultraviolet rays. In addition, this irradiation amount is the value measured using the light meter measured on the basis of wavelength 365nm.
  • the pretilt angles of the substrate A and the substrate B were measured for the liquid crystal display element obtained in (1) above.
  • the pretilt angle is measured using a crystal using He—Ne laser light in accordance with the method described in the non-patent document “TJ Scheffer et. Al. J. Appl. Phys. Vo. 19, p. 2013 (1980)”.
  • the value of the tilt angle of the liquid crystal molecules from the substrate surface was measured by the rotation method, and this was defined as the pretilt angle [°].
  • the pretilt angle of the substrate A (without cleaning) was 89 °
  • the pretilt angle of the substrate B (with cleaning) was 83 °.
  • Example 2 A PSA mode liquid crystal display device was produced in the same manner as in Example 1 except that the liquid crystal aligning agent used was changed as shown in Table 2 below, and the cleaning liquid used was changed as shown in Table 2 below. The corner was measured.
  • Example 10 after the coating film was washed with the washing liquid (D-4), it was washed in ultrapure water and then post-baked. The measurement results are shown in Tables 3 and 4 below.
  • Example 4 and 5 A PSA type liquid crystal display device was produced in the same manner as in Example 1 except that the pre-bake conditions (PB conditions) were as shown in Table 2 below, and the pretilt angle was measured. The results are shown in Table 3 below.
  • Example 15 Substrate B was cleaned with isopropyl alcohol (corresponding to the contact process) after post-baking instead of after pre-baking and before post-baking, air-dried after cleaning with isopropyl alcohol, and then further heated at 100 ° C. for 10 minutes.
  • a PSA mode liquid crystal display device was manufactured in the same manner as in Example 1, and the pretilt angle was measured. The results are shown in Table 4 below.
  • Example 16 A PSA mode liquid crystal display device was manufactured in the same manner as in Example 1 except that the substrate was immersed in the cleaning liquid for 1 minute instead of spraying as a cleaning method, and the pretilt angle was measured. The results are shown in Table 4 below.
  • Example 19 (1) Manufacture of liquid crystal display element
  • application of liquid crystal aligning agent (AL-1), pre-baking and post-baking were performed in this order to obtain a substrate A having a coating film
  • liquid crystal alignment Coating of the agent (AL-1), pre-baking, washing of the coating film with IPA (contact process), and post-baking were performed in this order to obtain a substrate B having a coating film.
  • the substrate A is used as the counter substrate
  • the substrate B is used as the TFT substrate
  • the outer periphery of the surface having one liquid crystal alignment film of the pair of substrates are used as the pair of substrates.
  • an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 ⁇ m was applied by screen printing, the liquid crystal alignment film surfaces of the pair of substrates were opposed, and the adhesive was thermally cured at 150 ° C. for 1 hour.
  • a negative liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) was filled into the gap between the substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment at the time of liquid crystal injection, this was heated at 130 ° C. and then gradually cooled to room temperature.
  • an alternating current of 10 Hz is applied between the pair of electrodes, and the liquid crystal is driven, and an ultraviolet irradiation device using a metal halide lamp as a light source is used to achieve an irradiation dose of 100,000 J / m 2. And irradiated with ultraviolet rays. In addition, this irradiation amount is the value measured using the light meter measured on the basis of wavelength 365nm.
  • the pretilt angle was measured in the same manner as in Example 1. As a result, the tilt angle of the substrate A that was not subjected to the cleaning treatment was 89 °. On the other hand, the tilt angle of the substrate B subjected to the cleaning treatment was 86 °, and it was confirmed that a sufficient tilt difference was generated (Table 4).
  • a PSA mode liquid crystal is obtained by performing cleaning under the same PB conditions and cleaning manner as in cleaning the substrate B in Example 1, except that both the substrate A and the substrate B are cleaned with the cleaning liquid described in Table 2 below.
  • a display element was manufactured and the pretilt angle was measured.
  • the substrate B was post-baked after cleaning the coating film with a cleaning liquid and then cleaning in ultrapure water. The results are shown in Table 5 below.
  • a PSA mode liquid crystal is obtained by performing cleaning under the same PB conditions and cleaning manner as in cleaning the substrate B in Example 4 except that both the substrate A and the substrate B are cleaned with the cleaning liquid described in Table 2 below.
  • Example 5 When the display element was manufactured and the pretilt angle was measured, a tilt difference of 3 ° was generated between the substrate A and the substrate B (Table 5).
  • a PSA mode liquid crystal display device is manufactured by the same operation as in Example 1 except that both the substrate A and the substrate B are cleaned with isopropyl alcohol under the same PB conditions and cleaning mode as when the substrate B was cleaned in Example 1.
  • the pretilt angle was measured, there was no difference in the pretilt angle between the substrates (Table 5).

Abstract

In the present invention, a liquid crystal element is manufactured by a method including a film formation step for applying a liquid crystal alignment agent on each of a first substrate and a second substrate and forming a coating film, a contact step for bringing the coating film formed on only one of the first substrate and the second substrate into contact with a solvent or bringing the coating film formed on each of the first substrate and the second substrate into contact with a solvent under different conditions for each substrate, and a step for arranging the first substrate and the second substrate so that the coating films face each other after the contact step and constructing a liquid crystal cell.

Description

液晶素子の製造方法Manufacturing method of liquid crystal element
 本開示は、液晶素子の製造方法に関する。 The present disclosure relates to a method for manufacturing a liquid crystal element.
 液晶素子としては、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型などに代表される、正の誘電異方性を有するネマチック液晶を用いる水平配向モードの液晶素子のほか、負の誘電異方性を有するネマチック液晶を用いる垂直(ホメオトロピック)配向モードのVA(Vertical Alignment)型液晶素子など、各種液晶素子が知られている。これら液晶素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。この液晶配向膜を構成する材料としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミド、ポリエステル、ポリオルガノシロキサンなどが知られており、特にポリアミック酸又はポリイミドからなる液晶配向膜が、耐熱性、機械的強度、液晶分子との親和性に優れることなどから、古くから好ましく使用されている(特許文献1~3参照)。 As the liquid crystal element, in addition to a horizontal alignment mode liquid crystal element using a nematic liquid crystal having a positive dielectric anisotropy, such as a TN (Twisted Nematic) type and an STN (Super Twisted Nematic) type, a negative dielectric different Various liquid crystal elements are known, such as a VA (Vertical Alignment) type liquid crystal element in a vertical (homeotropic) alignment mode using a nematic liquid crystal having a directivity. These liquid crystal elements include a liquid crystal alignment film having a function of aligning liquid crystal molecules in a certain direction. As the material constituting the liquid crystal alignment film, polyamic acid, polyimide, polyamic acid ester, polyamide, polyester, polyorganosiloxane, and the like are known, and in particular, the liquid crystal alignment film made of polyamic acid or polyimide is heat resistant, mechanical It has been used preferably for a long time because of its excellent mechanical strength and affinity with liquid crystal molecules (see Patent Documents 1 to 3).
 また、配向処理方式としては、PSA(Polymer Sustained Alignment)方式が知られている。PSA方式は、一対の基板の間隙に設けられた液晶層に重合性化合物を含有させ、基板間に電圧を印加した状態で紫外線を照射して重合性化合物を重合することにより、プレチルト角特性を発現させて液晶の配向方向を制御しようとする技術である。この技術によると、視野角の拡大及び液晶分子応答の高速化を図ることができ、MVA型パネルにおいて不可避であった透過率及びコントラストの不足の問題も解消することが可能である。PSA方式において、近年では、液晶配向膜中に重合性化合物を含有させ、基板間に電圧を印加した状態で紫外線を照射することにより液晶の配向方向を制御することも行われている。 Further, as an alignment treatment method, a PSA (Polymer Sustained Alignment) method is known. In the PSA method, a pre-tilt angle characteristic is obtained by allowing a liquid crystal layer provided in a gap between a pair of substrates to contain a polymerizable compound and irradiating ultraviolet rays with a voltage applied between the substrates to polymerize the polymerizable compound. This is a technique that attempts to control the orientation direction of the liquid crystal. According to this technique, it is possible to increase the viewing angle and speed up the liquid crystal molecule response, and it is possible to solve the problem of lack of transmittance and contrast that is inevitable in the MVA panel. In the PSA system, in recent years, a polymerizable compound is contained in a liquid crystal alignment film, and the alignment direction of the liquid crystal is controlled by irradiating ultraviolet rays with a voltage applied between the substrates.
 また近年では、液晶パネルの用途の拡大に伴い、表示面が湾曲した曲面ディスプレイのような複雑な形状の液晶パネルの開発が進められている。曲面ディスプレイは一般に、一対の基板を、基板間に液晶層が配置された状態となるように貼り合わせて液晶セルを作成し、その後、液晶セルを湾曲させることによって製造される。しかしながら、曲面ディスプレイを製造するために液晶セルを湾曲させることにより、一対の基板における一方の基板と他方の基板との間でプレチルト角のずれが生じる領域が発生することがある。この場合、画質の低下を招くことが懸念される。 Also, in recent years, with the expansion of the use of liquid crystal panels, development of liquid crystal panels with complicated shapes such as curved displays with curved display surfaces has been promoted. A curved display is generally manufactured by bonding a pair of substrates so that a liquid crystal layer is disposed between the substrates to form a liquid crystal cell, and then bending the liquid crystal cell. However, by bending the liquid crystal cell to manufacture a curved display, a region in which a pretilt angle shifts between one substrate and the other substrate in a pair of substrates may occur. In this case, there is a concern that the image quality is degraded.
 こうした点を考慮し、一方の基板の液晶配向膜と他方の基板の液晶配向膜とでプレチルト角を異ならせ、これら基板を貼り合わせて構築した液晶セルを用いて曲面ディスプレイを製造することで、液晶セルを湾曲させたときの基板間でのプレチルト角のずれを抑制することが提案されている(特許文献4参照)。この特許文献4には、プレチルト角を基板間で異ならせる方法として、基板上に形成した液晶配向膜のうち、一方の基板の液晶配向膜についてのみ紫外線照射を照射する方法、及び膜形成時のベーク温度を基板間で異ならせる方法が開示されている。 Taking these points into consideration, by producing a curved display using a liquid crystal cell constructed by laminating these substrates by differentiating the pretilt angle between the liquid crystal alignment film of one substrate and the liquid crystal alignment film of the other substrate, It has been proposed to suppress the shift of the pretilt angle between the substrates when the liquid crystal cell is bent (see Patent Document 4). In this patent document 4, as a method for making the pretilt angle different between substrates, among the liquid crystal alignment films formed on the substrate, a method of irradiating only the liquid crystal alignment film of one substrate with ultraviolet irradiation, and at the time of film formation A method of varying the bake temperature between substrates is disclosed.
特開平4-153622号公報JP-A-4-153622 特開昭56-91277号公報JP 56-91277 A 特開平11-258605号公報Japanese Patent Laid-Open No. 11-258605 特開2005-26074号公報Japanese Patent Laid-Open No. 2005-26074
 特許文献4のように、紫外線照射を照射する方法や膜形成時のベーク温度を異ならせる方法では、一方の基板と他方の基板との間に十分なプレチルト角の差を生じさせることが困難であり、そのため、画質を十分に確保することが難しいという問題がある。 As in Patent Document 4, it is difficult to generate a sufficient difference in pretilt angle between one substrate and the other substrate by the method of irradiating ultraviolet rays or the method of varying the baking temperature during film formation. Therefore, there is a problem that it is difficult to ensure sufficient image quality.
 本開示は上記事情に鑑みなされたものであり、その一つの目的は、一対の基板における一方の基板と他方の基板との間でプレチルト角の違いを十分に生じさせることができる液晶素子の製造方法を提供することにある。 The present disclosure has been made in view of the above circumstances, and one object of the present disclosure is to manufacture a liquid crystal element capable of sufficiently causing a difference in pretilt angle between one substrate and the other substrate in a pair of substrates. It is to provide a method.
 本開示によれば、上記課題を解決するべく、以下の手段が提供される。
[1] 第1基板及び第2基板の各基板上に液晶配向剤を塗布して塗膜を形成する膜形成工程と、前記第1基板及び前記第2基板のうち一方の基板についてのみ当該基板上に形成された塗膜を溶剤と接触させるか、又は前記第1基板及び前記第2基板のそれぞれの基板上に形成された塗膜を、基板間で異なる条件で溶剤と接触させる接触工程と、前記接触工程の後に、前記第1基板と前記第2基板とを前記塗膜が相対するように対向配置して液晶セルを構築する工程と、を含む液晶素子の製造方法。
According to this indication, in order to solve the above-mentioned subject, the following means are provided.
[1] A film forming step of forming a coating film by applying a liquid crystal aligning agent on each of the first substrate and the second substrate, and only one of the first substrate and the second substrate. A contact step of contacting the coating film formed thereon with a solvent, or contacting the coating film formed on each of the first substrate and the second substrate with a solvent under different conditions between the substrates; and And a step of constructing a liquid crystal cell by arranging the first substrate and the second substrate to face each other so that the coating film faces each other after the contacting step.
 本開示の製造方法によれば、一対の基板における一方の基板と他方の基板との間でプレチルト角の違いを十分に生じさせることができる。また、基板上に塗膜を形成した後の溶剤との接触処理の相違によって、基板間にプレチルト角の違いを生じさせるため、同一の液晶配向剤を用いて液晶配向膜を形成した場合にも、基板間での十分なプレチルト角の違いを生じさせることが可能であり、生産性も良好である。 According to the manufacturing method of the present disclosure, a difference in pretilt angle between one substrate and the other substrate in a pair of substrates can be sufficiently generated. In addition, because of the difference in the pretilt angle between the substrates due to the difference in the contact treatment with the solvent after forming the coating film on the substrate, even when the liquid crystal alignment film is formed using the same liquid crystal alignment agent It is possible to cause a sufficient difference in pretilt angle between the substrates, and the productivity is also good.
曲面ディスプレイで生じる配向ずれを説明するための模式図。(a)は湾曲させる前の液晶セル、(b)は湾曲させた後の液晶セル、(c)は本開示の一態様の液晶セルを表す。The schematic diagram for demonstrating the orientation shift which arises in a curved-surface display. (A) is a liquid crystal cell before being bent, (b) is a liquid crystal cell after being bent, and (c) is a liquid crystal cell of one embodiment of the present disclosure.
 本開示の液晶素子の製造方法は、以下の工程A、工程B及び工程Cを含む。
工程A;第1基板及び第2基板からなる一対の基板の各表面上に液晶配向剤を塗布して塗膜を形成する工程。
工程B;工程Aで得られた一対の基板のうち一方の基板についてのみ当該基板上に形成された塗膜を溶剤と接触させるか、又は第1基板及び第2基板のそれぞれの基板上に形成された塗膜を、一対の基板間で異なる条件で溶剤と接触させる工程。
工程C;工程Bの後に、第1基板と第2基板とを塗膜が相対するように対向配置して液晶セルを構築する工程。
 以下、本開示の液晶素子の製造方法について詳しく説明する。
The method for manufacturing a liquid crystal element of the present disclosure includes the following step A, step B, and step C.
Step A: a step of forming a coating film by applying a liquid crystal aligning agent on each surface of a pair of substrates including a first substrate and a second substrate.
Step B: The coating film formed on only one of the pair of substrates obtained in Step A is brought into contact with a solvent or formed on each of the first substrate and the second substrate. A step of bringing the coated film into contact with a solvent under different conditions between a pair of substrates.
Step C: After Step B, a step of constructing a liquid crystal cell by arranging the first substrate and the second substrate to face each other so that the coating films face each other.
Hereinafter, the manufacturing method of the liquid crystal element of the present disclosure will be described in detail.
≪工程A≫
 工程Aでは、第1基板及び第2基板からなる一対の基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより、基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板2枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた電極が設けられている基板と、電極が設けられていない対向基板とを用いる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法により行う。
≪Process A≫
In step A, a liquid crystal aligning agent is applied on a pair of substrates including a first substrate and a second substrate, and a coating film is formed on the substrate, preferably by heating the application surface. As the substrate, for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, poly (cycloaliphatic olefin) can be used. As the transparent conductive film provided on one surface of the substrate, a NESA film (registered trademark of US PPG) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc. Can be used. In the case of manufacturing a TN type, STN type, or VA type liquid crystal element, two substrates provided with a patterned transparent conductive film are used. On the other hand, in the case of manufacturing an IPS type or FFS type liquid crystal element, a substrate provided with an electrode patterned in a comb shape and a counter substrate provided with no electrode are used. Application of the liquid crystal aligning agent to the substrate is preferably performed on the electrode forming surface by an offset printing method, a spin coating method, a roll coater method or an ink jet printing method.
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、予備加熱(プレベーク)を実施することが好ましい。この場合、プレベークによって基板上に塗膜が形成される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。基板上への塗布後は、好ましくはプレベークの実施後に、溶剤を完全に除去することを目的として焼成(ポストベーク)が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。ポストベーク後の膜厚は、好ましくは0.001~1μmである。 After applying the liquid crystal aligning agent, preheating (pre-baking) is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent. In this case, a coating film is formed on the substrate by pre-baking. The pre-bake temperature is preferably 30 to 200 ° C., and the pre-bake time is preferably 0.25 to 10 minutes. After application on the substrate, preferably, after pre-baking, baking (post-baking) is performed for the purpose of completely removing the solvent. The firing temperature (post-bake temperature) at this time is preferably 80 to 300 ° C., and the post-bake time is preferably 5 to 200 minutes. The film thickness after post-baking is preferably 0.001 to 1 μm.
<液晶配向剤>
 次に、液晶配向剤について詳しく説明する。本開示の製造方法で用いる液晶配向剤は、重合体成分を含有するとともに、必要に応じてその他の成分を含有する。
<Liquid crystal aligning agent>
Next, the liquid crystal aligning agent will be described in detail. The liquid crystal aligning agent used with the manufacturing method of this indication contains a polymer component, and also contains another component as needed.
 液晶配向剤中の重合体成分について、重合体の主骨格は特に限定されず、例えばポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミド、ポリオルガノシロキサン、ポリエステル、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等を主骨格とする重合体が挙げられる。なお、本明細書において「(メタ)アクリレート」は、アクリレート及びメタクリレートを含む意味である。これらのうち、液晶との親和性や機械的強度、電圧保持率、耐熱性等の観点から、ポリアミック酸、ポリアミック酸、ポリアミック酸エステル、ポリアミド、ポリオルガノシロキサン及び(メタ)アクリレートよりなる群から選ばれる少なくとも一種であることが好ましく、ポリアミック酸、ポリアミック酸エステル、ポリイミド、及びポリオルガノシロキサンよりなる群から選ばれる少なくとも1種であることがより好ましい。なお、重合体成分としては、1種を単独で使用していてもよく、2種以上を組み合わせて使用してもよい。 For the polymer component in the liquid crystal aligning agent, the main skeleton of the polymer is not particularly limited. For example, polyamic acid, polyimide, polyamic acid ester, polyamide, polyorganosiloxane, polyester, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene) -Phenylmaleimide) derivatives, poly (meth) acrylates and the like as main skeletons. In the present specification, “(meth) acrylate” means to include acrylate and methacrylate. Among these, from the viewpoint of affinity with liquid crystal, mechanical strength, voltage holding ratio, heat resistance, etc., selected from the group consisting of polyamic acid, polyamic acid, polyamic acid ester, polyamide, polyorganosiloxane, and (meth) acrylate And at least one selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, and polyorganosiloxane is more preferable. In addition, as a polymer component, 1 type may be used independently and may be used in combination of 2 or more type.
 その他の成分としては、本開示の効果を妨げない限り特に限定されないが、例えば、分子内に少なくとも一つのエポキシ基を有する化合物、官能性シラン化合物、酸化防止剤、金属キレート化合物、架橋剤、バインダー樹脂、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤、重合性化合物等が挙げられる。なお、その他の成分の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。 Other components are not particularly limited as long as the effects of the present disclosure are not hindered. For example, a compound having at least one epoxy group in the molecule, a functional silane compound, an antioxidant, a metal chelate compound, a crosslinking agent, and a binder Examples thereof include resins, curing accelerators, surfactants, fillers, dispersants, photosensitizers, and polymerizable compounds. In addition, the mixture ratio of another component can be suitably selected according to each compound in the range which does not impair the effect of this indication.
 本開示の製造方法における液晶配向剤は、一成分系であってもよいが、基板間で同一の液晶配向剤を用いた場合にも、下記の接触工程によって基板間に十分なプレチルト角の違いを生じさせることができる点で、第1成分と、当該第1成分とは異なる第2成分とを含む複数成分系であることが好ましい。特に好ましくは、液晶配向剤が、第1成分として、架橋性基、光配向性基及びラジカル発生基よりなる群から選ばれる少なくとも一種を有する化合物[A]を含み、第2成分として、重合体[P](ただし、化合物[A]に該当するものを除く。)を含むものである。 The liquid crystal aligning agent in the production method of the present disclosure may be a one-component system, but even when the same liquid crystal aligning agent is used between the substrates, a sufficient difference in the pretilt angle between the substrates by the following contact process It is preferable that it is a multiple component system containing the 1st component and the 2nd component different from the said 1st component at the point which can produce. Particularly preferably, the liquid crystal aligning agent contains, as the first component, a compound [A] having at least one selected from the group consisting of a crosslinkable group, a photoalignable group and a radical generating group, and a polymer as the second component [P] (excluding those corresponding to the compound [A]).
(化合物[A])
 化合物[A]は、架橋性基、光配向性基及びラジカル発生基よりなる群から選ばれる少なくとも一種を有する。
 架橋性基としては、光又は熱によって同一又は異なる分子間に共有結合を形成可能な基であることが好ましく、具体例としては、例えば、(メタ)アクリル酸又はその誘導体を基本骨格とする(メタ)アクリル含有基、ビニル基を有する基(アルケニル基、ビニルフェニル基など)、エチニル基、エポキシ基(オキシラニル基、オキセタニル基)等が挙げられる。
(Compound [A])
The compound [A] has at least one selected from the group consisting of a crosslinkable group, a photoalignable group, and a radical generating group.
The crosslinkable group is preferably a group capable of forming a covalent bond between the same or different molecules by light or heat. As a specific example, for example, (meth) acrylic acid or a derivative thereof is used as a basic skeleton ( Examples include meth) acryl-containing groups, groups having vinyl groups (alkenyl groups, vinylphenyl groups, etc.), ethynyl groups, epoxy groups (oxiranyl groups, oxetanyl groups), and the like.
 光配向性基は、光照射による光異性化反応、光二量化反応又は光分解反応によって膜に異方性を付与する官能基である。光配向性基の具体例としては、例えばアゾベンゼン又はその誘導体を基本骨格として含むアゾベンゼン含有基、桂皮酸又はその誘導体(桂皮酸構造)を基本骨格として含む桂皮酸構造含有基、カルコン又はその誘導体を基本骨格として含むカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含むベンゾフェノン含有基、ベンゾエート又はその誘導体を基本骨格として含むベンゾエート含有基、クマリン又はその誘導体を基本骨格として含むクマリン含有基、シクロブタン又はその誘導体を基本骨格として含むポリイミド構造等が挙げられる。化合物[A]が有する光配向性基としては、光に対する感度が高い点で、中でも、桂皮酸構造含有基が好ましい。 The photo-alignment group is a functional group that imparts anisotropy to the film by a photoisomerization reaction, a photodimerization reaction, or a photolysis reaction by light irradiation. Specific examples of the photo-alignment group include an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure-containing group containing a cinnamic acid or a derivative thereof (cinnamic acid structure) as a basic skeleton, a chalcone or a derivative thereof. Chalcone-containing group including basic skeleton, benzophenone-containing group including benzophenone or a derivative thereof as basic skeleton, benzoate-containing group including benzoate or a derivative thereof as basic skeleton, coumarin-containing group including coumarin or a derivative thereof as a basic skeleton, cyclobutane or a derivative thereof Examples include a polyimide structure containing a derivative as a basic skeleton. As the photo-alignment group possessed by the compound [A], a cinnamic acid structure-containing group is particularly preferable in terms of high sensitivity to light.
 ラジカル発生基は、光又は熱によってラジカルを発生する官能基であれば特に限定されない。ラジカル発生基としては、公知のラジカル発生剤に由来する官能基を用いることができる。当該ラジカル発生剤としては、例えばアルキルフェノン系化合物、ベンゾイン系化合物、ケタール系化合物、アセトフェノン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、及びアントラキノン系化合物等のラジカル発生基含有化合物が挙げられる。 The radical generating group is not particularly limited as long as it is a functional group that generates radicals by light or heat. As the radical generating group, a functional group derived from a known radical generating agent can be used. Examples of the radical generator include radical-generating group-containing compounds such as alkylphenone compounds, benzoin compounds, ketal compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, and anthraquinone compounds.
 化合物[A]は、第1基板と第2基板との間のプレチルト角の違い(チルト差)をより十分にできる点で、これらの中でも、架橋性基及び光配向性基の少なくともいずれかを有していることが好ましく、架橋性基及び光配向性基の少なくともいずれかを合計2個以上有していることがより好ましい。中でも、(メタ)アクリロイル基又は桂皮酸構造含有基を有していることが特に好ましい。化合物[A]が架橋性基及び光配向性基の少なくともいずれかを有することにより、液晶配向膜中に残存する架橋性基又は光配向性基と液晶分子とが相互作用し、プレチルト角の安定性が高まることに起因するものと考えられる。 Compound [A] is capable of more sufficiently providing a difference in pretilt angle (tilt difference) between the first substrate and the second substrate. Among these, at least one of a crosslinkable group and a photoalignable group is present. It preferably has, and more preferably has a total of at least two of at least one of a crosslinkable group and a photoalignable group. Among them, it is particularly preferable to have a (meth) acryloyl group or a cinnamic acid structure-containing group. When compound [A] has at least one of a crosslinkable group and a photoalignable group, the crosslinkable group or photoalignable group remaining in the liquid crystal alignment film interacts with the liquid crystal molecules, and the pretilt angle is stabilized. This is thought to be due to the increase in performance.
 化合物[A]は、低分子化合物(例えば分子量1,000未満の化合物)であってもよく、モノマーを重合してなる重合体であってもよい。第1基板と第2基板との間でチルト差を十分に生じさせるとともに、液晶層への不純物の流入による表示品位の低下を抑制できる点で、化合物[A]は、架橋性基、光配向性基及びラジカル発生基よりなる群から選ばれる少なくとも一種を有する重合体であることが好ましい。化合物[A]が重合体である場合、その主骨格は特に限定されないが、本開示の効果が十分に得られる点で、(メタ)アクリレート及びポリオルガノシロキサンの少なくともいずれかであることが好ましく、中でもポリオルガノシロキサンであることが特に好ましい。 The compound [A] may be a low molecular compound (for example, a compound having a molecular weight of less than 1,000) or a polymer obtained by polymerizing monomers. The compound [A] is a crosslinkable group, a photo-alignment, in that a sufficient tilt difference is generated between the first substrate and the second substrate, and a decrease in display quality due to the inflow of impurities into the liquid crystal layer can be suppressed. A polymer having at least one selected from the group consisting of a functional group and a radical generating group is preferred. When the compound [A] is a polymer, its main skeleton is not particularly limited, but is preferably at least one of (meth) acrylate and polyorganosiloxane from the viewpoint that the effects of the present disclosure are sufficiently obtained, Of these, polyorganosiloxane is particularly preferred.
 化合物[A]としてのポリオルガノシロキサンは、公知の方法に従って合成することができる。例えば、エポキシ基を有する加水分解性のシラン化合物(以下、「エポキシ基含有シラン化合物」ともいう。)を含む単量体を加水分解・縮合してエポキシ基含有ポリオルガノシロキサンを合成し、次いで、得られたエポキシ基含有ポリオルガノシロキサンと、架橋性基、光配向性基及びラジカル発生基よりなる群から選ばれる少なくとも一種を有するカルボン酸と、を反応させる。こうした反応によれば、簡便であり、しかも官能基の導入率を調整しやすく好適である。 The polyorganosiloxane as the compound [A] can be synthesized according to a known method. For example, a monomer containing a hydrolyzable silane compound having an epoxy group (hereinafter also referred to as “epoxy group-containing silane compound”) is hydrolyzed and condensed to synthesize an epoxy group-containing polyorganosiloxane, The obtained epoxy group-containing polyorganosiloxane is reacted with a carboxylic acid having at least one selected from the group consisting of a crosslinkable group, a photoalignable group and a radical generating group. According to such a reaction, it is convenient, and it is easy to adjust the introduction rate of the functional group, which is preferable.
 エポキシ基含有シラン化合物としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the epoxy group-containing silane compound include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl. Examples include triethoxysilane. These may be used individually by 1 type and may be used in combination of 2 or more type.
 エポキシ基含有ポリオルガノシロキサンの合成に際しては、エポキシ基含有シラン化合物とともにその他のシラン化合物を用いてもよい。当該その他のシラン化合物としては、例えばテトラメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジエトキシシラン等のアルコキシシラン化合物;
3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(3-シクロヘキシルアミノ)プロピルトリメトキシシラン等の窒素・硫黄含有アルコキシシラン化合物;3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシオクチルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン等の不飽和結合含有アルコキシシラン化合物;トリメトキシシリルプロピルコハク酸無水物などを挙げることができる。「(メタ)アクリロキシ」は、「アクリロキシ」及び「メタクリロキシ」を含む意味である。その他のシラン化合物の使用割合は、重合に使用するシラン化合物の合計に対して、70モル%以下とすることが好ましく、50モル%以下とすることがより好ましい。
In the synthesis of the epoxy group-containing polyorganosiloxane, other silane compounds may be used together with the epoxy group-containing silane compound. Examples of the other silane compounds include alkoxysilane compounds such as tetramethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane;
Nitrogen / sulfur-containing alkoxysilane compounds such as 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (3-cyclohexylamino) propyltrimethoxysilane; 3- (meth) acryl Roxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxyoctyltrimethoxysilane, vinyltriethoxysilane, p- Examples include unsaturated bond-containing alkoxysilane compounds such as styryltrimethoxysilane; trimethoxysilylpropyl succinic anhydride and the like. “(Meth) acryloxy” means “acryloxy” and “methacryloxy”. The proportion of other silane compounds used is preferably 70 mol% or less, more preferably 50 mol% or less, based on the total amount of silane compounds used for polymerization.
 上記加水分解・縮合反応は、上記の如きシラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行う。反応に際し、水の使用割合は、シラン化合物(合計量)1モルに対して、好ましくは1~30モルである。使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物などが挙げられる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なり、適宜に設定されるべきであるが、例えばシラン化合物の合計量に対して0.01~3倍モルである。使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコール等が挙げられ、これらのうち、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100質量部に対して、好ましくは10~10,000質量部である。 The hydrolysis / condensation reaction is carried out by reacting one or more of the above silane compounds with water, preferably in the presence of a suitable catalyst and organic solvent. In the reaction, the amount of water used is preferably 1 to 30 mol with respect to 1 mol of the silane compound (total amount). Examples of the catalyst to be used include acids, alkali metal compounds, organic bases, titanium compounds, zirconium compounds and the like. The amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, and the like, and should be set appropriately. For example, the amount is 0.01 to 3 times the total amount of the silane compound. Examples of the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols, and the like, and among these, it is preferable to use a water-insoluble or slightly water-soluble organic solvent. The organic solvent is used in an amount of preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compounds used in the reaction.
 上記の加水分解・縮合反応は、例えば油浴などにより加熱して実施することが好ましい。その際、加熱温度は130℃以下とすることが好ましく、加熱時間は0.5~12時間とすることが好ましい。反応終了後において、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、目的とするポリオルガノシロキサンが得られる。なお、ポリオルガノシロキサンの合成方法は上記の加水分解・縮合反応に限らず、例えば加水分解性シラン化合物をシュウ酸及びアルコールの存在下で反応させる方法などにより行ってもよい。 The above hydrolysis / condensation reaction is preferably carried out by heating with, for example, an oil bath. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain the desired polyorganosiloxane. The method for synthesizing the polyorganosiloxane is not limited to the hydrolysis / condensation reaction described above, and may be performed by, for example, a method in which a hydrolyzable silane compound is reacted in the presence of oxalic acid and alcohol.
 エポキシ基含有ポリオルガノシロキサンとカルボン酸との反応は、好ましくは適当な触媒の存在下、有機溶媒中で行われる。エポキシ基含有ポリオルガノシロキサンとカルボン酸との反応において、カルボン酸の使用割合は、エポキシ基含有ポリオルガノシロキサンが有するエポキシ基に対して、1~70モル%とすることが好ましく、5~50モル%とすることがより好ましい。 The reaction between the epoxy group-containing polyorganosiloxane and the carboxylic acid is preferably carried out in an organic solvent in the presence of a suitable catalyst. In the reaction of the epoxy group-containing polyorganosiloxane with the carboxylic acid, the carboxylic acid is preferably used in an amount of 1 to 70 mol% based on the epoxy group of the epoxy group-containing polyorganosiloxane. % Is more preferable.
 上記反応に際し、触媒としては、例えばエポキシ基の硬化促進剤として一般に用いられているものを使用することができる。触媒としては、例えば3級アミン、イミダゾール誘導体、有機リン化合物、4級ホスフォニウム塩、ジアザビシクロアルケン、有機金属化合物、ハロゲン化4級アンモニウム、金属ハロゲン化合物、潜在性硬化促進剤等が挙げられる。触媒の使用割合は、エポキシ基含有ポリオルガノシロキサンの100質量部に対して、好ましくは0.01~100質量部であり、より好ましくは0.1~20質量部である。 In the above reaction, for example, a catalyst generally used as an epoxy group curing accelerator can be used as the catalyst. Examples of the catalyst include tertiary amines, imidazole derivatives, organic phosphorus compounds, quaternary phosphonium salts, diazabicycloalkenes, organometallic compounds, quaternary ammonium halides, metal halide compounds, and latent curing accelerators. The ratio of the catalyst used is preferably 0.01 to 100 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy group-containing polyorganosiloxane.
 上記反応に使用する有機溶媒としては、例えばケトン、エーテル、エステル、アミド、アルコール等が挙げられる。有機溶媒の使用割合は、反応溶液中の有機溶媒以外の成分の合計質量が反応溶液の全量に占める割合として、0.1~50質量%となる割合とすることが好ましく、5~50重質量%となる割合とすることがより好ましい。上記反応の反応温度は、-20℃~200℃が好ましく、0℃~160℃がより好ましい。反応時間は、1時間~48時間が好ましく、2時間~12時間がより好ましい。得られる反応溶液は、公知の単離方法を用いて、反応溶液中に含まれるポリオルガノシロキサンを単離したうえで液晶配向剤の調製に供するとよい。 Examples of the organic solvent used in the above reaction include ketones, ethers, esters, amides, alcohols and the like. The proportion of the organic solvent used is preferably such that the total mass of components other than the organic solvent in the reaction solution is 0.1 to 50% by mass as the proportion of the total amount of the reaction solution. It is more preferable to set the ratio to be%. The reaction temperature of the above reaction is preferably −20 ° C. to 200 ° C., more preferably 0 ° C. to 160 ° C. The reaction time is preferably 1 hour to 48 hours, more preferably 2 hours to 12 hours. The resulting reaction solution may be used for preparing a liquid crystal aligning agent after isolating the polyorganosiloxane contained in the reaction solution using a known isolation method.
 化合物[A]としてのポリオルガノシロキサンにつき、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は、1,000~50,000の範囲にあることが好ましく、1,200~10,000の範囲にあることがより好ましい。なお、化合物[A]は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Regarding the polyorganosiloxane as the compound [A], the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably in the range of 1,000 to 50,000, More preferably, it is in the range of 200 to 10,000. In addition, compound [A] may be used individually by 1 type, and may be used in combination of 2 or more type.
(重合体[P])
 重合体[P]は、化合物[A]とは異なる重合体、つまり架橋性基、光配向性基及びラジカル発生基のいずれも有さない重合体である。重合体[P]は、化合物[A]が重合体である場合には、化合物[A]とは主鎖が異なる重合体であることが好ましい。液晶との親和性や機械的強度、電圧保持率の観点から、重合体[P]は、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種であることがより好ましい。中でも、化合物[A]がポリオルガノシロキサンであって、重合体[P]が、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種である組み合わせが特に好ましい。
(Polymer [P])
The polymer [P] is a polymer different from the compound [A], that is, a polymer having no crosslinkable group, photoalignable group, or radical generating group. When the compound [A] is a polymer, the polymer [P] is preferably a polymer having a main chain different from that of the compound [A]. From the viewpoint of affinity with liquid crystal, mechanical strength, and voltage holding ratio, the polymer [P] is more preferably at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide. Among these, a combination in which the compound [A] is polyorganosiloxane and the polymer [P] is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide is particularly preferable.
(ポリアミック酸、ポリアミック酸エステル及びポリイミド)
 液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドは、従来公知の方法に従って合成することができる。例えば、ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。ポリアミック酸エステルは、例えば、上記で得られたポリアミック酸とエステル化剤(例えばメタノールやエタノール、N,N-ジメチルホルムアミドジエチルアセタール等)とを反応させる方法等により得ることができる。ポリイミドは、例えば、上記で得られたポリアミック酸を脱水閉環してイミド化することにより得ることができる。使用するポリイミドにつき、そのイミド化率が20~95%であることが好ましく、30~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。
(Polyamic acid, polyamic acid ester and polyimide)
The polyamic acid, polyamic acid ester and polyimide contained in the liquid crystal aligning agent can be synthesized according to a conventionally known method. For example, polyamic acid can be obtained by reacting tetracarboxylic dianhydride and diamine. The polyamic acid ester can be obtained by, for example, a method of reacting the polyamic acid obtained above with an esterifying agent (for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, or the like). The polyimide can be obtained, for example, by dehydrating and ring-closing the polyamic acid obtained above to imidize. With respect to the polyimide to be used, the imidation ratio is preferably 20 to 95%, more preferably 30 to 90%. This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of polyimide amic acid structures and the number of imide ring structures in percentage.
 重合に使用するテトラカルボン酸二無水物としては、例えば、ブタンテトラカルボン酸二無水物、エチレンジアミン四酢酸二無水物等の脂肪族テトラカルボン酸二無水物;2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)等の芳香族テトラカルボン酸二無水物、等を挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、テトラカルボン酸二無水物は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the tetracarboxylic dianhydride used for the polymerization include aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride and ethylenediaminetetraacetic acid dianhydride; 2,3,5-tricarboxycyclopentylacetic acid Dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2, 5-Dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 2,4,6,8-tetracarboxy Bicyclo [3.3.0] octane-2: 4,6: 8-dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, etc. Rubonic acid dianhydride; pyromellitic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, p-phenylenebis (trimellitic acid monoester anhydride), ethylene glycol bis (anhydrotri) And aromatic tetracarboxylic dianhydrides such as 1,3-propylene glycol bis (anhydrotrimellitate) and the like, and tetracarboxylic acids described in JP 2010-97188 A A dianhydride can be used. In addition, tetracarboxylic dianhydride may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、上記重合に使用するジアミンとしては、例えば、エチレンジアミン、テトラメチレンジアミン等の脂肪族ジアミン;p-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン;ヘキサデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、2,5-ジアミノ-N,N-ジアリルアニリン、下記式(8-1)~式(8-3)
Figure JPOXMLDOC01-appb-C000001
Examples of the diamine used in the polymerization include aliphatic diamines such as ethylenediamine and tetramethylenediamine; alicyclic diamines such as p-cyclohexanediamine and 4,4′-methylenebis (cyclohexylamine); hexadecanoxy Diaminobenzene, cholestanyloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, lanostannyl diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butylcyclohexane, 2,5-diamino-N, N-diallylaniline, the following formulas (8-1) to (8-3) )
Figure JPOXMLDOC01-appb-C000001
のそれぞれで表される化合物等の側鎖型の芳香族ジアミン;p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルアミン、4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,5-ビス(4-アミノフェノキシ)ペンタン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、ビス(4-アミノフェニル)アミン、N,N-ビス(4-アミノフェニル)メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン等の非側鎖型の芳香族ジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のジアミノオルガノシロキサン、等を挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。なお、ジアミンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 A side chain type aromatic diamine such as a compound represented by each of the following: p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylamine, 4-aminophenyl-4′-aminobenzoate, 4 , 4'-diaminoazobenzene, 3,5-diaminobenzoic acid, 1,5-bis (4-aminophenoxy) pentane, bis [2- (4-aminophenyl) ethyl] hexanedioic acid, bis (4-aminophenyl) ) Amine, N, N-bis (4-aminophenyl) methylamine, N, N′-bis (4-aminophenyl) -benzidine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2 '-Bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 2,2-bis [4- (4- Minophenoxy) phenyl] propane, 4,4 ′-(phenylenediisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4- (4-aminophenoxycarbonyl) -1- (4-aminophenyl) ) Non-side chain aromatic diamines such as piperidine, 4,4 ′-[4,4′-propane-1,3-diylbis (piperidine-1,4-diyl)] dianiline; 1,3-bis (3 In addition to diaminoorganosiloxane such as -aminopropyl) -tetramethyldisiloxane, diamines described in JP 2010-97188 A can be used. In addition, a diamine may be used individually by 1 type and may be used in combination of 2 or more type.
 液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドにつき、GPCにより測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。なお、液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドは、1種のみでもよく、又は2種以上を組み合わせてもよい。 For the polyamic acid, polyamic acid ester and polyimide contained in the liquid crystal aligning agent, the weight average molecular weight (Mw) in terms of polystyrene measured by GPC is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. The molecular weight distribution (Mw / Mn) is preferably 7 or less, more preferably 5 or less. In addition, the polyamic acid, polyamic acid ester, and polyimide which are contained in the liquid crystal aligning agent may be only one kind, or may be a combination of two or more kinds.
 化合物[A]と重合体[P]との配合割合について、チルト差を十分に生じさせる観点から、液晶配向剤中に含まれる重合体[P]100質量部に対して、化合物[A]の配合割合を1~100質量部とすることが好ましく、3~50質量部とすることがより好ましく、5~40質量部とすることがさらに好ましい。 The compounding ratio of the compound [A] and the polymer [P] is such that the compound [A] is contained in 100 parts by mass of the polymer [P] contained in the liquid crystal aligning agent from the viewpoint of sufficiently producing a tilt difference. The blending ratio is preferably 1 to 100 parts by mass, more preferably 3 to 50 parts by mass, and even more preferably 5 to 40 parts by mass.
(溶剤)
 液晶配向剤は、重合体成分及び必要に応じて任意に配合されるその他の成分が、好ましくは有機溶媒に溶解又は分散された溶液状の組成物として調製される。使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。これらは、1種を単独で又は2種以上を混合して使用することができる。
(solvent)
The liquid crystal aligning agent is prepared as a solution composition in which a polymer component and other components optionally blended as necessary are preferably dissolved or dispersed in an organic solvent. Examples of the organic solvent used include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, γ-butyrolactone, γ-butyrolactam, and N, N-dimethylformamide. N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol methyl ether, Ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether Ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diisobutyl ketone, isoamyl propionate, isoamyl isobutyrate, diisopentyl ether, ethylene carbonate, A propylene carbonate etc. can be mentioned. These can be used individually by 1 type or in mixture of 2 or more types.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. When the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
≪工程B≫
 次に、工程Bについて説明する。工程Bは、各基板上に形成された塗膜に対する溶剤との接触態様を異ならせることにより、基板間でチルト差を生じさせる工程である。具体的には、(1)第1基板及び第2基板のうち一方の基板については、塗膜と溶剤とを接触させる処理を行わず、もう一方の基板のみについて、塗膜と溶剤とを接触させる方法(以下「第1の方法」ともいう。)、及び、第1基板及び第2基板の両者で塗膜と溶剤とを接触させる処理を行うが、溶剤に接触させる条件を、第1基板と第2基板との間で異なる条件とする方法(以下「第2の方法」ともいう。)を含む。
≪Process B≫
Next, step B will be described. Step B is a step of causing a tilt difference between the substrates by making the contact mode with the solvent different from the coating film formed on each substrate. Specifically, (1) one of the first substrate and the second substrate is not subjected to the treatment of bringing the coating film into contact with the solvent, and only the other substrate is brought into contact with the coating film with the solvent. And a process of bringing the coating film and the solvent into contact with each other on both the first substrate and the second substrate. The conditions for contacting the solvent are the same as those of the first substrate. And a method (hereinafter, also referred to as “second method”) under different conditions between the first substrate and the second substrate.
 第1の方法で、塗膜との接触に用いる溶剤としては、有機溶媒又はアルカリ性水溶液が好ましく用いられる。有機溶媒は、アルコール、エーテル、ケトン及び炭化水素からなる群より選ばれる少なくとも一種であることが好ましい。これらの具体例としては、アルコールとして、例えばエタノール、プロパノール、イソプロピルアルコール、1-メトキシ-2-プロパノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブチルセロソルブ(エチレングリコールモノブチルエーテル)、プロピレングリコールモノエチルエーテル、乳酸エチル、1-ヘキサノール、4-メチル-2-ペンタノール等を; As the solvent used for contact with the coating film in the first method, an organic solvent or an alkaline aqueous solution is preferably used. The organic solvent is preferably at least one selected from the group consisting of alcohols, ethers, ketones and hydrocarbons. Specific examples thereof include alcohols such as ethanol, propanol, isopropyl alcohol, 1-methoxy-2-propanol, diacetone alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, butyl cellosolve (ethylene glycol monobutyl ether), propylene glycol. Monoethyl ether, ethyl lactate, 1-hexanol, 4-methyl-2-pentanol, etc .;
 エーテルとして、例えばエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、テトラヒドロフラン、メチル-3-メトキシプロピオネート、ジイソペンチルエーテル等を;
 ケトンとして、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン、メチルイソアミルケトン等を;
 炭化水素として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、メシチレン、シクロヘキサンなどを;それぞれ挙げることができる。これらの有機溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。なお、これら有機溶媒に、例えば水や界面活性剤を適宜添加して使用してもよい。
Examples of ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monoethyl ether. Acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether acetate, tetra Dorofuran, methyl 3-methoxy propionate, di isopentyl ether and the like;
Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, and methyl isoamyl ketone;
Examples of the hydrocarbon include hexane, heptane, octane, benzene, toluene, xylene, mesitylene, and cyclohexane; These organic solvents can be used individually by 1 type or in combination of 2 or more types. In addition, you may use, for example, adding water and surfactant suitably to these organic solvents.
 上記有機溶媒としては、これらの中でも、アルコール及びケトンよりなる群から選ばれる少なくとも一種であることが好ましく、エタノール、プロパノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロペンタノンよりなる群から選ばれる少なくとも一種であることがより好ましく、イソプロパノール及びアセトンの少なくともいずれかを用いることが特に好ましい。 Among these, the organic solvent is preferably at least one selected from the group consisting of alcohol and ketone, and is selected from the group consisting of ethanol, propanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone. It is more preferable to use at least one type, and it is particularly preferable to use at least one of isopropanol and acetone.
 上記アルカリ性水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ-[4,3,0]-5-ノナン等を溶解したアルカリ性水溶液が挙げられる。なお、これらのアルカリ性水溶液に、例えばメタノール、エタノール等のアルコールや、界面活性剤を適宜添加してもよい。 Examples of the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol. Amine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5,4,0] -7-undecene, 1,5-diazabicyclo- [4 An alkaline aqueous solution in which 3,0] -5-nonane and the like are dissolved may be mentioned. In addition, you may add alcohol, such as methanol and ethanol, and surfactant suitably to these alkaline aqueous solution, for example.
 塗膜との接触に用いる溶剤としては、液晶配向剤中の第1成分に対する溶解性と、第2成分に対する溶解性とが異なる溶剤を用いることが好ましい。特に好ましくは、塗膜との接触に用いる溶剤は、第1成分に対する良溶媒であって、かつ第2成分に対して貧溶又は非溶の溶媒である。こうした溶剤を用いることにより、第1成分及び第2成分を含む液晶配向剤を用いて一対の基板のそれぞれに塗膜を形成した場合に、基板間のチルト差を簡便な方法で、かつ十分に生じさせることができる。塗膜との接触に用いる溶剤として有機溶媒及びアルカリ性水溶液のいずれを用いるかは、第1成分の溶解性を考慮して選択するとよい。 As a solvent used for contact with the coating film, it is preferable to use a solvent having different solubility in the first component and different solubility in the second component in the liquid crystal aligning agent. Particularly preferably, the solvent used for contact with the coating film is a good solvent for the first component and a poorly or insoluble solvent for the second component. By using such a solvent, when a coating film is formed on each of the pair of substrates using the liquid crystal aligning agent containing the first component and the second component, the tilt difference between the substrates can be sufficiently reduced by a simple method. Can be generated. Whether to use an organic solvent or an alkaline aqueous solution as the solvent used for contact with the coating film may be selected in consideration of the solubility of the first component.
 液晶配向剤中の第1成分に対する溶解性と、第2成分に対する溶解性とが異なる溶剤を塗膜との接触に用いる場合、基板間に十分なチルト差を生じさせることができればよく、液晶配向剤中の第1成分及び第2成分、並びに塗膜との接触に用いる溶剤は特に限定されない。好ましい態様は、第1成分をポリオルガノシロキサンとし、第2成分をポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種とし、かつ塗膜との接触に用いる溶剤を、アルコール及びケトンよりなる群から選ばれる少なくとも一種とする組合せである。 When a solvent having different solubility in the first component and in the second component in the liquid crystal aligning agent is used for contact with the coating film, it is sufficient that a sufficient tilt difference can be generated between the substrates. The solvent used for the contact with the 1st component and 2nd component in an agent, and a coating film is not specifically limited. In a preferred embodiment, the first component is polyorganosiloxane, the second component is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide, and the solvent used for contact with the coating film is alcohol or ketone A combination of at least one selected from the group consisting of
 なお、塗膜に対する溶剤との接触態様を基板間で異ならせることによって、基板間でチルト差が生じるのは、溶剤との接触により塗膜の表面が洗浄され、基板間で塗膜表面の成分が異なることに起因することが考えられる。例えば、第1成分をポリオルガノシロキサンとし、第2成分をポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種とした場合、溶剤との接触処理を行わない基板では、ポリオルガノシロキサンが膜中に残存することによって、ポリオルガノシロキサン(つまり化合物[A])の影響を受けてプレチルト角が発現されると考えられる。一方、溶剤との接触処理を行った基板では、当該接触処理によってポリオルガノシロキサンが溶出され、ポリアミック酸、ポリアミック酸エステル又はポリイミド(つまり重合体[P])に由来するプレチルト角が発現されると考えられる。これにより、第1基板と第2基板との間のチルト差が大きくなったものと推測される。ただし、これはあくまでも推測であり、本開示の内容を何ら限定するものではない。 It should be noted that the difference in tilt between the substrates caused by different contact modes of the solvent with the solvent between the substrates is that the surface of the coating film is washed by contact with the solvent, and the components of the surface of the coating film between the substrates. It is thought that this is caused by the difference. For example, when the first component is polyorganosiloxane and the second component is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide, in the substrate not subjected to contact treatment with a solvent, the polyorganosiloxane is By remaining in the film, it is considered that a pretilt angle is developed under the influence of polyorganosiloxane (that is, compound [A]). On the other hand, in the substrate subjected to the contact treatment with the solvent, the polyorganosiloxane is eluted by the contact treatment, and a pretilt angle derived from polyamic acid, polyamic acid ester or polyimide (that is, polymer [P]) is expressed. Conceivable. Thereby, it is estimated that the tilt difference between the first substrate and the second substrate is increased. However, this is just a guess, and does not limit the content of the present disclosure.
 第2の方法において、「基板間で異なる条件で溶剤と接触させる」態様としては、第1基板と第2基板との間でチルト差を生じさせることが可能なものであればよい。例えば、塗膜との接触に用いる溶剤の組成を一対の基板間で変えたり、塗膜と溶剤との接触時間を一対の基板間で変えたり、塗膜と溶剤との接触温度を変えたり、あるいはこれらを2種以上を組み合わせて行う方法等が挙げられる。これらの中でも、好ましくは、第1基板及び第2基板のそれぞれの塗膜を、基板間で溶剤組成が異なる溶剤に接触させる方法である。ここで、「溶剤組成が異なる」とは、塗膜に接触させる溶剤を構成する成分の種類及び成分割合のうち少なくとも一方が異なることを意味する。具体的には、(i)塗膜に接触させる溶剤の種類を第1基板と第2基板とで異なるものとする方法、(ii)塗膜に接触させる溶剤に含まれる複数成分の成分比を第1基板と第2基板とで異なるものとする方法、等が挙げられる。 In the second method, the “contact with the solvent under different conditions between the substrates” may be any as long as it can cause a tilt difference between the first substrate and the second substrate. For example, changing the composition of the solvent used for contact with the coating film between a pair of substrates, changing the contact time between the coating film and the solvent between a pair of substrates, changing the contact temperature between the coating film and the solvent, Or the method etc. which perform these combining 2 or more types are mentioned. Among these, the method of making each coating film of a 1st board | substrate and a 2nd board | substrate contact the solvent from which a solvent composition differs between board | substrates is preferable. Here, “the solvent compositions are different” means that at least one of the types and component ratios of the components constituting the solvent to be brought into contact with the coating film is different. Specifically, (i) a method in which the type of solvent to be brought into contact with the coating film is different between the first substrate and the second substrate, and (ii) a component ratio of a plurality of components contained in the solvent to be brought into contact with the coating film. Examples thereof include a method of making the first substrate different from the second substrate.
 これらの好ましい具体例としては、上記(i)の方法では、第1基板及び第2基板のうち一方の塗膜を、第1の方法で例示した溶剤と接触させ、他方の塗膜を、液晶配向剤中の第1成分及び第2成分に対して貧溶又は非溶の溶剤と接触させる。また、上記(ii)の方法では、第1の方法で例示した溶剤を、液晶配向剤中の第1成分及び第2成分に対して貧溶又は非溶の溶剤(例えば水等)を用いて濃度を調整することにより行う。第1基板と第2基板とのチルト差を大きくする観点からすると、これらのうち、上記(i)の方法がより好ましい。 As these preferable specific examples, in the method (i), one of the first substrate and the second substrate is brought into contact with the solvent exemplified in the first method, and the other coating is applied to the liquid crystal. The first component and the second component in the alignment agent are brought into contact with a poorly soluble or insoluble solvent. In the above method (ii), the solvent exemplified in the first method is a poorly soluble or insoluble solvent (for example, water) with respect to the first component and the second component in the liquid crystal aligning agent. This is done by adjusting the density. From the viewpoint of increasing the tilt difference between the first substrate and the second substrate, among these, the method (i) is more preferable.
 第2の方法では、第1基板及び前記第2基板のうち一方の塗膜を、第1成分に対する溶解性と第2成分に対する溶解性とが異なる溶剤に接触させることが好ましい。この場合、第1成分及び第2成分を含む液晶配向剤を用いて形成した塗膜に対し、一対の基板間で十分なチルト差を簡便な方法によって生じさせることが可能となる。具体的には、例えば、液晶配向剤中の第1成分をポリオルガノシロキサンとし、第2成分をポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種とする場合、第1基板及び第2基板のうち一方の基板の塗膜を、アルコール及びケトンよりなる群から選ばれる少なくとも一種と接触させ、他方の基板の塗膜を、液晶配向剤中の第1成分及び第2成分に対して貧溶又は非溶の溶剤(水等)と接触させる方法などが挙げられる。 In the second method, it is preferable that one of the first substrate and the second substrate is brought into contact with a solvent having different solubility for the first component and different solubility for the second component. In this case, a sufficient tilt difference between the pair of substrates can be generated by a simple method with respect to the coating film formed using the liquid crystal aligning agent containing the first component and the second component. Specifically, for example, when the first component in the liquid crystal aligning agent is polyorganosiloxane and the second component is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide, The coating film of one of the two substrates is brought into contact with at least one selected from the group consisting of alcohol and ketone, and the coating film of the other substrate is made to the first component and the second component in the liquid crystal aligning agent. The method of making it contact with poorly soluble or insoluble solvents (water etc.) etc. are mentioned.
 基板上の塗膜に溶剤を接触させる方法としては特に制限されず、例えば噴霧(スプレー)処理、シャワー処理、浸漬処理、液盛り処理等が挙げられる。好ましくは、噴霧処理、シャワー処理又は浸漬処理であり、噴霧処理が特に好ましい。噴霧処理とした場合、塗膜に接触させる溶剤の量をできるだけ少なくしつつ、チルト差を十分に生じさせることができる点で好ましい。塗膜と溶剤との接触に際しては、塗膜の一部を溶剤に接触させてもよいが、塗膜の表面全体を溶剤に接触させることが好ましい。このとき、塗膜と溶剤とを十分に接触させるために、例えば基板上の塗膜への溶剤の供給及び接触の一連の処理を複数回行ったり、あるいは浸漬処理の場合には、溶剤を撹拌又は振盪したりすることも有効である。 The method for bringing the solvent into contact with the coating film on the substrate is not particularly limited, and examples thereof include spraying treatment, shower treatment, immersion treatment, liquid piling treatment, and the like. Preferably, it is spraying treatment, showering treatment or immersion treatment, and spraying treatment is particularly preferred. The spray treatment is preferable in that a tilt difference can be sufficiently generated while minimizing the amount of the solvent brought into contact with the coating film. In contacting the coating film with the solvent, a part of the coating film may be brought into contact with the solvent, but it is preferable to bring the entire surface of the coating film into contact with the solvent. At this time, in order to sufficiently bring the coating film and the solvent into contact with each other, for example, a series of treatments for supplying and contacting the solvent to the coating film on the substrate are performed a plurality of times, or in the case of immersion treatment, the solvent is stirred. Alternatively, shaking is also effective.
 塗膜と溶剤との接触処理は、プレベーク後かつポストベーク前のタイミングで行ってもよく、ポストベーク後のタイミングで行ってもよい。溶剤との接触による洗浄効率を高め、基板間に十分なプレチルト角差を生じさせる観点から、プレベーク後かつポストベーク前のタイミングで行うことが好ましい。溶剤と接触させるときの温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。溶剤との接触時間は、好ましくは5秒~30分であり、より好ましくは5秒~15分である。塗膜に接触させる溶剤の使用量は、当該接触の方法等を考慮して適宜に選択される。塗膜と溶剤との接触後に、さらに加熱等を行うことにより、塗膜から溶剤を完全に除去するようにしてもよい。接触処理に際し、溶剤との接触時間や接触温度は基板間で同じでも異なっていてもよい。 The contact treatment between the coating film and the solvent may be performed at a timing after pre-baking and before post-baking, or may be performed at a timing after post-baking. From the viewpoint of increasing the cleaning efficiency due to contact with the solvent and causing a sufficient difference in pretilt angle between the substrates, it is preferable to carry out at a timing after pre-baking and before post-baking. The temperature when contacting with the solvent is preferably 10 to 50 ° C., more preferably 20 to 30 ° C. The contact time with the solvent is preferably 5 seconds to 30 minutes, more preferably 5 seconds to 15 minutes. The amount of the solvent to be brought into contact with the coating film is appropriately selected in consideration of the contact method and the like. After the contact between the coating film and the solvent, the solvent may be completely removed from the coating film by further heating or the like. In the contact treatment, the contact time and the contact temperature with the solvent may be the same or different between the substrates.
≪工程C≫
 工程Cでは、液晶配向剤を用いて形成された塗膜を有する基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。このとき、塗膜を溶剤に接触させた後の基板をそのまま用いて液晶セルを構築してもよいし、塗膜を溶剤に接触させる前又は後に必要に応じて塗膜面にラビング処理や光配向処理を行った上で液晶セルを構築してもよい。
≪Process C≫
In Step C, two substrates having a coating film formed using a liquid crystal aligning agent are prepared, and a liquid crystal cell is manufactured by disposing a liquid crystal between the two substrates disposed to face each other. At this time, the liquid crystal cell may be constructed using the substrate after the coating film is brought into contact with the solvent as it is, or before or after the coating film is brought into contact with the solvent, rubbing treatment or light on the coating film surface as necessary. A liquid crystal cell may be constructed after performing the alignment treatment.
 液晶セルを製造するには、例えば、液晶配向膜が対向するように間隙を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面とシール剤で囲まれたセルギャップ内に液晶を注入充填して液晶層を形成し、その後注入孔を封止する方法、ODF方式による方法等が挙げられる。シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。液晶セルの構築後に、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する処理を行ってもよい。 In order to manufacture a liquid crystal cell, for example, two substrates are arranged to face each other with a gap so that the liquid crystal alignment films face each other, and the peripheral portions of the two substrates are bonded together using a sealant, Examples thereof include a method in which a liquid crystal layer is formed by injecting and filling a liquid crystal in a cell gap surrounded by a sealing agent, and then the injection hole is sealed, a method using an ODF method, and the like. As the sealant, for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used. Examples of the liquid crystal include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable. After the construction of the liquid crystal cell, the liquid crystal cell may be subjected to light irradiation in a state where a voltage is applied between the conductive films of the pair of substrates.
 PSA方式の液晶素子を製造する場合には、液晶層中に液晶性化合物及び光重合性化合物を存在させた上で、液晶セルの構築後に、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する処理を行う。光重合性化合物としては、例えば(メタ)アクリロイル基、ビニル基等といったラジカル重合が可能な官能基を有する化合物が用いられる。光重合性化合物の配合割合は、使用する液晶性化合物の全体量に対して0.1~0.5質量%とすることが好ましい。 In the case of manufacturing a PSA liquid crystal element, a liquid crystal compound and a photopolymerizable compound are present in a liquid crystal layer, and a voltage is applied between conductive films of a pair of substrates after the liquid crystal cell is constructed. In this state, the liquid crystal cell is irradiated with light. As the photopolymerizable compound, for example, a compound having a functional group capable of radical polymerization such as a (meth) acryloyl group and a vinyl group is used. The blending ratio of the photopolymerizable compound is preferably 0.1 to 0.5% by mass with respect to the total amount of the liquid crystal compound to be used.
 液晶性化合物としては、負の誘電異方性を有するネマチック液晶を好ましく用いることができる。液晶性化合物は、PSA方式の液晶素子の応答速度をより速くできる点で、アルケニル系液晶を含むことが好ましい。アルケニル系液晶としては、従来公知のものを使用することができるが、中でも、アルケニル基及びフルオロアルケニル基のうちいずれかを1個有する単官能性のアルケニル系液晶を含むものが好ましい。アルケニル系液晶の具体例としては、例えば下記式(L1-1)~式(L1-9)のそれぞれで表される化合物等が挙げられる。アルケニル系液晶の配合割合は、使用する液晶性化合物の全体量に対して0.1~10質量%とすることが好ましい。
Figure JPOXMLDOC01-appb-C000002
As the liquid crystal compound, nematic liquid crystal having negative dielectric anisotropy can be preferably used. The liquid crystalline compound preferably contains an alkenyl liquid crystal in that the response speed of the PSA liquid crystal element can be further increased. As the alkenyl-based liquid crystal, conventionally known ones can be used, and among them, those including a monofunctional alkenyl-based liquid crystal having one of an alkenyl group and a fluoroalkenyl group are preferable. Specific examples of the alkenyl liquid crystal include compounds represented by the following formulas (L1-1) to (L1-9). The blending ratio of the alkenyl-based liquid crystal is preferably 0.1 to 10% by mass with respect to the total amount of the liquid crystal compound to be used.
Figure JPOXMLDOC01-appb-C000002
 PSA処理において、液晶セルに照射する光としては、例えば150~800nmの波長の光を含む紫外線又は可視光線を用いることができる。中でも、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、エキシマーレーザー等が使用される。光の照射量としては、好ましくは1,000~100,000J/mであり、より好ましくは1,000~50,000J/mである。なお、PSA方式として、液晶配向膜中に重合性基を有する化合物(低分子又は重合体)を含有させ、液晶セルの構築後に、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する処理を行う方式を採用してもよい。 In the PSA treatment, as the light irradiated to the liquid crystal cell, for example, ultraviolet light or visible light including light having a wavelength of 150 to 800 nm can be used. Of these, ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. As a light source for irradiation light, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, an excimer laser, or the like is used. The amount of light irradiation is preferably 1,000 to 100,000 J / m 2 and more preferably 1,000 to 50,000 J / m 2 . Note that as a PSA method, a liquid crystal alignment film contains a compound having a polymerizable group (low molecule or polymer), and after the liquid crystal cell is constructed, the liquid crystal is applied in a state where a voltage is applied between the conductive films of the pair of substrates. You may employ | adopt the system which performs the process which irradiates a cell with light.
 曲面ディスプレイに適用する場合、上記で得られた液晶セルを湾曲させることによって製造することができる。ここで、液晶セルを湾曲させると、一対の基板における一方の基板と他方の基板との間でプレチルト角のずれが生じる領域が発生することがある。具体的には、図1(a)に示すように、液晶セル10を湾曲させる前では、一方の基板11と他方の基板12との間の液晶分子15は、液晶配向膜13,14による配向制御によって液晶の配向に乱れが生じていない。ところが、図1(a)の液晶セル10を湾曲させると、図1(b)に示すように、一方の基板11上に形成された液晶配向膜13のプレチルト角と、他方の基板12上に形成された液晶配向膜14のプレチルト角とにずれが生じる領域θが発生することがあり、この場合、画質の低下を招くことが懸念される。 When applied to a curved display, it can be manufactured by bending the liquid crystal cell obtained above. Here, when the liquid crystal cell is curved, there may occur a region where a pretilt angle shift occurs between one substrate and the other of the pair of substrates. Specifically, as shown in FIG. 1A, before the liquid crystal cell 10 is bent, the liquid crystal molecules 15 between the one substrate 11 and the other substrate 12 are aligned by the liquid crystal alignment films 13 and 14. The liquid crystal alignment is not disturbed by the control. However, when the liquid crystal cell 10 of FIG. 1A is curved, as shown in FIG. 1B, the pretilt angle of the liquid crystal alignment film 13 formed on one substrate 11 and the other substrate 12 are A region θ in which a deviation from the pretilt angle of the formed liquid crystal alignment film 14 may occur. In this case, there is a concern that the image quality may be deteriorated.
 これに対し、湾曲させる前の液晶セル10を、図1(c)に示すように、一対の基板11,12のうちいずれかの基板(図1(c)では基板12)側のチルト角をほぼ垂直な角度とし、もう一方の基板(図1(c)では基板11)側のチルト角を、垂直方向に対して傾斜した角度としておく、つまり基板間でチルト差を生じさせておくことで、液晶セル10を湾曲させた場合に、基板間でのプレチルト角のずれが発生しないようにすることが可能となる。特に、本開示の製造方法によれば、基板間でのチルト差を十分に生じさせることができ、よって、曲面ディスプレイに適用した場合にも画質を十分に確保することができる。また、第1基板及び第2基板に液晶配向膜を形成する際には、同一の液晶配向剤を用いればよく、簡便な方法で上記の効果を達成することが可能である。 In contrast, as shown in FIG. 1C, the liquid crystal cell 10 before being bent has a tilt angle on one of the pair of substrates 11 and 12 (substrate 12 in FIG. 1C). By making the angle almost vertical and the tilt angle on the other substrate (substrate 11 in FIG. 1C) inclined with respect to the vertical direction, that is, by causing a tilt difference between the substrates. When the liquid crystal cell 10 is curved, it is possible to prevent the pretilt angle from shifting between the substrates. In particular, according to the manufacturing method of the present disclosure, it is possible to generate a sufficient tilt difference between the substrates, and thus it is possible to sufficiently ensure image quality even when applied to a curved display. In addition, when the liquid crystal alignment film is formed on the first substrate and the second substrate, the same liquid crystal aligning agent may be used, and the above effect can be achieved by a simple method.
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせ、液晶素子とする。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。 Subsequently, a polarizing plate is bonded to the outer surface of the liquid crystal cell as necessary to obtain a liquid crystal element. Examples of the polarizing plate include a polarizing plate comprising a polarizing film called an “H film” in which iodine is absorbed while stretching and orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself.
 本開示における液晶素子は、種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム等に用いることができる。また、本開示の液晶配向剤を用いて形成された液晶素子は位相差フィルムに適用することもできる。 The liquid crystal element in the present disclosure can be effectively applied to various uses, such as a watch, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, and various types. It can be used for various display devices such as monitors, liquid crystal televisions, information displays, and light control films. Moreover, the liquid crystal element formed using the liquid crystal aligning agent of this indication can also be applied to retardation film.
 以下、実施例により具体的に説明するが、本開示の内容はこれらの実施例に制限されるものではない。
 本実施例において重合体の重量平均分子量Mw及びポリイミドのイミド化率は以下の方法により測定した。
[重量平均分子量Mw]
 重量平均分子量Mwは、以下の条件におけるゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算値である。
  カラム:東ソー(株)製、TSKgelGRCXLII
  溶剤:テトラヒドロフラン
  温度:40℃
  圧力:68kgf/cm
[ポリイミドのイミド化率]
 ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH-NMRを測定した。得られたH-NMRスペクトルから、下記数式(1)で示される式によりイミド化率[%]を求めた。
  イミド化率[%]=(1-A/A×α)×100   …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
Hereinafter, although it demonstrates concretely by an Example, the content of this indication is not restrict | limited to these Examples.
In this example, the weight average molecular weight Mw of the polymer and the imidization ratio of the polyimide were measured by the following methods.
[Weight average molecular weight Mw]
The weight average molecular weight Mw is a polystyrene equivalent value measured by gel permeation chromatography under the following conditions.
Column: Tosoh Co., Ltd., TSKgelGRCXLII
Solvent: Tetrahydrofuran Temperature: 40 ° C
Pressure: 68 kgf / cm 2
[Imidation rate of polyimide]
The polyimide solution was poured into pure water, and the resulting precipitate was sufficiently dried at room temperature under reduced pressure, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. From the obtained 1 H-NMR spectrum, the imidization ratio [%] was determined by the formula shown by the following formula (1).
Imidation ratio [%] = (1-A 1 / A 2 × α) × 100 (1)
(In Formula (1), A 1 is a peak area derived from protons of NH groups appearing near a chemical shift of 10 ppm, A 2 is a peak area derived from other protons, and α is a precursor of a polymer (polyamic acid). The number ratio of other protons to one proton of NH group in)
 本実施例において使用した化合物の構造式は以下の通りである。
Figure JPOXMLDOC01-appb-C000003
The structural formula of the compound used in this example is as follows.
Figure JPOXMLDOC01-appb-C000003
<重合体の合成>
[合成例1]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物100モル部、並びに、ジアミンとして4,4’-ジアミノジフェニルエーテル70モル部及び3,5-ジアミノ安息香酸コレスタニル30モル部を、N-メチル-2-ピロリドン(NMP)に溶解させ、60℃で6時間反応させ、ポリアミック酸(これを重合体(PA-1)とする。)を10質量%含有する溶液を得た。
[合成例2]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物100モル部、並びに、ジアミンとして3,5-ジアミノ安息香酸80モル部及びコレスタニルオキシ-2,4-ジアミノベンゼン20モル部をNMPに溶解し、60℃で6時間反応させ、ポリアミック酸を20質量%含有する溶液を得た。得られたポリアミック酸溶液にNMPを追加してポリアミック酸濃度7質量%の溶液とし、ピリジン及び無水酢酸を、テトラカルボン酸二無水物の全使用量に対してそれぞれ0.1倍モルずつ添加して、110℃で4時間、脱水閉環反応を行った。脱水閉環反応後、系内の溶剤を新たなNMPで溶媒置換することにより、イミド化率約60%のポリイミド(これを重合体(PI-1)とする。)を15質量%含有する溶液を得た。
<Synthesis of polymer>
[Synthesis Example 1]
100 mol parts of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride as tetracarboxylic dianhydride, and 70 mol parts of 4,4'-diaminodiphenyl ether and 30 mol parts of cholestanyl 3,5-diaminobenzoate as diamine Was dissolved in N-methyl-2-pyrrolidone (NMP) and reacted at 60 ° C. for 6 hours to obtain a solution containing 10% by mass of polyamic acid (this is referred to as polymer (PA-1)). .
[Synthesis Example 2]
100 mol parts of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride as tetracarboxylic dianhydride, and 80 mol parts of 3,5-diaminobenzoic acid and cholestanyloxy-2,4-diaminobenzene 20 as diamine A molar part was dissolved in NMP and reacted at 60 ° C. for 6 hours to obtain a solution containing 20% by mass of polyamic acid. NMP was added to the obtained polyamic acid solution to make a polyamic acid concentration of 7% by mass, and pyridine and acetic anhydride were added in an amount of 0.1-fold each with respect to the total amount of tetracarboxylic dianhydride used. Then, dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new NMP to obtain a solution containing 15% by mass of a polyimide having an imidization ratio of about 60% (this is referred to as polymer (PI-1)). Obtained.
[合成例3]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン46.95g、8-メタクリロキシオクチルトリメトキシシラン(上記式(si-1)で表される化合物)22.016g、プロピレングリコール-1-モノメチルエーテル-2-アセタート70g及びトリエチルアミン6.897gを仕込み、室温で混合した。次いで、脱イオン水55gを滴下漏斗から30分かけて滴下した後、還流下で混合しつつ、60℃で1時間半反応を行った。反応終了後、有機層を取り出し、これを0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサン(ES-1)を粘調な透明液体として得た。得られたエポキシ基含有ポリオルガノシロキサン(ES-1)について、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。
[Synthesis Example 3]
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 46.95 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane (the above formula (si The compound represented by -1)) 22.016 g, propylene glycol-1-monomethyl ether-2-acetate 70 g and triethylamine 6.897 g were charged and mixed at room temperature. Next, 55 g of deionized water was dropped from the dropping funnel over 30 minutes, and then the reaction was carried out at 60 ° C. for 1.5 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with 0.2% by mass aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to have an epoxy group. Polyorganosiloxane (ES-1) was obtained as a viscous transparent liquid. When the obtained epoxy group-containing polyorganosiloxane (ES-1) was subjected to 1 H-NMR analysis, a peak based on the epoxy group was obtained in the vicinity of the chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no side reaction of the epoxy group occurred during the reaction.
[合成例4]
 200mLの三口フラスコに、合成例3で得たエポキシ基含有ポリオルガノシロキサン(ES-1)19.648g、プロピレングリコール-1-モノメチルエーテル-2-アセタート37.28g、4-オクチロキシ安息香酸(上記式(da-1)で表される化合物)2.278g(エポキシ基含有ポリオルガノシロキサン(ES-1)が有するケイ素原子に対して30モル%に相当)、及びUCAT 18X(商品名、サンアプロ(株)製の4級アミン塩)0.5gを仕込み、80℃で12時間撹拌下に反応を行った。反応終了後、反応混合物をメタノールに投入して生成した沈殿物を回収し、これを酢酸エチルに溶解して溶液とし、該溶液を3回水洗した後、溶剤を留去することにより、ポリオルガノシロキサン(これを重合体(S-1)とする。)を白色粉末として9.2g得た。
[Synthesis Example 4]
In a 200 mL three-necked flask, 19.648 g of the epoxy group-containing polyorganosiloxane (ES-1) obtained in Synthesis Example 3, 37.28 g of propylene glycol-1-monomethyl ether-2-acetate, 4-octyloxybenzoic acid (the above formula) (Compound represented by (da-1)) 2.278 g (corresponding to 30 mol% with respect to the silicon atom contained in the epoxy group-containing polyorganosiloxane (ES-1)), and UCAT 18X (trade name, San Apro Co., Ltd.) ) Quaternary amine salt) 0.5 g was charged and reacted at 80 ° C. with stirring for 12 hours. After completion of the reaction, the reaction mixture was poured into methanol to recover the produced precipitate, which was dissolved in ethyl acetate to form a solution. The solution was washed with water three times, and then the solvent was distilled off to remove the polyorgano 9.2 g of siloxane (this is referred to as polymer (S-1)) was obtained as a white powder.
[合成例5]
 使用するモノマーを2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン68.966gとした以外は、上記合成例3と同様にしてエポキシ基含有ポリオルガノシロキサン(ES-2)を粘調な透明液体として得た。
[Synthesis Example 5]
Except for using 68.966 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane as the monomer to be used, the epoxy group-containing polyorganosiloxane (ES-2) is viscous and transparent in the same manner as in Synthesis Example 3 above. Obtained as a liquid.
[合成例6]
 200mLの三口フラスコに、合成例5で得たエポキシ基含有ポリオルガノシロキサン(ES-2)16.191g、プロピレングリコール-1-モノメチルエーテル-2-アセタート39.69g、上記式(ch-1)で表されるカルボン酸4.117g(エポキシ基含有ポリオルガノシロキサン(ES-2)が有するケイ素原子に対して40モル%に相当)、及びUCAT 18X 0.488gを仕込み、110℃で7時間撹拌下に反応を行った。反応終了後、反応混合物をメタノールに投入して生成した沈殿物を回収し、これを酢酸エチルに溶解して溶液とし、該溶液を3回水洗した後、溶剤を留去することにより、ポリオルガノシロキサン(これを重合体(S-2)とする。)を白色粉末として9.6g得た。
[Synthesis Example 6]
In a 200 mL three-necked flask, 16.191 g of the epoxy group-containing polyorganosiloxane (ES-2) obtained in Synthesis Example 5 and 39.69 g of propylene glycol-1-monomethyl ether-2-acetate were represented by the above formula (ch-1). 4.117 g of the carboxylic acid represented (corresponding to 40 mol% with respect to the silicon atom contained in the epoxy group-containing polyorganosiloxane (ES-2)) and 0.488 g of UCAT 18X were added and stirred at 110 ° C. for 7 hours. The reaction was performed. After completion of the reaction, the reaction mixture was poured into methanol to recover the produced precipitate, which was dissolved in ethyl acetate to form a solution. The solution was washed with water three times, and then the solvent was distilled off to remove the polyorgano 9.6 g of siloxane (referred to as polymer (S-2)) was obtained as a white powder.
[合成例7]
 冷却管と攪拌機を備えたフラスコに、シクロヘキサノン144質量部を仕込んで窒素置換した。80℃に加熱して、同温度で、シクロヘキサノン48質量部、メタクリル酸28.8質量部、メタクリル酸ブチル18質量部、メタクリル酸メチル18質量部、2-エチルヘキシルEO変性アクリレート(東亞合成株式会社製、M-120)18質量部、シクロヘキシルメタクリレート18質量部、及びグリセロールメタクリレート37.2質量部の混合溶液、並びに、シクロヘキサノン48質量部及び2,2'-アゾビス(2,4-ジメチルバレロニトリル)8.4質量部の混合溶液を2時間かけて各々滴下し、この温度を保持して1時間重合した。その後、反応溶液の温度を90℃に昇温させ、さらに1時間重合を行った。次に、この溶液を室温まで冷却し、不揮発分が33質量%になるようシクロヘキサノンを加えることにより、メタクリル系ポリマー(これを重合体(BP-1)とする。)を含有する溶液を得た。得られた重合体(BP-1)は、Mw=10,700、Mn=5,600、Mw/Mn=1.91であった。
 冷却管と攪拌機を備えたフラスコに、重合体(BP-1)溶液の全量を入れて溶液の温度を90℃に昇温させた後、2-メタクリロイルオキシエチルイソシアネート(昭和電工株式会社製、カレンズMOI)34.3質量部(グリセロールメタクリレートのモル数に対して95モル%)及び4-メトキシフェノール0.36質量部の混合溶液を空気バブリング条件下、15分かけて滴下し、この温度を保持して1.5時間付加反応を行った。次に、この溶液を室温まで冷却し、不揮発分が36質量%になるようシクロヘキサノンを加えることにより、バインダー樹脂(これを重合体(B-1)とする。)溶液を得た。得られた重合体(B-1)は、Mw=12,800、Mn=6,000、Mw/Mn=2.13であった。
[Synthesis Example 7]
A flask equipped with a condenser and a stirrer was charged with 144 parts by mass of cyclohexanone and purged with nitrogen. Heated to 80 ° C., at the same temperature, 48 parts by weight of cyclohexanone, 28.8 parts by weight of methacrylic acid, 18 parts by weight of butyl methacrylate, 18 parts by weight of methyl methacrylate, 2-ethylhexyl EO-modified acrylate (manufactured by Toagosei Co., Ltd.) , M-120) 18 parts by mass, cyclohexyl methacrylate 18 parts by mass, and glycerol methacrylate 37.2 parts by mass, and cyclohexanone 48 parts by mass and 2,2′-azobis (2,4-dimethylvaleronitrile) 8 Each 4 parts by mass of the mixed solution was added dropwise over 2 hours, and polymerization was carried out for 1 hour while maintaining this temperature. Thereafter, the temperature of the reaction solution was raised to 90 ° C., and polymerization was further performed for 1 hour. Next, this solution was cooled to room temperature, and cyclohexanone was added so that the non-volatile content was 33% by mass to obtain a solution containing a methacrylic polymer (hereinafter referred to as polymer (BP-1)). . The obtained polymer (BP-1) had Mw = 10,700, Mn = 5,600, and Mw / Mn = 1.91.
In a flask equipped with a condenser and a stirrer, the entire amount of the polymer (BP-1) solution was added and the temperature of the solution was raised to 90 ° C., and then 2-methacryloyloxyethyl isocyanate (produced by Showa Denko KK, Karenz) MOI) A mixed solution of 34.3 parts by mass (95 mol% with respect to the number of moles of glycerol methacrylate) and 0.36 parts by mass of 4-methoxyphenol was added dropwise over 15 minutes under air bubbling conditions, and this temperature was maintained. Then, the addition reaction was performed for 1.5 hours. Next, this solution was cooled to room temperature, and cyclohexanone was added so that the non-volatile content was 36% by mass to obtain a binder resin (referred to as polymer (B-1)) solution. The obtained polymer (B-1) had Mw = 12,800, Mn = 6,000, and Mw / Mn = 2.13.
<液晶配向剤の調製>
[調製例1]
 重合体(PA-1)を含有する溶液に、重合体(S-1)を、重合体(PA-1)100質量部に対して10質量部加え、さらに、有機溶媒としてN-メチル-2-ピロリドン(NMP)及びブチルセロソルブ(BC)を加え、溶媒組成がNMP/BC=42/58(質量比)、固形分濃度が3.5質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、液晶配向剤(AL-1)を調製した。
[調製例2~10]
 配合組成を下記表1に記載の通りとした以外は、調製例1と同様にして液晶配向剤(AL-2)~(AL-10)をそれぞれ調製した。
<Preparation of liquid crystal aligning agent>
[Preparation Example 1]
10 parts by mass of the polymer (S-1) is added to 100 parts by mass of the polymer (PA-1) to the solution containing the polymer (PA-1), and N-methyl-2 is added as an organic solvent. -Pyrrolidone (NMP) and butyl cellosolve (BC) were added to obtain a solution having a solvent composition of NMP / BC = 42/58 (mass ratio) and a solid content concentration of 3.5 mass%. The solution was filtered through a filter having a pore size of 1 μm to prepare a liquid crystal aligning agent (AL-1).
[Preparation Examples 2 to 10]
Liquid crystal aligning agents (AL-2) to (AL-10) were respectively prepared in the same manner as in Preparation Example 1, except that the formulation was as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1中、第1成分及び架橋剤の略称は以下のとおりである。
A-1:上記式(A-1)で表される化合物
A-2:Irgacure369(BASF社製、アルキルフェノン系光重合開始剤)
C-1:N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン
In Table 1, the abbreviations of the first component and the crosslinking agent are as follows.
A-1: Compound represented by the above formula (A-1) A-2: Irgacure 369 (manufactured by BASF, alkylphenone photopolymerization initiator)
C-1: N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane
<液晶組成物の調製>
 ネマチック液晶(メルク社製、MLC-6608)10gに対し、上記式(L1-1) で表される液晶性化合物を5質量%、及び上記式(L2-1)で表される光重合性化合物 を0.3質量%、を添加して混合することにより液晶組成物LC1を得た。
<Preparation of liquid crystal composition>
5% by mass of the liquid crystal compound represented by the above formula (L1-1) and the photopolymerizable compound represented by the above formula (L2-1) with respect to 10 g of nematic liquid crystal (MLC-6608, manufactured by Merck) Was added and mixed to obtain a liquid crystal composition LC1.
<液晶素子の製造及び評価>
[実施例1]
(1)液晶表示素子の製造
 上記で調製した液晶配向剤(AL-1)を、ITO電極からなる導電膜をそれぞれ有するガラス基板2枚の各電極面上に、液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で2分間加熱(プレベーク)して溶媒を除去した。得られた2枚の基板のうち一方の基板(「基板A」とする。)を、プレベーク後に150℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚0.06μmの塗膜を形成した。
 また、他方の基板(「基板B」とする。)に対して、プレベーク後に洗浄液としてイソプロパノールを圧力1kgf/cm(ノズル径1mm)で吐出することにより、90秒間スプレー洗浄(噴霧処理)を行った。なお、ここでの洗浄液による噴霧処理が「接触工程」に相当する。その後、150℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚0.06μmの塗膜を形成した。こうした操作により、塗膜を有する基板を一対(2枚)得た。なお、使用した電極のパターンは、PSAモードにおける電極パターンと同種のパターンである。
 次いで、上記一対の基板のうち基板Aを対向基板、基板BをTFT基板として用い、一対の基板の液晶配向膜を有するそれぞれの外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、上記で調製した液晶組成物LC1を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、液晶セルを製造した。その後、液晶セルの導電膜間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、100,000J/mの照射量にて紫外線を照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて測定した値である。
<Manufacture and evaluation of liquid crystal elements>
[Example 1]
(1) Manufacture of liquid crystal display element The liquid crystal aligning agent (AL-1) prepared above is applied on each electrode surface of two glass substrates each having a conductive film made of an ITO electrode. The solvent was removed by heating (prebaking) for 2 minutes on a hot plate at 80 ° C. One of the two substrates obtained (referred to as “substrate A”) was pre-baked and then heated (post-baked) on a hot plate at 150 ° C. for 10 minutes to give an average film thickness of 0.06 μm. A film was formed.
Further, spray cleaning (spraying process) is performed for 90 seconds by discharging isopropanol as a cleaning liquid at a pressure of 1 kgf / cm 2 (nozzle diameter 1 mm) after pre-baking to the other substrate (hereinafter referred to as “substrate B”). It was. Here, the spraying process using the cleaning liquid corresponds to the “contact process”. Then, it heated for 10 minutes on a 150 degreeC hotplate (post-baking), and formed the coating film with an average film thickness of 0.06 micrometer. By these operations, a pair (two) of substrates having a coating film was obtained. The used electrode pattern is the same type as the electrode pattern in the PSA mode.
Next, using the substrate A as the counter substrate and the substrate B as the TFT substrate among the pair of substrates, an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm is provided on each outer edge of the pair of substrates having the liquid crystal alignment film. After coating, the adhesive was cured by overlapping and pressing so that the liquid crystal alignment film faces each other. Next, the liquid crystal composition LC1 prepared above was filled between the pair of substrates from the liquid crystal inlet, and then the liquid crystal inlet was sealed with an acrylic photo-curing adhesive to produce a liquid crystal cell. Thereafter, an alternating current of 10 Hz is applied between the conductive films of the liquid crystal cell, and the liquid crystal is driven, and an ultraviolet irradiation device using a metal halide lamp as the light source is used, and the irradiation amount is 100,000 J / m 2 . And irradiated with ultraviolet rays. In addition, this irradiation amount is the value measured using the light meter measured on the basis of wavelength 365nm.
(2)プレチルト角の測定
 上記(1)で得られた液晶表示素子につき、基板A及び基板Bのプレチルト角をそれぞれ測定した。プレチルト角の測定は、非特許文献「T. J. Scheffer et. al. J. Appl. Phys. vo. 19, p. 2013(1980)」に記載の方法に準拠して、He-Neレーザー光を用いる結晶回転法により液晶分子の基板面からの傾き角の値を測定し、これをプレチルト角[°]とした。その結果、基板A(洗浄なし)のプレチルト角は89°、基板B(洗浄あり)のプレチルト角は83°であった。
(2) Measurement of pretilt angle The pretilt angles of the substrate A and the substrate B were measured for the liquid crystal display element obtained in (1) above. The pretilt angle is measured using a crystal using He—Ne laser light in accordance with the method described in the non-patent document “TJ Scheffer et. Al. J. Appl. Phys. Vo. 19, p. 2013 (1980)”. The value of the tilt angle of the liquid crystal molecules from the substrate surface was measured by the rotation method, and this was defined as the pretilt angle [°]. As a result, the pretilt angle of the substrate A (without cleaning) was 89 °, and the pretilt angle of the substrate B (with cleaning) was 83 °.
[実施例2,3,6~14,17,18]
 使用する液晶配向剤を下記表2に記載のとおり変更した点、及び用いる洗浄液を下記表2に記載のとおり変更した点以外は実施例1と同様にしてPSAモード液晶表示素子を製造し、プレチルト角を測定した。なお、実施例10では、洗浄液(D-4)による塗膜の洗浄後、超純水中で洗浄を行った後にポストベークを行った。測定結果は下記表3及び表4に示した。
[実施例4,5]
 プレベーク条件(PB条件)を下記表2に記載のとおりとした点以外は実施例1と同様にしてPSA型液晶表示素子を製造し、プレチルト角を測定した。その結果を下記表3に示した。
[実施例15]
 イソプロピルアルコールによる基板Bの洗浄(接触工程に相当)を、プレベーク後ポストベーク前に行う代わりにポストベーク後に行うとともに、イソプロピルアルコールによる洗浄処理後に風乾し、その後さらに100℃で10分間加熱した以外は、実施例1と同様にしてPSAモード液晶表示素子を製造し、プレチルト角を測定した。その結果を下記表4に示した。
[実施例16]
 洗浄方法として噴霧処理を行う代わりに、基板を洗浄液中に1分間浸漬する処理を行った点以外は実施例1と同様にしてPSAモード液晶表示素子を製造し、プレチルト角を測定した。その結果を下記表4に示した。
[Examples 2, 3, 6 to 14, 17, 18]
A PSA mode liquid crystal display device was produced in the same manner as in Example 1 except that the liquid crystal aligning agent used was changed as shown in Table 2 below, and the cleaning liquid used was changed as shown in Table 2 below. The corner was measured. In Example 10, after the coating film was washed with the washing liquid (D-4), it was washed in ultrapure water and then post-baked. The measurement results are shown in Tables 3 and 4 below.
[Examples 4 and 5]
A PSA type liquid crystal display device was produced in the same manner as in Example 1 except that the pre-bake conditions (PB conditions) were as shown in Table 2 below, and the pretilt angle was measured. The results are shown in Table 3 below.
[Example 15]
Substrate B was cleaned with isopropyl alcohol (corresponding to the contact process) after post-baking instead of after pre-baking and before post-baking, air-dried after cleaning with isopropyl alcohol, and then further heated at 100 ° C. for 10 minutes. A PSA mode liquid crystal display device was manufactured in the same manner as in Example 1, and the pretilt angle was measured. The results are shown in Table 4 below.
[Example 16]
A PSA mode liquid crystal display device was manufactured in the same manner as in Example 1 except that the substrate was immersed in the cleaning liquid for 1 minute instead of spraying as a cleaning method, and the pretilt angle was measured. The results are shown in Table 4 below.
[実施例19]
(1)液晶表示素子の製造
 実施例1と同様の操作により、液晶配向剤(AL-1)の塗布、プレベーク及びポストベークをこの順で行い、塗膜を有する基板Aを得るとともに、液晶配向剤(AL-1)の塗布、プレベーク、IPAによる塗膜の洗浄(接触工程)、及びポストベークをこの順で行い、塗膜を有する基板Bを得た。次いで、得られた一対の基板(基板A及び基板B)のうち、基板Aを対向基板、基板BをTFT基板として用い、上記一対の基板のうちの1枚の液晶配向膜を有する面の外周に直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、150℃で1時間かけて接着剤を熱硬化させた。次いで、液晶注入口より基板間の間隙に、ネガ型液晶(メルク社製、MLC-6608)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを130℃で加熱してから室温まで徐冷した。
 次に、一対の電極間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、100,000J/mの照射量にて紫外線を照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて計測した値である。
(2)プレチルト角の測定
 上記で得られた液晶表示素子を用いて、実施例1と同様にしてプレチルト角を測定したところ、洗浄処理を行わなかった基板Aのチルト角は89°であったのに対し、洗浄処理を行った基板Bのチルト角は86°であり、十分なチルト差を生じることが確認された(表4)。
[Example 19]
(1) Manufacture of liquid crystal display element By the same operation as in Example 1, application of liquid crystal aligning agent (AL-1), pre-baking and post-baking were performed in this order to obtain a substrate A having a coating film, and liquid crystal alignment Coating of the agent (AL-1), pre-baking, washing of the coating film with IPA (contact process), and post-baking were performed in this order to obtain a substrate B having a coating film. Next, of the pair of substrates obtained (substrate A and substrate B), the substrate A is used as the counter substrate, the substrate B is used as the TFT substrate, and the outer periphery of the surface having one liquid crystal alignment film of the pair of substrates. Then, an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 μm was applied by screen printing, the liquid crystal alignment film surfaces of the pair of substrates were opposed, and the adhesive was thermally cured at 150 ° C. for 1 hour. Next, a negative liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) was filled into the gap between the substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment at the time of liquid crystal injection, this was heated at 130 ° C. and then gradually cooled to room temperature.
Next, an alternating current of 10 Hz is applied between the pair of electrodes, and the liquid crystal is driven, and an ultraviolet irradiation device using a metal halide lamp as a light source is used to achieve an irradiation dose of 100,000 J / m 2. And irradiated with ultraviolet rays. In addition, this irradiation amount is the value measured using the light meter measured on the basis of wavelength 365nm.
(2) Measurement of pretilt angle Using the liquid crystal display element obtained above, the pretilt angle was measured in the same manner as in Example 1. As a result, the tilt angle of the substrate A that was not subjected to the cleaning treatment was 89 °. On the other hand, the tilt angle of the substrate B subjected to the cleaning treatment was 86 °, and it was confirmed that a sufficient tilt difference was generated (Table 4).
[実施例20,22~29]
 基板A及び基板Bの両方をそれぞれ下記表2に記載の洗浄液で洗浄した点以外は、実施例1で基板Bを洗浄したときと同じPB条件及び洗浄態様で洗浄を行うことにより、PSAモード液晶表示素子を製造し、プレチルト角を測定した。なお、実施例24では、基板Bについて、洗浄液による塗膜の洗浄後、超純水中で洗浄を行った後にポストベークを行った。その結果は下記表5に示した。
[実施例21]
 基板A及び基板Bの両方をそれぞれ下記表2に記載の洗浄液で洗浄した点以外は、実施例4で基板Bを洗浄したときと同じPB条件及び洗浄態様で洗浄を行うことにより、PSAモード液晶表示素子を製造し、プレチルト角を測定したところ、基板Aと基板Bとで3°のチルト差が生じた(表5)。
[比較例1]
 基板A及び基板Bの両方を、実施例1で基板Bを洗浄したときと同じPB条件及び洗浄態様によりイソプロピルアルコールで洗浄した以外は、実施例1と同様の操作によりPSAモード液晶表示素子を製造し、プレチルト角を測定したところ、基板間でプレチルト角に差は生じなかった(表5)。
[Examples 20, 22 to 29]
A PSA mode liquid crystal is obtained by performing cleaning under the same PB conditions and cleaning manner as in cleaning the substrate B in Example 1, except that both the substrate A and the substrate B are cleaned with the cleaning liquid described in Table 2 below. A display element was manufactured and the pretilt angle was measured. In Example 24, the substrate B was post-baked after cleaning the coating film with a cleaning liquid and then cleaning in ultrapure water. The results are shown in Table 5 below.
[Example 21]
A PSA mode liquid crystal is obtained by performing cleaning under the same PB conditions and cleaning manner as in cleaning the substrate B in Example 4 except that both the substrate A and the substrate B are cleaned with the cleaning liquid described in Table 2 below. When the display element was manufactured and the pretilt angle was measured, a tilt difference of 3 ° was generated between the substrate A and the substrate B (Table 5).
[Comparative Example 1]
A PSA mode liquid crystal display device is manufactured by the same operation as in Example 1 except that both the substrate A and the substrate B are cleaned with isopropyl alcohol under the same PB conditions and cleaning mode as when the substrate B was cleaned in Example 1. When the pretilt angle was measured, there was no difference in the pretilt angle between the substrates (Table 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2中、「PB前」は、洗浄液による塗膜の洗浄をプレベーク後ポストベーク前に行ったことを示し、「PB後」は、ポストベーク後に行ったことを示す。洗浄液の略称は以下のとおりである。
D-1:イソプロピルアルコール(IPA)
D-2:アセトン
D-3:シクロヘキサン
D-4:23℃の0.7質量%水酸化テトラメチルアンモニウム水溶液
D-5:イソプロピルアルコールと水の混合溶液(IPA:水=75:25(質量比))
D-6:イソプロピルアルコールと水の混合溶液(IPA:水=50:50(質量比))
In Table 2, “Before PB” indicates that the coating film was washed with the cleaning solution after pre-bake and before post-bake, and “After PB” indicates that it was performed after post-bake. Abbreviations for the cleaning liquid are as follows.
D-1: Isopropyl alcohol (IPA)
D-2: Acetone D-3: Cyclohexane D-4: 0.7 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. D-5: Mixed solution of isopropyl alcohol and water (IPA: Water = 75: 25 (mass ratio) ))
D-6: Mixed solution of isopropyl alcohol and water (IPA: water = 50: 50 (mass ratio))
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の結果から、本開示の方法によれば、基板間で十分なチルト差を生じさせることができることが確認された。 From the above results, it was confirmed that a sufficient tilt difference can be generated between the substrates according to the method of the present disclosure.

Claims (6)

  1.  第1基板及び第2基板の各基板上に液晶配向剤を塗布して塗膜を形成する膜形成工程と、
     前記第1基板及び前記第2基板のうち一方の基板についてのみ当該基板上に形成された塗膜を溶剤と接触させるか、又は前記第1基板及び前記第2基板のそれぞれの基板上に形成された塗膜を、基板間で異なる条件で溶剤と接触させる接触工程と、
     前記接触工程の後に、前記第1基板と前記第2基板とを前記塗膜が相対するように対向配置して液晶セルを構築する工程と、を含む液晶素子の製造方法。
    A film forming step of forming a coating film by applying a liquid crystal aligning agent on each of the first substrate and the second substrate;
    The coating film formed on only one of the first substrate and the second substrate is brought into contact with a solvent or formed on each of the first substrate and the second substrate. A contact process in which the coated film is contacted with a solvent under different conditions between the substrates,
    And a step of constructing a liquid crystal cell by arranging the first substrate and the second substrate to face each other so that the coating film faces each other after the contacting step.
  2.  前記接触工程は、前記第1基板及び前記第2基板のうち一方の基板のみについて当該基板上に形成された塗膜を溶剤と接触させるか、又は前記第1基板及び前記第2基板のそれぞれの基板上に形成された塗膜を、基板間で溶剤組成が異なる溶剤に接触させる工程である、請求項1に記載の液晶素子の製造方法。 In the contacting step, the coating film formed on only one of the first substrate and the second substrate is brought into contact with a solvent, or each of the first substrate and the second substrate is contacted. The manufacturing method of the liquid crystal element of Claim 1 which is the process of making the coating film formed on the board | substrate contact the solvent from which a solvent composition differs between board | substrates.
  3.  前記液晶配向剤は、第1成分と、前記第1成分とは異なる第2成分とを含み、
     前記第1基板及び前記第2基板のうち少なくとも一方の塗膜と接触させる溶剤が、前記第1成分に対する溶解性と前記第2成分に対する溶解性とが異なる溶剤である、請求項2に記載の液晶素子の製造方法。
    The liquid crystal aligning agent includes a first component and a second component different from the first component,
    3. The solvent according to claim 2, wherein the solvent to be brought into contact with at least one of the first substrate and the second substrate is a solvent having different solubility in the first component and solubility in the second component. A method for manufacturing a liquid crystal element.
  4.  前記液晶配向剤は、架橋性基、光配向性基及びラジカル発生基よりなる群から選ばれる少なくとも一種を有する化合物[A]と、重合体[P](ただし、前記化合物[A]に該当するものを除く。)と、を含有する、請求項1~3のいずれか一項に記載の液晶素子の製造方法。 The liquid crystal aligning agent includes a compound [A] having at least one selected from the group consisting of a crosslinkable group, a photoalignable group, and a radical generating group, and a polymer [P] (provided that the compound [A] is included). The method for producing a liquid crystal element according to any one of claims 1 to 3, comprising:
  5.  前記液晶配向剤は、主鎖が異なる2種以上の重合体を含有する、請求項1~4のいずれか一項に記載の液晶素子の製造方法。 The method for producing a liquid crystal element according to any one of claims 1 to 4, wherein the liquid crystal aligning agent contains two or more kinds of polymers having different main chains.
  6.  前記塗膜に接触させる溶剤として、有機溶媒又はアルカリ性水溶液を用いる、請求項1~5のいずれか一項に記載の液晶素子の製造方法。 The method for producing a liquid crystal element according to any one of claims 1 to 5, wherein an organic solvent or an alkaline aqueous solution is used as the solvent to be brought into contact with the coating film.
PCT/JP2017/023099 2016-07-19 2017-06-22 Method for manufacturing liquid crystal element WO2018016263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141543 2016-07-19
JP2016141543 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016263A1 true WO2018016263A1 (en) 2018-01-25

Family

ID=60993288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023099 WO2018016263A1 (en) 2016-07-19 2017-06-22 Method for manufacturing liquid crystal element

Country Status (2)

Country Link
TW (1) TW201804552A (en)
WO (1) WO2018016263A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951494A (en) * 2018-09-27 2020-04-03 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, method for producing liquid crystal element, optical film, and polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320490A (en) * 1994-06-30 1996-12-03 Toshiba Corp Liquid crystal display device and its production
US20160097954A1 (en) * 2014-10-01 2016-04-07 Samsung Display Co., Ltd. Display device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320490A (en) * 1994-06-30 1996-12-03 Toshiba Corp Liquid crystal display device and its production
US20160097954A1 (en) * 2014-10-01 2016-04-07 Samsung Display Co., Ltd. Display device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951494A (en) * 2018-09-27 2020-04-03 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, method for producing liquid crystal element, optical film, and polymer

Also Published As

Publication number Publication date
TW201804552A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
JP6547461B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and method of producing retardation film
JP6597913B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal element
JP6672801B2 (en) Liquid crystal alignment agent
TWI746668B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
TWI739929B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and polymer
WO2018016263A1 (en) Method for manufacturing liquid crystal element
TWI785018B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and polyorganosiloxane
CN111108433B (en) Method for manufacturing liquid crystal element
JP2017126060A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element, and liquid crystal alignment film and method for manufacturing liquid crystal element
JP6617529B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and method for producing liquid crystal aligning film
WO2018221123A1 (en) Method for producing liquid crystal element and liquid crystal aligning agent
CN112400135B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for manufacturing liquid crystal element
CN111542779B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
JP7322875B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2018168440A1 (en) Liquid crystal element and method for producing same
JP2023107736A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for producing liquid crystal element
JP2021103205A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2017086040A1 (en) Method for manufacturing light control element, and light control element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17830783

Country of ref document: EP

Kind code of ref document: A1