WO2019096004A1 - 资源配置方法、装置和系统 - Google Patents

资源配置方法、装置和系统 Download PDF

Info

Publication number
WO2019096004A1
WO2019096004A1 PCT/CN2018/112941 CN2018112941W WO2019096004A1 WO 2019096004 A1 WO2019096004 A1 WO 2019096004A1 CN 2018112941 W CN2018112941 W CN 2018112941W WO 2019096004 A1 WO2019096004 A1 WO 2019096004A1
Authority
WO
WIPO (PCT)
Prior art keywords
reserved
resource unit
resource
symbols
subcarrier spacing
Prior art date
Application number
PCT/CN2018/112941
Other languages
English (en)
French (fr)
Inventor
李俊超
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18879651.0A priority Critical patent/EP3609228A4/en
Publication of WO2019096004A1 publication Critical patent/WO2019096004A1/zh
Priority to US16/713,924 priority patent/US11363499B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a resource configuration method, apparatus, and system.
  • air interface resources are utilized for data transmission between communication devices.
  • the communication device may be a network device or a terminal, and the air interface resource may be at least one of a code resource, a time domain resource, and a frequency domain resource, and the air interface resource may also be simply referred to as a resource.
  • resources may be configured for the terminal, and the network device and the terminal may perform data transmission on the configured resources.
  • the resource configured for the terminal may be a pre-configured resource, or may be a resource configured by the network device for the terminal by using signaling.
  • resource allocation for the terminal plays an important role in data transmission. Therefore, in the wireless communication system, resource allocation for the terminal can be studied intensively.
  • the application provides a resource configuration method, device and system, aiming at reducing conflicts between data of different terminals in a data transmission process.
  • the present application provides a resource configuration method, where a resource element (RE) is determined in a resource unit, where the reserved RE is included in a reserved resource, where
  • the resource unit frequency domain includes X resource blocks RB, the resource unit time domain includes Y symbols, wherein X and Y are positive integers, Y is greater than 1 when X is equal to 1, and X is greater than 1 when Y is equal to 1;
  • the data transmission is received in all or part of the REs other than the reserved resources.
  • the method further comprises: receiving resource unit size configuration signaling, the resource unit size configuration signaling being used to indicate at least one of the X and Y.
  • the resource unit size can be flexibly configured.
  • determining the reserved RE in the resource unit comprises determining the reserved RE in the resource unit according to the reserved RE pattern.
  • the reserved RE is y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y.
  • y1 is greater than 1, the subcarriers corresponding to the reserved REs in the different symbols are the same in the y1 symbols; or the subcarriers corresponding to the reserved REs in the at least 2 symbols are different in the y1 symbols .
  • the reserved RE pattern is included in M available reserved RE patterns; the method further comprising: receiving a reference signal indication, the M available The reserved RE pattern indicates that the reference signal indicates some or all of the corresponding reference signal patterns.
  • the method further comprises: receiving reserved RE configuration information, the reserved RE configuration information being used to indicate in the resource unit Configured reserved RE.
  • the reserved RE can be flexibly configured.
  • the method further comprises: receiving resource unit frequency allocation information, for determining allocation in the frequency resource by using X RBs as granularity
  • the resource unit receives the resource unit time domain allocation information, and is used to determine the allocated resource unit in the time domain resource with the Y symbols as the granularity.
  • the subcarrier spacing corresponding to the resource unit is the minimum subcarrier spacing supported by the current frequency band, or the subcarrier corresponding to the resource unit, according to any one of the foregoing aspects or the first aspect.
  • the interval is the subcarrier spacing used by the transmission system message.
  • the method further comprising: receiving resource unit subcarrier spacing configuration signaling, the resource unit
  • the subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the present application provides a resource configuration method, including: determining a reserved RE in a resource unit, where the reserved RE is included in a reserved resource, where the resource unit frequency domain includes X resource blocks RB, the resource unit time domain includes Y symbols, wherein X and Y are positive integers, Y is greater than 1 when X is equal to 1, and X is greater than 1 when Y is equal to 1; Send data in all or part of the RE.
  • the method further comprises: transmitting resource unit size configuration signaling, the resource unit size configuration signaling being used to indicate at least one of the X and Y.
  • the determining the reserved RE in the resource unit comprises: determining a reserved RE in the resource unit according to the reserved RE pattern.
  • the reserved RE is y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y.
  • y1 is greater than 1, the subcarriers corresponding to the reserved REs in the different symbols are the same in the y1 symbols; or the subcarriers corresponding to the reserved REs in the at least 2 symbols are different in the y1 symbols .
  • the reserved RE pattern is included in the M available reserved RE patterns; the method further comprising: transmitting a reference signal indication, the M available The reserved RE pattern indicates that the reference signal indicates some or all of the corresponding reference signal patterns.
  • the method further comprises: transmitting reserved RE configuration information, the reserved RE configuration information being used to indicate in the resource unit Configured reserved RE.
  • the method further comprises: transmitting resource unit frequency allocation information, the resource unit frequency allocation information being used for granularity of X RBs Determining the allocated resource unit in the frequency resource; transmitting the resource unit time domain allocation information, where the resource unit time domain allocation information is used to determine the allocated resource unit in the time domain resource with the Y symbols as the granularity.
  • the subcarrier spacing corresponding to the resource unit is the minimum subcarrier spacing supported by the current frequency band, or the subcarrier corresponding to the resource unit, according to any one of the foregoing aspects of the second aspect or the second aspect.
  • the interval is the subcarrier spacing used by the transmission system message.
  • the method further comprises: transmitting resource unit subcarrier spacing configuration signaling, the resource unit
  • the subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the present application provides an apparatus capable of implementing the functions described in the first aspect above and the functions described in the various aspects of the first aspect.
  • This function can be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the hardware structure or software module includes one or more modules corresponding to the functions described above.
  • the apparatus comprises: a reservation RE determination module and a transceiver module.
  • the reserved RE determining module is configured to determine a reserved RE in the resource unit, where the reserved RE is included in the reserved resource, where the resource unit frequency domain includes X resource blocks RB, and the resource unit time domain includes Y symbols, where X and Y are positive integers, Y is greater than 1 when X is equal to 1, and X is greater than 1 when Y is equal to 1.
  • the transceiver module is configured to receive data in all or part of the REs other than the reserved resources.
  • the transceiver module is further configured to receive resource unit size configuration signaling, where the resource unit size configuration signaling is used to indicate at least one of the X and the Y.
  • the apparatus can also include a resource unit size determination module for determining the X and the Y.
  • the resource unit size determining module determines at least one of the X and Y according to the resource unit size configuration signaling received by the transceiver module, or the resource unit size determining module determines the X and according to a pre-configuration At least one of Y.
  • the reserved RE determining module determines the reserved RE in the resource unit according to the reserved RE pattern.
  • the reserved RE is y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y.
  • y1 is greater than 1, in the y1 symbols, subcarriers corresponding to reserved REs in different symbols are the same; or in the y1 symbols, subcarriers corresponding to reserved REs in at least 2 symbols are different .
  • the reserved RE pattern is included in M available reserved RE patterns, and the transceiver module is further configured to receive a reference signal indication, the M The available reserved RE patterns indicate some or all of the corresponding reference signal patterns for the reference signal.
  • the transceiver module is further configured to receive reserved RE configuration information, where the reserved RE configuration information is used to indicate the resource Reserved RE configured in the unit.
  • the reserved RE determining module determines a reserved RE in the resource unit according to the reserved RE configuration information received by the transceiver module.
  • the transceiver module is further configured to receive resource unit frequency allocation information, where the resource unit frequency allocation information is used to use the X RBs as the granularity in the frequency resource. Determine the allocated resource unit.
  • the transceiver module is further configured to receive resource unit time domain allocation information, where the resource unit time domain allocation information is used to determine the allocated resource unit in the time domain resource with the Y symbols as the granularity.
  • the device may further include a resource unit location determining module, configured to determine a resource unit allocated in the time-frequency resource. Exemplarily, the resource unit location determining module is configured to determine the allocated resource unit in the frequency resource according to the resource unit frequency allocation information. The resource unit location determining module is configured to determine the allocated resource unit in the time domain resource according to the resource unit time domain allocation information.
  • the transceiver module is further configured to receive resource unit subcarrier spacing configuration signaling according to any one of the previous designs in the third aspect, where the resource unit subcarrier spacing configuration signaling is used to indicate the The subcarrier spacing corresponding to the resource unit.
  • the apparatus further includes a resource unit subcarrier spacing determining module, configured to determine a subcarrier spacing corresponding to the resource unit. Exemplarily, the resource unit subcarrier spacing determining module determines that the subcarrier spacing corresponding to the resource unit is a minimum subcarrier spacing supported by the current frequency band or a subcarrier spacing used by the transmission system message. The resource unit subcarrier spacing determining module determines a subcarrier spacing corresponding to the resource unit according to the resource unit subcarrier spacing configuration signaling received by the transceiver module.
  • the present application provides an apparatus capable of implementing the functions described in the second aspect above and the functions described in the respective designs of the second aspect.
  • This function can be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the hardware structure or software module includes one or more modules corresponding to the functions described above.
  • the apparatus comprises: a reservation RE determination module and a transceiver module.
  • the reserved RE determining module is configured to determine a reserved RE in the resource unit, where the reserved RE is included in the reserved resource, where the resource unit frequency domain includes X resource blocks RB, and the resource unit time domain includes Y symbols, where X and Y are positive integers, Y is greater than 1 when X is equal to 1, and X is greater than 1 when Y is equal to 1.
  • the transceiver module is configured to send data in all or part of the REs other than the reserved resources.
  • the transceiver module is further configured to send resource unit size configuration signaling, where the resource unit size configuration signaling is used to indicate at least one of the X and the Y.
  • the reserved RE determining module determines the reserved RE in the resource unit according to the reserved RE pattern.
  • the reserved RE is y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y.
  • y1 is greater than 1, in the y1 symbols, subcarriers corresponding to reserved REs in different symbols are the same; or in the y1 symbols, subcarriers corresponding to reserved REs in at least 2 symbols are different .
  • the reserved RE pattern is included in M available reserved RE patterns, and the transceiver module is further configured to send a reference signal indication, the M The available reserved RE patterns indicate some or all of the corresponding reference signal patterns for the reference signal.
  • the transceiver module is further configured to send reserved RE configuration information, where the reserved RE configuration information is used to indicate the resource Reserved RE configured in the unit.
  • the transceiver module is further configured to send resource unit frequency allocation information, where the resource unit frequency allocation information is used to use the X RBs as the granularity in the frequency resource. Determine the allocated resource unit.
  • the transceiver module is further configured to send resource unit time domain allocation information, where the resource unit time domain allocation information is used to determine the allocated resource unit in the time domain resource with the Y symbols as the granularity.
  • the transceiver module is further configured to send resource unit subcarrier spacing configuration signaling according to any one of the foregoing four aspects, where the resource unit subcarrier spacing configuration signaling is used to indicate the The subcarrier spacing corresponding to the resource unit.
  • the apparatus further includes a resource unit subcarrier spacing determining module, configured to determine a subcarrier spacing corresponding to the resource unit. Exemplarily, the resource unit subcarrier spacing determining module determines that the subcarrier spacing corresponding to the resource unit is a minimum subcarrier spacing supported by the current frequency band or a subcarrier spacing used by the transmission system message.
  • the application provides an apparatus comprising: a processor; a memory coupled to the processor, the processor executing the memory stored instructions; a transceiver, a transceiver coupled to the processor, wherein the processor is configured to
  • the reserved resource element RE is determined in the unit, where the reserved RE is included in the reserved resource, where the resource unit frequency domain includes X resource blocks RB, and the resource unit time domain includes Y symbols, where, X And Y is a positive integer, Y is greater than 1 when X is equal to 1, and X is greater than 1 when Y is equal to 1.
  • the processor is further configured to utilize the transceiver to receive data in all or a portion of the REs other than the reserved resources.
  • the processor is further configured to receive the resource unit size configuration signaling by using the transceiver, the resource unit size configuration signaling being used to indicate at least one of the X and the Y.
  • the processor is further configured to determine at least one of the X and Y according to the resource unit size configuration signaling.
  • the processor is configured to determine the reserved resource element RE in the resource unit, including: the processor is configured to A reserved RE is determined in the resource unit.
  • the processor determines, according to the reserved RE pattern, that the reserved RE is in the y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y.
  • y1 is greater than 1, in the y1 symbols, subcarriers corresponding to reserved REs in different symbols are the same; or in the y1 symbols, subcarriers corresponding to reserved REs in at least 2 symbols are different .
  • the reserved RE pattern is included in M available reserved RE patterns
  • the processor is further configured to receive by using a transceiver
  • the reference signal indicates that the M available reserved RE patterns indicate some or all of the corresponding reference signal patterns for the reference signal.
  • the processor is further configured to receive, by using a transceiver, reserved RE configuration information, where the reserved RE configuration information is used to indicate Reserved RE configured in the resource unit.
  • the processor is further configured to determine a reserved RE in the resource unit according to the reserved RE configuration information.
  • the processor is further configured to receive resource unit frequency allocation information by using a transceiver according to any one of the fifth aspect or the fifth aspect, wherein the resource unit frequency allocation information is used by X
  • the RBs are granular units that determine the allocated resource elements in the frequency resources.
  • the processor is further configured to determine, according to the resource unit frequency allocation information, a location of the allocated resource unit at a frequency.
  • the processor is further configured to receive resource unit time domain allocation information by using a transceiver, where the resource unit time domain allocation information is used to determine the allocated resource unit in the time domain resource with the Y symbols as the granularity.
  • the processor is further configured to determine, according to the resource unit time domain allocation information, a location of the allocated resource unit in a time domain.
  • the processor is further configured to determine that the subcarrier spacing corresponding to the resource unit is the minimum subcarrier spacing supported by the current frequency band, or The subcarrier spacing corresponding to the resource unit is a subcarrier spacing used by the transmission system message.
  • the processor is further configured to receive the resource unit subcarrier spacing configuration signaling by using the transceiver
  • the resource unit subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the processor is further configured to determine, according to the resource unit subcarrier spacing configuration signaling, a subcarrier spacing corresponding to the resource unit.
  • the application provides an apparatus comprising: a processor; a memory, a memory coupled to the processor, the processor executing program instructions stored in the memory; a transceiver, a transceiver coupled to the processor, wherein the processor is configured to a resource element RE is determined in the resource unit, where the reserved RE is included in the reserved resource, where the resource unit frequency domain includes X resource blocks RB, and the resource unit time domain includes Y symbols, where X and Y are positive integers, Y is greater than 1 when X is equal to 1, and X is greater than 1 when Y is equal to 1.
  • the processor is further configured to utilize the transceiver to transmit data in all or a portion of the REs other than the reserved resources.
  • the processor is further configured to transmit the resource unit size configuration signaling by using the transceiver, where the resource unit size configuration signaling is used to indicate at least one of the X and the Y.
  • the processor is configured to determine a reserved resource element RE in the resource unit, including: the processor is configured to A reserved RE is determined in the resource unit.
  • the processor determines, according to the reserved RE pattern, that the reserved RE is in the y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y.
  • y1 is greater than 1, in the y1 symbols, subcarriers corresponding to reserved REs in different symbols are the same; or in the y1 symbols, subcarriers corresponding to reserved REs in at least 2 symbols are different .
  • the reserved RE pattern is included in M available reserved RE patterns, and the processor is further configured to transmit by using a transceiver
  • the reference signal indicates that the M available reserved RE patterns indicate some or all of the corresponding reference signal patterns for the reference signal.
  • the processor is further configured to send, by using a transceiver, reserved RE configuration information, where the reserved RE configuration information is used to indicate that Reserved RE configured in the resource unit.
  • the processor is further configured to transmit resource unit frequency allocation information by using a transceiver according to any one of the sixth aspect or the sixth aspect, wherein the resource unit frequency allocation information is used by X
  • the RBs are granular units that determine the allocated resource elements in the frequency resources.
  • the processor is further configured to use the transceiver to send resource unit time domain allocation information, where the resource unit time domain allocation information is used to determine the allocated resource unit in the time domain resource with the Y symbols as the granularity.
  • the processor is further configured to determine that the subcarrier spacing corresponding to the resource unit is the minimum subcarrier spacing supported by the current frequency band, or The subcarrier spacing corresponding to the resource unit is a subcarrier spacing used by the transmission system message.
  • the processor is further configured to transmit the resource unit subcarrier spacing configuration signaling by using the transceiver
  • the resource unit subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the present application provides a communication system comprising the apparatus of the above third aspect and the apparatus of the above fourth aspect.
  • the present application provides a communication system comprising the apparatus of the above fifth aspect and the apparatus of the sixth aspect.
  • the present application provides a chip system including a processor, and a memory, for implementing at least one of the first aspect and the first aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system including a processor, and further comprising a memory for implementing at least one of the second aspect and the second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform at least one of the first aspect and the first aspect of the design.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform at least one of the second aspect and the second aspect of the design.
  • FIG. 1 is a diagram showing an example of a location of a frequency resource provided by an embodiment of the present application
  • FIG. 2 is a diagram showing an example of a structure of a bandwidth resource in a system frequency resource according to an embodiment of the present application
  • FIG. 3 is a diagram showing an example of bandwidth resources configured by a gNB for a first UE and a second UE according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a resource configuration method provided by an embodiment of the present application.
  • FIG. 5 is a diagram showing an example of a CSI-RS pattern corresponding to a 2-antenna port provided by an embodiment of the present application
  • FIG. 6 is a diagram showing an example of a resource configuration method provided by an embodiment of the present application for resolving conflicts between UEs with different parameters
  • FIG. 7 is a diagram showing an example of a resource configuration method provided by an embodiment of the present application for resolving conflicts between UEs with different parameters
  • FIG. 8 is a diagram showing an example of a resource configuration method according to an embodiment of the present application for resolving conflicts between UEs with different parameters
  • FIG. 9 is a diagram showing an example of a resource configuration method provided by an embodiment of the present application for resolving conflicts between UEs with different parameters
  • FIG. 10 is a diagram showing an example of a reserved RE pattern provided by an embodiment of the present application.
  • FIG. 11 is a diagram showing an example of a reserved RE pattern provided by an embodiment of the present application.
  • FIG. 12 is a diagram showing an example of numbering a frequency resource by using a resource unit as a granularity according to an embodiment of the present application
  • FIG. 13 is a diagram showing an example of numbering a time domain resource by using a resource unit as a granularity according to an embodiment of the present application
  • FIG. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • 15 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the network architecture and the service scenario described in the embodiments of the present application do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are applicable to similar technical problems as the network architecture evolves or a new service scenario occurs.
  • the technical solution provided by the embodiment of the present application may be applied to a wireless communication system that can allocate air interface resources.
  • the technical solution provided by the embodiment of the present application may be applied to the fifth generation mobile communication technology (5G) system, and may also be applied to other orthogonal frequency division multiplexing except the 5G system. (orthogonal frequency division multiplexing, OFDM) system.
  • 5G system can also be called new radio (NR).
  • NR new radio
  • wireless communication can be performed between the communication devices using air interface resources.
  • the communication device includes a network device and a terminal, and the network device may also be referred to as a network side device.
  • Wireless communication between communication devices includes wireless communication between the network device and the terminal, wireless communication between the network device and the network device, and wireless communication between the terminal and the terminal.
  • the communication device that manages and/or allocates the air interface resources may also be referred to as a scheduling entity, and the scheduled communication device may also be referred to as a slave entity.
  • the network device and the terminal when the network device and the terminal perform wireless communication, the network device may also be referred to as a scheduling entity, and the terminal may also be referred to as a slave entity.
  • the technical solution provided by the embodiment of the present application can be used for performing wireless communication between a scheduling entity and a subordinate entity.
  • the technical solution provided by the embodiment of the present application is described by taking the wireless communication between the network device and the terminal as an example.
  • the term “wireless communication” may also be simply referred to as "communication”
  • communication may also be described as "data transmission”.
  • the terminal involved in the embodiment of the present application may also be referred to as a terminal device, and is a device having a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or on-board, or deployed on a water surface (such as a ship, etc.) ); can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal may be a user equipment (UE), and the UE includes a handheld device, an in-vehicle device, a wearable device, or a computing device having a wireless communication function.
  • the UE can be a mobile phone, a tablet, or a computer with wireless transceiving capabilities.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in an unmanned vehicle, a wireless terminal in telemedicine, and an intelligent device.
  • the device that implements the function of the terminal may be a terminal, or may be a device capable of supporting the terminal to implement the function.
  • the device that implements the function of the terminal is a terminal, and the terminal is a UE as an example, and the technical solution provided by the embodiment of the present application is described.
  • the network device involved in the embodiment of the present application includes a base station (BS), which is a device deployed in the radio access network and capable of performing wireless communication with the terminal.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the macro base station and the micro base station can manage the air interface resource, allocate the air interface resource to the micro base station, and the macro base station and the micro base station can perform data transmission on the allocated air interface resource.
  • the macro base station may also be referred to as a scheduling entity
  • the micro base station may also be referred to as a slave entity.
  • the base station involved in the embodiment of the present application may be a base station in a 5G system, and the base station in the 5G system may also be referred to as a transmission reception point (TRP) or a gNB.
  • TRP transmission reception point
  • the device that implements the function of the network device may be a network device, or may be a device capable of supporting the network device to implement the function.
  • the device that implements the function of the network device is a network device, and the network device is a gNB as an example, and the technical solution provided by the embodiment of the present application is described.
  • air interface resources include frequency resources.
  • the frequency resource can be located in a set frequency range, which can also be referred to as a band or a frequency band.
  • the frequency resource may also be referred to as a frequency domain resource.
  • the center point of the frequency resource may be referred to as a center frequency point, and the width of the frequency resource may be referred to as a bandwidth (BW).
  • BW bandwidth
  • Figure 1 shows a schematic representation of the location of a frequency resource. As shown in FIG.
  • the frequency resource may be part or all of the resources in the frequency band, the bandwidth of the frequency resource is W, and the frequency of the center frequency point is F.
  • the frequency of the boundary point of the frequency resource is FW/2 and F+W/2, respectively, and can also be described as the frequency of the highest frequency point in the frequency resource is F+W/2, and the frequency of the lowest frequency point in the frequency resource. For FW/2.
  • the frequency resource for performing downlink communication and the frequency resource for performing uplink communication may be the same or different, and the present application is not limited thereto.
  • the gNB manages the system frequency resource, and allocates the frequency resource to the UE from the system frequency resource, so that the gNB and the UE can use the allocated frequency resource to communicate.
  • the system frequency resource may be a frequency resource that the gNB can manage and allocate, and may also be a frequency resource that can be used for performing communication between the gNB and the UE.
  • the system frequency resource may also be referred to as a system resource or a transmission resource.
  • the width of the system frequency resource may be referred to as the bandwidth of the system frequency resource, and may also be referred to as the system bandwidth or the transmission bandwidth.
  • a possible design of the gNB to allocate a frequency resource to the UE is that the gNB configures the bandwidth resource for the UE from the system frequency resource, and the gNB schedules the UE in the configured bandwidth resource. It can also be described that the gNB configures the bandwidth resource for the UE from the system frequency resource, so that the gNB can allocate some or all of the configured bandwidth resources to the UE for communication between the gNB and the UE.
  • the bandwidth resource is included in the system frequency resource, and may be a continuous or discontinuous part of the system frequency resource, or may be all resources in the system frequency resource.
  • the bandwidth resource may also be referred to as a bandwidth portion, a frequency resource portion, a partial frequency resource, a carrier bandwidth portion, or other names, which is not limited in this application.
  • the bandwidth resource may also be referred to as a subband, a narrowband, or other name, which is not limited in this application.
  • FIG. 2 is a schematic structural diagram of bandwidth resources in a system frequency resource. As shown in FIG. 2, the system frequency resource includes three different bandwidth resources: bandwidth resource 0, bandwidth resource 1 and bandwidth resource 2. In an actual application, any integer number of bandwidth resources may be included in the system frequency resource, which is not limited in this application.
  • the bandwidth resource A and the bandwidth resource B are different.
  • the bandwidth resource A and the bandwidth resource B are different according to at least one of the following situations: part of the frequency resource or all frequency resources included in the bandwidth resource A are not included in the bandwidth resource B.
  • the partial frequency resource or all frequency resources included in the bandwidth resource B are not included in the bandwidth resource A, and the parameters of the bandwidth resource A and the parameters of the bandwidth resource B are different.
  • the parameter includes at least one of a subcarrier spacing and a cyclic prefix (CP).
  • CP cyclic prefix
  • the English name of this parameter can also be called numerology.
  • the bandwidth resource A and the bandwidth resource B may be different in at least one of the following cases: at least one subcarrier included in the bandwidth resource A is not included in the bandwidth resource B, and the bandwidth resource B At least one subcarrier included is not included in the bandwidth resource A, and is different from the parameters of the bandwidth resource A and the bandwidth resource B.
  • one possible design of the above gNB to allocate frequency resources to the UE may be applied to, but not limited to, the following three scenarios:
  • the existing communication system proposes a system bandwidth with a large bandwidth design to provide more system resources. This can provide a higher data transfer rate.
  • the bandwidth supported by the UE may be smaller than the system bandwidth in consideration of the cost of the UE and the traffic volume of the UE. The greater the bandwidth supported by the UE, the stronger the processing capability of the UE, the higher the data transmission rate of the UE, and the higher the design cost of the UE.
  • the bandwidth supported by the UE may also be referred to as the bandwidth capability of the UE.
  • the system bandwidth may be up to 400 MHz, and the bandwidth capability of the UE may be 20 MHz, 50 MHz, or 100 MHz, and the like.
  • the bandwidth capabilities of different UEs may be the same or different, and are not limited in this embodiment.
  • the bandwidth of the UE is less than the system bandwidth
  • the gNB can configure the bandwidth resource for the UE from the system frequency resource, and the bandwidth of the bandwidth resource is less than or equal to the bandwidth capability of the UE.
  • the gNB may allocate some or all of the resources allocated for the UE to the UE for performing communication between the gNB and the UE.
  • numerology can be set independently.
  • the gNB can configure multiple bandwidth resources in the system frequency resource, and independently configure the numerology for each of the multiple bandwidth resources, and support multiple service types in the system frequency resource. / or communication scenarios.
  • the numerology of different bandwidth resources may be the same or different, and the application does not limit the application.
  • the gNB can determine the numerology A for communication based on the service type and/or the communication scenario corresponding to the communication, so that the corresponding bandwidth resource can be configured for the UE based on the numerology A.
  • the numerology of the corresponding bandwidth resource is configured as numerology A.
  • the gNB may allocate some or all of the resources allocated for the UE to the UE for performing communication between the gNB and the UE.
  • the gNB can configure the bandwidth resource for the UE based on the traffic of the UE, and is used to save power consumption of the UE.
  • the UE can receive the control information only in the smaller bandwidth resource, and can reduce the task amount of the radio frequency processing of the UE and the task amount of the baseband processing, so that the power consumption of the UE can be reduced.
  • the gNB can configure a bandwidth resource with a smaller bandwidth for the UE, and can reduce the workload of the radio processing of the UE and the workload of the baseband processing, thereby reducing the power consumption of the UE.
  • the gNB can configure a bandwidth resource with a larger bandwidth for the UE, thereby providing a higher data transmission rate.
  • the gNB may allocate some or all of the resources allocated for the UE to the UE for performing communication between the gNB and the UE.
  • the gNB When the gNB communicates with the UE, it can transmit a reference signal (RS) for channel state estimation, and the gNB and the UE can perform data transmission based on the estimated channel state, so that the data transmission rate can be improved.
  • RS reference signal
  • the channel state estimation may also be simply referred to as channel estimation, and the channel estimation may also be described as channel measurement.
  • the RS is mainly used for performing channel estimation or channel measurement, and may also be referred to as a pilot or other name, which is not limited in this application.
  • the gNB when the gNB and the UE perform downlink data transmission, the gNB sends a channel state information reference signal (CSI-RS) to the UE.
  • the UE performs channel estimation according to the received CSI-RS, and the UE sends the estimated channel state information to the gNB.
  • the gNB can send downlink data to the UE according to the channel state corresponding to the channel state information, so that the downlink data transmission rate can be improved.
  • the CSI-RS is a reference signal that is sent by the gNB to the UE, and is used for downlink channel estimation or downlink channel measurement, and may also be referred to as a downlink reference signal or other name, which is not limited in this application.
  • the reference signal used for performing downlink channel estimation may further include at least one of a cell-specific reference signal (CRS) and a downlink demodulation reference signal (DMRS).
  • CRS cell-specific reference signal
  • DMRS downlink demodulation reference signal
  • the UE when the gNB and the UE perform uplink data transmission, the UE sends a sounding reference signal (SRS) to the gNB.
  • SRS sounding reference signal
  • the gNB performs channel estimation according to the received SRS, and determines a transmission parameter according to the estimated channel state, and the gNB may send the transmission parameter to the UE.
  • the UE receives the transmission parameter sent by the gNB, and sends the uplink data to the gNB according to the transmission parameter.
  • the UE can be configured to transmit uplink data for the gNB according to the channel state, so that the uplink data transmission rate can be improved.
  • the SRS is a reference signal that is sent by the UE to the gNB, and is used for performing uplink channel estimation or uplink channel measurement, and may also be referred to as an uplink reference signal or other name, which is not limited in this application. Further, the reference signal used for performing uplink channel estimation may further include an uplink DMRS.
  • the technical solution provided by the embodiment of the present application is described by taking the reference signal as a CSI-RS as an example.
  • the gNB may configure bandwidth resources of each UE for multiple UEs in the system frequency resource, and use the gNB and the multiple UEs for data transmission. For example, two UEs are used as the first UE and the second UE, and the gNB can configure bandwidth resources for the first UE and the second UE in the system frequency resource.
  • FIG. 3 is a diagram showing an example of bandwidth resources configured by the gNB for the first UE and the second UE. As shown in FIG. 3, the bandwidth resource configured by the gNB for the first UE is the first bandwidth resource, and the bandwidth resource configured for the second UE is the second bandwidth resource, where the first bandwidth resource and the second bandwidth resource partially overlap in the frequency domain.
  • the gNB may send the first CSI-RS to the first UE in the first bandwidth resource, and perform channel estimation on the first bandwidth resource, where the gNB may be in the first bandwidth according to the channel estimation result and/or the data amount of the first UE.
  • a resource is allocated to the first UE in the resource, and the gNB and the first UE may perform data transmission on the allocated resource.
  • the data volume of the UE may also be referred to as the traffic volume of the UE.
  • the resource allocated by the gNB to the first UE in the first bandwidth resource is R1_n
  • the resource allocated by the gNB to the first UE in the first bandwidth resource is R1_n1
  • the resource allocated by the gNB to the first UE in the first bandwidth resource is R1_n1.
  • the gNB may send, in the second bandwidth resource, a second CSI-RS for the second UE, where the channel estimate is performed, and the gNB may be in the second bandwidth according to the channel estimation result and/or the data amount of the second UE.
  • the resource is allocated to the second UE, and the gNB and the second UE perform data transmission on the allocated resource.
  • the resource allocated by the gNB to the second UE in the second bandwidth resource is R2_n
  • the resource allocated by the gNB to the second UE in the second bandwidth resource is R2_n1.
  • the resource R1_n allocated by the gNB for the first UE may include resources in the overlapping portion of the first bandwidth resource and the second bandwidth resource. If the gNB transmits the second CSI-RS to the second UE in the slot n, the resource for transmitting the second CSI-RS may also include the resources in the overlapping portion of the first bandwidth resource and the second bandwidth resource. At this time, the data of the first UE and the second CSI-RS may collide, thereby possibly affecting the data transmission of the first UE and/or the transmission of the second CSI-RS.
  • the embodiment of the present application provides a resource configuration method, apparatus, and system. Further, the resource configuration method, apparatus, and system provided by the embodiments of the present application can also solve other types of data conflicts, which are not limited in this application. Illustratively, other types of conflicts can be any of the following three types of conflicts:
  • the first type of conflict conflicts in backward compatible scenarios.
  • the data of other existing systems may be transmitted in the resources of the NR, or the data of the NR may be transmitted in the resources of other existing systems, and the data of the NR may conflict with the data of other existing systems.
  • other existing systems may be a long term evolution (LTE) system, a code division multiple access (CDMA) system, or a global system for mobile communications (GSM). ).
  • LTE long term evolution
  • CDMA code division multiple access
  • GSM global system for mobile communications
  • the second type of conflict conflicts in a forward compatible scenario.
  • the data of the future system may be transmitted in the resources of the NR, or the data of the NR may be transmitted in the resources of the future system. At this time, the data of the NR may conflict with the data of the future system.
  • the future system may also be referred to as a future network, a future evolution version, or other names, and the application is not limited.
  • the third type of conflict conflicts in multipoint coordinated transmission.
  • one or more base stations may perform data transmission in multiple cells and the same UE. At this time, there may be conflicts between data transmitted in different cells.
  • FIG. 4 is a schematic diagram of a resource configuration method provided by an embodiment of the present application.
  • the gNB and the UE determine, in a resource unit, a resource element (RE), where the reserved RE is included in the reserved resource.
  • the frequency domain of the resource unit includes X resource blocks (RBs) and the time domain includes Y symbols, where X and Y are positive integers.
  • the gNB and the UE may determine at least one of X and Y in a preconfigured manner.
  • the gNB may also send resource unit size configuration signaling for the UE to indicate X, Y, or X and Y.
  • the UE receives the resource element size configuration signaling, and determines at least one of X and Y accordingly.
  • the resource unit size configuration signaling is used to indicate X, Y, or X and Y, which may also be referred to as another name, which is not limited in this application. If the resource unit size configuration signaling is used to indicate X, the UE determines X according to the received resource unit size configuration signaling; if the resource unit size configuration signaling is used to indicate Y, the UE determines according to the received resource unit size configuration signaling. Y; if the resource unit size configuration signaling is used to indicate X and Y, the UE determines X and Y according to the received resource unit size configuration signaling.
  • the signaling may be high layer signaling or physical layer signaling.
  • the high layer signaling may be radio resource control (RRC) signaling, broadcast message, system message or medium access control (MAC) control element (CE).
  • RRC radio resource control
  • MAC medium access control
  • CE medium access control
  • the physical layer signaling may be the signaling carried by the physical control channel or the signaling carried by the physical data channel, where the signaling carried by the physical control channel may be the signaling carried by the physical downlink control channel and the enhanced physical downlink control channel (enhanced physical The signaling carried by the downlink control channel (EPDCCH), the signaling carried by the narrowband physical downlink control channel (NPDCCH), or the machine type communication (MTC) physical downlink control channel (MPDCCH) ) Signaling carried.
  • EPCCH downlink control channel
  • NPDCCH narrowband physical downlink control channel
  • MTC machine type communication
  • the signaling carried by the physical downlink control channel may also be referred to as downlink control information (DCI).
  • DCI downlink control information
  • the signaling carried by the physical control channel may also be the signaling carried by the physical sidelink control channel, and the signaling carried by the physical secondary link control channel may also be referred to as the sidelink control information. , SCI).
  • both X and Y are equal to one.
  • Y is greater than 1 when X is equal to 1
  • X is greater than 1 when Y is equal to 1.
  • Y is greater than 1
  • X is greater than 1 and can also be described as: X and Y are not equal to 1 at the same time.
  • both X and Y are greater than one.
  • the gNB and the UE perform data transmission in all or part of the resources except the reserved resources.
  • the gNB and the UE perform data transmission in all or part of the REs other than the reserved resources.
  • the data transmission includes at least one of receiving data and transmitting data.
  • air interface resources may include frequency resources and time domain resources.
  • the frequency resource and the time domain resource may be combined to be called a time-frequency resource.
  • the unit of the frequency resource may be a subcarrier, an RB, or a resource block group (RBG). Wherein, at least one RB may be included in one RBG.
  • the RB may be a physical resource block (PRB) or a virtual resource block (VRB).
  • a resource that can be used for data transmission includes several resource cells, one resource cell corresponds to one subcarrier, one PRB includes X1 resource cells, and X1 is an integer greater than 1.
  • X1 is 12.
  • the resources that can be used for the data transmission may be some or all of the resources in the system frequency resource, or some or all of the resources in the bandwidth resource, which is not limited in this application.
  • the bandwidth of resources available for data transmission may be referred to as X2 PRBs, and X2 is an integer greater than or equal to 1.
  • the PRBs may be sequentially numbered from X3 to X3+X2-1 based on the direction of frequency increase, and the number values of the respective PRBs are obtained.
  • X3 is an integer, and exemplarily, X3 is equal to zero.
  • number value may also be referred to as "identification” or "index”.
  • one PRB corresponds to one VRB.
  • the VRB may include a centralized VRB or a distributed VRB.
  • the distributed VRB and PRB are mapped by certain rules, which can be a mapping method commonly used by those skilled in the art.
  • the mapping method may be a mapping method in the LTE system 3GPP standard protocol.
  • the units of time domain resources may be symbols, time slots, mini-slots, subframes, frames, or other time units commonly used in the art.
  • the lengths of time units corresponding to different subcarrier intervals may be different. Taking the symbol as an example, if the first subcarrier spacing is ⁇ f and the second subcarrier spacing is k ⁇ f, the sum of the symbol lengths corresponding to the k second subcarrier spacings may be equal to the symbol corresponding to one first subcarrier spacing. length. Where k is an integer greater than or equal to 2.
  • one subcarrier of the frequency domain and one symbol of the time domain may correspond to one RE.
  • the gNB and the UE can perform data transmission through multiple antenna ports, and each of the multiple antenna ports can be regarded as a spatial layer, and each spatial layer corresponds to one air interface resource. Therefore, in a multi-antenna system, gNB and UE can transmit data in multiple spatial layers, and the reliability of data transmission can be improved when multiple spatial layers transmit the same data, and can be improved when transmitting different data in multiple spatial layers.
  • the rate of data transfer Since each antenna port is independently transmitted for data, when the reference signal is set, the corresponding reference signal can be set for each antenna port.
  • the resource for transmitting the CSI-RS of the UE may be configured in the bandwidth resource of the UE, and the numerology used when transmitting the CSI-RS of the UE may be the numerology of the bandwidth resource of the UE.
  • the numerology of the bandwidth resource of the UE may be used to transmit information carried by the data channel of the UE, and may also be used to transmit information carried by the control channel of the UE, and may also be used to transmit a reference signal of the UE.
  • the data channel may be a physical layer data channel
  • the control channel may be a physical layer control channel.
  • the RE for transmitting the CSI-RS may be determined based on a CSI-RS pattern.
  • FIG. 5 shows an example of a CSI-RS pattern corresponding to one 2-antenna port.
  • the resource granularity corresponding to the CSI-RS pattern includes 12 subcarriers and 14 symbols, and correspondingly, the resource granularity includes 168 REs, and one RE corresponds to one subcarrier and one symbol.
  • two REs of the resource sizes corresponding to 12 subcarriers and 14 symbols are set as REs for transmitting CSI-RSs.
  • the first RE is RE (3, 0)
  • 3 indicates the index of the subcarrier where the RE is located
  • 0 indicates the index of the symbol where the RE is located
  • the second RE is RE (9, 0)
  • 9 indicates the The index of the subcarrier where the RE is located
  • 0 indicates the index of the symbol in which the RE is located.
  • an RE for transmitting a CSI-RS is determined in units of resource granularities corresponding to the CSI-RS pattern.
  • the CSI-RS pattern is the CSI-RS pattern shown in FIG. 5, among the resources available for data transmission, RE (3, 0) among resources corresponding to each of 12 subcarriers and 14 symbols And RE(9,0) are REs for transmitting CSI-RS.
  • the resource granularity corresponding to the CSI-RS pattern may include any positive integer number of subcarriers and any positive integer number of symbols, which is not limited in this application.
  • any RE in the resource granularity corresponding to the CSI-RS pattern may be configured as an RE for transmitting the CSI-RS, which is not limited in this application.
  • one RB frequency domain includes 12 subcarriers
  • Table 1 shows a CSI-RS pattern configured in a resource granularity corresponding to one RB and 14 symbols.
  • an RE for transmitting a CSI-RS is RE(k, l), where k',
  • the values of l and l' are as shown in Table 1; k is greater than or equal to 0 and less than or equal to 12 minus 1, that is, k is greater than or equal to 0 and less than or equal to 11; l is greater than or equal to 0 and less than or equal to 14 minus 1, that is, greater than 1 Equal to 0 and less than or equal to 13.
  • a total of RE REs are used for Transmit CSI-RS, where N RE is The number of possible values, the RE used to transmit the CSI-RS is
  • the number of antenna ports corresponds to 1, There are a total of (k 0 , l 0 ) such a possible value.
  • the density is 1, among the resources that can be used for transmitting CSI-RS, in every 14 symbols in the time domain, in the frequency domain, 1 RE is used to transmit CSI-RS for transmission.
  • the RE of the CSI-RS is RE(k 0 , l 0 ).
  • the number of antenna ports corresponds to 1, There are a total of (k 0 , l 0 ) such a possible value.
  • the density is 0.5, among the resources that can be used for transmitting CSI-RS, among every 14 symbols in the time domain, among 1 RB out of every 2 RBs in the frequency domain, a total of 1 RE is used for transmitting CSI- RS, RE for transmitting CSI-RS is RE(k 0 , l 0 ).
  • the number of antenna ports corresponds to 2
  • the density is 1, among the resources that can be used for transmitting CSI-RS, in every 14 symbols in the time domain, in each RB in the frequency domain, a total of 2 REs are used for transmitting CSI-RS for transmission.
  • the RE of the CSI-RS is RE(k 0 , l 0 ) and RE(k 0 +1, l 0 ).
  • the number of antenna ports corresponds to 2
  • the density is 0.5, among the resources that can be used for transmitting CSI-RS, in every 14 symbols in the time domain, in 1 RB out of every 2 RBs in the frequency domain, a total of 2 REs are used for transmitting CSI- RS, RE for transmitting CSI-RS is RE(k 0 , l 0 ) and RE(k 0 +1, l 0 ).
  • the resource configuration method provided by the embodiment of the present application can resolve conflicts between data of different UEs.
  • the data of the first UE and the CSI-RS of the second UE may collide.
  • a reserved RE may be configured for the first UE in the bandwidth resource of the first UE, where the reserved RE includes an RE for transmitting the second CSI-RS, and the reserved RE is included in the first UE.
  • Configured in reserved resources In the reserved resources configured for the first UE, the gNB and the first UE do not perform data transmission, that is, the gNB and the first UE perform data transmission in all or part of the REs other than the reserved resources configured for the first UE.
  • the data of the first UE does not collide with the CSI-RS of the second UE.
  • the numerology of the bandwidth resource of the first UE and the numerology of the bandwidth resource of the second UE may be the same or different, and the application is not limited.
  • FIG. 6 is a diagram showing a first example of resolving conflicts between UEs of different numerologies by using the resource configuration method provided by the embodiment of the present application.
  • one RB includes 12 subcarriers
  • the subcarrier spacing of the bandwidth resource of the first UE is 15 kHz
  • the subcarrier spacing of the bandwidth resource of the second UE is 60 kHz
  • the CSI-RS subcarrier of the second UE is transmitted.
  • the carrier spacing is the subcarrier spacing of the bandwidth resources of the UE.
  • the sum of the widths of the four 15 kHz subcarriers is equal to the width of one 60 kHz subcarrier, and the sum of the four 60 kHz symbol lengths is equal to one 15 kHz symbol length.
  • the second UE may transmit the CSI-RS in one RE using 60 kHz.
  • a resource unit may be configured, the resource unit frequency domain includes 4 RBs and the time domain includes 1 symbol.
  • the RE shown in the slanted line in FIG. 6 is configured as a reserved RE in the resource unit, and the reserved RE is included in the reserved resource, and the first UE and the gNB may perform data transmission in some or all resources except the reserved resource.
  • the reserved resource may also be referred to as a reserved resource of the first UE.
  • the first UE and the gNB may perform data transmission in the dot-filled RE shown in FIG. 6.
  • an RE for transmitting the CSI-RS of the second UE may be included.
  • one RE labeled as CSI-RS in FIG. 6 can be used to transmit a CSI-RS of a second UE with a subcarrier spacing of 60 kHz.
  • the reserved RE may further include the data of the first UE and the guard band between the CSI-RSs of the second UE, that is, the data between the first UE and the CSI-RS of the second UE.
  • FIG. 7 is a second exemplary diagram for resolving conflicts between UEs of different numerologies by using the resource configuration method provided by the embodiment of the present application.
  • one RB includes 12 subcarriers
  • the subcarrier spacing of the bandwidth resource of the first UE is 15 kHz
  • the subcarrier spacing of the bandwidth resource of the second UE is 30 kHz
  • the CSI-RS subcarrier of the second UE is transmitted.
  • the carrier spacing is the subcarrier spacing of the bandwidth resources of the UE.
  • the sum of the widths of the two 15 kHz subcarriers is equal to the width of one 30 kHz subcarrier, and the sum of the two 30 kHz symbol lengths is equal to one 15 kHz symbol length.
  • the second UE may transmit the CSI-RS in one RE using 30 kHz.
  • a resource unit may be configured, the resource unit frequency domain includes 2 RBs and the time domain includes 1 symbol.
  • the RE shown in the slanted line in FIG. 7 is configured as a reserved RE in the resource unit, and the reserved RE is included in the reserved resource, and the first UE and the gNB may perform data transmission in some or all resources except the reserved resource.
  • the reserved resource may also be referred to as a reserved resource of the first UE.
  • the first UE and the gNB may perform data transmission in the dot-filled RE shown in FIG.
  • an RE for transmitting the CSI-RS of the second UE may be included.
  • one RE labeled as CSI-RS in FIG. 7 may be used to transmit a CSI-RS of a second UE with a subcarrier spacing of 30 kHz.
  • the reserved RE may further include a protection band between the data of the first UE and the CSI-RS of the second UE, that is, the protection band is configured between the data of the first UE and the CSI-RS of the second UE. Used to reduce interference between different numerologies.
  • FIG. 8 is a third exemplary diagram of solving conflicts between UEs of different numerologies by using the resource configuration method provided by the embodiment of the present application.
  • 12 subcarriers are included in one RB
  • the subcarrier spacing of the bandwidth resource of the first UE is 15 kHz
  • the subcarrier spacing of the bandwidth resource of the second UE is 30 kHz
  • the CSI-RS subcarrier of the second UE is transmitted.
  • the carrier spacing is the subcarrier spacing of the bandwidth resources of the UE.
  • the sum of the widths of the two 15 kHz subcarriers is equal to the width of one 30 kHz subcarrier, and the sum of the two 30 kHz symbol lengths is equal to one 15 kHz symbol length.
  • the second UE may transmit the CSI-RS in one RE using 30 kHz.
  • a resource unit may be configured, the resource unit frequency domain includes 4 RBs and the time domain includes 1 symbol.
  • the RE shown in the slanted line in FIG. 8 is configured as a reserved RE, and the reserved RE is included in the reserved resource, and the first UE and the gNB may perform data transmission in some or all resources except the reserved resource.
  • the reserved resource may also be referred to as a reserved resource of the first UE.
  • the first UE and the gNB may perform data transmission in the dot-filled RE shown in FIG.
  • an RE for transmitting the CSI-RS of the second UE may be included.
  • one RE labeled as CSI-RS in FIG. 8 can be used to transmit a CSI-RS of a second UE with a subcarrier spacing of 30 kHz.
  • the reserved RE may further include a protection band between the data of the first UE and the CSI-RS of the second UE, that is, the protection between the data of the first UE and the CSI-RS of the second UE. Band, used to reduce interference between different numerology.
  • FIG. 9 is a fourth exemplary diagram of resolving conflicts between UEs of different numerologies by using the resource configuration method provided by the embodiment of the present application.
  • 12 subcarriers are included in one RB
  • the subcarrier spacing of the bandwidth resource of the first UE is 15 kHz
  • the subcarrier spacing of the bandwidth resource of the second UE is 30 kHz
  • the CSI-RS subcarrier of the second UE is transmitted.
  • the carrier spacing is the subcarrier spacing of the bandwidth resources of the UE.
  • the sum of the widths of the two 15 kHz subcarriers is equal to the width of one 30 kHz subcarrier, and the sum of the two 30 kHz symbol lengths is equal to one 15 kHz symbol length.
  • the second UE may transmit the CSI-RS at 8 REs using 30 kHz.
  • a resource unit may be configured, the resource unit frequency domain includes 4 RBs and the time domain includes 2 symbols.
  • the RE shown in the slanted line in FIG. 9 is configured as a reserved RE in the resource unit, and the reserved RE is included in the reserved resource, and the first UE and the gNB may perform data transmission in some or all resources except the reserved resource.
  • the reserved resource may also be referred to as a reserved resource of the first UE.
  • the first UE and the gNB may perform data transmission in the dot-filled RE shown in FIG.
  • an RE for transmitting the CSI-RS of the second UE may be included.
  • the 8 REs labeled as CSI-RS in FIG. 9 can be used to transmit the CSI-RS of the second UE with a subcarrier spacing of 30 kHz.
  • the reserved RE may further include a protection band between the data of the first UE and the CSI-RS of the second UE, that is, the protection band is configured between the data of the first UE and the CSI-RS of the second UE. Used to reduce interference between different numerologies.
  • the guard band may be configured between the data of the first UE and the CSI-RS of the second UE, or the guard band may not be configured.
  • the gNB may perform data transmission with another UE, or may not perform data transmission, which is not limited in this application.
  • the reserved RE may be determined in the resource unit according to the first reserved RE determining method.
  • the gNB and the UE may determine the reserved RE in the resource unit according to the reserved RE pattern.
  • the gNB and the UE determine the reserved RE in the resource unit according to the reserved RE pattern, and the resource granularity corresponding to the reserved RE pattern is one resource unit.
  • the resource granularity corresponding to the reserved RE pattern is one resource unit.
  • several REs can be configured as reserved REs. It can also be described that, according to the reserved RE pattern, in one resource unit, the RE is reserved in the y1 symbols in the resource unit, and y1 is an integer greater than or equal to 1 and less than or equal to Y, and Y is included in the reserved resource. The number of symbols. In the y1 symbols, the RE corresponding to several subcarriers may be configured as a reserved RE.
  • the sub-carrier spacing corresponding to the resource unit configured for the UE may be the same as the sub-carrier spacing of the bandwidth resource of the UE, or may be different from the sub-carrier spacing corresponding to the bandwidth resource of the UE.
  • the application is not restricted.
  • the subcarrier spacing corresponding to the resource unit may also be described as a subcarrier spacing corresponding to the RB included in the resource unit, a subcarrier spacing corresponding to a symbol included in the resource unit, or a subcarrier spacing of the RE included in the resource unit.
  • the base station can be configured to flexibly configure the sub-carrier spacing of the resource unit according to the usage requirement of the reserved resource, thereby reducing signaling overhead. . For example, in FIG.
  • the base station may transmit the CSI-RS of the second UE in the reserved resource of the first UE, and the sub-carrier interval corresponding to the reserved resource configured for the first UE may be the CSI of the second UE.
  • - Subcarrier spacing of the RS may be the CSI-RS.
  • the subcarrier spacing corresponding to the resource unit configured for the UE is the minimum subcarrier spacing supported by the current frequency band.
  • the minimum supported subcarrier spacing is 15 kHz; for bands above 6 GHz, the minimum supported subcarrier spacing is 60 kHz.
  • the gNB may further send signaling to the UE, where the signaling indicates the subcarrier spacing corresponding to the resource unit configured by the UE.
  • the signaling may also be referred to as resource unit subcarrier spacing configuration signaling.
  • the subcarrier spacing corresponding to the resource unit configured for the UE may be the same as the subcarrier spacing used by the transmission system message.
  • the subcarrier spacing corresponding to the resource unit configured for the UE is the same as the subcarrier spacing used for transmitting the system message.
  • X is the resource unit
  • the frequency domain includes the number of RBs
  • Y is the number of symbols included in the time domain of the resource unit.
  • the subcarriers corresponding to the reserved REs in different symbols may be the same.
  • Figure 10 shows a first possible example of a reserved RE pattern.
  • the resource unit includes 2 RBs in the frequency domain and 14 symbols in the time domain, and includes 12 subcarriers from subcarrier 0 to subcarrier 11 in one RB.
  • the reserved RE can be configured in symbols 0 to 7. In symbol 0 to symbol 7, the reserved sub-carriers in each symbol are the same, and are all subcarriers 6 of RB 0 to subcarrier 7 of RB 1.
  • the resource unit includes 2 RBs in the frequency domain and 3 symbols in the time domain, and includes 12 subcarriers from subcarrier 0 to subcarrier 11 in one RB.
  • the reserved RE is configured in the symbol 0 and the symbol 2
  • the sub-carriers corresponding to the reserved REs in the symbol 0 and the symbol 2 are the same, and are all sub-carriers 3 to 5 of sub-carrier 5 and RB 0 of RB 0 Carrier 10 to subcarrier 11, subcarrier 0 of RB 1, and subcarrier 5 to subcarrier 7 of RB 1.
  • the resource unit includes 1 RB in the frequency domain and 4 symbols in the time domain, and includes 12 subcarriers from subcarrier 0 to subcarrier 11 in one RB.
  • the reserved REs may be configured in the symbols 0 to 3.
  • the sub-carriers corresponding to the reserved REs in each symbol are the same, and are all sub-carriers 3 to 8 of RB 0.
  • FIG. 11 is a second possible example of a reserved RE pattern. As shown in FIG. 11, a resource unit includes 2 RBs in a frequency domain and 3 symbols in a time domain, where 1 RB includes subcarriers 0. Up to 12 subcarriers to subcarrier 11.
  • the subcarrier corresponding to the reserved RE in the symbol y2 is different from the number of subcarriers corresponding to the reserved RE in the symbol y3, and y2 is greater than or equal to 0 and less than or equal to y1-1.
  • An integer, y3 is an integer greater than or equal to 0 and less than or equal to y1-1.
  • the reserved RE can be configured in symbol 0 and symbol 2.
  • the subcarriers corresponding to the reserved RE are: subcarrier 3 to subcarrier 5 of RB 0, subcarrier 10 to subcarrier 11 of RB 0, subcarrier 0 of RB 1, and subcarrier 5 of RB 1 to Subcarrier 7.
  • the subcarriers corresponding to the reserved RE are: subcarrier 4 and subcarrier 11 of RB 0, and subcarrier 6 of RB 1.
  • the offset of the subcarrier corresponding to the reserved RE in the symbol y2 relative to the reserved RE of the symbol y3 is ⁇ offset , where the unit of ⁇ offset is a subcarrier.
  • the number, y2 is an integer greater than or equal to 0 and less than or equal to y1-1
  • y3 is an integer greater than or equal to 0 and less than or equal to y1-1.
  • a reserved RE pattern may be configured for the UE, and the UE determines the reserved RE in the resource unit according to the reserved RE pattern.
  • the reserved RE pattern corresponding to each UE may be configured, and the reserved RE patterns of any two of the N UEs may be the same or different, where N is an integer greater than or equal to 2.
  • the common reserved RE pattern of the N UEs may also be configured, that is, the reserved RE patterns of the N UEs are the same.
  • the N UEs may be all UEs or partial UEs in the cell.
  • the gNB may also send a reference signal indication and a reference signal configuration indication to the UE. Used to indicate that the gNB is a reserved RE configured for the UE.
  • the reference signal may be a CSI-RS, a demodulation reference signal (DMRS), or other reference signals.
  • the UE receives the reference signal indication and the reference signal configuration indication, and determines the reserved RE pattern from the reference signal indicating the corresponding reference signal pattern according to the reference signal configuration indication.
  • determining the reserved RE pattern from the reference signal indicating the corresponding reference signal pattern may also be described as: determining the reserved RE pattern from the available reference signal patterns of the reference signal indicating the indicated reference signal. Exemplarily, if the reference signal indicates that the indicated reference signal is a CSI-RS, the reference signal indicates that the corresponding reference signal pattern is a CSI-RS pattern.
  • the configuration of the reference signal pattern is similar to that shown in Table 1, including: antenna port number, density, And k' and l'.
  • the specific values of the parameters in the reference signal pattern may be the same as those shown in Table 1, or may be different from those shown in Table 1, and the present application is not limited thereto.
  • the reference signal configuration indication is used to indicate an antenna port number, a density, and a resource mapping configuration, where the resource mapping configuration includes And k' and l'.
  • the gNB and the UE may also determine the density according to the pre-configuration. In this case, the reference signal configuration indication may be used to indicate the number of antenna ports and the resource mapping configuration.
  • the reference signal indication may also indicate a cell-specific reference signal (CRS), in which case the reserved RE pattern is one of the available CRS patterns, and the available CRS pattern may be an available CRS pattern in LTE.
  • CRS cell-specific reference signal
  • the actually used CRS pattern can be determined from the available CRS patterns according to the number of antenna ports and the first frequency offset.
  • the reference signal configuration indication can be used to indicate the number of antenna ports and the first frequency domain offset. After receiving the reference signal indication and the reference signal configuration indication, the UE determines the reserved RE pattern from the available CRS patterns according to the number of antenna ports and the first frequency domain offset.
  • the M available reserved RE patterns may also be configured for the UE, where M is a positive integer.
  • the M available reserved RE patterns may be configured for the gNB and the UE in a pre-configured manner, or may be sent by the gNB to the UE, and the M available reserved RE patterns are configured for the UE by signaling. Further, the gNB may configure a reserved RE pattern for the UE by using a signaling, where the reserved RE configured for the UE is included in the M available reserved REs.
  • the reserved RE pattern available for one of the M available reserved RE patterns may correspond to one reserved RE pattern identifier
  • the gNB sends a reserved RE pattern identifier for the UE
  • the UE receives the reserved RE pattern identifier, where The reserved RE pattern identifies a corresponding reserved RE pattern as the reserved RE pattern of the UE.
  • the M available reserved RE patterns may correspond to at least one reference signal pattern.
  • the M available reserved RE patterns may be part or all of the at least one reference signal pattern.
  • the reference signal may be a CSI-RS, a cell-specific reference signal (CRS), a demodulation reference signal (DMRS), or other reference signals.
  • the M available reserved RE patterns may be part or all of a reference signal pattern.
  • the M available reserved RE patterns may be part or all of the CSI-RS patterns.
  • the CSI-RS pattern may be the CSI-RS pattern shown in Table 1.
  • one reference signal pattern corresponds to one pattern identifier, and the gNB may send signaling to the UE, where the signaling is used to indicate M pattern identifiers, and the UE receives the signaling, and identifies the corresponding M by the M patterns.
  • the reference signal patterns serve as the above-mentioned M available reserved RE patterns.
  • the M available reserved RE patterns may be part or all of the patterns in the reference signal A pattern, and the reference signal A may be any one of CSI-RS, CRS, and DMRS.
  • the gNB may send signaling to the UE, where the signaling includes a reference signal indication. After receiving the signaling, the UE indicates, by the reference signal, part or all of the corresponding reference signal patterns as the M available reserved RE patterns.
  • one reference signal pattern corresponds to one pattern identifier
  • the gNB may send signaling to the UE, where the signaling is used to indicate M pattern identifiers, and the UE receives the signaling, and the M patterns are corresponding to the identifiers.
  • M reference signal patterns are used as the above-mentioned M available reserved RE patterns.
  • the M available reserved RE patterns may be part or all of a pattern in a combined pattern including a plurality of reference signal patterns. Further, one of the combined patterns corresponds to one identifier, and the gNB may send signaling to the UE, where the signaling is used to indicate M pattern identifiers, and the UE receives the signaling, and identifies corresponding M references by using the M patterns.
  • the signal pattern serves as the above-mentioned M available reserved RE patterns.
  • some or all of the CRS patterns, some or all of the CSI-RS patterns, and some or all of the DMRS patterns may be included in the combined pattern.
  • the gNB may also transmit a time domain offset indication and/or a second frequency domain offset indication of the reserved RE pattern.
  • the UE determines the reserved RE pattern A according to any one of the first reserved RE determining methods, and determines that the gNB is configured for the UE according to the reserved RE pattern A, the time domain offset indication, and/or the second frequency domain offset indication.
  • the offset of the reserved RE pattern configured by the gNB for the UE in the time domain relative to the reserved RE pattern is the value indicated by the time domain offset indication, and the gNB is the reserved RE pattern configured by the UE relative to the reserved RE pattern in the frequency domain.
  • the offset is the value indicated by the second frequency domain offset indication.
  • configuring the reserved RE in the resource unit is equivalent to configuring the non-reserved RE in the resource unit.
  • an RE other than the non-reserved RE is a reserved RE.
  • the reserved RE may be determined in the resource unit according to the second reserved RE determining method.
  • the gNB configures the reserved RE for the UE by means of signaling.
  • the gNB sends the reserved RE configuration information to the UE, and the reserved RE configuration information is used to indicate the reserved RE configured by the gNB for the UE in the resource unit, and the UE receives the reserved RE configuration information, and determines the reserved RE in the resource unit according to the information.
  • the reserved RE configuration information may also be referred to as reserved RE configuration signaling, first information, or other names, which is not limited in this application.
  • the reserved RE configuration information may be any one of the following reserved RE configuration information to the third reserved RE configuration information:
  • the first type of RE configuration information is the first type of RE configuration information
  • the P REs corresponding to the P RE indexes are reserved REs, and P is a positive integer.
  • the RE index includes a frequency index and a time domain index of the RE corresponding to the RE index.
  • the frequency index of the RE may also be referred to as a frequency number, a subcarrier number, a subcarrier index, or other names
  • the time domain index of the RE may also be referred to as a time domain number, a symbol number, or other names.
  • one resource unit frequency domain includes X RBs, and one RB includes F subcarriers, where X and F are positive integers.
  • the REs in the resource unit may be numbered by the first frequency numbering manner, that is, the subcarrier index of one RE includes the RB index I_RB and the subcarrier index I_SC in the RB, where I_RB is An integer greater than or equal to 0 and less than X, and I_SC is an integer greater than or equal to 0 and less than F.
  • the REs in the resource unit may be numbered by the second frequency numbering manner, that is, the subcarrier index of one RE is the combined subcarrier index I_CSC, where I_CSC is an integer, and I_CSC is greater than or equal to 0 and less than the value obtained by multiplying X by F.
  • one resource unit time domain includes Y symbols, where Y is a positive integer.
  • the symbol index of one RE is I_symb, where I_symb is an integer greater than or equal to 0 and less than Y.
  • the second reservation RE configuration information is the second reservation RE configuration information
  • a Z subcarrier set indication and/or W symbol set indications are included, where Z and W are positive integers.
  • the reserved RE configuration information includes the Z subcarrier set indications, in all the symbols of the resource unit, the Z subcarrier sets indicate that the RE corresponding to the indicated subcarrier is a reserved RE.
  • the W flag set indication is included in the reserved RE configuration information, the W symbol sets indicate that the RE corresponding to the indicated symbol is a reserved RE among all the subcarriers of the resource unit.
  • the reserved RE configuration information includes the Z subcarrier set indications and the W symbol set indications, in the resource unit, in the W symbol set indication indication symbols, the Z subcarrier sets indicate the indicated subcarriers The corresponding RE is a reserved RE.
  • any one of the foregoing Z subcarrier set indications may indicate A1 or a subcarrier set indication A2 for the following subcarrier set:
  • the subcarrier set indicates A1:
  • the numbering manner corresponding to the initial subcarrier index may be the first frequency numbering manner or the second frequency numbering manner, which is not limited in this application.
  • the subcarrier set indicates A2:
  • the numbering manner corresponding to the initial subcarrier index and the ending subcarrier index may be the first frequency numbering manner or the second frequency numbering manner, which is not limited in this application.
  • the foregoing Z subcarrier set indications may also indicate A3 or subcarrier set indication A4 for the following subcarrier set:
  • the subcarrier set indicates A3:
  • the K information bits are included, and one of the K information bits corresponds to k1 subcarriers in the resource unit, where K and k1 are positive integers.
  • K is equal to the number of subcarriers included in the resource unit, and k1 is equal to one.
  • the subcarrier corresponding to the information bit includes a reserved RE; if the value of the information bit is not t1 or the value is t2, The reserved RE is not included in the subcarrier corresponding to the information bit.
  • t1 and t2 are integers, and exemplarily, t1 is equal to 1.
  • subcarrier set indication A3 may be used to indicate any one of the Z subcarrier sets.
  • the subcarrier set indicates A4:
  • the period includes a starting subcarrier set indication and a period of the subcarrier set, where the unit of the period of the subcarrier set is the number of subcarriers, and the period of the set of subcarriers may also be determined by the distance between the adjacent two subcarrier sets in one symbol.
  • the starting subcarrier set indication may indicate any one of the subcarrier set indication A1 to the subcarrier set indication A3.
  • Any one of the above W symbol set indications may indicate B1 or B2 for the following symbol set:
  • the above W symbol set indications may indicate B3 or B4 for the following symbol set:
  • the L information bits are included, and one of the L information bits corresponds to u symbols in the resource unit, where L and u are positive integers.
  • L is equal to the number of symbols included in the resource unit, and u is equal to one.
  • the symbol corresponding to the information bit includes a reserved RE; if the value of the information bit is not t1 or the value is t2, The reserved RE is not included in the symbol corresponding to the information bit.
  • t1 and t2 are integers, and exemplarily, t1 is equal to 1.
  • symbol set indication B3 can be used to indicate any one of the above W symbol sets.
  • a period including a start symbol set indication and a symbol set is the number of symbols, and the period of the symbol set may also be determined by the distance between the two adjacent symbol sets in which the RE is reserved, and the start symbol set indication may indicate the B1 to the symbol for the symbol set.
  • the set indicates any of B3.
  • the second reserved RE configuration information may further include an offset value indication, which is used to indicate an offset between the sub-carriers corresponding to the reserved REs in the symbol set h1 and the symbol set h2.
  • h1 and h2 are integers.
  • h1 and h2 can be adjacent symbol sets.
  • the gNB may also send signaling to the UE to indicate the distance of h1 and h2 in the time domain.
  • the gNB sends a second reserved RE configuration information to the UE, where the reserved RE configuration information includes an offset value indication for indicating ⁇ offset .
  • symbol 0 is a start symbol set
  • RE is reserved in symbol 0 for subcarrier m in RB n
  • symbol 2 is a symbol set adjacent to symbol 0, and RE is reserved in symbol 2.
  • the resource unit includes 2 RBs in the frequency domain and 14 symbols in the time domain, wherein 1 RB includes 12 subcarriers from subcarrier 0 to subcarrier 11.
  • the gNB sends the reserved RE configuration signaling to the UE.
  • the reserved RE configuration signaling may include one subcarrier set indication and one symbol set indication, and is used to indicate the reserved RE in the resource unit.
  • the subcarrier set indication may indicate that the starting starting subcarrier index is Idx_start and the ending subcarrier index Idx_end. If the numbering mode corresponding to the subcarrier index is the first frequency numbering mode, the RB index included in the Idx_start is 0, and the subcarrier index in the RB is 6; if the numbering mode corresponding to the subcarrier index is the second type In the frequency numbering mode, Idx_start is 6.
  • the symbol set indication may indicate a start symbol index and a end symbol index, wherein the start symbol index has a value of 0 and the end symbol index has a value of 7; or the symbol set indication may also indicate a start symbol index and a continuously allocated symbol.
  • the number of the starting symbol index is 0, and the number of consecutively allocated symbols is 8.
  • the UE receives the reserved RE configuration signaling, and determines the reserved RE in the resource unit according to the signaling, as shown in FIG. 10(a).
  • the reserved RE determined by the UE is: in the resource unit, in the symbols 0 to 7, the RE corresponding to the 14 subcarriers starting from the subcarrier 6 in the RB 0 to the end of the subcarrier 7 in the RB 1 is reserved. RE.
  • the resource unit includes 2 RBs in the frequency domain and 14 symbols in the time domain, wherein 1 RB includes 12 subcarriers from subcarrier 0 to subcarrier 11.
  • the gNB sends the reserved RE configuration signaling to the UE.
  • the reserved RE configuration signaling may include one symbol set index and one subcarrier set indication, and is used to indicate the reserved RE in the resource unit.
  • the symbol set index includes 14 bits, and each 1 bit corresponds to 1 symbol in the resource unit.
  • the value of the bitmap is 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0.
  • the subcarrier set indication may indicate that the starting starting subcarrier index is Idx_start and the number of consecutively allocated subcarriers.
  • the RB index included in the Idx_start is 0, and the subcarrier index in the RB is 6; if the numbering mode corresponding to the subcarrier index is the second type In the frequency numbering mode, Idx_start is 6. The number of consecutively allocated subcarriers is 14.
  • the UE receives the reserved RE configuration signaling, and determines the reserved RE in the resource unit according to the signaling, as shown in FIG. 10(a).
  • the reserved RE determined by the UE is: in the resource unit, in the symbol 0 to the symbol 7, the RE corresponding to the 14 subcarriers starting from the subcarrier 6 in the RB 0 to the end of the subcarrier 7 in the RB 1 is a reserved RE .
  • the resource unit includes 2 RBs in the frequency domain and 3 symbols in the time domain, wherein 1 RB includes 12 subcarriers from subcarrier 0 to subcarrier 11.
  • the gNB sends the reserved RE configuration signaling to the UE.
  • the reserved RE configuration signaling may include one symbol set index and one subcarrier set indication, and is used to indicate the reserved RE in the resource unit.
  • the symbol set indication includes 3 bits, and each 1 bit corresponds to 1 symbol in the resource unit.
  • the value of the bitmap is 1 0 1 .
  • the subcarrier set indication includes 24 bits, and each 1 bit corresponds to 1 subcarrier in the resource unit.
  • the value of the bitmap is 000111000011100001110000.
  • the UE receives the reserved RE configuration signaling, and determines the reserved RE in the resource unit according to the signaling, as shown in FIG. 10(b).
  • the reserved RE determined by the UE is: in the resource unit, in the symbol 0 and the symbol 2, the subcarrier corresponding to the reserved RE is: subcarrier 3 to subcarrier 5 of RB 0, subcarrier 10 to subcarrier of RB 0 11. Subcarrier 0 of RB 1 and subcarrier 5 to subcarrier 7 of RB 1.
  • the resource unit includes 1 RB in the frequency domain and 4 symbols in the time domain, wherein 1 RB includes 12 subcarriers from subcarrier 0 to subcarrier 11.
  • the gNB sends the reserved RE configuration signaling to the UE. If the reserved RE configuration signaling includes one subcarrier set indication, the initial subcarrier index included in the subcarrier set indication is Idx_start, and the number of consecutive subcarriers is 6. . If the numbering mode corresponding to the subcarrier index is the first frequency numbering mode, the RB index included in the Idx_start is 0, and the subcarrier index in the RB is 3; if the numbering mode corresponding to the subcarrier index is the second type In the frequency numbering mode, Idx_start is 3.
  • the UE After receiving the reserved RE configuration signaling, the UE determines that the reserved RE in the resource unit is as shown in FIG. 10(c). As shown in FIG. 10(c), in the resource unit, in the symbols 0 to 3, the reserved sub-carriers in the respective symbols are the same, and all of the subcarriers 3 to 8 are subcarriers 8.
  • the resource unit includes 2 RBs in the frequency domain and 3 symbols in the time domain, wherein 1 RB includes 12 subcarriers from subcarrier 0 to subcarrier 11.
  • the gNB sends the reserved RE configuration signaling to the UE, including: a start subcarrier set indication, a period of the subcarrier set, an offset value indication, a start symbol set indication, and a period of the symbol set.
  • the starting subcarrier index included in the initial subcarrier set indication is Idx_start, and the number of consecutive subcarriers is 3. If the numbering mode corresponding to the subcarrier index is the first frequency numbering mode, the RB index included in the Idx is 0, and the subcarrier index in the RB is 3; if the numbering mode corresponding to the subcarrier index is the second type In the frequency numbering mode, Idx_start is 3.
  • the period of the set of subcarriers is 7, or the distance between the adjacent sets of two subcarriers included is 4.
  • the offset value indicates that the indicated offset value is 2.
  • the starting symbol index included in the start symbol set indication is 0, and the number of consecutive symbols is 1.
  • the period of the symbol set is 2, or the distance between the adjacent two symbol sets where the RE is reserved is 1.
  • the UE After receiving the reserved RE configuration signaling, the UE determines that the reserved RE in the resource unit is as shown in FIG. 11(b). As shown in FIG. 11(b), in the resource unit, the reserved RE is configured in symbol 0 and symbol 2. In symbol 0, the subcarriers corresponding to the reserved RE are: subcarrier 3 to subcarrier 5 of RB 0, subcarrier 10 to subcarrier 11 of RB 0, subcarrier 0 of RB 1, and subcarrier 5 of RB 1 to Subcarrier 7. In symbol 2, the subcarriers corresponding to the reserved RE are: subcarrier 5 to subcarrier 7 of RB 0, subcarrier 0 to subcarrier 2 of RB 1, subcarrier 7 to subcarrier 9 of RB 1.
  • the time-frequency resource used for data transmission by the gNB and the UE may be a pre-configured resource, or the gNB may notify the UE of the resource by using an implicit or display manner.
  • the time-frequency resource is a scheduling resource, and the gNB allocates scheduling resources to the UE by using downlink control information (DCI).
  • DCI downlink control information
  • the scheduling resource may be one time slot in the time domain, and may be several RBGs in the frequency domain, and the gNB and the UE may perform data transmission on the scheduling resources of the UE.
  • a reserved RE may be included, and the reserved RE is not used for the gNB and the UE for data transmission.
  • the solution may also be described as: in the resources used for data transmission by the gNB and the UE, the gNB and the UE perform data transmission in part or all of the resources other than the reserved RE.
  • the frequency domain allocation and the time domain allocation of the resource unit may be further included, and the allocated resource unit is determined in the time-frequency resource, so that Determine the reserved RE or the reserved RE in the reserved resource.
  • the granularity of the frequency domain allocation is X RBs, and the granularity of the time domain allocation is Y symbols, where X is the number of RBs of the resource unit included in the frequency, and Y is the number of symbols included in the time domain of the resource unit.
  • the time-frequency resource may be a bandwidth part, a carrier, a virtual carrier, or other resources of the UE in the frequency domain, which is not limited in this application.
  • the bandwidth of the virtual carrier may be the maximum carrier bandwidth.
  • the gNB and the UE may determine, by using a pre-configured method, the location of the allocated resource unit in the frequency resource.
  • the gNB when performing frequency domain allocation on the resource unit, sends the resource unit frequency allocation information for the UE, where the X RB granularity is used to indicate that the gNB allocates the resource unit to the UE in the frequency domain, or is used for the resource.
  • the unit is a granularity indicating the location of the resource unit allocated by the gNB to the UE in the frequency domain.
  • X is the number of RBs that the resource unit includes at the frequency.
  • the resource unit frequency allocation information includes a frequency index of a resource unit allocated by the gNB to the UE.
  • the UE After receiving the resource unit frequency allocation information, the UE determines a reserved RE in the resource unit indicated by the resource unit allocation information, where the reserved RE is included in the reserved resource of the UE.
  • the resource unit frequency allocation information is used to indicate the location of the resource unit allocated by the gNB to the UE in the frequency domain, which may also be referred to as another name, which is not limited in this application.
  • the frequency resource of the time-frequency resource may be numbered by using the third frequency numbering manner, that is, the frequency resource is numbered by using the resource unit as a granularity, and one frequency resource index is corresponding to the frequency resource.
  • FIG. 12(a) is a diagram showing an example of numbering a frequency resource by using a resource unit as a granularity. As shown in FIG. 12(a), the frequency resource includes 10 resource units, and the 10 resource units are resource unit 0 to resource unit. 9, 1 resource unit includes 2 RBs.
  • the frequency resource of the time-frequency resource may be numbered by using the fourth frequency numbering manner.
  • the index of one resource unit corresponds to the start in the resource unit.
  • the index of the RB. 12(b) is a diagram showing an example of numbering frequency resources by a fourth frequency numbering method.
  • a resource unit includes two RBs, and an index of resource elements composed of RB3 and RB4 is The index of the RB3, the index of the resource unit composed of RB5 and RB6 is the index of RB5, and the index of the resource unit composed of RB7 and RB8 is the index of RB7.
  • the resource unit frequency allocation information may be any one of the following resource unit frequency allocation information C1 to resource unit frequency allocation information C3:
  • P is a positive integer.
  • one of the P information bits corresponds to p1 resource units in the frequency resource, where P and p1 are positive integers.
  • P is equal to the total number of resource elements included in the frequency domain resource
  • p1 is equal to one.
  • the resource unit corresponding to the information bit includes a reserved RE; if the value of the information bit is not t1 or the value is t2, The reserved RE is not included in the resource unit corresponding to the information bit.
  • t1 and t2 are integers, and exemplarily, t1 is equal to 1.
  • the frequency resource and the resource unit number are as shown in FIG. 12( a ), and the frequency resource includes 10 resource units, and the 10 resource units are resource unit 0 to resource unit 9 One resource unit includes two RBs. If the value of the P information bits is 0111000000, the resource units allocated by the gNB to the UE in the frequency resource are resource unit 1, resource unit 2, and resource unit 3.
  • one of the P information bits corresponds to the starting RB of the p1 resource elements in the frequency resource, where P and p1 are positive integers.
  • P is equal to the total number of RBs included in the frequency domain resource, and p1 is equal to one.
  • the p1 resource units with the RB corresponding to the information bit as the starting RB include a reserved RE; if the value of the information bit is The reserved RE is not included in the p1 resource unit with the RB corresponding to the information bit as the starting RB.
  • t1 and t2 are integers, and exemplarily, t1 is equal to 1.
  • the number of frequency resources and resource units is as shown in FIG. 12(b), and one resource unit includes 2 RBs. If the value of the P information is 00010101000000000000, the resource unit allocated by the gNB to the UE in the frequency resource is a resource unit starting with RB3, a resource unit starting with RB5, and starting with RB7. Resource unit.
  • the Q resource unit frequency set indication is used to indicate the Q group resource unit allocated in the frequency domain, and Q is a positive integer. Any one of the Q resource unit frequency set indications may be a first resource unit frequency set indication or a second resource unit frequency set indication.
  • the first resource unit frequency set indication is used to indicate the starting resource unit and the consecutively allocated resource units in the frequency domain, and is used to indicate one group of resource units.
  • the numbering mode corresponding to the initial resource unit may be the third frequency numbering manner or the fourth frequency numbering manner, which is not limited in this application.
  • the second resource unit frequency set indication is used to indicate a starting resource unit and an ending resource unit in the frequency domain, and is used to indicate a group of resource units.
  • the numbering manner corresponding to the initial resource unit and the ending resource unit may be the third frequency numbering manner or the fourth frequency numbering manner, which is not limited in this application.
  • the frequency start resource unit set indication and the frequency resource unit set period indication are included, where the frequency starting resource unit set indication is used to indicate a starting resource unit set allocated in a frequency domain, and the frequency starting resource unit set indication may be the same resource unit
  • the frequency resource unit set period indication is used to indicate a distance between adjacent resource element sets allocated in the frequency domain.
  • the time-frequency resource may be at least one time slot, at least one micro-slot, at least one subframe, at least one system frame, or other resources in the time domain, which is not limited in this application.
  • the gNB and the UE may determine, by using a pre-configured method, the location of the allocated resource unit in the time domain resource.
  • the gNB when the resource unit performs the time domain allocation, the gNB sends the time domain resource unit allocation information to the UE, where the Y time symbol is used to indicate the time domain location of the resource unit allocated by the gNB to the UE, or is used for The resource unit is used to indicate the time domain location of the resource unit allocated by the gNB to the UE. Where Y is the number of symbols included in the time domain of the resource unit. .
  • the resource unit time domain allocation information includes a time domain index of a resource unit allocated by the gNB to the UE.
  • the UE After receiving the resource unit time domain allocation information, the UE determines the allocated resource unit in the time domain, and determines the reserved RE in the allocated resource unit, where the reserved RE is included in the reserved resource of the UE.
  • the resource unit time domain allocation information is used to indicate the time domain location of the resource unit allocated by the gNB to the UE, which may also be referred to as another name, which is not limited in this application.
  • the time domain resource number of the time-frequency resource may be numbered by using the first time domain numbering manner, that is, the time domain resource is numbered by using the resource unit as the granularity, and the time domain index corresponds to the time domain.
  • a resource unit in a resource is a diagram showing an example of numbering a time domain resource by using a resource unit as a granularity. As shown in FIG. 13(a), the time domain resource includes seven resource units, and the seven resource units are resource unit 0 to The resource unit 6, one resource unit includes two symbols.
  • the time domain resources of the time-frequency resource may also be numbered by using the second time domain numbering manner.
  • the index of one resource unit corresponds to the resource unit.
  • FIG. 13(b) is a diagram showing an example of numbering time domain resources by a second time domain numbering method. As shown in FIG. 13(b), the time domain resource includes 14 symbols, and one resource unit includes 2 symbols.
  • the index of the resource unit composed of symbol 3 and symbol 4 is the index of symbol 3
  • the index of the resource unit composed of symbol 5 and symbol 6 is the index of symbol 5
  • the index of the resource unit composed of symbol 7 and symbol 8 is symbol 7 index.
  • the resource unit time domain allocation information may be any one of the following resource unit time domain allocation information D1 to resource unit time domain allocation information D3:
  • one of the E information bits corresponds to e1 resource elements in the time domain resource, where E and e1 are positive integers.
  • E is equal to the total number of resource elements included in the time domain resource, and e1 is equal to one.
  • the resource unit corresponding to the information bit includes a reserved RE; if the value of the information bit is not t1 or the value is t2, The reserved RE is not included in the resource unit corresponding to the information bit.
  • t1 and t2 are integers, and exemplarily, t1 is equal to 1.
  • the numbers of time domain resources and resource units are as shown in FIG. 13( a ), and the time domain resources include 7 resource units, and the 7 resource units are resource units 0 to resources.
  • Unit 6, 1 resource unit includes 2 symbols. If the value of the E information is 0111000, the resource units allocated by the gNB to the UE in the time domain resource are the resource unit 1, the resource unit 2, and the resource unit 3.
  • one of the E information bits corresponds to the starting symbol of the e1 resource elements in the time domain resource, where E and e1 are positive integers. .
  • E is equal to the total number of symbols included in the frequency domain resource, and e1 is equal to one.
  • the E information bits if the information bit takes a value of t1, the e1 resource elements with the symbol corresponding to the information bit as the start symbol include a reserved RE; if the information bit has a value If it is not t1 or the value is t2, the reserved RE is not included in the e1 resource elements with the symbol corresponding to the information bit as the start symbol.
  • t1 and t2 are integers, and exemplarily, t1 is equal to 1.
  • the numbers of time domain resources and resource units are as shown in FIG. 13(b), and one resource unit includes 2 symbols in the time domain. If the value of the E information is 00010101000000, the resource unit allocated by the gNB to the UE in the time domain is a resource unit starting with symbol 3, a resource unit starting with symbol 5, and symbol 7 The resource unit of the starting symbol.
  • the R resource unit time domain set indication is used to indicate the R group resource unit allocated in the time domain, and R is a positive integer.
  • the set of R resource unit time domain set indications may indicate that the first resource unit time domain set indication or the second resource unit time domain set indication may be the following.
  • the first resource unit time domain set indication is used to indicate the time domain starting resource unit and the number of consecutively allocated resource units.
  • a first resource unit time domain set indication is used to indicate 1 set of resource elements in the time domain.
  • the numbering mode corresponding to the time domain starting resource unit may be the first time domain numbering mode or the second time domain numbering mode, which is not limited in this application.
  • the second resource unit time domain set indication is used to indicate a time domain start resource unit and a time domain end resource unit.
  • a second resource unit time domain set indication is used to indicate 1 set of resource elements in the time domain.
  • the second resource unit time domain set indication includes an index of the time domain starting resource unit and an index of the time domain ending resource unit.
  • the numbering mode corresponding to the time domain starting resource unit may be the first time domain numbering mode or the second time domain numbering mode, which is not limited in this application.
  • the numbering mode of the time domain end resource unit may be the first time domain numbering mode or the second time domain numbering mode, which is not limited in this application.
  • time domain starting resource unit set indication is used to indicate the allocated time domain starting resource unit set
  • time domain starting resource unit set indication may be The first resource unit time domain set indication or the second resource unit time domain set indication described in the same resource unit time domain allocation information D2.
  • the time domain resource unit set period indication is used to indicate the distance between the allocated adjacent resource unit sets in the time domain.
  • the method provided by the embodiment of the present application is introduced from the perspective of the gNB, the UE, and the gNB and the UE.
  • the gNB and the UE may include a hardware structure and/or a software module, and implement the foregoing functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above functions is performed in a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application and design constraints of the technical solution.
  • FIG. 14 is a schematic structural diagram of an apparatus 1400 according to an embodiment of the present application.
  • the device 1400 can be a hardware structure, a software module, or a hardware structure plus a software module.
  • the device 1400 may be a UE, and may implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 1400 may also be a device that can support the UE to implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 1400 may be a device that is configured in the UE, and can support the UE to implement the function of the UE in the method provided by the embodiment of the present application.
  • Device 1400 can be implemented by a chip system. In the embodiment of the present application, the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the device 1400 includes a reservation RE determination module 1402 and a transceiver module 1404.
  • the reserved RE determining module 1402 is configured to determine a reserved RE in the resource unit, and the reserved RE is included in the reserved resource.
  • the resource unit intermediate frequency domain includes X RBs and the time domain includes Y symbols, where X and Y are positive integers.
  • the method for determining the reserved RE in the resource unit is as described in the method provided by the embodiment of the present application, and details are not described herein again.
  • the transceiver module 1404 is for a communication interface between the device 1400 and an external device, where the external device can be a circuit, device, or other device.
  • the transceiver module 1404 can be configured to perform data transmission with the gNB in all or a portion of the REs other than the reserved resources.
  • the transceiver module 1404 is further configured to receive resource unit size configuration signaling, where the resource unit size configuration signaling is used to indicate at least one of the number of RBs X included in the resource unit and the number Y of symbols included in the resource unit.
  • the transceiver module 1404 is further configured to receive resource unit subcarrier spacing configuration signaling, where the resource unit subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the transceiver module 1404 is further configured to receive reserved RE configuration information, where the reserved RE configuration information is used to indicate a reserved RE in the resource unit.
  • the transceiver module 1404 is further configured to receive the resource unit frequency allocation information and/or the resource unit time domain allocation information, and determine the location of the allocated resource unit in the time-frequency resource, so that the resource may be used to determine the reserved resource or reserve the resource. Reserved RE in .
  • the description of each signaling received by the transceiver module 1404 is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • a resource unit size determination module 1406 may also be included in the apparatus 1400.
  • the resource unit size determining module 1406 is configured to determine the number of RBs X included in the resource unit and the number Y of symbols included in the resource unit.
  • the method for determining the X and Y by the resource unit size determining module is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • the apparatus 1400 may further include a resource unit subcarrier spacing determining module 1408, configured to determine a subcarrier spacing corresponding to the resource unit.
  • a resource unit subcarrier spacing determining module 1408 configured to determine a subcarrier spacing corresponding to the resource unit. The method in which the resource unit subcarrier spacing determining module determines the subcarrier spacing corresponding to the resource unit is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • the device 1400 may further include a resource unit location determining module 1410 for determining a location of the allocated resource unit in the time-frequency resource.
  • the determination method is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • the modules in device 1400 can be coupled together.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in an electrical, mechanical or other form for information interaction between devices, units or modules.
  • FIG. 15 is a schematic structural diagram of an apparatus 1500 according to an embodiment of the present application.
  • the device 1500 can be a hardware structure, a software module, or a hardware structure plus a software module.
  • the device 1500 can be a gNB, and can implement the function of the gNB in the method provided by the embodiment of the present application.
  • the device 1500 can also be a device that can support the gNB to implement the function of the gNB in the method provided by the embodiment of the present application.
  • the device 1500 may be a device that is configured in the gNB, and can support the gNB to implement the function of the gNB in the method provided by the embodiment of the present application.
  • Device 1500 can be implemented by a chip system.
  • the device 1500 includes a reservation RE determination module 1502 and a transceiver module 1504.
  • the reserved RE determining module 1502 is configured to determine a reserved RE in the resource unit, and the reserved RE is included in the reserved resource.
  • the resource unit intermediate frequency domain includes X RBs and the time domain includes Y symbols, where X and Y are positive integers.
  • the method in which the RE-recognition module 1502 determines the RE-reserved in the resource unit is as described in the method provided in this embodiment of the present application, and details are not described herein again.
  • the transceiver module 1504 is for a communication interface between the device 1500 and an external device, wherein the external device can be a circuit, device, or other device. Illustratively, the transceiver module 1504 can be configured to perform data transmission with the UE in all or part of the REs other than the reserved resources.
  • the transceiver module 1504 is further configured to send resource unit size configuration signaling, where the resource unit size configuration signaling is used to indicate at least one of the number of RBs X included in the resource unit and the number Y of symbols included in the resource unit.
  • the transceiver module 1504 is further configured to send the resource unit subcarrier spacing configuration signaling, where the resource unit subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the transceiver module 1504 is further configured to send reserved RE configuration information, where the reserved RE configuration information is used to indicate a reserved RE in the resource unit.
  • the transceiver module 1504 is further configured to send the resource unit frequency allocation information and/or the resource unit time domain allocation information, where the UE determines the location of the allocated resource unit in the time-frequency resource, so that the UE may determine the reserved resource or the pre- Reserved RE in the reserved resource.
  • the description of each signaling sent by the transceiver module 1504 is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • a resource unit size determination module 1506 can also be included in the apparatus 1500.
  • the resource unit size determining module 1506 is configured to determine the number of RBs X included in the resource unit and the number Y of symbols included in the resource unit.
  • the method for determining the X and Y by the resource unit size determining module is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • the device 1500 may further include a resource unit subcarrier spacing determining module 1508, configured to determine a subcarrier spacing corresponding to the resource unit.
  • a resource unit subcarrier spacing determining module 1508 configured to determine a subcarrier spacing corresponding to the resource unit. The method in which the resource unit subcarrier spacing determining module determines the subcarrier spacing corresponding to the resource unit is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • the device 1500 may further include a resource unit location determining module 1510, configured to determine a location of the allocated resource unit in the frequency resource, and to determine a location of the allocated resource unit in the time domain resource.
  • the determination method is the same as that in the method provided by the embodiment of the present application, and details are not described herein again.
  • the modules in device 1500 can be coupled together.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in an electrical, mechanical or other form for information interaction between devices, units or modules.
  • FIG. 16 is a schematic structural diagram of a device 1600 according to an embodiment of the present application.
  • the device 1600 can be a UE, and can implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 1600 can also be a device that can support the UE to implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 1600 may be a device that is configured in the UE, and can support the UE to implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 1600 includes a processing system 1602, which is used to implement or support the UE to implement the functions of the UE in the method provided by the embodiment of the present application.
  • Processing system 1602 can be a circuit that can be implemented by a chip system.
  • the processing system 1602 includes at least one processor 1622, which can be used to implement or support the UE to implement the functions of the UE in the method provided by the embodiment of the present application.
  • Processor 1622 may also be used to manage other devices in processing system 1602 when processing system 1602 includes other devices than processors.
  • such other devices may be memory 1624, bus 1626, and bus interface described below. At least one of 1628.
  • the processor may be a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processing (DSP), a microprocessor, A microcontroller, a programmable logic device (PLD), or any combination thereof.
  • CPU central processing unit
  • NP general-purpose processor network processor
  • DSP digital signal processing
  • microprocessor a microprocessor
  • a microcontroller a programmable logic device (PLD), or any combination thereof.
  • Memory 1624 may also be included in processing system 1602 for storing program instructions and/or data.
  • the program instruction may also be referred to as an instruction.
  • processor 1622 can be coupled to memory 1624.
  • the memory includes a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a flash.
  • the processor 1622 can operate in conjunction with the memory 1624.
  • Processor 1622 can execute the instructions stored in memory 1624.
  • the UE may implement or support the UE to implement the functions of the UE in the method provided by the embodiment of the present application.
  • Processor 1622 may also read data stored in memory 1624.
  • Memory 1624 may also store data obtained by processor 1622 when executing program instructions.
  • the processor 1622 can be configured to determine a reserved RE in the resource unit, where the reserved RE is included in the reserved resource.
  • the resource unit intermediate frequency domain includes X RBs and the time domain includes Y symbols, where X and Y are positive integers.
  • the method for determining the RE is as described in the method provided by the embodiment of the present application, and may be the first RE determination method or the second RE determination method, which is not described here.
  • the processor 1622 can also be configured to perform data transmission with the gNB in all or part of the REs other than the reserved resources.
  • the processor 1622 is further configured to receive and process resource unit size configuration signaling, where the resource unit size configuration signaling is used to indicate at least one of the number of RBs X included in the resource unit and the number Y of symbols included in the resource unit.
  • the processor 1622 is further configured to determine, according to the resource unit size configuration signaling, at least one of the number of RBs X included in the resource unit and the number of symbols Y included in the resource unit.
  • the processor 1622 is further configured to receive and process resource unit subcarrier spacing configuration signaling, where the resource unit subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the processor 1622 is further configured to determine, according to the resource unit subcarrier spacing configuration signaling, a subcarrier spacing corresponding to the resource unit.
  • the processor 1622 is further configured to receive and process reserved RE configuration information, where the reserved RE configuration information is used to indicate a reserved RE in the resource unit.
  • the processor 1622 is further configured to determine a reserved RE in the resource unit according to the reserved RE configuration information.
  • the processor 1622 is further configured to receive and process resource unit frequency allocation information and/or resource unit time domain allocation information, to determine a location of the allocated resource unit in the time-frequency resource, so as to be used to determine a reserved resource or a pre- Reserved RE in the reserved resource.
  • the processor 1622 is further configured to determine, according to the resource unit frequency allocation information, a location of the allocated resource unit in the frequency resource.
  • the processor 1622 is further configured to determine, according to the resource unit time domain allocation information, a location of the allocated resource unit in the time domain resource.
  • Processing system 1602 can also include a bus interface 1628 for providing an interface between bus 1626 and other devices.
  • Apparatus 1600 may also include a transceiver 1606 for communicating over a transmission medium with other communication devices such that other devices in device 1600 can communicate with other communication devices.
  • the other device may be the processing system 1602.
  • other devices in device 1600 may utilize transceiver 1606 to communicate with other communication devices to receive and/or transmit corresponding information. It can also be described that other devices in device 1600 may receive corresponding information, wherein the corresponding information is received by transceiver 1606 over a transmission medium, which may be via bus interface 1628 or through bus interface 1628 and bus 1626.
  • Interacting between transceiver 1606 and other devices in device 1600; and/or other devices in device 1600 may transmit corresponding information, wherein the corresponding information is transmitted by transceiver 1606 over a transmission medium, the corresponding The information can be exchanged between the transceiver 1606 and other devices in the device 1600 via the bus interface 1628 or through the bus interface 1628 and bus 1626.
  • the device 1600 may also include a user interface 1604, which is an interface between the user and the device 1600, possibly for user interaction with the device 1600.
  • user interface 1604 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 1602 includes a processor 1622, and may further include at least one of a memory 1624, a bus 1626, and a bus interface 1628 for implementing the method provided by the embodiments of the present application.
  • Processing system 1602 is also within the scope of this application.
  • FIG. 17 is a schematic structural diagram of an apparatus 1700 according to an embodiment of the present application.
  • the device 1700 can be a gNB, and can implement the function of the gNB in the method provided by the embodiment of the present application.
  • the device 1700 can also be a device that can support the gNB to implement the function of the gNB in the method provided by the embodiment of the present application.
  • the device 1700 can be a device that is configured in the gNB, and can support the gNB to implement the function of the gNB in the method provided by the embodiment of the present application.
  • the device 1700 includes a processing system 1702 for implementing or for supporting the gNB to implement the function of the gNB in the method provided by the embodiment of the present application.
  • Processing system 1702 can be a circuit that can be implemented by a chip system.
  • the processing system 1702 includes at least one processor 1722, which can be used to implement or support the function of the gNB in the method provided by the embodiment of the present application.
  • the processor 1722 can also be used to manage other devices in the processing system 1702 when the processing system 1702 includes other devices than the processor.
  • the other devices may be the memory 1724, the bus 1726, and the bus interface described below. At least one of 1728.
  • Processing system 1702 may also include a memory 1724 for storing instructions and/or data. If memory 1724 is included in processing system 1702, processor 1722 can be coupled to memory 1724.
  • the processor 1722 can operate in conjunction with the memory 1724.
  • the processor 1722 can execute the instructions stored in the memory 1724.
  • the gNB can be implemented or supported to implement the functions of the gNB in the method provided by the embodiment of the present application.
  • Processor 1722 may also read data stored in memory 1724.
  • Memory 1724 may also store data obtained by processor 1722 when executing program instructions.
  • the processor 1722 can be configured to determine a reserved RE in the resource unit, where the reserved RE is included in the reserved resource.
  • the resource unit intermediate frequency domain includes X RBs and the time domain includes Y symbols, where X and Y are positive integers.
  • the method for determining the RE is as described in the method provided in this embodiment of the present application, and details are not described herein again.
  • the processor 1722 can also be configured to perform data transmission with the UE in all or part of the REs other than the reserved resources.
  • the processor 1722 is further configured to generate and send resource unit size configuration signaling, where the resource unit size configuration signaling is used to indicate at least one of the number of RBs X included in the resource unit and the number Y of symbols included in the resource unit.
  • the processor 1722 is further configured to generate and send resource unit subcarrier spacing configuration signaling, where the resource unit subcarrier spacing configuration signaling is used to indicate a subcarrier spacing corresponding to the resource unit.
  • the processor 1722 is further configured to generate and send reserved RE configuration information, where the reserved RE configuration information is used to indicate a reserved RE in the resource unit.
  • the processor 1722 is further configured to generate and send resource unit frequency allocation information and/or resource unit time domain allocation information, for determining a location of the allocated resource unit in the time-frequency resource, so that the reserved resource or the pre-determined resource may be used to determine the reserved resource or the pre-reserved resource.
  • Reserved RE in the reserved resource is further configured to generate and send resource unit frequency allocation information and/or resource unit time domain allocation information, for determining a location of the allocated resource unit in the time-frequency resource, so that the reserved resource or the pre-determined resource may be used to determine the reserved resource or the pre-reserved resource.
  • Processing system 1702 can also include a bus interface 1728 for providing an interface between bus 1726 and other devices.
  • the device 1700 may also include a transceiver 1706 for communicating with other communication devices over a transmission medium such that other devices in the device 1700 can communicate with other communication devices.
  • the other device may be the processing system 1702.
  • other devices in device 1700 may utilize transceiver 1706 to communicate with other communication devices to receive and/or transmit corresponding information. It can also be described that other devices in device 1700 may receive corresponding information, wherein the corresponding information is received by transceiver 1706 over a transmission medium, which may be via bus interface 1728 or through bus interface 1728 and bus 1726.
  • Interacting between transceiver 1706 and other devices in device 1700; and/or other devices in device 1700 may transmit corresponding information, wherein the corresponding information is transmitted by transceiver 1706 over a transmission medium, the corresponding The information can be exchanged between the transceiver 1706 and other devices in the device 1700 via the bus interface 1728 or through the bus interface 1728 and the bus 1726.
  • the device 1700 may also include a user interface 1704, which is an interface between the user and the device 1700, possibly for user interaction with the device 1700.
  • user interface 1704 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 1702 includes a processor 1722, and may further include at least one of a memory 1724, a bus 1726, and a bus interface 1728 for implementing the method provided by the embodiments of the present application.
  • Processing system 1702 is also within the scope of this application.
  • the module division of the device is a logical function division, and the actual implementation may have another division manner.
  • each functional module of the device may be integrated into one module, or each functional module may exist separately, or two or more functional modules may be integrated into one module.
  • the method provided by the embodiment of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, a network device, a user device, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital video disc (DVD)), or a semiconductor medium (eg, an SSD) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital video disc (DVD)
  • a semiconductor medium eg, an SSD

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置方法、装置和系统。其中,该方法包括:在资源单元中确定预留RE,该预留RE包括于预留资源中,在预留资源之外的全部或部分RE中进行数据传输。其中,资源单元频域包括X个资源块RB且时域包括Y个符号,X和Y为正整数。通过本申请提供的资源配置方法,可以降低数据传输中不同终端间的数据的冲突,提高资源利用率。

Description

资源配置方法、装置和系统
本申请要求于2017年11月17日提交中国国家知识产权局、申请号为201711148101.3、申请名称为“资源配置方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及资源配置方法、装置和系统。
背景技术
无线通信系统中,利用空口资源进行通信设备间的数据传输。其中,通信设备可以为网络设备或终端,空口资源可以为码资源、时域资源和频域资源中至少一个,空口资源还可以简称为资源。
当网络设备和终端进行通信时,可以为终端配置资源,网络设备和该终端可以在该配置的资源进行数据传输。其中,为终端配置的资源可以是预配置的资源,也可以是网络设备通过信令为终端配置的资源。在数据传输过程中,为终端进行资源配置对数据传输起着重要作用,因此,在无线通信系统中,为终端进行资源配置可以被重点研究。
发明内容
本申请提供了一种资源配置方法、装置和系统,旨在降低数据传输过程中不同终端的数据间的冲突。
第一方面,本申请提供了一种资源配置方法,其特征在于,在资源单元中确定预留资源元素(resource element,RE),所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1;在所述预留资源之外的全部或部分RE中接收数据传输。通过该方法,可以降低数据传输中不同终端间的数据的冲突,提高资源利用率。
在第一个设计中,根据第一方面,所述方法还包括:接收资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。通过该方法,可以灵活配置资源单元大小。
在第二个设计中,根据第一方面或第一方面的第一个设计,在资源单元中确定预留RE包括:根据预留RE图案在所述资源单元中确定预留RE。根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。当y1大于1时,在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。通过该方法,可以降低配置预留RE时的信令开销。
在第三个设计中,根据第一方面的第二个设计,所述预留RE图案包括于M个可 用预留RE图案中;所述方法还包括:接收参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。通过该方法,可以降低配置预留RE时的信令开销的同时,灵活地配置预留RE。
在第四个设计中,根据第一方面或第一方面的第一个设计,所述方法还包括:接收预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。通过该方法,可以灵活地配置预留RE。
在第五个设计中,根据第一方面或第一方面中之前的任何一个设计,所述方法还包括:接收资源单元频率分配信息,用于以X个RB为粒度在频率资源中确定分配的资源单元;接收资源单元时域分配信息,用于以Y个符号为粒度在时域资源中确定分配的资源单元。
在第六个设计中,根据第一方面或第一方面中之前的任何一个设计,所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。通过该方法,可以降低配置资源单元对应的子载波间隔时的信令开销。
在第七个设计中,根据第一方面或第一方面中第一个设计至第五个设计中任何一个设计,所述方法还包括:接收资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。通过该方法,可以灵活地配置资源单元对应的子载波间隔。
第二方面,本申请提供了一种资源配置方法,其特征在于,包括:在资源单元中确定预留RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1;在所述预留资源之外的全部或部分RE中发送数据。
在第一个设计中,根据第二方面,所述方法还包括:发送资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
在第二个设计中,根据第二方面或第二方面的第一个设计,所述在资源单元中确定预留RE,包括:根据预留RE图案在所述资源单元中确定预留RE。根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。当y1大于1时,在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
在第三个设计中,根据第二方面的第二个设计,所述预留RE图案包括于M个可用预留RE图案中;所述方法还包括:发送参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
在第四个设计中,根据第二方面或第二方面的第一个设计,所述方法还包括:发送预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
在第五个设计中,根据第二方面或第二方面中之前的任何一个设计,所述方法还包括:发送资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元;发送资源单元时域分配信息,所述资源单元时域 分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
在第六个设计中,根据第二方面或第二方面中之前的任何一个设计,所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。
在第七个设计中,根据第二方面或第二方面中第一个设计至第五个设计中任何一个设计,所述方法还包括:发送资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。
第三方面,本申请提供了一种装置,该装置能够实现上述第一方面描述的功能和第一方面的各设计中描述的功能。该功能可以通过硬件结构、软件模块、或硬件结构加软件模块的形式实现。该硬件结构或软件模块包括一个或多个与上述功能相对应的模块。
在第一个设计中,根据第三方面,所述装置包括:预留RE确定模块和收发模块。预留RE确定模块用于在资源单元中确定预留RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1。收发模块用于在预留资源之外的全部或部分RE中接收数据。
在第二个设计中,根据第三方面第一个设计,收发模块还用于接收资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。所述装置还可以包括资源单元大小确定模块,用于确定所述X和所述Y。示例性地,所述资源单元大小确定模块根据所述收发模块接收的资源单元大小配置信令确定所述X和Y中至少一个,或所述资源单元大小确定模块根据预配置确定所述X和Y中至少一个。
在第三个设计中,根据第三方面中之前的任何一个设计,预留RE确定模块根据预留RE图案在所述资源单元中确定预留RE。根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。当y1大于1时:在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
在第四个设计中,根据第三方面中之前的任何一个设计,所述预留RE图案包括于M个可用预留RE图案中,所述收发模块还用于接收参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
在第五个设计中,根据第三方面中第一个设计或第二个设计,所述收发模块还用于接收预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。所述预留RE确定模块根据所述收发模块接收的预留RE配置信息确定所述资源单元中的预留RE。
在第六个设计中,根据第三方面中之前的任何一个设计,所述收发模块还用于接收资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元。所述收发模块还用于接收资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。所述装置中还可以包括资源单元位置确定模块,用于确定在时频资源中分配的资源单元。 示例性地,所述资源单元位置确定模块用于根据所述资源单元频率分配信息在频率资源中确定分配的资源单元。所述资源单元位置确定模块用于根据所述资源单元时域分配信息在时域资源中确定分配的资源单元。
在第七个设计中,根据第三方面中之前的任何一个设计,所述收发模块还用于接收资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。所述装置还包括资源单元子载波间隔确定模块,用于确定资源单元对应的子载波间隔。示例性地,所述资源单元子载波间隔确定模块确定所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔或传输系统消息使用的子载波间隔。所述资源单元子载波间隔确定模块根据所述收发模块接收到的资源单元子载波间隔配置信令确定所述资源单元对应的子载波间隔。
第四方面,本申请提供了一种装置,该装置能够实现上述第二方面描述的功能和第二方面的各设计中描述的功能。该功能可以通过硬件结构、软件模块、或硬件结构加软件模块的形式实现。该硬件结构或软件模块包括一个或多个与上述功能相对应的模块。
在第一个设计中,根据第四方面,所述装置包括:预留RE确定模块和收发模块。预留RE确定模块用于在资源单元中确定预留RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1。收发模块用于在预留资源之外的全部或部分RE中发送数据。
在第二个设计中,根据第四方面第一个设计,收发模块还用于发送资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
在第三个设计中,根据第四方面中之前的任何一个设计,预留RE确定模块根据预留RE图案在所述资源单元中确定预留RE。根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。当y1大于1时:在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
在第四个设计中,根据第四方面中之前的任何一个设计,所述预留RE图案包括于M个可用预留RE图案中,所述收发模块还用于发送参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
在第五个设计中,根据第四方面中第一个设计或第二个设计,所述收发模块还用于发送预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
在第六个设计中,根据第四方面中之前的任何一个设计,所述收发模块还用于发送资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元。所述收发模块还用于发送资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
在第七个设计中,根据第四方面中之前的任何一个设计,所述收发模块还用于发送资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源 单元对应的子载波间隔。所述装置还包括资源单元子载波间隔确定模块,用于确定资源单元对应的子载波间隔。示例性地,所述资源单元子载波间隔确定模块确定所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔或传输系统消息使用的子载波间隔。
第五方面,本申请提供了一种装置,包括:处理器;存储器,存储器和处理器耦合,处理器执行存储器存储的指令;收发器,收发器和处理器耦合,其中,处理器用于在资源单元中确定预留资源元素RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1。处理器还用于利用收发器在所述预留资源之外的全部或部分RE中接收数据。
在第一个设计中,根据第五方面,处理器还用于利用收发器接收资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。所述处理器还用于根据资源单元大小配置信令确定所述X和Y中至少一个。
在第二个设计中,根据第五方面或第五方面中第一个设计,所述处理器用于在资源单元中确定预留资源元素RE,包括:所述处理器用于根据预留RE图案在所述资源单元中确定预留RE。所述处理器根据所述预留RE图案,确定所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。当y1大于1时:在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
在第三个设计中,根据第五方面或第五方面中之前的任何一个设计,所述预留RE图案包括于M个可用预留RE图案中,所述处理器还用于利用收发器接收参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
在第四个设计中,根据第五方面或第五方面第一个设计,所述处理器还用于利用收发器接收预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。所述处理器还用于根据所述预留RE配置信息确定所述资源单元中的预留RE。
在第五个设计中,根据第五方面或第五方面中之前的任何一个设计,所述处理器还用于利用收发器接收资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元。所述处理器还用于根据所述资源单元频率分配信息确定分配的资源单元在频率的位置。所述处理器还用于利用收发器接收资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。所述处理器还用于根据所述资源单元时域分配信息确定分配的资源单元在时域的位置。
在第六个设计中,根据第五方面或第五方面中之前的任何一个设计,所述处理器还用于确定所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。
在第七个设计中,根据第五方面或第五方面中第一个设计至第五个设计中的任何一 个设计,所述处理器还用于利用收发器接收资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。所述处理器还用于根据所述资源单元子载波间隔配置信令确定所述资源单元对应的子载波间隔。
第六方面,本申请提供了一种装置,包括:处理器;存储器,存储器和处理器耦合,处理器执行存储器存储的程序指令;收发器,收发器和处理器耦合,其中,处理器用于在资源单元中确定预留资源元素RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1。处理器还用于利用收发器在所述预留资源之外的全部或部分RE中发送数据。
在第一个设计中,根据第六方面,处理器还用于利用收发器发送资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
在第二个设计中,根据第六方面或第六方面中第一个设计,所述处理器用于在资源单元中确定预留资源元素RE,包括:所述处理器用于根据预留RE图案在所述资源单元中确定预留RE。所述处理器根据所述预留RE图案,确定所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。当y1大于1时:在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
在第三个设计中,根据第六方面或第六方面中之前的任何一个设计,所述预留RE图案包括于M个可用预留RE图案中,所述处理器还用于利用收发器发送参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
在第四个设计中,根据第六方面或第六方面第一个设计,所述处理器还用于利用收发器发送预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
在第五个设计中,根据第六方面或第六方面中之前的任何一个设计,所述处理器还用于利用收发器发送资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元。所述处理器还用于利用收发器发送资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
在第六个设计中,根据第六方面或第六方面中之前的任何一个设计,所述处理器还用于确定所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。
在第七个设计中,根据第六方面或第六方面中第一个设计至第五个设计中的任何一个设计,所述处理器还用于利用收发器发送资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。
第七方面,本申请提供了一种通信系统,该通信系统包括上述第三方面的装置和上述第四方面的装置。
第八方面,本申请提供了一种通信系统,该通信系统包括上述第五方面的装置和上 述第六方面的装置。
第九方面,本申请提供了一种芯片系统,该芯片系统中包括处理器,还可以包括存储器,用于实现第一方面和第一方面各设计中至少一个。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统中包括处理器,还可以包括存储器,用于实现第二方面和第二方面各设计中至少一个。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面和第一方面各设计中至少一个。
第十二方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面和第二方面各设计中至少一个。
附图说明
图1是本申请实施例提供的频率资源的位置的示例图;
图2是本申请实施例提供的系统频率资源中的带宽资源的结构的示例图;
图3是本申请实施例提供的gNB为第一UE和第二UE配置的带宽资源的示例图;
图4是本申请实施例提供的资源配置方法的示意图;
图5是本申请实施例提供的2天线端口对应的CSI-RS图案的示例图;
图6是本申请实施例提供的资源配置方法解决不同参数的UE间的冲突的示例图;
图7是本申请实施例提供的资源配置方法解决不同参数的UE间的冲突的示例图;
图8是本申请实施例提供的资源配置方法解决不同参数的UE间的冲突的示例图;
图9是本申请实施例提供的资源配置方法解决不同参数的UE间的冲突的示例图;
图10是本申请实施例提供的预留RE图案的示例图;
图11是本申请实施例提供的预留RE图案的示例图;
图12是本申请实施例提供的以资源单元为粒度对频率资源进行编号的示例图;
图13是本申请实施例提供的以资源单元为粒度对时域资源进行编号的示例图;
图14是本申请实施例提供的装置结构示意图;
图15是本申请实施例提供的装置结构示意图;
图16是本申请实施例提供的装置结构示意图;
图17是本申请实施例提供的装置结构示意图。
具体实施方式
本申请实施例描述的网络架构和业务场景不构成对本申请实施例提供的技术方案的限定。随着网络架构的演变或新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案可能应用于可以分配空口资源的无线通信系统。示例性地,本申请实施例提供的技术方案可能应用于第五代移动通信技术(the fifth generation mobile communication technology,5G)系统,还可能应用于除5G系统以外 的其它基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的系统。其中,5G系统还可以称为新无线电(new radio,NR)。
在无线通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备包括网络设备和终端,网络设备还可以称为网络侧设备。通信设备间的无线通信包括:网络设备和终端间的无线通信,网络设备和网络设备间的无线通信,以及终端和终端间的无线通信。通信设备间利用空口资源进行无线通信时,对空口资源进行管理和/或分配的通信设备还可以称为调度实体,被调度的通信设备还可以称为从属实体。示例性地,当网络设备和终端进行无线通信时,网络设备还可以称为调度实体,终端还可以称为从属实体。本申请实施例提供的技术方案可用于进行调度实体和从属实体间的无线通信。本申请实施例以网络设备和终端间的无线通信为例,对本申请实施例提供的技术方案进行描述。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”。
本申请实施例涉及到的终端还可以称为终端设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是用户设备(user equipment,UE),UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置。本申请实施例中,以实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括基站(base station,BS),是一种部署在无线接入网中可以和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。当宏基站和微基站进行无线通信时,宏基站可以管理空口资源,为微基站分配空口资源,宏基站和微基站可以在该分配的空口资源进行数据传输。在该通信场景中,宏基站还可以称为调度实体,微基站还可以称为从属实体。本申请实施例涉及到的基站可以是5G系统中的基站,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置。本申请实施例中,以实现网络设备的功能的装置是网络设备,以网络设备是gNB为例,描述本申请实施例提供的技术方案。
在无线通信系统中,gNB和UE可以利用空口资源进行无线通信。在一种可能的无线通信系统中,例如5G系统中,空口资源包括频率资源。频率资源可以位于设置的频率范围,频率范围还可以称为频带(band)或频段。在本申请实施例中,频率资源还可以称为频域资源。在频域,频率资源的中心点可以称为中心频点,频率资源的宽度可以称为带宽(bandwidth,BW)。示例性地,图1所示为频率资源的位置示意 图。如图1中所示,频率资源可以为频带内的部分或全部资源,频率资源的带宽为W,中心频点的频率为F。其中,频率资源的边界点的频率分别为F-W/2和F+W/2,还可以描述为,频率资源中最高频点的频率为F+W/2,频率资源中最低频点的频率为F-W/2。在无线通信系统中,用于进行下行通信的频率资源和用于进行上行通信的频率资源可以相同,也可以不相同,本申请不做限制。
gNB和UE利用频率资源进行无线通信时,gNB管理系统频率资源,从系统频率资源中为UE分配频率资源,使得gNB和UE可以利用该分配的频率资源进行通信。其中,系统频率资源可以为gNB可以管理和分配的频率资源,还可以为可以用于进行gNB和UE间的通信的频率资源。在本申请实施例中,系统频率资源还可以称为系统资源或传输资源。在频域,系统频率资源的宽度可以称为系统频率资源的带宽,还可以称为系统带宽或传输带宽。
gNB为UE分配频率资源的一种可能的设计为:gNB从系统频率资源中为UE配置带宽资源,gNB在该配置的带宽资源中对UE进行调度。还可以描述为,gNB从系统频率资源中为UE配置带宽资源,从而可以使gNB将该配置的带宽资源中的部分或全部资源分配给UE,用于进行gNB和UE间的通信。其中,带宽资源包括于系统频率资源中,可以是系统频率资源中连续的或者不连续的部分资源,也可以是系统频率资源中的全部资源。带宽资源还可以称为带宽部分、频率资源部分、部分频率资源、载波带宽部分或者其它名称,本申请不做限制。当带宽资源为系统频率资源中的一段连续资源时,带宽资源还可以称为子带、窄带或者其它名称,本申请不做限制。示例性地,图2所示为系统频率资源中的带宽资源的结构示意图。如图2中所示,系统频率资源中包括带宽资源0、带宽资源1和带宽资源2共3个不同的带宽资源。实际应用中,系统频率资源中可以包括任意整数个带宽资源,本申请不做限制。对于不同的带宽资源,以带宽资源A和带宽资源B为例,带宽资源A和带宽资源B不同包括以下至少一种情况:带宽资源A包括的部分频率资源或全部频率资源不包括在带宽资源B中,带宽资源B包括的部分频率资源或全部频率资源不包括在带宽资源A,和带宽资源A的参数和带宽资源B的参数不同。其中,参数包括子载波间隔和循环前缀(cyclic prefix,CP)中至少一个。在第三代合作伙伴计划(third generation partnership project,3GPP)研究和制定无线通信系统的标准的过程中,该参数的英文名称还可以称为numerology。示例性地,在基于OFDM的通信系统中,带宽资源A和带宽资源B不同可能为以下至少一种情况:带宽资源A中包括的至少一个子载波不包括在带宽资源B中,带宽资源B中包括的至少一个子载波不包括在带宽资源A中,和带宽资源A和带宽资源B的参数不同。
示例性地,上述gNB为UE分配频率资源的一种可能的设计可能应用于但不限于以下三个场景:
场景一:大带宽场景
在通信系统中,随着UE业务量的增加和UE数量的增加,系统业务量显著增加,因此,现有通信系统中提出了系统带宽为大带宽的设计,用于提供较多的系统资源,从而可以提供较高的数据传输速率。在系统带宽为大带宽的通信系统中,考虑到UE的成本以及UE的业务量,UE支持的带宽可能小于系统带宽。其中,UE支持的带宽 越大,UE的处理能力越强,UE的数据传输速率可能越高,UE的设计成本可能越高。UE支持的带宽还可以称为UE的带宽能力。示例性地,在5G系统中,系统带宽最大可能为400MHz,UE的带宽能力可能为20MHz、50MHz或100MHz等。在无线通信系统中,不同UE的带宽能力可以相同也可以不同,本申请实施例不做限制。
在系统带宽为大带宽的通信系统中,由于UE的带宽能力小于系统带宽,gNB可以从系统频率资源中为UE配置带宽资源,该带宽资源的带宽小于等于UE的带宽能力。当UE和gNB进行通信时,gNB可以将为UE配置的带宽资源中的部分或全部资源分配给UE,用于进行gNB和UE间的通信。
场景二:多参数场景
在无线通信系统中,例如5G系统中,为了支持更多的业务类型和/或通信场景,提出了支持多种参数的设计。对于不同的业务类型和/或通信场景,可以独立设置numerology。
在一种可能的配置中,gNB可以在系统频率资源中配置多个带宽资源,为该多个带宽资源中的每个带宽资源独立配置numerology,用于在系统频率资源中支持多种业务类型和/或通信场景。其中,不同带宽资源的numerology可以相同,也可以不相同,本申请不做限制。
当UE和gNB进行通信时,gNB可以基于该通信对应的业务类型和/或通信场景确定用于进行通信的numerology A,从而可以基于numerology A为UE配置相应的带宽资源。其中,该相应的带宽资源的numerology被配置为numerology A。当UE和gNB进行通信时,gNB可以将为UE配置的带宽资源中的部分或全部资源分配给UE,用于进行gNB和UE间的通信。
场景三:带宽回退
当UE和gNB进行通信时,gNB可以基于UE的业务量为UE配置带宽资源,用于节省UE的功耗。示例性地,如果UE没有业务,UE可以只在较小的带宽资源中接收控制信息,可以降低UE的射频处理的任务量和基带处理的任务量,从而可以减少UE的功耗。如果UE的业务量较少,gNB可以为UE配置带宽较小的带宽资源,可以降低UE的射频处理的任务量和基带处理的任务量,从而可以减少UE的功耗。如果UE的业务量较多,gNB可以为UE配置带宽较大的带宽资源,从而可以提供更高的数据传输速率。当UE和gNB进行通信时,gNB可以将为UE配置的带宽资源中的部分或全部资源分配给UE,用于进行gNB和UE间的通信。
gNB和UE进行通信时,可以传输参考信号(reference signal,RS),用于进行信道状态估计,gNB和UE可以基于估计的信道状态匹配地进行数据传输,从而可以提高数据传输速率。其中,信道状态估计还可以简称为信道估计,信道估计还可以描述为信道测量。在本申请实施例中,RS主要用于进行信道估计或信道测量,其还可以称为导频或者其它名称,本申请不做限制。
示例性地,当gNB和UE进行下行数据传输时,gNB向UE发送信道状态信息参考信号(channel state information reference signal,CSI-RS)。UE根据接收到的CSI-RS进行信道估计,UE将估计到的信道状态信息发送给gNB。gNB可以根据该信道状态信息对应的信道状态匹配地为UE发送下行数据,从而可以提高下行数据传输速率。 在本申请实施例中,CSI-RS为gNB向UE发送的参考信号,用于进行下行信道估计或下行信道测量,其还可以称为下行参考信号或者其它名称,本申请不做限制。进一步地,用于进行下行信道估计的参考信号还可以包括小区特定参考信号(cell-specific reference signal,CRS)和下行解调参考信号(demodulation reference signal,DMRS)中至少一个。
再示例性地,当gNB和UE进行上行数据传输时,UE向gNB发送探测参考信号(sounding reference signal,SRS)。gNB根据接收到的SRS进行信道估计,并根据估计到的信道状态确定传输参数,gNB可以将该传输参数发送至UE。UE接收gNB发送的传输参数,根据该传输参数向gNB发送上行数据。通过该设计,可以使UE根据信道状态匹配地为gNB发送上行数据,从而可以提高上行数据传输速率。在本申请实施例中,SRS为UE向gNB发送的参考信号,用于进行上行信道估计或上行信道测量,其还可以称为上行参考信号或者其它名称,本申请不做限制。进一步地,用于进行上行信道估计的参考信号还可以包括上行DMRS。
在后续本申请实施例中,以参考信号是CSI-RS为例对本申请实施例提供的技术方案进行描述。
在无线通信系统中,gNB可以在系统频率资源中为多个UE配置各UE的带宽资源,用于gNB和该多个UE进行数据传输。示例性地,以2个UE为例,该2个UE分别为第一UE和第二UE,gNB可以在系统频率资源中为第一UE和第二UE配置带宽资源。图3所示为gNB为第一UE和第二UE配置的带宽资源的示例图。如图3所示,gNB为第一UE配置的带宽资源为第一带宽资源,为第二UE配置的带宽资源为第二带宽资源,第一带宽资源和第二带宽资源在频域部分重叠。
gNB可以在第一带宽资源中为第一UE发送第一CSI-RS,用于进行第一带宽资源的信道估计,gNB可以根据该信道估计结果和/或第一UE的数据量在第一带宽资源中为第一UE分配资源,gNB和第一UE可以在该分配的资源进行数据传输。其中,UE的数据量还可以称为UE的业务量。示例性地,在时隙n,gNB在第一带宽资源中为第一UE分配的资源为R1_n;在时隙n+1,gNB在第一带宽资源中为第一UE分配的资源为R1_n1。
gNB可以在第二带宽资源中为第二UE发送第二CSI-RS,用于进行第二带宽资源的信道估计,gNB可以根据该信道估计结果和/或第二UE的数据量在第二带宽资源中为第二UE分配资源,gNB和第二UE在该分配的资源进行数据传输。示例性地,在时隙n,gNB在第二带宽资源中为第二UE分配的资源为R2_n;在时隙n+1,gNB在第二带宽资源中为第二UE分配的资源为R2_n1。
如图3所示,在时隙n,gNB为第一UE分配的资源R1_n中可能包括第一带宽资源和第二带宽资源的重叠部分中的资源。如果gNB在时隙n向第二UE发送第二CSI-RS,用于传输第二CSI-RS的资源也可能包括第一带宽资源和第二带宽资源的重叠部分中的资源。此时,第一UE的数据和第二CSI-RS可能冲突,从而可能影响第一UE的数据传输和/或第二CSI-RS的传输。
基于上述分析可以看出,在数据传输时,gNB在系统频率资源中为多个UE配置各UE的带宽资源时,可能造成不同UE的数据间的冲突,从而影响各UE的数据的传 输性能。为了解决该冲突,本申请实施例提供了资源配置方法、装置和系统。进一步地,本申请实施例提供的资源配置方法、装置和系统还可以解决其它类型的数据冲突,本申请不做限制。示例性地,其它类型的冲突可以为以下三种冲突中任一个:
第一种冲突:后向兼容场景中的冲突。在NR的资源中可能传输现有的其它系统的数据,或者在现有的其它系统的资源中可能传输NR的数据,此时NR的数据可能和现有的其它系统的数据间存在冲突。示例性地,现有的其它系统可能为长期演进(long term evolution,LTE)系统、码分多址接入(code division multiple access,CDMA)系统或全球移动通信系统(global system for mobile communications,GSM)。
第二种冲突:前向兼容场景中的冲突。在NR的资源中可能传输未来系统的数据,或者在未来系统的资源中可能传输NR的数据,此时NR的数据可能和未来系统的数据间存在冲突。其中,未来系统还可以称为未来网络、未来演进版本或者其它名称,本申请不做限制。
第三种冲突:多点协作传输中的冲突。在多点协作场景中,一个或者多个基站可以在多个小区和同一个UE进行数据传输,此时,在不同小区传输的数据间可能存在冲突。
图4所示为本申请实施例提供的资源配置方法的示意图。
401,gNB和UE在资源单元中确定预留资源元素(resource element,RE),该预留RE包括于预留资源中。其中,该资源单元中频域包括X个资源块(resource block,RB)且时域包括Y个符号,其中,X和Y为正整数。
gNB和UE可以通过预配置的方式确定X和Y中至少一个。
gNB还可以为UE发送资源单元大小配置信令,用于指示X、Y、或X和Y。UE接收资源单元大小配置信令,相应地确定X和Y中至少一个。其中,资源单元大小配置信令用于指示X、Y、或X和Y,其还可以称为别的名称,本申请不做限制。如果资源单元大小配置信令用于指示X,UE根据接收到的资源单元大小配置信令确定X;如果资源单元大小配置信令用于指示Y,UE根据接收到的资源单元大小配置信令确定Y;如果资源单元大小配置信令用于指示X和Y,UE根据接收到的资源单元大小配置信令确定X和Y。
在本申请实施例中,信令可以是高层信令或者物理层信令。高层信令可以为无线资源控制(radio resource control,RRC)信令、广播消息、系统消息或媒体接入控制(medium access control,MAC)控制元素(control element,CE)。物理层信令可以为物理控制信道携带的信令或者物理数据信道携带的信令,其中,物理控制信道携带的信令可以为物理下行控制信道携带的信令、增强物理下行控制信道(enhanced physical downlink control channel,EPDCCH)携带的信令、窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)携带的信令或机器类通信物理下行控制信道(machine type communication(MTC)physical downlink control channel,MPDCCH)携带的信令。物理下行控制信道携带的信令还可以称为下行控制信息(downlink control information,DCI)。物理控制信道携带的信令还可以为物理副链路控制信道(physical sidelink control channel)携带的信令,物理副链路控制信道携带的信令还可以称为副链路控制信息(sidelink control information,SCI)。
示例性地,X和Y都等于1。再示例性地,X等于1时Y大于1,Y等于1时X大于1。X等于1时Y大于1,Y等于1时X大于1还可以描述为:X和Y不同时等于1。再示例性地,X和Y都大于1。
402,gNB和UE在预留资源之外的全部或者部分资源中进行数据传输。
示例性地,gNB和UE在预留资源之外的全部或者部分RE中进行数据传输。在本申请实施例中,数据传输包括接收数据和发送数据中至少一个。
在无线通信系统中,例如在基于OFDM的通信系统中,空口资源可以包括频率资源和时域资源。其中,频率资源和时域资源可以组合起来称为时频资源。
频率资源的单位可以为子载波、RB或者资源块组(resource block group,RBG)。其中,一个RBG中可以包括至少一个RB。RB可以为物理资源块(physical resource block,PRB),也可以为虚拟资源块(virtual resource block,VRB)。
在频域,可用于进行数据传输的资源中包括若干个资源格,一个资源格对应于一个子载波,一个PRB中包括X1个资源格,X1为大于1的整数。示例性地,X1为12。可用于进行数据传输的资源可以为系统频率资源中的部分或全部资源,也可以为带宽资源中的部分或全部资源,本申请不做限制。可用于进行数据传输的资源的带宽可以被称为X2个PRB,X2为大于等于1的整数。对于可用于进行数据传输的资源中的PRB,可以基于频率增加的方向从X3至X3+X2-1为各PRB依次进行编号,得到各PRB的编号值。其中,X3为整数,示例性地,X3等于0。在本申请实施例中,术语“编号值”也可以称作“标识”或“索引”。
可用于进行数据传输的资源中,一个PRB对应一个VRB。VRB可以包括集中式VRB或者分布式VRB。集中式VRB和PRB直接映射,即索引为n VRB的VRB对应的PRB的索引为n PRB,其中n PRB=n VRB。分布式VRB和PRB通过一定的规则进行映射,该规则可以为本领域技术人员常用的映射方法。示例性地,该映射方法可以为LTE系统3GPP标准协议中的映射方法。
时域资源的单位可以为符号、时隙、微时隙、子帧、帧或其它本领域中常用的时间单元。其中,不同子载波间隔对应的时间单元的长度可以不同。以符号为例,如果第一子载波间隔为Δf,第二子载波间隔为k×Δf,则k个第二子载波间隔对应的符号长度之和可以等于1个第一子载波间隔对应的符号长度。其中,k为大于等于2的整数。
在时频资源中,频域的一个子载波和时域的一个符号可以对应于一个RE。
随着无线通信技术的发展,为了提高数据传输的可靠性和/或提高数据传输速率,引入了多天线技术。在多天线系统中,gNB和UE可以通过多个天线端口进行数据传输,该多个天线端口中的每一个天线端口可以看做一个空间层,每个空间层对应一份空口资源。因此,在多天线系统中,gNB和UE可以在多个空间层传输数据,在多个空间层传输相同的数据时可以提高数据传输的可靠性,在多个空间层传输不同的数据时可以提高数据传输的速率。由于各个天线端口是独立进行数据传输的,因此在设置参考信号时,可以为各天线端口设置其对应的参考信号。
对于一个UE,用于传输该UE的CSI-RS的资源可以配置在该UE的带宽资源中,传输该UE的CSI-RS时使用的numerology可以为该UE的带宽资源的numerology。 其中,UE的带宽资源的numerology可以用于传输UE的数据信道携带的信息,也可以用于传输UE的控制信道携带的信息,还可以用于传输UE的参考信号。其中,数据信道可以是物理层数据信道,控制信道可以是物理层控制信道。在UE的带宽资源的部分或者全部资源中,可以基于CSI-RS图案(pattern),确定用于传输CSI-RS的RE。
图5所示为一个2天线端口对应的CSI-RS图案的示例。如图5所示,CSI-RS图案对应的资源粒度中包括12个子载波和14个符号,相应地,该资源粒度中包括168个RE,1个RE对应一个子载波和一个符号。在图5所示的CSI-RS图案中,将12个子载波和14个符号对应的资源粒度中的2个RE设置为用于传输CSI-RS的RE。其中,第一个RE为RE(3,0),3表示该RE所在的子载波的索引,0表示该RE所在的符号的索引;第二个RE为RE(9,0),9表示该RE所在的子载波的索引,0表示该RE所在的符号的索引。
在可用于进行数据传输的资源中,当CSI-RS图案用于确定传输CSI-RS的RE时,以该CSI-RS图案对应的资源粒度为单位确定用于传输CSI-RS的RE。示例性地,如果CSI-RS图案为图5所示的CSI-RS图案,在可用于进行数据传输的资源中,在每个12个子载波和14个符号对应的资源中,RE(3,0)和RE(9,0)为用于传输CSI-RS的RE。
在实际应用中,CSI-RS图案对应的资源粒度中可以包括任意正整数个子载波和任意正整数个符号,本申请不做限制。在实际应用中,可以将CSI-RS图案对应的资源粒度中的任意RE配置为用于传输CSI-RS的RE,本申请不做限制。示例性地,1个RB频域包括12个子载波,表1所示为在1个RB和14个符号对应的资源粒度中配置的CSI-RS图案。根据该CSI-RS图案,在1个RB和14个符号对应的资源粒度中,用于传输CSI-RS的RE为RE(k,l),其中,
Figure PCTCN2018112941-appb-000001
Figure PCTCN2018112941-appb-000002
k′、
Figure PCTCN2018112941-appb-000003
和l′的取值如表1中所示;k大于等于0且小于等于12减去1,即k大于等于0且小于等于11;l大于等于0且小于等于14减去1,即l大于等于0且小于等于13。
根据表1所示,在可以用于传输CSI-RS的资源中,在时域每14个符号中,在频域每1/ρ个RB中的1个RB中,共N RE个RE用于传输CSI-RS,其中,N RE
Figure PCTCN2018112941-appb-000004
可能的取值个数,用于传输CSI-RS的RE为
Figure PCTCN2018112941-appb-000005
示例性地,如表1中第2行所示,对应于天线端口数为1,
Figure PCTCN2018112941-appb-000006
共有(k 0,l 0)这1个可能的取值。当密度为1时,在可以用于传输CSI-RS的资源中,在时域每14个符号中,在频域每1个RB中,共1个RE用于传输CSI-RS,用于传输CSI-RS的RE为RE(k 0,l 0)。
示例性地,如表1中第2行所示,对应于天线端口数为1,
Figure PCTCN2018112941-appb-000007
共有(k 0,l 0)这1个可能的取值。当密度为0.5时,在可以用于传输CSI-RS的资源中,在时域每14个符号中,在频域每2个RB中的1个RB中,共1个RE用于传输CSI-RS,用于传输CSI-RS的RE为RE(k 0,l 0)。
示例性地,如表1中第3行所示,对应于天线端口数为2,
Figure PCTCN2018112941-appb-000008
共有(k 0,l 0)和(k 0+1,l 0)这2个可能的取值。当密度为1时,在可以用于传输CSI-RS的资源中,在时域每14个符号中,在频域每1个RB中,共2个RE用于传输CSI-RS,用于传输 CSI-RS的RE为RE(k 0,l 0)和RE(k 0+1,l 0)。
示例性地,如表1中第3行所示,对应于天线端口数为2,
Figure PCTCN2018112941-appb-000009
共有(k 0,l 0)和(k 0+1,l 0)这2个可能的取值。当密度为0.5时,在可以用于传输CSI-RS的资源中,在时域每14个符号中,在频域每2个RB中的1个RB中,共2个RE用于传输CSI-RS,用于传输CSI-RS的RE为RE(k 0,l 0)和RE(k 0+1,l 0)。
表1
Figure PCTCN2018112941-appb-000010
通过本申请实施例提供的资源配置方法,可以解决不同UE的数据间的冲突。以图3为例,在时隙n,第一UE的数据和第二UE的CSI-RS可能冲突。为了解决该冲突,可以在第一UE的带宽资源中为第一UE配置预留RE,该预留RE中包括用于传输第二CSI-RS的RE,该预留RE包括于为第一UE配置的预留资源中。在为第一UE配置的预留资源中,gNB和第一UE不进行数据传输,即gNB和第一UE在为第一UE配置的预留资源之外的全部或部分RE中进行数据传输。此时,第一UE的数据和第二UE的CSI-RS不会冲突。其中,第一UE的带宽资源的numerology和第二UE的带宽资源的numerology可以相同,也可以不相同,本申请不做限制。
图6所示为通过本申请实施例提供的资源配置方法解决不同numerology的UE间的冲突的第一个示例图。如图6所示,一个RB中包括12个子载波,第一UE的带宽资源的子载波间隔为15kHz,第二UE的带宽资源的子载波间隔为60kHz,传输第二UE的CSI-RS的子载波间隔为该UE的带宽资源的子载波间隔。其中,4个15kHz的子载波的宽度之和等于1个60kHz的子载波的宽度,4个60kHz的符号长度之和等于1个15kHz的符号长度。根据第二UE的CSI-RS图案,在15kHz对应的4个RB和1个符号组成的一个资源单元中,第二UE可能使用60kHz在一个RE传输CSI-RS。
参考图6,对于第一UE,可以配置资源单元,该资源单元频域包括4个RB且时域包括1个符号。在资源单元中配置图6中斜线所示的RE为预留RE,预留RE包括于预留资源中,第一UE和gNB可以在预留资源之外的部分或全部资源中进行数据传输。该预留资源还可以称为第一UE的预留资源。示例性地,第一UE和gNB可以在图6所示的点状填充的RE中进行数据传输。
在为第一UE配置的资源单元中的预留RE中,可以包括用于传输第二UE的CSI-RS的RE。示例性地,图6中标注为CSI-RS的1个RE可以用于传输第二UE的CSI-RS,该RE的子载波间隔为60kHz。进一步地,如图6所示预留RE中还可以包括第一UE的数据和第二UE的CSI-RS间的保护带,即在第一UE的数据和第二UE的CSI-RS间配置保护带,用于降低不同numerology间的干扰。
图7所示为通过本申请实施例提供的资源配置方法解决不同numerology的UE间的冲突的第二个示例图。如图7所示,一个RB中包括12个子载波,第一UE的带宽资源的子载波间隔为15kHz,第二UE的带宽资源的子载波间隔为30kHz,传输第二UE的CSI-RS的子载波间隔为该UE的带宽资源的子载波间隔。其中,2个15kHz的子载波的宽度之和等于1个30kHz的子载波的宽度,2个30kHz的符号长度之和等于1个15kHz的符号长度。根据第二UE的CSI-RS图案,在15kHz对应的2个RB和1个符号组成的一个资源单元中,第二UE可能使用30kHz在一个RE传输CSI-RS。
参考图7,对于第一UE,可以配置资源单元,该资源单元频域包括2个RB且时域包括1个符号。在资源单元中配置图7中斜线所示的RE为预留RE,预留RE包括于预留资源中,第一UE和gNB可以在预留资源之外的部分或全部资源中进行数据传输。该预留资源还可以称为第一UE的预留资源。示例性地,第一UE和gNB可以在图7所示的点状填充的RE中进行数据传输。
在为第一配置的资源单元中的预留RE中,可以包括用于传输第二UE的CSI-RS的RE。示例性地,图7中标注为CSI-RS的1个RE可以用于传输第二UE的CSI-RS,该RE的子载波间隔为30kHz。如图7所示,预留RE中还可以包括第一UE的数据和第二UE的CSI-RS间的保护带,即在第一UE的数据和第二UE的CSI-RS间配置保护带,用于降低不同numerology间的干扰。
图8所示为通过本申请实施例提供的种资源配置方法解决不同numerology的UE间的冲突的第三个示例图。如图8所示,一个RB中包括12个子载波,第一UE的带宽资源的子载波间隔为15kHz,第二UE的带宽资源的子载波间隔为30kHz,传输第二UE的CSI-RS的子载波间隔为该UE的带宽资源的子载波间隔。其中,2个15kHz的子载波的宽度之和等于1个30kHz的子载波的宽度,2个30kHz的符号长度之和等于1个15kHz的符号长度。根据第二UE的CSI-RS图案,在15kHz对应的4个RB和1个符号组成的一个资源单元中,第二UE可能使用30kHz在一个RE传输CSI-RS。
参考图8,对于第一UE,可以配置资源单元,该资源单元频域包括4个RB且时域包括1个符号。在资源单元中配置图8中斜线所示的RE为预留RE,预留RE包括于预留资源中,第一UE和gNB可以在预留资源之外的部分或全部资源中进行数据传输。该预留资源还可以称为第一UE的预留资源。示例性地,第一UE和gNB可以在图8所示的点状填充的RE中进行数据传输。
在为第一UE配置的资源单元中的预留RE中,可以包括用于传输第二UE的CSI-RS的RE。示例性地,图8中标注为CSI-RS的1个RE可以用于传输第二UE的CSI-RS,该RE的子载波间隔为30kHz。如图8中所示,预留RE中还可以包括第一UE的数据和第二UE的CSI-RS间的保护带,即在第一UE的数据和第二UE的CSI-RS间配置保护带,用于降低不同numerology间的干扰。
图9所示为通过本申请实施例提供的资源配置方法解决不同numerology的UE间的冲突的第四个示例图。如图9所示,一个RB中包括12个子载波,第一UE的带宽资源的子载波间隔为15kHz,第二UE的带宽资源的子载波间隔为30kHz,传输第二UE的CSI-RS的子载波间隔为该UE的带宽资源的子载波间隔。其中,2个15kHz的子载波的宽度之和等于1个30kHz的子载波的宽度,2个30kHz的符号长度之和等于1个15kHz的符号长度。根据第二UE的CSI-RS图案,在15kHz对应的4个RB和2个符号组成的一个资源单元中,第二UE可能使用30kHz在8个RE传输CSI-RS。
参考图9,对于第一UE,可以配置资源单元,该资源单元频域包括4个RB且时域包括2个符号。在资源单元中配置图9中斜线所示的RE为预留RE,预留RE包括于预留资源中,第一UE和gNB可以在预留资源之外的部分或全部资源中进行数据传输。该预留资源还可以称为第一UE的预留资源。示例性地,第一UE和gNB可以在图9所示的点状填充的RE中进行数据传输。
在为第一UE配置的资源单元中的预留RE中,可以包括用于传输第二UE的CSI-RS的RE。示例性地,图9中标注为CSI-RS的8个RE可以用于传输第二UE的CSI-RS,该RE的子载波间隔为30kHz。如图9所示,预留RE中还可以包括第一UE的数据和第二UE的CSI-RS间的保护带,即在第一UE的数据和第二UE的CSI-RS间配置保护带,用于降低不同numerology间的干扰。
相同numerology的UE间的冲突也可以采用上述类似的方法。此时,在第一UE的数据和第二UE的CSI-RS间可以配置保护带,也可以不配置保护带,本申请不做限制。
在本申请实施例中,在为一个UE配置的预留资源中,gNB可以和另一个UE进行数据传输,也可以不进行数据传输,本申请不做限制。
在本申请实施例提供的资源配置方法中,可以根据第一种预留RE确定方法,在资源单元中确定预留RE。在第一种预留RE确定方法中,gNB和UE可以根据预留RE图案,在资源单元中确定预留RE。
在第一种预留RE确定方法中,gNB和UE根据预留RE图案,在资源单元中确定预留RE时,预留RE图案对应的资源粒度为一个资源单元。在一个资源单元中,可以配置若干个RE为预留RE。还可以描述为,根据预留RE图案,在一个资源单元中,预留RE在该资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数,Y为预留资源中包括的符号数。在该y1个符号中,可以配置若干个子载波对应的RE为预留RE。
在本申请实施例提供的方法中,为UE配置的资源单元对应的子载波间隔可以和该UE的带宽资源的子载波间隔相同,也可以和该UE的带宽资源对应的子载波间隔不同,本申请不做限制。其中,资源单元对应的子载波间隔还可以描述为资源单元中包括的RB对应的子载波间隔、资源单元中包括的符号对应的子载波间隔、或者资源单元中包括的RE的子载波间隔。为UE配置的资源单元对应的子载波间隔和该UE的带宽资源对应的子载波间隔相同时,可以减少UE维护的numerology的个数,降低UE实现复杂度。为UE配置的资源单元对应的子载波间隔和UE的带宽资源对应的子载波间隔不同时,可以使基站根据其对预留资源的使用需求灵活配置资源单元的子载波间隔, 可以降低信令开销。示例性地,在图6中,基站可以在第一UE的预留资源中传输第二UE的CSI-RS,为第一UE配置的预留资源对应的子载波间隔可以为第二UE的CSI-RS的子载波间隔。
可选地,为UE配置的资源单元对应的子载波间隔为当前频段支持的最小子载波间隔。示例性地,对于6GHz以下频段,支持的最小子载波间隔为15kHz;对于6GHz以上频段,支持的最小子载波间隔为60kHz。
可选地,gNB还可以为UE发送信令,通过该信令指示为该UE配置的资源单元对应的子载波间隔。其中,该信令还可以称为资源单元子载波间隔配置信令。
可选地,为UE配置的资源单元对应的子载波间隔可以与传输系统消息使用的子载波间隔相同。
如果gNB通过系统消息为UE指示X和Y中至少一个,则为UE配置的资源单元对应的子载波间隔和传输该系统消息使用的子载波间隔相同。其中,X为资源单元中频域包括RB数,Y为资源单元中时域包括的符号数。
在第一种预留RE确定方法中,根据预留RE图案,当y1大于1时,不同符号中的预留RE对应的子载波可以相同。图10所示为预留RE图案的第一种可能的示例。
如图10(a)所示,资源单元在频域包括2个RB且时域包括14个符号,1个RB中包括子载波0至子载波11共12个子载波。在资源单元中,可以在符号0至符号7中配置预留RE。在符号0至符号7中,各符号中的预留RE对应的子载波相同,均为RB 0的子载波6至RB 1的子载波7。
如图10(b)所示,资源单元在频域包括2个RB且时域包括3个符号,1个RB中包括子载波0至子载波11共12个子载波。在资源单元中,在符号0和符号2中配置预留RE,符号0和符号2中的预留RE对应的子载波相同,均为RB 0的子载波3至子载波5、RB 0的子载波10至子载波11、RB 1的子载波0、和RB 1的子载波5至子载波7。
如图10(c)所示,资源单元在频域包括1个RB且时域包括4个符号,1个RB中包括子载波0至子载波11共12个子载波。在资源单元中,可以在符号0至符号3中配置预留RE,各符号中的预留RE对应的子载波相同,均为RB 0的子载波3至子载波8。
在第一种预留RE确定方法中,当y1大于1时,不同符号中的预留RE对应的子载波也可以不同。该方法还可以描述为:当y1大于1时,在该y1个符号中,至少2个符号中的预留RE对应的子载波不同。图11所示为预留RE图案的第二种可能的示例,如图11所示,资源单元在频域包括2个RB且时域包括3个符号,其中,1个RB中包括子载波0至子载波11共12个子载波。
可选地,在该y1个符号中,符号y2中的预留RE对应的子载波与符号y3中的预留RE对应的子载波个数不同,y2为大于等于0且小于等于y1-1的整数,y3为大于等于0且小于等于y1-1的整数。如图11(a)所示,在资源单元中,可以在符号0和符号2中配置预留RE。在符号0中,预留RE对应的子载波为:RB 0的子载波3至子载波5、RB 0的子载波10至子载波11、RB 1的子载波0、RB 1的子载波5至子载波 7。在符号2中,预留RE对应的子载波为:RB 0的子载波4和子载波11、和RB 1的子载波6。
可选地,在该y1个符号中,符号y2中的预留RE对应的子载波相对符号y3的预留RE对应的子载波的偏移为Δ offset,其中,Δ offset的单位为子载波个数,y2为大于等于0且小于等于y1-1的整数,y3为大于等于0且小于等于y1-1的整数。如图11(b),在符号0中预留RE对应RB n中的子载波m,则在符号2中预留RE对应RBn'中的子载波m',其中
m'=(m+Δ offset)mod12
Figure PCTCN2018112941-appb-000011
其中Δ offset=2。
在第一种预留RE确定方法中,对于一个UE,可以为该UE配置一个预留RE图案,UE根据该预留RE图案在资源单元中确定预留RE。对于N个UE,可以配置各UE对应的预留RE图案,该N个UE中任意2个UE的预留RE图案可以相同也可以不相同,其中,N为大于等于2的整数。对于该N个UE,也可以配置该N个UE的公共预留RE图案,即该N个UE的预留RE图案相同。示例性地,该N个UE可以为小区中的所有UE或者部分UE。
在第一种预留RE确定方法中,gNB还可以为UE发送参考信号指示和参考信号配置指示。用于指示gNB为UE配置的预留RE。其中,参考信号可以是CSI-RS、解调参考信号(demodulation reference signal,DMRS)或其它参考信号。UE接收参考信号指示和参考信号配置指示,根据参考信号配置指示,从参考信号指示对应的参考信号图案中确定预留RE图案。其中,从参考信号指示对应的参考信号图案中确定预留RE图案还可以描述为:从参考信号指示所指示的参考信号的可用的参考信号图案中确定预留RE图案。示例性地,如果参考信号指示所指示的参考信号为CSI-RS,参考信号指示对应的参考信号图案为CSI-RS图案。
示例性地,参考信号图案的配置类似表1中所示,包括:天线端口数、密度、
Figure PCTCN2018112941-appb-000012
以及k′和l′。参考信号图案中的各参数的具体取值可以和表1中所示相同,也可以和表1中所示不同,本申请不做限制。参考信号配置指示用于指示天线端口数、密度和资源映射配置,其中,资源映射配置包括
Figure PCTCN2018112941-appb-000013
以及k′和l′。gNB和UE还可以根据预配置确定密度,此时,参考信号配置指示中可以用于指示天线端口数和资源映射配置。
示例性地,参考信号指示也可以指示小区特定参考信号(cell-specific reference signal,CRS),此时,预留RE图案为可用CRS图案中一个,可用CRS图案可以为LTE中的可用CRS图案。LTE中,根据天线端口数和第一频率偏移可以从可用CRS图案中确定实际使用的CRS图案。参考信号配置指示可以用于指示天线端口数和第一频域偏移。UE接收到参考信号指示和参考信号配置指示后,根据天线端口数和第一频域偏移从可用CRS图案中确定预留RE图案。
在第一种预留RE确定方法中,还可以为UE配置M个可用预留RE图案,M为正整数。可以通过预配置的方式为gNB和UE配置该M个可用预留RE图案,也可以由gNB为UE发送信令,通过信令为UE配置该M个可用预留RE图案。进一步地,gNB 可以通过信令为UE配置预留RE图案,其中,为UE配置的预留RE包括于该M个可用预留RE中。示例性地,该M个可用预留RE图案中的一个可用的预留RE图案可以对应一个预留RE图案标识,gNB为UE发送预留RE图案标识,UE接收预留RE图案标识,以该预留RE图案标识对应的预留RE图案作为该UE的预留RE图案。
可选地,上述M个可用预留RE图案可以对应于至少一种参考信号图案。该M个可用预留RE图案可以为至少一种参考信号图案中的部分或全部图案。其中,参考信号可以是CSI-RS、小区特定参考信号(cell-specific reference signal,CRS)、解调参考信号(demodulation reference signal,DMRS)或其它参考信号。
M个可用预留RE图案可以为一种参考信号图案中的部分或者全部图案。示例性地,M个可用预留RE图案可以为CSI-RS图案中的部分或者全部图案。其中,CSI-RS图案可以为表1所示的CSI-RS图案。进一步地,对于参考信号,一个参考信号图案对应一个图案标识,gNB可以为UE发送信令,该信令用于指示M个图案标识,UE接收该信令,以该M个图案标识对应的M个参考信号图案作为上述M个可用预留RE图案。
M个可用预留RE图案可以为参考信号A图案中的部分或者全部图案,参考信号A可以为CSI-RS、CRS和DMRS中的任一个。该方案中,gNB可以为UE发送信令,该信令中包括参考信号指示。UE接收到该信令后,以该参考信号指示对应的参考信号图案中的部分或全部图案作为上述M个可用预留RE图案。进一步地,对于参考信号A,一个参考信号图案对应一个图案标识,gNB可以为UE发送信令,该信令用于指示M个图案标识,UE接收该信令,以该M个图案标识对应的M个参考信号图案作为上述M个可用预留RE图案。
M个可用预留RE图案可以为组合图案中的部分或者全部图案,该组合图案中包括多种参考信号图案。进一步地,该组合图案中的一个图案对应一个标识,gNB可以为UE发送信令,该信令用于指示M个图案标识,UE接收该信令,以该M个图案标识对应的M个参考信号图案作为上述M个可用预留RE图案。示例性地,组合图案中可以包括CRS图案中的部分或全部图案、CSI-RS图案中的部分或全部图案、和DMRS图案中的部分或全部图案。
在第一种预留RE确定方法中,gNB还可以发送预留RE图案的时域偏移指示和/或第二频域偏移指示。UE根据第一种预留RE确定方法中任何一种方法确定预留RE图案A,根据预留RE图案A、时域偏移指示和/或第二频域偏移指示确定gNB为UE配置的预留RE图案。gNB为UE配置的预留RE图案相对预留RE图案在时域的偏移量为时域偏移指示所指示的值,gNB为UE配置的预留RE图案相对预留RE图案在频域的偏移量为第二频域偏移指示所指示的值。
在本申请实施例中,在资源单元中配置预留RE等效于在资源单元中配置非预留RE。在该资源单元中,非预留RE之外的RE是预留RE。
在本申请实施例提供的资源配置方法中,可以根据第二种预留RE确定方法,在资源单元中确定预留RE。在第二种预留RE确定方法中,gNB通过信令通知的方法为UE配置预留RE。gNB为UE发送预留RE配置信息,预留RE配置信息用于指示gNB在资源单元中为UE配置的预留RE,UE接收预留RE配置信息,根据该信息在资源 单元中确定预留RE。其中,预留RE配置信息还可以称为预留RE配置信令、第一信息或者其它名称,本申请不做限制。
预留RE配置信息可以为以下第一种预留RE配置信息至第三种预留RE配置信息中的任一种:
第一种预留RE配置信息:
包括P个RE索引。在资源单元中,该P个RE索引对应的P个RE为预留RE,P为正整数。对于P个RE索引中的任一个RE索引,该RE索引中包括该RE索引对应的RE的频率索引和时域索引。
在本申请实施例中,RE的频率索引还可以称为频率编号、子载波编号、子载波索引或者其它名称,RE的时域索引还可以称为时域编号、符号编号或者其它名称。
在本申请实施例中,一个资源单元频域包括X个RB,一个RB中包括F个子载波,其中,X和F为正整数。在资源单元中,在频域,可以通过第一种频率编号方式对资源单元中的RE进行编号,即一个RE的子载波索引包括RB索引I_RB和RB中的子载波索引I_SC,其中,I_RB为大于等于0且小于X的整数,I_SC为大于等于0且小于F的整数。在资源单元中,在频域,还可以通过第二种频率编号方式对资源单元中的RE进行编号,即一个RE的子载波索引为组合子载波索引I_CSC,其中,I_CSC为整数,I_CSC大于等于0且小于X乘以F得到的值。
在本申请实施例中,一个资源单元时域包括Y个符号,其中,Y为正整数。在资源单元中,一个RE的符号索引为I_symb,其中,I_symb为大于等于0且小于Y的整数。
第二种预留RE配置信息:
包括Z个子载波集合指示和/或W个符号集合指示,其中,Z和W为正整数。当预留RE配置信息中包括Z个子载波集合指示时,在资源单元的所有符号中,该Z个子载波集合指示所指示的子载波对应的RE为预留RE。当预留RE配置信息中包括W个符号集合指示时,在资源单元的所有子载波中,该W个符号集合指示所指示的符号对应的RE为预留RE。当预留RE配置信息中包括Z个子载波集合指示和W个符号集合指示时,在资源单元中,在该W个符号集合指示所指示的符号中,该Z个子载波集合指示所指示的子载波对应的RE为预留RE。
上述Z个子载波集合指示中的任一个子载波集合指示可以为以下子载波集合指示A1或子载波集合指示A2:
子载波集合指示A1:
指示起始子载波索引和连续分配的子载波个数,用于指示1组子载波。其中,起始子载波索引对应的编号方式可以是第一种频率编号方式,也可以是第二种频率编号方式,本申请不做限制。
子载波集合指示A2:
指示起始子载波索引和结束子载波索引,用于指示1组子载波。其中,起始子载波索引和结束子载波索引对应的编号方式可以是第一种频率编号方式,也可以是第二种频率编号方式,本申请不做限制。
上述Z个子载波集合指示也可以为以下子载波集合指示A3或子载波集合指示A4:
子载波集合指示A3:
包括K个信息位,该K个信息位中的的一个信息位对应资源单元中的k1个子载波,其中,K和k1为正整数。示例性地,K等于资源单元中包括的子载波数,k1等于1。对于该K个信息位中的一个信息位,如果该信息位取值为t1,该信息位对应的子载波中包括预留RE;如果该信息位的取值不为t1或者取值为t2,该信息位对应的子载波中不包括预留RE。其中,t1和t2为整数,示例性地,t1等于1。
需要说明的是,子载波集合指示A3可以用于指示Z个子载波集合中的任一个。
子载波集合指示A4:
包括起始子载波集合指示和子载波集合的周期,其中,子载波集合的周期的单位为子载波个数,子载波集合的周期还可以通过一个符号中相邻两个子载波集合之间的距离确定,起始子载波集合指示可以为子载波集合指示A1至子载波集合指示A3中任一个。
上述W个符号集合指示中的任一个符号集合指示可以为以下符号集合指示B1或B2:
符号集合指示B1:
指示起始符号索引和连续分配的符号个数,用于指示1组符号。
符号集合指示B2:
指示起始符号索引和结束符号索引,用于指示1组符号。
上述W个符号集合指示可以为以下符号集合指示B3或B4:
符号集合指示B3:
包括L个信息位,该L个信息位中的一个信息位对应资源单元中的u个符号,其中,L和u为正整数。示例性地,L等于资源单元中包括的符号数,u等于1。对于该L个信息位中的一个信息位,如果该信息位取值为t1,该信息位对应的符号中包括预留RE;如果该信息位的取值不为t1或者取值为t2,该信息位对应的符号中不包括预留RE。其中,t1和t2为整数,示例性地,t1等于1。
需要说明的是,符号集合指示B3可以用于指示上述W个符号集合中的任一个。
符号集合指示B4:
包括起始符号集合指示和符号集合的周期。其中,符号集合的周期的单位为符号个数,符号集合的周期还可以通过预留RE所在的相邻两个符号集合之间的距离确定,起始符号集合指示可以为符号集合指示B1至符号集合指示B3中任一个。
进一步地,第二种预留RE配置信息中还可以包括偏移值指示,用于指示符号集合h1和符号集合h2中预留RE对应的子载波间的偏移。其中,h1和h2为整数。其中,h1和h2可以为相邻的符号集合。gNB也可以为UE发送信令,用于指示h1和h2在时域的距离。
gNB为UE发送第二种预留RE配置信息,该预留RE配置信息中包括偏移值指示,用于指示Δ offset。如图11(b),符号0为起始符号集合,在符号0中预留RE对应RB n中的子载波m,符号2为符号0相邻的符号集合,则在符号2中预留RE对应RB n' 中的子载波m',其中
m'=(m+Δ offset)mod12
Figure PCTCN2018112941-appb-000014
其中Δ offset=2。
示例性地,资源单元在频域包括2个RB且时域包括14个符号,其中,1个RB中包括子载波0至子载波11共12个子载波。
gNB为UE发送预留RE配置信令,预留RE配置信令中可以包括1个子载波集合指示和1个符号集合指示,用于指示资源单元中的预留RE。子载波集合指示可以指示起始起始子载波索引为Idx_start和结束子载波索引Idx_end。其中,如果子载波索引对应的编号方式可以是第一种频率编号方式时,Idx_start包括的RB索引为0,RB中的子载波索引为6;如果子载波索引对应的编号方式可以是第二种频率编号方式时,Idx_start为6。如果子载波索引对应的编号方式可以是第一种频率编号方式时,Idx_end包括的RB索引为1,RB中的子载波索引为7;如果子载波索引对应的编号方式可以是第二种频率编号方式时,Idx_end为19。符号集合指示可以指示起始符号索引和结束符号索引,其中,起始符号索引的值为0,结束符号索引的值为7;或者,符号集合指示也可以指示起始符号索引和连续分配的符号个数,其中,起始符号索引的值为0,连续分配的符号个数为8。
UE接收预留RE配置信令,根据该信令确定资源单元中的预留RE如图10(a)所示。UE确定的预留RE为:在资源单元中,在符号0至符号7中,从RB 0中的子载波6开始至第RB 1中的子载波7结束的14个子载波对应的RE为预留RE。
示例性地,资源单元在频域包括2个RB且时域包括14个符号,其中,1个RB中包括子载波0至子载波11共12个子载波。
gNB为UE发送预留RE配置信令,预留RE配置信令中可以包括1个符号集合索引和1个子载波集合指示,用于指示资源单元中的预留RE。符号集合索引中包括14位,每1位对应于资源单元中1个符号。比特图的值为1 1 1 1 1 1 1 1 0 0 0 0 0 0。子载波集合指示可以指示起始起始子载波索引为Idx_start和连续分配的子载波个数。其中,如果子载波索引对应的编号方式可以是第一种频率编号方式时,Idx_start包括的RB索引为0,RB中的子载波索引为6;如果子载波索引对应的编号方式可以是第二种频率编号方式时,Idx_start为6。连续分配的子载波个数为14。
UE接收预留RE配置信令,根据该信令确定资源单元中的预留RE如图10(a)所示。UE确定的预留RE为:在资源单元中,在符号0至符号7中,从RB 0中的子载波6开始至RB 1中的子载波7结束的14个子载波对应的RE为预留RE。
示例性地,资源单元在频域包括2个RB且时域包括3个符号,其中,1个RB中包括子载波0至子载波11共12个子载波。
gNB为UE发送预留RE配置信令,预留RE配置信令中可以包括1个符号集合索引和1个子载波集合指示,用于指示资源单元中的预留RE。符号集合指示中包括3位,每1位对应于资源单元中1个符号。比特图的值为1 0 1。子载波集合指示中包括24位,每1位对应于资源单元中1个子载波。比特图的值为000111000011100001110000。
UE接收预留RE配置信令,根据该信令确定资源单元中的预留RE如图10(b)所示。UE确定的预留RE为:在资源单元中,在符号0和符号2中,预留RE对应的子载波为:RB 0的子载波3至子载波5、RB 0的子载波10至子载波11、RB 1的子载波0、和RB 1的子载波5至子载波7。
示例性地,资源单元在频域包括1个RB且时域包括4个符号,其中,1个RB中包括子载波0至子载波11共12个子载波。gNB为UE发送预留RE配置信令,如果预留RE配置信令中包括1个子载波集合指示,该子载波集合指示中包括的起始子载波索引为Idx_start,连续的子载波个数为6。其中,如果子载波索引对应的编号方式可以是第一种频率编号方式时,Idx_start包括的RB索引为0,RB中的子载波索引为3;如果子载波索引对应的编号方式可以是第二种频率编号方式时,Idx_start为3。UE接收到预留RE配置信令后,确定在资源单元中的预留RE如图10(c)所示。如图10(c)所示,在资源单元中,在符号0至符号3中,各符号中的预留RE对应的子载波相同,均为子载波3至子载波8。
示例性地,资源单元在频域包括2个RB且时域包括3个符号,其中,1个RB中包括子载波0至子载波11共12个子载波。gNB为UE发送预留RE配置信令,包括:起始子载波集合指示、子载波集合的周期、偏移值指示、起始符号集合指示和符号集合的周期。
起始子载波集合指示中包括的起始子载波索引为Idx_start,连续的子载波个数为3。其中,如果子载波索引对应的编号方式可以是第一种频率编号方式时,Idx包括的RB索引为0,RB中的子载波索引为3;如果子载波索引对应的编号方式可以是第二种频率编号方式时,Idx_start为3。
子载波集合的周期为7,或者包括的相邻两个子载波集合之间的距离为4。
偏移值指示所指示的偏移值为2。
起始符号集合指示中包括的起始符号索引为0,连续的符号个数为1。
符号集合的周期为2,或者预留RE所在的相邻两个符号集合之间的距离为1。
UE接收到预留RE配置信令后,确定在资源单元中的预留RE如图11(b)所示。如图11(b)所示,在资源单元中,在符号0和符号2中配置预留RE。在符号0中,预留RE对应的子载波为:RB 0的子载波3至子载波5、RB 0的子载波10至子载波11、RB 1的子载波0、RB 1的子载波5至子载波7。在符号2中,预留RE对应的子载波为:RB 0的子载波5至子载波7、RB 1的子载波0至子载波2、RB 1的子载波7至子载波9。
在本申请实施例提供的资源配置方法中,用于gNB和UE进行数据传输的时频资源可以是预配置的资源,也可以是gNB通过隐式或者显示方式通知UE的资源。示例性地,该时频资源为调度资源,gNB通过下行控制信息(downlink control information,DCI)为UE分配调度资源。其中,调度资源在时域可以为一个时隙,在频域可以为若干个RBG,gNB和UE可以在该UE的调度资源进行数据传输。
在用于gNB和UE进行数据传输的资源中,可能包括预留RE,该预留RE不用于gNB和该UE进行数据传输。该方案还可以描述为:在用于gNB和UE进行数据传输 的资源中,在预留RE以外的部分或全部资源中,gNB和UE进行数据传输。为了确定用于传输数据的RE,在本申请实施例提供的资源配置方法中,还可以包括资源单元的频域分配和时域分配,用于在时频资源中确定分配的资源单元,从而可以确定预留资源或者预留资源中的预留RE。其中,频域分配的粒度为X个RB,时域分配的粒度是Y个符号,其中,X为资源单元在频率包括的RB个数,Y是资源单元在时域包括的符号个数。时频资源在频域上可以是UE的带宽部分、载波、虚拟载波或者其它资源,本申请不做限制。其中,虚拟载波的带宽可以是最大载波带宽。
可选地,在对资源单元进行频域分配时,gNB和UE可以通过预配置的方法确定分配的资源单元在频率资源中的位置。
可选地,在对资源单元进行频域分配时,gNB为UE发送资源单元频率分配信息,用于以X个RB粒度指示gNB为UE分配的资源单元在频域的位置,或者用于以资源单元为粒度指示gNB为UE分配的资源单元在频域的位置。其中,X为资源单元在频率包括的RB个数。示例性地,资源单元频率分配信息中包括gNB为UE分配的资源单元的频率索引。UE接收到资源单元频率分配信息后,在该资源单元分配信息指示的资源单元中确定预留RE,该预留RE包括于该UE的预留资源中。在本申请实施例中,资源单元频率分配信息用于指示gNB为UE分配的资源单元在频域的位置,其还可以称为其它名称,本申请不做限制。
在本申请实施例中,在频域,可以通过第三种频率编号方式对时频资源的频率资源进行编号,即以资源单元为粒度对频率资源进行编号,一个频率资源索引对应频率资源中的一个资源单元。图12(a)为以资源单元为粒度对频率资源进行编号的示例图,如图12(a)所示,频率资源中包括10个资源单元,该10个资源单元为资源单元0至资源单元9,1个资源单元中包括2个RB。
在本申请实施例中,在频域上,还可以通过第四种频率编号方式对时频资源的频率资源进行编号,在频率资源中,一个资源单元的索引对应于该资源单元中的起始RB的索引。图12(b)为通过第四种频率编号方式对频率资源进行编号的示例图,如图12(b)所示,一个资源单元中包括2个RB,RB3和RB4组成的资源单元的索引为RB3的索引,RB5和RB6组成的资源单元的索引为RB5的索引,RB7和RB8组成的资源单元的索引为RB7的索引。
资源单元频率分配信息可以为以下资源单元频率分配信息C1至资源单元频率分配信息C3中任一种:
资源单元频率分配信息C1:
包括P个信息位,P为正整数。
当资源单元的编号方式是第三种频率编号方式时,该P个信息位中的一个信息位对应频率资源中的p1个资源单元,其中,P和p1为正整数。示例性地,P等于频域资源中包括的资源单元总数,p1等于1。对于该P个信息位中的一个信息位,如果该信息位取值为t1,该信息位对应的资源单元中包括预留RE;如果该信息位的取值不为t1或者取值为t2,该信息位对应的资源单元中不包括预留RE。其中,t1和t2为整数,示例性地,t1等于1。
示例性地,以p1等于1为例,频率资源和资源单元的编号如图12(a)中所示, 频率资源中包括10个资源单元,该10个资源单元为资源单元0至资源单元9,1个资源单元中包括2个RB。如果该P个信息位的值为0111000000,则gNB在频率资源中为UE分配的资源单元为资源单元1、资源单元2和资源单元3。
当资源单元的编号方式是第四种频率编号方式时,该P个信息位中的一个信息位对应频率资源中p1个资源单元的起始RB,其中,P和p1为正整数。示例性地,P等于频域资源中包括的RB总数,p1等于1。对于该P个信息位中的一个信息位,如果该信息位取值为t1,以该信息位对应的RB为起始RB的p1个资源单元中包括预留RE;如果该信息位的取值不为t1或者取值为t2,以该信息位对应的RB为起始RB的p1个资源单元中不包括预留RE。其中,t1和t2为整数,示例性地,t1等于1。
示例性地,以p1等于1为例,频率资源和资源单元的编号如图12(b)中所示,一个资源单元中包括2个RB。如果该P个信息为的值为00010101000000000000,则gNB在频率资源中为UE分配的资源单元为以RB3为起始RB的资源单元、以RB5为起始RB的资源单元和以RB7为起始RB的资源单元。
资源单元频率分配信息C2:
包括Q个资源单元频率集合指示,用于指示在频域分配的Q组资源单元,Q为正整数。Q个资源单元频率集合指示中的任一个资源单元频率集合指示可以为第一种资源单元频率集合指示或第二种资源单元频率集合指示。
第一种资源单元频率集合指示:用于在频域指示起始资源单元和连续分配的资源单元个数,用于指示1组资源单元。其中,起始资源单元对应的编号方式可以是第三种频率编号方式,也可以是第四种频率编号方式,本申请不做限制。
第二种资源单元频率集合指示:用于在频域指示起始资源单元和结束资源单元,用于指示1组资源单元。其中,起始资源单元和结束资源单元对应的编号方式可以是第三种频率编号方式,也可以是第四种频率编号方式,本申请不做限制。
资源单元频率分配信息C3:
包括频率起始资源单元集合指示和频率资源单元集合周期指示,其中,频率起始资源单元集合指示用于指示在频域分配的起始资源单元集合,频率起始资源单元集合指示可以同资源单元频率分配信息C2中描述的第一种资源单元频率集合指示或第二种资源单元频率集合指示。频率资源单元集合周期指示用于指示在频域分配的相邻资源单元集合之间的距离。
时频资源在时域可以是至少一个时隙、至少一个微时隙、至少一个子帧、至少一个系统帧或者其他资源,本申请不做限制。
可选地,在对资源单元进行时域分配时,gNB和UE可以通过预配置的方法确定分配的资源单元在时域资源中的位置。
可选地,在对资源单元进行时域分配时,gNB为UE发送时域资源单元分配信息,用于以Y个符号为粒度指示gNB为UE分配的资源单元的时域位置,或者,用于以资源单元为粒度指示gNB为UE分配的资源单元的时域位置。其中,Y是资源单元在时域包括的符号个数。。示例性地,资源单元时域分配信息中包括gNB为UE分配的资源单元的时域索引。UE接收到资源单元时域分配信息后,在时域确定分配的资源单元, 在分配的资源单元中确定预留RE,该预留RE包括于该UE的预留资源中。在本申请实施例中,资源单元时域分配信息用于指示gNB为UE分配的资源单元的时域位置,其还可以称为其它名称,本申请不做限制。
在本申请实施例中,在时域,可以通过第一种时域编号方式对时频资源的时域资源编号,即以资源单元为粒度对时域资源进行编号,一个时域索引对应时域资源中的一个资源单元。图13(a)为以资源单元为粒度对时域资源进行编号的示例图,如图13(a)所示,时域资源中包括7个资源单元,该7个资源单元为资源单元0至资源单元6,1个资源单元中包括2个符号。
在本申请实施例中,在时域上,还可以通过第二种时域编号方式对时频资源的时域资源进行编号,在时域资源中,一个资源单元的索引对应于该资源单元中的起始符号的索引。图13(b)为通过第二种时域编号方式对时域资源进行编号的示例图,如图13(b)所示,时域资源中包括14个符号,一个资源单元中包括2个符号,符号3和符号4组成的资源单元的索引为符号3的索引,符号5和符号6组成的资源单元的索引为符号5的索引,符号7和符号8组成的资源单元的索引为符号7的索引。
资源单元时域分配信息可以为以下资源单元时域分配信息D1至资源单元时域分配信息D3中任一种:
资源单元时域分配信息D1:
包括E个信息位。
当资源单元的时域编号方式是第一种时域编号方式时,该E个信息位中的一个信息位对应时域资源中的e1个资源单元,其中,E和e1为正整数。示例性地,E等于时域资源中包括的资源单元总数,e1等于1。对于该E个信息位中的一个信息位,如果该信息位取值为t1,该信息位对应的资源单元中包括预留RE;如果该信息位的取值不为t1或者取值为t2,该信息位对应的资源单元中不包括预留RE。其中,t1和t2为整数,示例性地,t1等于1。
示例性地,以e1等于1为例,时域资源和资源单元的编号如图13(a)中所示,时域资源中包括7个资源单元,该7个资源单元为资源单元0至资源单元6,1个资源单元中包括2个符号。如果该E个信息为的值为0111000,则,gNB在时域资源中为UE分配的资源单元为资源单元1、资源单元2和资源单元3。
当资源单元的时域编号方式是第二种时域编号方式时,该E个信息位中的一个信息位对应时域资源中e1个资源单元的起始符号,其中,E和e1为正整数。示例性地,E等于频域资源中包括的符号总数,e1等于1。对于该E个信息位中的一个信息位,如果该信息位取值为t1,以该信息位对应的符号为起始符号的e1个资源单元中包括预留RE;如果该信息位的取值不为t1或者取值为t2,以该信息位对应的符号为起始符号的e1个资源单元中不包括预留RE。其中,t1和t2为整数,示例性地,t1等于1。
示例性地,以e1等于1为例,时域资源和资源单元的编号如图13(b)中所示,一个资源单元中在时域包括2个符号。如果该E个信息为的值为00010101000000,则,gNB在时域为UE分配的资源单元为以符号3为起始符号的资源单元、以符号5为起始符号的资源单元和以符号7为起始符号的资源单元。
资源单元时域分配信息D2:
包括R个资源单元时域集合指示,用于指示在时域分配的R组资源单元,R为正整数。所示R个资源单元时域集合指示中任一个资源单元时域集合指示可以为以下第一种资源单元时域集合指示或第二种资源单元时域集合指示。
第一种资源单元时域集合指示:用于指示时域起始资源单元和连续分配的资源单元个数。一个第一种资源单元时域集合指示用于在时域指示1组资源单元。其中,时域起始资源单元对应的编号方式可以是第一种时域编号方式,也可以是第二种时域编号方式,本申请不做限制。
第二种资源单元时域集合指示:用于指示时域起始资源单元和时域结束资源单元。一个第二种资源单元时域集合指示用于在时域指示1组资源单元。
示例性地,第二种资源单元时域集合指示中包括在时域起始资源单元的索引和时域结束资源单元的索引。其中,时域起始资源单元对应的编号方式可以是第一种时域编号方式,也可以是第二种时域编号方式,本申请不做限制。时域结束资源单元对应的编号方式可以是第一种时域编号方式,也可以是第二种时域编号方式,本申请不做限制。
资源单元时域分配信息D3:
包括时域起始资源单元集合指示和时域资源单元集合周期指示,其中,时域起始资源单元集合指示用于指示分配的时域起始资源单元集合,时域起始资源单元集合指示可以同资源单元时域分配信息D2中描述的第一种资源单元时域集合指示或第二种资源单元时域集合指示。时域资源单元集合周期指示用于指示分配的相邻资源单元集合之间在时域的距离。
上述本申请提供的实施例中,从gNB、UE以及gNB和UE交互的角度对本申请实施例提供的方法进行了介绍。为了实现本申请实施例提供的方法中的各功能,gNB和UE可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图14是本申请实施例提供的装置1400的结构示意图。装置1400可以是硬件结构、软件模块、或硬件结构加软件模块。装置1400可以是UE,能够实现本申请实施例提供的方法中UE的功能;装置1400也可以是能够支持UE实现本申请实施例提供的方法中UE的功能的装置。示例性地,装置1400可以是设置于UE中的装置,能够支持UE实现本申请实施例提供的方法中UE的功能。装置1400可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图14中所示,装置1400中包括预留RE确定模块1402和收发模块1404。
预留RE确定模块1402用于在资源单元中确定预留RE,预留RE包括于预留资源中。资源单元中频域包括X个RB且时域包括Y个符号,其中,X和Y为正整数。预留RE确定模块1402在资源单元中确定预留RE的方法如本申请实施例提供的方法中的介绍,这里不再赘述。
收发模块1404用于装置1400和外部装置之间的通信接口,其中,外部装置可以是电路、器件或其它装置。示例性地,收发模块1404可以用于在预留资源之外的全部 或部分RE中和gNB进行数据传输。收发模块1404还可以用于接收资源单元大小配置信令,该资源单元大小配置信令用于指示资源单元中包括的RB个数X和资源单元中包括的符号个数Y中至少一个。收发模块1404还可以用于接收资源单元子载波间隔配置信令,该资源单元子载波间隔配置信令用于指示资源单元对应的子载波间隔。收发模块1404还可以用于接收预留RE配置信息,该预留RE配置信息用于指示资源单元中的预留RE。收发模块1404还可以用于接收资源单元频率分配信息和/或资源单元时域分配信息,用于确定分配的资源单元在时频资源中的位置,从而可以用于确定预留资源或者预留资源中的预留RE。收发模块1404接收的各信令的描述同本申请实施例提供的方法中的介绍,这里不再赘述。
装置1400中还可以包括资源单元大小确定模块1406。资源单元大小确定模块1406,用于确定资源单元中包括的RB个数X和资源单元中包括的符号个数Y。资源单元大小确定模块确定X和Y的方法同本申请实施例提供的方法中的介绍,这里不再赘述。
装置1400中还可以包括资源单元子载波间隔确定模块1408,用于确定资源单元对应的子载波间隔。资源单元子载波间隔确定模块确定资源单元对应的子载波间隔的方法同本申请实施例提供的方法中的介绍,这里不再赘述。
装置1400中还可以包括资源单元位置确定模块1410,用于确定分配的资源单元在时频资源中的位置。其中,该确定方法同本申请实施例提供的方法中的介绍,这里不再赘述。
如图14所示,装置1400中的各模块间可以耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
图15是本申请实施例提供的装置1500的结构示意图。装置1500可以是硬件结构、软件模块、或硬件结构加软件模块。装置1500可以是gNB,能够实现本申请实施例提供的方法中gNB的功能;装置1500也可以是能够支持gNB实现本申请实施例提供的方法中gNB的功能的装置。示例性地,装置1500可以是设置于gNB中的装置,能够支持gNB实现本申请实施例提供的方法中gNB的功能。装置1500可以由芯片系统实现。
如图15中所示,装置1500中包括预留RE确定模块1502和收发模块1504。
预留RE确定模块1502用于在资源单元中确定预留RE,预留RE包括于预留资源中。资源单元中频域包括X个RB且时域包括Y个符号,其中,X和Y为正整数。预留RE确定模块1502在资源单元中确定预留RE的方法如本申请实施例提供的方法中的介绍,这里不再赘述。
收发模块1504用于装置1500和外部装置之间的通信接口,其中,外部装置可以是电路、器件或其它装置。示例性地,收发模块1504可以用于在预留资源之外的全部或部分RE中和UE进行数据传输。收发模块1504还可以用于发送资源单元大小配置信令,该资源单元大小配置信令用于指示资源单元中包括的RB个数X和资源单元中包括的符号个数Y中至少一个。收发模块1504还可以用于发送资源单元子载波间隔 配置信令,该资源单元子载波间隔配置信令用于指示资源单元对应的子载波间隔。收发模块1504还可以用于发送预留RE配置信息,该预留RE配置信息用于指示资源单元中的预留RE。收发模块1504还可以用于发送资源单元频率分配信息和/或资源单元时域分配信息,用于UE确定分配的资源单元在时频资源中的位置,从而可以用于UE确定预留资源或者预留资源中的预留RE。收发模块1504发送的各信令的描述同本申请实施例提供的方法中的介绍,这里不再赘述。
装置1500中还可以包括资源单元大小确定模块1506。资源单元大小确定模块1506,用于确定资源单元中包括的RB个数X和资源单元中包括的符号个数Y。资源单元大小确定模块确定X和Y的方法同本申请实施例提供的方法中的介绍,这里不再赘述。
装置1500中还可以包括资源单元子载波间隔确定模块1508,用于确定资源单元对应的子载波间隔。资源单元子载波间隔确定模块确定资源单元对应的子载波间隔的方法同本申请实施例提供的方法中的介绍,这里不再赘述。
装置1500中还可以包括资源单元位置确定模块1510,用于确定分配的资源单元在频率资源中的位置,以及用于确定分配的资源单元在时域资源中的位置。其中,该确定方法同本申请实施例提供的方法中的介绍,这里不再赘述。
如图15所示,装置1500中的各模块间可以耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
图16是本申请实施例提供的装置1600的结构示意图。装置1600可以是UE,能够实现本申请实施例提供的方法中UE的功能;装置1600也可以是能够支持UE实现本申请实施例提供的方法中UE的功能的装置。示例性地,装置1600可以是设置于UE中的装置,能够支持UE实现本申请实施例提供的方法中UE的功能。
如图16所示,装置1600中包括处理系统1602,用于实现或者用于支持UE实现本申请实施例提供的方法中UE的功能。处理系统1602可以是一种电路,该电路可以由芯片系统实现。处理系统1602包括至少一个处理器1622,可以用于实现或者用于支持UE实现本申请实施例提供的方法中UE的功能。当处理系统1602中包括除处理器以外的其它装置时,处理器1622还可以用于管理处理系统1602中的其它装置,示例性地,该其它装置可能为下述存储器1624、总线1626和总线接口1628中至少一个。本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。
处理系统1602中还可能包括存储器1624,用于存储程序指令和/或数据。其中,本申请实施例中,程序指令还可以称为指令。如果处理系统1602中包括存储器1624,处理器1622可以和存储器1624耦合。本申请实施例中,存储器包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory), 硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
处理器1622可以和存储器1624协同操作。处理器1622可以执行存储器1624中存储的指令。当处理器1622执行存储器1624中存储的指令时,可以实现或者支持UE实现本申请实施例提供的方法中UE的功能。处理器1622还可能读取存储器1624中存储的数据。存储器1624还可能存储处理器1622执行程序指令时得到的数据。
处理器1622可以用于在资源单元中确定预留RE,该预留RE包括于预留资源中。资源单元中频域包括X个RB且时域包括Y个符号,其中,X和Y为正整数。确定预留RE的方法如本申请实施例提供的方法中的介绍,可以是第一种预留RE确定方法,也可以是第二种预留RE确定方法,这里不再赘述。
处理器1622还可以用于在预留资源之外的全部或部分RE中和gNB进行数据传输。
处理器1622还可以用于接收和处理资源单元大小配置信令,该资源单元大小配置信令用于指示资源单元中包括的RB个数X和资源单元中包括的符号个数Y中至少一个。处理器1622还可以用于根据该资源单元大小配置信令确定资源单元中包括的RB个数X和资源单元中包括的符号个数Y中至少一个。
处理器1622还可以用于接收和处理资源单元子载波间隔配置信令,该资源单元子载波间隔配置信令用于指示资源单元对应的子载波间隔。处理器1622还可以用于根据该资源单元子载波间隔配置信令确定资源单元对应的子载波间隔。
处理器1622还可以用于接收和处理预留RE配置信息,该预留RE配置信息用于指示资源单元中的预留RE。处理器1622还可以用于根据该预留RE配置信息确定资源单元中的预留RE。
处理器1622还可以用于接收和处理资源单元频率分配信息和/或资源单元时域分配信息,用于确定分配的资源单元在时频资源中的位置,从而可以用于确定预留资源或者预留资源中的预留RE。处理器1622还可以用于根据资源单元频率分配信息确定分配的资源单元在频率资源中的位置。处理器1622还可以用于根据资源单元时域分配信息确定分配的资源单元在时域资源中的位置。
处理系统1602还可以包括总线接口1628,用于提供总线1626和其它装置之间的接口。
装置1600还可能包括收发器1606,用于通过传输介质和其它通信设备进行通信,从而用于装置1600中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统1602。示例性地,装置1600中的其它装置可能利用收发器1606和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置1600中的其它装置可能接收相应的信息,其中,该相应的信息由收发器1606通过传输介质进行接收,该相应的信息可以通过总线接口1628或者通过总线接口1628和总线1626在收发器1606和装置1600中的其它装置之间进行交互;和/或,装置1600中的其它装置可能发送相应的信息,其中,该相应的信息由收发器1606通过传输介质进行发送,该相应的信息可以通过总线接口1628或者通过总线接口1628和总线1626在收发器1606和装置1600中的其它装置之间进行交互。
装置1600还可能包括用户接口1604,用户接口1604是用户和装置1600之间的接口,可能用于用户和装置1600进行信息交互。示例性地,用户接口1604可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置1600的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统1602中包括处理器1622,还可以包括存储器1624、总线1626和总线接口1628中至少一个,用于实现本申请实施例提供的方法。处理系统1602也在本申请的保护范围。
图17是本申请实施例提供的装置1700的结构示意图。装置1700可以是gNB,能够实现本申请实施例提供的方法中gNB的功能;装置1700也可以是能够支持gNB实现本申请实施例提供的方法中gNB的功能的装置。示例性地,装置1700可以是设置于gNB中的装置,能够支持gNB实现本申请实施例提供的方法中gNB的功能。
如图17所示,装置1700中包括处理系统1702,用于实现或者用于支持gNB实现本申请实施例提供的方法中gNB的功能。处理系统1702可以是一种电路,该电路可以由芯片系统实现。处理系统1702中包括至少一个处理器1722,可以用于实现或者用于支持gNB实现本申请实施例提供的方法中gNB的功能。当处理系统1702中包括除处理器以外的其它装置时,处理器1722还可以用于管理处理系统1702中的其它装置,示例性地,该其它装置可能为下述存储器1724、总线1726和总线接口1728中至少一个。
处理系统1702还可能包括存储器1724,用于存储指令和/或数据。如果处理系统1702中包括存储器1724,处理器1722可以和存储器1724耦合。
处理器1722可以和存储器1724协同操作。处理器1722可以执行存储器1724中存储的指令。当处理器1722执行存储器1724中存储的指令时,可以实现或者支持gNB实现本申请实施例提供的方法中gNB的功能。处理器1722还可能读取存储器1724中存储的数据。存储器1724还可能存储处理器1722执行程序指令时得到的数据。
处理器1722可以用于在资源单元中确定预留RE,该预留RE包括于预留资源中。资源单元中频域包括X个RB且时域包括Y个符号,其中,X和Y为正整数。确定预留RE的方法如本申请实施例提供的方法中的介绍,这里不再赘述。
处理器1722还可以用于在预留资源之外的全部或部分RE中和UE进行数据传输。
处理器1722还可以用于生成和发送资源单元大小配置信令,该资源单元大小配置信令用于指示资源单元中包括的RB个数X和资源单元中包括的符号个数Y中至少一个。
处理器1722还可以用于生成和发送资源单元子载波间隔配置信令,该资源单元子载波间隔配置信令用于指示资源单元对应的子载波间隔。
处理器1722还可以用于生成和发送预留RE配置信息,该预留RE配置信息用于指示资源单元中的预留RE。
处理器1722还可以用于生成和发送资源单元频率分配信息和/或资源单元时域分配信息,用于确定分配的资源单元在时频资源中的位置,从而可以用于确定预留资源 或者预留资源中的预留RE。
处理系统1702还可以包括总线接口1728,用于提供总线1726和其它装置之间的接口。
装置1700还可能包括收发器1706,用于通过传输介质和其它通信设备进行通信,从而用于装置1700中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统1702。示例性地,装置1700中的其它装置可能利用收发器1706和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置1700中的其它装置可能接收相应的信息,其中,该相应的信息由收发器1706通过传输介质进行接收,该相应的信息可以通过总线接口1728或者通过总线接口1728和总线1726在收发器1706和装置1700中的其它装置之间进行交互;和/或,装置1700中的其它装置可能发送相应的信息,其中,该相应的信息由收发器1706通过传输介质进行发送,该相应的信息可以通过总线接口1728或者通过总线接口1728和总线1726在收发器1706和装置1700中的其它装置之间进行交互。
装置1700还可能包括用户接口1704,用户接口1704是用户和装置1700之间的接口,可能用于用户和装置1700进行信息交互。示例性地,用户接口1704可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置1700的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统1702包括处理器1722,还可以包括存储器1724、总线1726和总线接口1728中至少一个,用于实现本申请实施例提供的方法。处理系统1702也在本申请的保护范围。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (44)

  1. 一种资源配置方法,其特征在于,包括:
    在资源单元中确定预留资源元素RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1;
    在所述预留资源之外的全部或部分RE中接收数据。
  2. 根据权利要求1所述的资源配置方法,其特征在于,还包括:
    接收资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
  3. 根据权利要求1或2所述的资源配置方法,其特征在于,所述在资源单元中确定预留RE,包括:
    根据预留RE图案在所述资源单元中确定预留RE。
  4. 根据权利要求3所述的资源配置方法,其特征在于,所述根据预留RE图案在所述资源单元中确定预留RE,包括:
    根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。
  5. 根据权利要求4所述的资源配置方法,其特征在于,当y1大于1时:
    在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或
    在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
  6. 根据权利要求3至5中任一个所述的资源配置方法,其特征在于,所述预留RE图案包括于M个可用预留RE图案中;
    所述方法还包括:
    接收参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
  7. 根据权利要求1或2所述的资源配置方法,其特征在于,所述方法还包括:接收预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
  8. 根据权利要求1至7中任一个所述的资源配置方法,其特征在于,还包括:
    接收资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元;
    接收资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
  9. 根据权利要求1至8中任一个所述的资源配置方法,其特征在于,所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。
  10. 根据权利要求1至8中任一个所述的资源配置方法,其特征在于,还包括:
    接收资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。
  11. 一种资源配置方法,其特征在于,包括:
    在资源单元中确定预留资源元素RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1;
    在所述预留资源之外的全部或部分RE中发送数据。
  12. 根据权利要求11所述的资源配置方法,其特征在于,还包括:
    发送资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
  13. 根据权利要求11或12所述的资源配置方法,其特征在于,所述在资源单元中确定预留RE,包括:
    根据预留RE图案在所述资源单元中确定预留RE。
  14. 根据权利要求13所述的资源配置方法,其特征在于,所述根据预留RE图案在所述资源单元中确定预留RE,包括:
    根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。
  15. 根据权利要求14所述的资源配置方法,其特征在于,当y1大于1时:
    在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或
    在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
  16. 根据权利要求13至15中任一个所述的资源配置方法,其特征在于,所述预留RE图案包括于M个可用预留RE图案中;
    所述方法还包括:
    发送参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
  17. 根据权利要求11或12所述的资源配置方法,其特征在于,所述方法还包括:发送预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
  18. 根据权利要求11至17中任一个所述的资源配置方法,其特征在于,还包括:
    发送资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元;
    发送资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
  19. 根据权利要求11至18中任一个所述的资源配置方法,其特征在于,所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子 载波间隔为传输系统消息使用的子载波间隔。
  20. 根据权利要求11至18中任一个所述的资源配置方法,其特征在于,还包括:
    发送资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。
  21. 一种通信装置,其特征在于,所述通信装置用于实现如权利要求1至10中任一个所述的方法。
  22. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储被所述处理器执行的指令,所述处理器用于:
    在资源单元中确定预留资源元素RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1;
    在所述预留资源之外的全部或部分RE中接收数据。
  23. 根据权利要求22所述的通信装置,其特征在于,所述处理器用于:
    接收资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述在资源单元中确定预留RE,包括:
    根据预留RE图案在所述资源单元中确定预留RE。
  25. 根据权利要求24所述的通信装置,其特征在于,所述根据预留RE图案在所述资源单元中确定预留RE,包括:
    根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。
  26. 根据权利要求25所述的通信装置,其特征在于,当y1大于1时:
    在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或
    在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
  27. 根据权利要求24至26中任一个所述的通信装置,其特征在于,所述预留RE图案包括于M个可用预留RE图案中;
    所述处理器用于:
    接收参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
  28. 根据权利要求22或23所述的通信装置,其特征在于,所述处理器用于:接收预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
  29. 根据权利要求22至28中任一个所述的通信装置,其特征在于,所述处理器用于:
    接收资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元;
    接收资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
  30. 根据权利要求22至29中任一个所述的通信装置,其特征在于,所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。
  31. 根据权利要求22至29中任一个所述的通信装置,其特征在于,所述处理器用于:
    接收资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。
  32. 一种通信装置,其特征在于,所述通信装置用于实现如权利要求11至20中任一个所述的方法。
  33. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储能够被所述处理器执行的指令,所述处理器用于:
    在资源单元中确定预留资源元素RE,所述预留RE包括于预留资源中,其中,所述资源单元频域包括X个资源块RB,所述资源单元时域包括Y个符号,其中,X和Y为正整数,X等于1时Y大于1,Y等于1时X大于1;
    在所述预留资源之外的全部或部分RE中发送数据。
  34. 根据权利要求33所述的通信装置,其特征在于,所述处理器用于:
    发送资源单元大小配置信令,所述资源单元大小配置信令用于指示所述X和Y中至少一个。
  35. 根据权利要求33或34所述的通信装置,其特征在于,所述在资源单元中确定预留RE,包括:
    根据预留RE图案在所述资源单元中确定预留RE。
  36. 根据权利要求35所述的通信装置,其特征在于,所述根据预留RE图案在所述资源单元中确定预留RE,包括:
    根据所述预留RE图案,所述预留RE在所述资源单元中的y1个符号中,y1为大于等于1且小于等于Y的整数。
  37. 根据权利要求36所述的通信装置,其特征在于,当y1大于1时:
    在所述y1个符号中,不同符号中的预留RE对应的子载波相同;或
    在所述y1个符号中,至少2个符号中的预留RE对应的子载波不同。
  38. 根据权利要求35至37中任一个所述的通信装置,其特征在于,所述预留RE图案包括于M个可用预留RE图案中;
    所述处理器用于:
    发送参考信号指示,所述M个可用预留RE图案为所述参考信号指示对应的参考信号图案中的部分或者全部图案。
  39. 根据权利要求33或34所述的通信装置,其特征在于,所述处理器用于:发送 预留RE配置信息,所述预留RE配置信息用于指示在所述资源单元中配置的预留RE。
  40. 根据权利要求33至39中任一个所述的通信装置,其特征在于,所述处理器用于:
    发送资源单元频率分配信息,所述资源单元频率分配信息用于以X个RB为粒度在频率资源中确定分配的资源单元;
    发送资源单元时域分配信息,所述资源单元时域分配信息用于以Y个符号为粒度在时域资源中确定分配的资源单元。
  41. 根据权利要求33至40中任一个所述的通信装置,其特征在于,所述资源单元对应的子载波间隔为当前频段支持的最小子载波间隔,或所述资源单元对应的子载波间隔为传输系统消息使用的子载波间隔。
  42. 根据权利要求33至40中任一个所述的通信装置,其特征在于,所述处理器用于:
    发送资源单元子载波间隔配置信令,所述资源单元子载波间隔配置信令用于指示所述资源单元对应的子载波间隔。
  43. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至20中任一个所述的方法。
  44. 一种通信系统,其特征在于,包括权利要求21至31中任一项所述的通信装置,和权利要求32至42中任一项所述的通信装置。
PCT/CN2018/112941 2017-11-17 2018-10-31 资源配置方法、装置和系统 WO2019096004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18879651.0A EP3609228A4 (en) 2017-11-17 2018-10-31 RESOURCE ALLOCATION METHOD, DEVICE AND SYSTEM
US16/713,924 US11363499B2 (en) 2017-11-17 2019-12-13 Resource configuration method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148101.3 2017-11-17
CN201711148101.3A CN109803320A (zh) 2017-11-17 2017-11-17 资源配置方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/713,924 Continuation US11363499B2 (en) 2017-11-17 2019-12-13 Resource configuration method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019096004A1 true WO2019096004A1 (zh) 2019-05-23

Family

ID=66538516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112941 WO2019096004A1 (zh) 2017-11-17 2018-10-31 资源配置方法、装置和系统

Country Status (4)

Country Link
US (1) US11363499B2 (zh)
EP (1) EP3609228A4 (zh)
CN (1) CN109803320A (zh)
WO (1) WO2019096004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584273A (zh) * 2022-02-28 2022-06-03 北京邮电大学 一种确定资源元素利用率的方法、装置及终端

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024375B (zh) * 2016-11-04 2020-12-15 华为技术有限公司 一种用于数据传输的方法和装置
CN113163508B (zh) * 2018-01-31 2022-08-16 中兴通讯股份有限公司 一种信息传输方法、基站、终端、计算机可读存储介质
US11096043B2 (en) 2018-02-16 2021-08-17 Apple Inc. Downlink control information format for ultra-reliable physical downlink control channel
US10912071B2 (en) * 2018-02-16 2021-02-02 Apple Inc. Reliability mechanisms for physical downlink control channel (PDCCH) transmissions in new radio (NR) systems
US11363630B2 (en) 2018-03-01 2022-06-14 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US11272482B2 (en) 2018-11-01 2022-03-08 Qualcomm Incorporated Methods for transmission to achieve robust control and feedback performance in a network
US11006395B2 (en) * 2019-03-29 2021-05-11 Qualcomm Incorporated Two stage control channel for peer-to-peer communication
CN112637909B (zh) * 2019-09-24 2023-04-07 中国移动通信集团重庆有限公司 锚点网络的智能配置方法及装置
WO2021056593A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 通信方法、设备及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064577A (zh) * 2006-04-29 2007-10-31 北京三星通信技术研究有限公司 下行控制信令的传输方法和设备
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN102340394A (zh) * 2010-07-22 2012-02-01 中兴通讯股份有限公司 中继链路资源单元组的确定方法及装置、基站
WO2013036090A1 (ko) * 2011-09-09 2013-03-14 엘지전자 주식회사 단말-특정 참조신호를 전송 및 수신하는 방법과 이를 위한 장치
CN104168610A (zh) * 2013-05-17 2014-11-26 华为技术有限公司 一种传输下行信号的方法、装置及终端设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1855424B1 (en) 2006-05-12 2013-07-10 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
US9107239B2 (en) 2008-04-07 2015-08-11 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
CN102918793B (zh) * 2010-09-30 2016-05-18 Lg电子株式会社 发送控制信息的方法和装置
US20120115463A1 (en) * 2010-11-10 2012-05-10 Research In Motion Limited Method and device for improved user equipment measurements and reporting
CN109347608B (zh) * 2013-01-23 2023-08-22 北京璟石知识产权管理有限公司 一种信息配置的方法、设备及系统
US9338673B2 (en) * 2013-09-17 2016-05-10 Futurewei Technologies, Inc. Device and method of enhancing downlink UE-specific demodulation reference signal to facilitate inter-cell interference cancellation and suppression
WO2016018125A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
US10057896B2 (en) * 2015-04-09 2018-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Resolving colliding signals
US10225380B2 (en) * 2015-05-29 2019-03-05 Futurewei Technologies, Inc. Systems and methods for a subframe structure for wideband LTE
US10027396B2 (en) * 2015-11-04 2018-07-17 Lg Electronics Inc. Method of measuring CSI in wireless communication system supporting unlicensed bands and apparatus supporting the same
JP6923530B2 (ja) * 2016-01-12 2021-08-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 参照信号パターン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064577A (zh) * 2006-04-29 2007-10-31 北京三星通信技术研究有限公司 下行控制信令的传输方法和设备
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN102340394A (zh) * 2010-07-22 2012-02-01 中兴通讯股份有限公司 中继链路资源单元组的确定方法及装置、基站
WO2013036090A1 (ko) * 2011-09-09 2013-03-14 엘지전자 주식회사 단말-특정 참조신호를 전송 및 수신하는 방법과 이를 위한 장치
CN104168610A (zh) * 2013-05-17 2014-11-26 华为技术有限公司 一种传输下行信号的方法、装置及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609228A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584273A (zh) * 2022-02-28 2022-06-03 北京邮电大学 一种确定资源元素利用率的方法、装置及终端
CN114584273B (zh) * 2022-02-28 2024-01-30 北京邮电大学 一种确定资源元素利用率的方法、装置及终端

Also Published As

Publication number Publication date
CN109803320A (zh) 2019-05-24
US11363499B2 (en) 2022-06-14
US20200120545A1 (en) 2020-04-16
EP3609228A4 (en) 2020-06-10
EP3609228A1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2019096004A1 (zh) 资源配置方法、装置和系统
WO2019158005A1 (zh) 下行控制信息传输方法
WO2020164404A1 (en) Systems and methodsfor multicast resource allocation
US11490376B2 (en) Methods, base station, UE and computer medium for transmitting data, HARQ-ACK, and OFDM symbols
CN111726877B (zh) 数据传输方法、终端和基站
CN112134664B (zh) 资源确定方法及装置
WO2017000248A1 (zh) 一种资源分配信息指示方法、基站及用户设备
WO2019205970A1 (zh) 一种资源配置方法及节点
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN111601382B (zh) 一种数据传输方法及通信装置
US11109444B2 (en) Wireless communication method and apparatus for uplink transmission without scheduling
CN110267227A (zh) 一种数据传输方法、相关设备及系统
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
CN110831178B (zh) 时域资源配置方法
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
WO2017080271A1 (zh) 传输调度信息的方法和装置
CN112887074B (zh) 信息发送方法、装置、终端、接入网设备及系统
CN110495119B (zh) 下行控制信道的配置方法及网络设备、终端
US20240155581A1 (en) Signal transmission method and apparatus
WO2022242694A1 (zh) 一种通信方法及通信装置
JP6752967B2 (ja) ワイヤレス通信方法およびデバイス
CN110166209B (zh) 下行控制信息传输方法
CN117793674A (zh) 一种通信方法及装置
CN117119464A (zh) 资源确定方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018879651

Country of ref document: EP

Effective date: 20191107

NENP Non-entry into the national phase

Ref country code: DE