WO2019095920A1 - 一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用 - Google Patents

一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用 Download PDF

Info

Publication number
WO2019095920A1
WO2019095920A1 PCT/CN2018/110695 CN2018110695W WO2019095920A1 WO 2019095920 A1 WO2019095920 A1 WO 2019095920A1 CN 2018110695 W CN2018110695 W CN 2018110695W WO 2019095920 A1 WO2019095920 A1 WO 2019095920A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thickness
compound
formula
layer
Prior art date
Application number
PCT/CN2018/110695
Other languages
English (en)
French (fr)
Inventor
王芳
张兆超
李崇
张小庆
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810124427.0A external-priority patent/CN109802056A/zh
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019095920A1 publication Critical patent/WO2019095920A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to a compound having pyridinium as a core and its application to an organic electroluminescent device.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • the OLED light-emitting device functions as a current device. When a voltage is applied to the electrodes at both ends thereof and the positive and negative charges in the organic layer functional material film layer are applied by the electric field, the positive and negative charges are further recombined in the light-emitting layer, that is, the OLED electroluminescence is generated.
  • OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-size applications such as television, but the luminous efficiency and service life of OLED devices are compared with actual product application requirements. Further improvement is needed.
  • the OLED optoelectronic functional materials applied to OLED devices can be divided into two categories from the use of charge injection transport materials and luminescent materials. Further, the charge injection transport material may be further classified into an electron injection transport material, an electron blocking material, a hole injection transport material, and a hole blocking material, and the luminescent material may be further divided into a host luminescent material and a dopant material.
  • organic functional materials are required to have good photoelectric properties.
  • a charge transport material it is required to have good carrier mobility, high glass transition temperature, etc., as a main body of the light-emitting layer.
  • the material has good bipolarity, appropriate HOMO/LUMO energy levels, and the like.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two layers or more, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron transport.
  • Layers, electron injection layers and other film layers, that is to say, the photoelectric functional materials applied to the OLED device include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc., and the material types and combinations are rich. And the characteristics of diversity.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in different structural devices may be completely different.
  • the photoelectric characteristics of devices must be selected to be more suitable and higher performance OLED functional materials or material combinations in order to achieve high efficiency and long life of the device. And the comprehensive characteristics of low voltage.
  • the development of OLED materials is still far from enough. It is lagging behind the requirements of panel manufacturers, and it is especially important to develop higher performance organic functional materials as material enterprises.
  • the Applicant has provided a compound having pyridinium as a core and its use in an organic electroluminescent device.
  • the compound of the invention contains a pyridoindole structure, has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high Eg, and can optimize the photoelectric performance and OLED of the OLED device through device structure optimization. The life of the device.
  • a compound having pyridinium as a core the structure of which is as shown in the general formula (1):
  • X 1 , X 2 , X 3 and X 4 are each independently represented as CH or N atom, and at least one of X 1 , X 2 , X 3 and X 4 is represented as N atom;
  • Ar is represented by one of a substituted or unsubstituted C 6 to C 30 aryl group and a substituted or unsubstituted C 5 to C 30 heteroaryl group;
  • Ar 1 is represented as one of a mono-, substituted or unsubstituted C 6 to C 30 arylene group and a substituted or unsubstituted C 5 to C 30 heteroarylene group;
  • R 1 and R 2 are in When the ring is connected, pass the C L1 -C L2 bond, C L2 -C L3 bond, C L3 -C L4 bond, C L'1 -C L'2 bond, C L'2 -C L'3 bond or C L'3 -C L'4 key with Parallel connection
  • R 1 and R 2 are each independently represented by the structure of the formula (2), the formula (3), the formula (4) or the formula (5); and R 1 and R 2 may each independently represent hydrogen.
  • R 1 and R 2 are the same or different;
  • X 5 , X 6 and X 7 are each independently represented by an oxygen atom, a sulfur atom, a C 1-10 linear or branched alkyl substituted alkylene group, and an aromatic group. a one of a substituted alkylene group, an alkyl substituted imido group or an aryl substituted imido group;
  • R 3 and R 4 are each independently represented by a phenyl group, a naphthyl group, a diphenyl group, a terphenyl group, a carbazolyl group, a furyl group, a pyridyl group, a phenanthryl group, a fluorenyl group, and a diphenyl group.
  • furan, dibenzothiophene, 9,9-dimethylhydrazine or N-phenylcarbazole; R3 and R4 are the same or different;
  • the general formula (1) can be represented by any one of the general formula (6), the general formula (7), the general formula (8) or the general formula (9):
  • Ar is represented by phenyl, naphthyl, biphenylyl, fluorenyl, furyl, oxazolyl, naphthyridinyl, quinolyl, thienyl, pyridyl, anthracenyl, 9,9-dimethylhydrazine.
  • phenanthryl group a dibenzofuranyl group, and a dibenzothiophene group;
  • Ar 1 is represented by a single bond, a phenylene group, a naphthylene group, a biphenylylene group, a fluorenylene group, a furylene group, a carbazolyl group, a naphthylene group, a quinolinyl group, a thienylene group, a pyridylene group.
  • a phenylene group a naphthylene group
  • a biphenylylene group a fluorenylene group
  • furylene group a furylene group, a carbazolyl group, a naphthylene group, a quinolinyl group, a thienylene group, a pyridylene group.
  • a phenanthrylene group a sub-9,9-dimethylindenyl group
  • a phenanthrylene group a bisdibenzofuranyl group, or a dibenzothiophene group.
  • Ar, Ar 1 , R 3 , and R 4 may be expressed as: Any of them.
  • the present invention also provides a process for the preparation of a compound as described above, the reaction equation for which the compound is prepared is:
  • the specific preparation method is as follows: the raw material A and the intermediate B are dissolved in anhydrous toluene, and after adding oxygen, sodium t-butoxide and Pd(dppf)Cl 2 are added , and the reaction is carried out at 95 to 110 ° C for 10 to 24 hours under an inert atmosphere. During the reaction, the reaction process is monitored by TLC. After the reaction of the raw materials is completed, the mixture is cooled and filtered, and the filtrate is evaporated to remove the solvent. The crude product is passed through a silica gel column to obtain the target product;
  • the amount of toluene is 30-50 ml of toluene per gram of the raw material A (ie, pyridoindole bromide), and the molar ratio of the raw material A to the intermediate B is 1: (1.1 to 2.5), Pd(dppf)Cl 2
  • the molar ratio to the raw material A is (0.006 to 0.02): 1, the molar ratio of sodium t-butoxide to the raw material A is (1.5 to 2): 1;
  • the specific preparation method comprises the following steps: using raw material A and intermediate B as raw materials, dissolving the raw material in toluene, adding Pd(PPh 3 ) 4 and sodium carbonate after oxygen removal, and mixing the above solution at 95-110 ° C under nitrogen protection.
  • the reaction is carried out for 10 to 24 hours, naturally cooled to room temperature, and the reaction solution is filtered, and the filtrate is subjected to vacuum distillation under reduced pressure, and passed through a neutral silica gel column to obtain a target product;
  • the amount of toluene is 30-50 ml of toluene per gram of the raw material A, and the molar ratio of the raw material A to the intermediate B is 1: (1.0 to 1.5); the molar ratio of the Pd(PPh 3 ) 4 to the raw material A is (0.005 to 0.01): 1. The molar ratio of the sodium carbonate to the raw material A is (1.5 to 3.0):1.
  • the present invention also provides a compound as described above for use in the preparation of an organic electroluminescent device.
  • the present invention also provides an organic electroluminescent device comprising at least one functional layer containing a compound of the above pyridoindole.
  • the present invention can also be improved as follows.
  • the organic electroluminescent device comprises a hole transport layer/electron barrier layer containing the above-described pyridoindole compound.
  • the organic electroluminescent device comprises a light-emitting layer containing the above-described compound of pyridoindole.
  • the invention also provides an illumination or display element comprising an organic electroluminescent device as described above.
  • the compound of the invention has a pyridinium ruthenium as a mother core, and connects a symmetric or asymmetric rigid group, destroys the crystallinity of the molecule, avoids the aggregation between molecules, has a high glass transition temperature, and the material can be used in the OLED device. Maintain high film stability and increase the lifetime of OLED devices.
  • the structure of the compound of the invention makes the distribution of electrons and holes in the luminescent layer more balanced, and improves the hole injection/transport performance at the appropriate HOMO level; and at the appropriate LUMO level, it acts as an electron blocking. Enhancing the recombination efficiency of the excitons in the luminescent layer; when used as a luminescent functional layer material of the OLED illuminating device, the pyridine ruthenium combined with the branch within the scope of the invention can effectively improve the exciton utilization and the high fluorescence radiation efficiency, and the high Efficiency roll-off at current density reduces device voltage and increases current efficiency and lifetime of the device.
  • the compound of the invention has good application effects in OLED light-emitting devices and has good industrialization prospects.
  • FIG. 1 is a schematic structural view of a material exemplified in the present invention applied to an OLED device;
  • 1 is a transparent substrate layer
  • 2 is an ITO anode layer
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is an electron blocking layer
  • 6 is a light emitting layer
  • 7 is a hole blocking layer/electron transport layer
  • 8 is an electron injection layer
  • 9 is a cathode reflection electrode layer.
  • Figure 2 is a graph showing the efficiency of the device measured at different temperatures.
  • Elemental analysis structure (molecular formula C 33 H 32 BNO 2 ): Theory C, 81.65; H, 6.64; B, 2.23; N, 2.89; O, 6.59; Test value: C, 81.68; H, 6.65; B, 2.21. N, 2.88; O, 6.58.
  • ESI-MS (m/z) (M + ): calc. 485.
  • the intermediate B was prepared by the synthesis method of the intermediate B1, and the specific structure is shown in Table 1.
  • Elemental analysis structure (Molecular formula C 41 H 25 N 3 O): Theory C, 85.54; H, 4.38; N, 7.30; O, 2.78; Tests: C, 85.49; H, 4.37; N, 2.75; O, 2.76 .
  • ESI-MS (m/z) (M + ): 550.
  • Elemental analysis structure (molecular formula C 47 H 30 N 4 ): calcd. C, 86.74; H, 4.65; N, 8.61; ESI-MS (m/z) (M + ): Theory: 650.25, found 650.33.
  • Compound 33 was prepared in the same manner as in Example 1 except that the starting material A1 was replaced with the starting material A3.
  • Elemental analysis structure (Molecular formula C 41 H 25 N 3 O): Theory C, 85.54; H, 4.38; N, 7.30; O, 2.78; Tests: C, 85.49; H, 4.37; N, 2.75; O, 2.76 .
  • ESI-MS (m/z) (M + ): 550.
  • Compound 36 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A3 and the intermediate B3 was replaced with the intermediate B2.
  • Elemental analysis structure (Molecular formula C 41 H 25 N 3 O): Theory C, 85.54; H, 4.38; N, 7.30; O, 2.78; Tests: C, 85.49; H, 4.37; N, 2.75; O, 2.76 .
  • ESI-MS (m/z) (M + ): 550.
  • Compound 60 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B2.
  • Elemental analysis structure (molecular formula C 47 H 30 N 4 ): calcd. C, 86.74; H, 4.65; N, 8.61; ESI-MS (m/z) (M + ): Theory: 650.25, found 650.35.
  • Compound 81 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A4.
  • Elemental analysis structure (Molecular formula C 41 H 25 N 3 O): Theory C, 85.54; H, 4.38; N, 7.30; O, 2.78; Test: C, 85.49; H, 4.37; N, 2.75; O, 2.76 .
  • ESI-MS (m/z) (M + ): calc. 575.
  • Compound 124 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B6.
  • Elemental analysis structure (Molecular formula C 50 H 36 N 4 ): Theory C, 86.68; H, 5.24; N, 8.09; Tests: C, 86.69; H, 5.27; N, 8.05.
  • Compound 160 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B7.
  • Compound 170 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B8.
  • Elemental analysis structure (Molecular formula C 53 H 39 N 3 O 2 ): Theory C, 84.89; H, 5.24; N, 5.60; O, 4.27; Tests: C, 84.79; H, 5.27; N, 5.68; 4.26.
  • Compound 177 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B9.
  • Compound 226 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A5 and the intermediate B3 was replaced with the intermediate B11.
  • Elemental analysis structure (Molecular formula C 44 H 29 N 7 ): Theory C, 80.59; H, 4.46; N, 14.95; Tests: C, 80.64; H, 4.42; N, 14.98.
  • ESI-MS (m/z) (M + ): calc. 655.
  • Compound 235 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B12.
  • Elemental analysis structure (molecular formula C 53 H 36 N 4 ): calcd. C, 87.33; H, 4.98; N, 7.69; ⁇ / RTI> ⁇ /RTI> C, 87.34; H, 4.92; N, 7.68.
  • ESI-MS (m/z) (M + ): s.
  • the preparation method 250 was the same as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B13.
  • Compound 252 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B14.
  • Elemental analysis structure (Molecular formula C 59 H 41 N 5 ): calcd. C, 86.42; H, 5.04; N, 8.54; ⁇ / RTI> C, 86.44; H, 5.02; N, 8.58.
  • ESI-MS m/z (M + ): calc.
  • Compound 257 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B15.
  • Elemental analysis structure (Molecular formula C 49 H 32 N 4 O): Theory C, 84.95; H, 4.66; N, 8.09; O, 2.31; Tests: C, 84.73; H, 4.87; N, 8.16; O, 2.36 .
  • ESI-MS (m/z) (M + ): calc. 692.26.
  • Compound 263 was prepared in the same manner as in Example 1, except that the starting material A1 was replaced with the starting material A6 and the intermediate B3 was replaced with the intermediate B2.
  • Elemental analysis structure (Molecular formula C 53 H 34 N 4 ): Theory C, 87.58; H, 4.71; N, 7.71; Tests: C, 87.54; H, 4.72; N, 7.78.
  • ESI-MS (m/z) (M + ): s.
  • the preparation method of Compound 266 was the same as that of Example 1, except that the starting material A1 was replaced with the starting material A2 and the intermediate B3 was replaced with the intermediate B5.
  • Elemental analysis structure (Molecular formula C 50 H 31 N 5 ): Theory C, 85.57; H, 4.45; N, 9.98; Tests: C, 85.54; H, 4.42; N, 9.95.
  • the organic compound is used in a light-emitting device, has a high Tg (glass transition temperature) and a triplet energy level (T1), and a suitable HOMO, LUMO energy level can be used not only as a hole transport layer/electron electron blocking layer material. It can also be used as a light-emitting layer material.
  • Tg glass transition temperature
  • T1 triplet energy level
  • LUMO energy level can be used not only as a hole transport layer/electron electron blocking layer material. It can also be used as a light-emitting layer material.
  • the thermal performance, T1 energy level and HOMO energy level test were carried out on the compound of the present invention and the existing materials, and the results are shown in Table 2.
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer.
  • the test conditions of the material are 2*10 -5 toluene solution; the glass transition temperature Tg is by differential scanning calorimetry (DSC, Germany Benz DSC204F1 differential scanning) Calorimeter), the heating rate is 10 ° C / min; the highest occupied molecular orbital HOMO level and the lowest occupied molecular orbital LUMO level is tested by the ionization energy test system (IPS-3).
  • the organic compound of the invention has a high glass transition temperature, can improve the phase stability of the material film, and further improve the service life of the device;
  • the applied material has a similar HOMO energy level, and also has a high triplet energy level (T1), which can block the energy loss of the light-emitting layer, thereby improving the luminous efficiency of the device. Therefore, the organic material containing the spirodimethylhydrazine of the present invention can effectively improve the luminous efficiency and the service life of the device after being applied to different functional layers of the OLED device.
  • the device examples 1 to 20 and the device comparative example 1 have the same fabrication process, and the same substrate material and electrode material are used, and the film thickness of the electrode material is also maintained. Consistently, the difference between the device examples 1 and 9 is that the material of the light-emitting layer in the device is changed; the device embodiments 10 to 20 change the material of the hole transport/electron barrier layer of the device, and the device obtained by each embodiment
  • the performance test results are shown in Table 3.
  • an electroluminescent device As shown in FIG. 1, an electroluminescent device, the preparation steps thereof include:
  • the hole injection layer material HAT-CN is deposited by vacuum evaporation, the thickness is 10nm, this layer serves as the hole injection layer 3;
  • the electron blocking material TPAC is evaporated by vacuum evaporation, the thickness is 20nm, the layer is the electron blocking layer 5;
  • the host material being the compound 36 and the compound GH prepared in the examples of the present invention, the doping material being Ir(ppy) 3 , the compound 36, GH and Ir(ppy) 3
  • the mass ratio of the three is 50:50:10 and the thickness is 30 nm;
  • the electron transporting material TPBI is evaporated by vacuum evaporation to a thickness of 40 nm, and this organic material is used as the hole blocking/electron transporting layer 7;
  • the layer is the electron injection layer 8;
  • the layer is the cathode reflective electrode layer 9;
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 57 prepared by the embodiment of the invention and Ir(ppy) 3 mixed by weight ratio of 88:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 60 prepared by the embodiment of the invention and Ir(ppy) 3 mixed by weight ratio of 92:8) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 99, GH and Ir(ppy) 3 prepared in the examples of the present invention are mixed by weight ratio of 70:30:10) / Hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injecting layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 226, GH and Ir(ppy) 3 prepared in the examples of the present invention are mixed by weight ratio of 60:40:10) / Hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injecting layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 235, GH and Ir(ppy) 3 prepared in the examples of the present invention are mixed by weight ratio of 40:60:10) / Hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injecting layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 250, GH and Ir(ppy) 3 prepared in the examples of the present invention are mixed by weight ratio of 30:70:10) / Hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injecting layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 252, GH and Ir(ppy) 3 prepared in the examples of the present invention are mixed by weight ratio of 50:50:8) / Hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injecting layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 266, GH and Ir(ppy) 3 prepared in the examples of the present invention are mixed by weight ratio of 50:50:12) / Hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injecting layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 9 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 12 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 33 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 81 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 108 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 124 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 160 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 170 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 177 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 257 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: compound 263 prepared in the examples of the present invention) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • Table 3 The detection data of the obtained electroluminescent device is shown in Table 3, which is shown in FIG.
  • the OLED device prepared by the material of the invention is more stable when operating at a low temperature, and the device examples 5, 7, 16 and the device comparative example 1 are tested at an efficiency of -10 to 80 ° C, and the results are shown in Table 4.
  • Figure 2 shows.
  • device embodiments 5, 7, and 16 are device structures in which the materials of the present invention and known materials are matched, and compared with the device of Comparative Example 1, not only the low temperature efficiency but also the efficiency during the temperature increase process. Smoothly rise.

Abstract

本发明涉及一种如通式(1)的有机化合物及其在有机发光器件中的应用。本发明化合物具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。(I)

Description

一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用 技术领域
本发明涉及半导体技术领域,尤其涉及一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。
OLED发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。OLED发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。
目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特 点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用。本发明化合物含有吡啶并吲哚结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。
本发明解决上述技术问题的技术方案如下:
一种以吡啶并吲哚为核心的化合物,该化合物结构如通式(1)所示:
Figure PCTCN2018110695-appb-000001
其中,X 1,X 2,X 3和X 4分别独立的表示为CH或N原子,所述X 1,X 2,X 3和X 4中至少有一个表示为N原子;
Ar表示为经取代或未经取代的C 6至C 30芳基和经取代或未经取代的C 5至C 30杂芳基中的一种;
Ar 1表示为单健、经取代或未经取代的C 6至C 30亚芳基和经取代或未经取代的C 5至C 30亚杂芳基中的一种;
R 1、R 2在与
Figure PCTCN2018110695-appb-000002
并环连接时,通过C L1-C L2键、C L2-C L3键、C L3-C L4键、C L’1-C L’2键、C L'2-C L’3键或C L’3-C L’4键与
Figure PCTCN2018110695-appb-000003
并环连接;
R 1、R 2分别独立的表示为通式(2)、通式(3)、通式(4)或通式(5)中的结构;R 1、 R 2分别还可以独立的表示为氢原子、苯基、萘基、二联苯基、三联苯基、咔唑基、呋喃基、吡啶基、菲基、蒽基、二苯并呋喃、二苯并噻吩、9,9-二甲基芴或N-苯基咔唑R 1和R 2相同或者不同;
Figure PCTCN2018110695-appb-000004
通式(2)和通式(3)中,X 5、X 6、X 7分别独立的表示为氧原子、硫原子、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
通式(5)中,R 3、R 4分别独立的表示为苯基、萘基、二联苯基、三联苯基、咔唑基、呋喃基、吡啶基、菲基、蒽基、二苯并呋喃、二苯并噻吩、9,9-二甲基芴或N-苯基咔唑中的一种;R3和R4相同或者不同;
*表示通式(2)、通式(3)、通式(4)与C L1-C L2键、C L2-C L3键、C L3-C L4键、C L’1-C L’2键、C L'2-C L’3键或C L’3-C L’4键并环连接的键位。
进一步,通式(1)可用通式(6)、通式(7)、通式(8)或通式(9)的任一种表示:
Figure PCTCN2018110695-appb-000005
进一步,Ar表示为苯基、萘基、联苯基、蒽基、呋喃基、咔唑基、萘啶基、喹啉基、噻吩基、吡啶基、苝基、9,9-二甲基芴基、菲基、二苯并呋喃基、二苯并噻吩基中的一种;
Ar 1表示为单键、亚苯基、亚萘基、亚联苯基、亚蒽基、亚呋喃基、亚咔唑基、亚萘啶基、亚喹啉基、亚噻吩基、亚吡啶基、亚苝基、亚9,9-二甲基芴基、亚菲基、亚二苯并呋喃基、 亚二苯并噻吩基中的一种。
进一步,所述通式(1)中的
Figure PCTCN2018110695-appb-000006
的结构如通式(2-1)~(2-10)所示:
Figure PCTCN2018110695-appb-000007
进一步,所述Ar、Ar 1、R 3、R 4可表示为:
Figure PCTCN2018110695-appb-000008
Figure PCTCN2018110695-appb-000009
Figure PCTCN2018110695-appb-000010
中的任一种。
本发明还提供一种如上所述的化合物的制备方法,制备所述化合物的反应方程式为:
(1)当Ar 1为单键时,Ar 1左右两侧的基团以C-N键相连接,化合物的制备方程式为:
Figure PCTCN2018110695-appb-000011
具体的制备方法为:将原料A与中间体B溶解于无水甲苯中,除氧后加入叔丁醇钠和Pd(dppf)Cl 2,在惰性气氛下95~110℃反应10~24个小时,反应过程中用TLC监测反应进程,待原料反应完全后,冷却、过滤,将滤液旋蒸除去溶剂,粗产品过硅胶柱,即可得到目标产物;
其中,甲苯用量为每克原料A(即吡啶并吲哚溴化物)使用30-50ml甲苯,所述原料A与中间体B的摩尔比为1:(1.1~2.5),Pd(dppf)Cl 2与原料A的摩尔比为(0.006~0.02):1,叔丁醇钠与原料A的摩尔比为(1.5~2):1;
(2)当Ar 1不为单键时,吡啶并吲哚与Ar 1以C-C键相连接,化合物的制备方程式为:
Figure PCTCN2018110695-appb-000012
具体制备方法为:以原料A和中间体B为原料,将原料在甲苯溶解,除氧后加入Pd(PPh 3) 4和碳酸钠,在氮气保护下,将上述混合溶液于95~110℃,反应10~24小时,自然冷却至室温,并过滤反应溶液,滤液进行减压旋蒸,过中性硅胶柱,即可得到目标产物;
其中,甲苯用量为每克原料A使用30-50ml甲苯,所述原料A与中间体B的摩尔比为1:(1.0~1.5);所述Pd(PPh 3) 4与原料A的摩尔比为(0.005~0.01):1,所述碳酸钠与原料A的摩尔比为(1.5~3.0):1。
本发明还提供一种如上所述的化合物用于制备有机电致发光器件。
本发明还提供一种有机电致发光器件,所述有机电致发光器件包括至少一层功能层含有上述吡啶并吲哚的化合物。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述有机电致发光器件包括空穴传输层/电子阻挡层,所述空穴传输层/电子阻挡层含有上述的吡啶并吲哚的化合物。
进一步,所述有机电致发光器件包括发光层,所述发光层含有上述的吡啶并吲哚的化合 物。
本发明还提供一种照明或显示元件,包括如上所述的有机电致发光器件。
本发明有益的技术效果在于:
本发明化合物以吡啶并吲哚为母核,连接对称或非对称的刚性基团,破坏分子的结晶性,避免分子间的聚集作用,具有高的玻璃化温度,材料在OLED器件应用时,可保持高的膜层稳定性,提高OLED器件使用寿命。
本发明化合物结构使得电子和空穴在发光层的分布更加平衡,在恰当的HOMO能级下,提升了空穴注入/传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;作为OLED发光器件的发光功能层材料使用时,吡啶并吲哚搭配本发明范围内的支链可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。
本发明所述化合物在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明所列举的材料应用于OLED器件的结构示意图;
其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输层,5为电子阻挡层,6为发光层,7为空穴阻挡层/电子传输层,8为电子注入层,9为阴极反射电极层。
图2为器件在不同温度下测量的效率曲线图。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
以中间体B1合成为例:
Figure PCTCN2018110695-appb-000013
(1)在250ml的三口瓶中,通氮气保护下,加入0.02mol原料B2,0.024mol对氯溴苯,0.04mol叔丁醇钠,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到中间体A1,HPLC纯度99.4%,收率71.3%;
元素分析结构(分子式C 27H 20ClN):理论值C,82.33;H,5.12;Cl,9.00;N,3.56;测试值:C,82.32;H,5.11;Cl,9.02;N,3.55。ESI-MS(m/z)(M +):理论值为393.13,实测值为393.58。
Figure PCTCN2018110695-appb-000014
(2)在250mL三口瓶中,通入氮气,加入0.02mol中间体A1溶解于150ml四氢呋喃中,再将0.024mol双(频哪醇根基)二硼、0.0002mol(1,1 -双(二苯基膦)二茂铁)二氯钯(II)以及0.05mol乙酸钾加入,搅拌混合物,将上述反应物的混合溶液于反应温度80℃下,加热回流5小时;反应结束后,冷却并加入100ml水、且将混合物过滤并在真空烘箱中干燥。将所获得的残余物过硅胶柱分离纯化,得到中间体B1;HPLC纯度99.5%,收率92.1%。
元素分析结构(分子式C 33H 32BNO 2):理论值C,81.65;H,6.64;B,2.23;N,2.89;O,6.59;测试值:C,81.68;H,6.65;B,2.21;N,2.88;O,6.58。ESI-MS(m/z)(M +):理论值为485.25,实测值为485.61。
以中间体B1的合成方法制备中间体B,具体结构如表1所示。
Figure PCTCN2018110695-appb-000015
Figure PCTCN2018110695-appb-000016
Figure PCTCN2018110695-appb-000017
实施例1:化合物9的合成:
Figure PCTCN2018110695-appb-000018
在250ml的三口瓶中,通氮气保护下,加入0.01mol原料A1,0.012mol中间体B3,150ml甲苯搅拌混合,然后加入0.02mol碳酸钠,1×10 -4molPd(PPh 3) 4,加热至105℃,回流反应24小时,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液进行减压旋蒸(-0.09MPa,85℃),过中性硅胶柱,得到目标产物,HPLC纯度99.2%,收率78.5%;
元素分析结构(分子式C 41H 25N 3O):理论值C,85.54;H,4.38;N,7.30;O,2.78;测试值:C,85.49;H,4.37;N,2.75;O,2.76。ESI-MS(m/z)(M +):理论值为575.20,实测值为575.76。
实施例2:化合物12的合成:
Figure PCTCN2018110695-appb-000019
在250ml的三口瓶中,通氮气保护下,加入0.01mol原料A1,0.012mol中间体B2,150ml甲苯搅拌混合,然后加入0.02mol碳酸钠,1×10 -4molPd(PPh 3) 4,加热至105℃,回流反应24小时,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液进行减压旋蒸(-0.09MPa,85℃),过中性硅胶柱,得到目标产物,HPLC纯度99.1%,收率75%;
元素分析结构(分子式C 47H 30N 4):理论值C,86.74;H,4.65;N,8.61;测试值:C,86.69;H,4.67;N,8.65。ESI-MS(m/z)(M +):理论值为650.25,实测值为650.33。
实施例3:化合物33的合成:
Figure PCTCN2018110695-appb-000020
化合物33的制备方法同实施例1,不同之处在于用原料A3替换原料A1。
元素分析结构(分子式C 41H 25N 3O):理论值C,85.54;H,4.38;N,7.30;O,2.78;测试值:C,85.49;H,4.37;N,2.75;O,2.76。ESI-MS(m/z)(M +):理论值为575.20,实测值为575.29。
实施例4:化合物36的合成:
Figure PCTCN2018110695-appb-000021
化合物36的制备方法同实施例1,不同之处在于用原料A3替换原料A1,用中间体B2替代中间体B3。
元素分析结构(分子式C 47H 30N 4):理论值C,86.74;H,4.65;N,8.61;测试值:C,86.69;H,4.67; N,8.65。ESI-MS(m/z)(M +):理论值为650.25,实测值为650.39。
实施例5:化合物57的合成:
Figure PCTCN2018110695-appb-000022
化合物57的制备方法同实施例1,不同之处在于用原料A2替换原料A1。
元素分析结构(分子式C 41H 25N 3O):理论值C,85.54;H,4.38;N,7.30;O,2.78;测试值:C,85.49;H,4.37;N,2.75;O,2.76。ESI-MS(m/z)(M +):理论值为575.20,实测值为575.33。
实施例6:化合物60的合成:
Figure PCTCN2018110695-appb-000023
化合物60的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B2替代中间体B3。
元素分析结构(分子式C 47H 30N 4):理论值C,86.74;H,4.65;N,8.61;测试值:C,86.69;H,4.67;N,8.65。ESI-MS(m/z)(M +):理论值为650.25,实测值为650.35。
实施例7:化合物81的合成:
Figure PCTCN2018110695-appb-000024
化合物81的制备方法同实施例1,不同之处在于用原料A4替换原料A1。
元素分析结构(分子式C 41H 25N 3O):理论值C,85.54;H,4.38;N,7.30;O,2.78;测试值: C,85.49;H,4.37;N,2.75;O,2.76。ESI-MS(m/z)(M +):理论值为575.20,实测值为575.25。
实施例8:化合物99的合成:
Figure PCTCN2018110695-appb-000025
化合物99的制备方法同实施例1,不同之处在于用中间体B1替代中间体B3。
元素分析结构(分子式C 44H 31N 3):理论值C,87.82;H,5.19;N,6.98;测试值:C,87.89;H,5.17;N,6.95。ESI-MS(m/z)(M +):理论值为601.25,实测值为601.27。
实施例9:化合物108的合成:
Figure PCTCN2018110695-appb-000026
化合物108的制备方法同实施例1,不同之处在于用中间体B4替代中间体B3。
元素分析结构(分子式C 47H 30N 4):理论值C,86.74;H,4.65;N,8.61;测试值:C,86.69;H,4.67;N,8.65。ESI-MS(m/z)(M +):理论值为650.25,实测值为650.37。
实施例10:化合物124的合成:
Figure PCTCN2018110695-appb-000027
化合物124的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B6替代中间体B3。
元素分析结构(分子式C 50H 36N 4):理论值C,86.68;H,5.24;N,8.09;测试值:C,86.69;H,5.27;N,8.05。ESI-MS(m/z)(M +):理论值为692.29,实测值为692.35。
实施例11:化合物160的合成:
Figure PCTCN2018110695-appb-000028
化合物160的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B7替代中间体B3。
元素分析结构(分子式C 44H 31N 3O):理论值C,85.55;H,5.06;N,6.80;O,2.59;测试值:C,85.49;H,5.07;N,6.85;O,2.56。ESI-MS(m/z)(M +):理论值为617.25,实测值为617.26。
实施例12:化合物170的合成:
Figure PCTCN2018110695-appb-000029
化合物170的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B8替代中间体B3。
元素分析结构(分子式C 53H 39N 3O 2):理论值C,84.89;H,5.24;N,5.60;O,4.27;测试值:C,84.79;H,5.27;N,5.68;O,4.26。ESI-MS(m/z)(M +):理论值为749.30,实测值为749.36。
实施例13:化合物177的合成:
Figure PCTCN2018110695-appb-000030
化合物177的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B9替代中间体B3。
元素分析结构(分子式C 45H 30N 6):理论值C,82.55;H,4.62;N,12.84;测试值:C,82.59;H,4.62;N,12.85。ESI-MS(m/z)(M +):理论值为654.25,实测值为654.26。
实施例14:化合物226的合成:
Figure PCTCN2018110695-appb-000031
化合物226的制备方法同实施例1,不同之处在于用原料A5替换原料A1,用中间体B11替代中间体B3。
元素分析结构(分子式C 44H 29N 7):理论值C,80.59;H,4.46;N,14.95;测试值:C,80.64;H,4.42;N,14.98。ESI-MS(m/z)(M +):理论值为655.25,实测值为655.31。
实施例15:化合物235的合成:
Figure PCTCN2018110695-appb-000032
合物235的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B12替代中间体B3。
元素分析结构(分子式C 53H 36N 4):理论值C,87.33;H,4.98;N,7.69;测试值:C,87.34;H,4.92;N,7.68。ESI-MS(m/z)(M +):理论值为728.29,实测值为728.36。
实施例16:化合物250的合成:
Figure PCTCN2018110695-appb-000033
合物250的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B13替代中间体B3。
元素分析结构(分子式C 43H 27N 3):理论值C,88.18;H,4.65;N,7.17;测试值:C,88.14;H,4.62;N,7.18。ESI-MS(m/z)(M +):理论值为585.22,实测值为585.26。
实施例17:化合物252的合成:
Figure PCTCN2018110695-appb-000034
合物252的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B14替代中间体B3。
元素分析结构(分子式C 59H 41N 5):理论值C,86.42;H,5.04;N,8.54;测试值:C,86.44;H,5.02;N,8.58。ESI-MS(m/z)(M +):理论值为819.34,实测值为819.41。
实施例18:化合物257的合成:
Figure PCTCN2018110695-appb-000035
化合物257的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B15替代中间体B3。
元素分析结构(分子式C 49H 32N 4O):理论值C,84.95;H,4.66;N,8.09;O,2.31;测试值:C,84.73;H,4.87;N,8.16;O,2.36。ESI-MS(m/z)(M +):理论值为692.26,实测值为692.27。
实施例19:化合物263的合成:
Figure PCTCN2018110695-appb-000036
合物263的制备方法同实施例1,不同之处在于用原料A6替换原料A1,用中间体B2替代中间体B3。
元素分析结构(分子式C 53H 34N 4):理论值C,87.58;H,4.71;N,7.71;测试值:C,87.54;H,4.72;N,7.78。ESI-MS(m/z)(M +):理论值为726.28,实测值为726.35。
实施例20:化合物266的合成:
Figure PCTCN2018110695-appb-000037
合物266的制备方法同实施例1,不同之处在于用原料A2替换原料A1,用中间体B5替代中间体B3。
元素分析结构(分子式C 50H 31N 5):理论值C,85.57;H,4.45;N,9.98;测试值:C,85.54;H,4.42;N,9.95。ESI-MS(m/z)(M +):理论值为701.26,实测值为701.33。
本有机化合物在发光器件中使用,具有较高的Tg(玻璃化转变温度)和三线态能级(T1),合适的HOMO、LUMO能级,不仅可以作为空穴传输层/电子电子阻挡层材料使用,还可作为发光层材料使用。对本发明化合物及现有材料分别进行热性能、T1能级以及HOMO能级测试,结果如表2所示。
表2
Figure PCTCN2018110695-appb-000038
Figure PCTCN2018110695-appb-000039
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10 -5的甲苯溶液;玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;最高占据分子轨道HOMO能级及最低占据分子轨道LUMO能级是由是电离能测试系统(IPS-3)测试。
由上表数据可知,对比目前应用的NPB、CBP和TPAC材料,本发明的有机化合物具有高的玻璃化转变温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;本发明材料和目前应用材料具有相似的HOMO能级的同时,还具有高的三线态能级(T1),可以阻挡发光层能量损失,从而提升器件发光效率。因此,本发明含有螺二甲基蒽芴的有机材料在应用于OLED器件的不同功能层后,可有效提高器件的发光效率及使用寿命。
以下通过器件实施例1~20和器件比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2~20、器件比较例1与器件实施例1相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例1~9对器件中的发光层材料做了变换;器件实施例10~20对器件的空穴传输/电子阻挡层材料做了变换,各实施例所得器件的性能测试结果如表3所示。
器件实施例1:
如图1所示,一种电致发光器件,其制备步骤包括:
a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;
b)在ITO阳极层2上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为10nm,这层作为空穴注入层3;
c)在空穴注入层3上,通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为60nm,该层为空穴传输层4;
d)在空穴传输层4上,通过真空蒸镀方式蒸镀电子阻挡材料TPAC,厚度为20nm,该层为电子阻挡层5;
e)在电子阻挡层5之上蒸镀发光层6,主体材料为本发明实施例制备的化合物36和化合物GH,掺杂材料为Ir(ppy) 3,化合物36、GH和Ir(ppy) 3三者质量比为为50:50:10,厚度为30nm;
f)在发光层6之上,通过真空蒸镀方式蒸镀电子传输材料TPBI,厚度为40nm,这层有机材料作为空穴阻挡/电子传输层7使用;
g)在空穴阻挡/电子传输层7之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层8;
h)在电子注入层8之上,真空蒸镀阴极Al(100nm),该层为阴极反射电极层9;
按照上述步骤完成电致发光器件的制作后,测量器件的驱动电压,电流效率,其结果见表3所示。相关材料的分子结构式如下所示:
Figure PCTCN2018110695-appb-000040
器件实施例2:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物57和Ir(ppy) 3按重量比88:12混 掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例3:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物60和Ir(ppy) 3按重量比92:8混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例4:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物99、GH和Ir(ppy) 3按重量比70:30:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例5:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物226、GH和Ir(ppy) 3按重量比60:40:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例6:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物235、GH和Ir(ppy) 3按重量比40:60:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例7:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物250、GH和Ir(ppy) 3按重量比30:70:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例8:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物252、GH和Ir(ppy) 3按重量比50:50:8 混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例9:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物266、GH和Ir(ppy) 3按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例10:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物9)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例11:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物12)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例12:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物33)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例13:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物81)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例14:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物108)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构 成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例15:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物124)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例16:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物160)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例17:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物170)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例18:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物177)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例19:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物257)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例20:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:本发明实施例制备的化合物263)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构 成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件比较例1:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。所得电致发光器件的检测数据见表3,图2所示。
表3
编号 电流效率(cd/A) 色彩 LT95寿命(Hr)@5000nits
器件实施例1 53.3 绿光 130.5
器件实施例2 49.1 绿光 122.7
器件实施例3 47.2 绿光 124.7
器件实施例4 55.9 绿光 119.1
器件实施例5 55.1 绿光 125.7
器件实施例6 53.7 绿光 129.1
器件实施例7 52.9 绿光 117.8
器件实施例8 52.1 绿光 121.5
器件实施例9 54.8 绿光 132.7
器件实施例10 44.2 绿光 110.3
器件实施例11 41.9 绿光 109.4
器件实施例12 42.8 绿光 100.1
器件实施例13 41.4 绿光 111.3
器件实施例14 43.3 绿光 105.8
器件实施例15 39.9 绿光 99.3
器件实施例16 44.5 绿光 108.7
器件实施例17 40.2 绿光 104.5
器件实施例18 39.6 绿光 110.5
器件实施例19 42.1 绿光 103.7
器件实施例20 41.5 绿光 111.3
器件比较例1 32.5 绿光 14.3
由表3的结果可以看出,本发明有机化合物可应用于OLED发光器件制作,并且与比较例相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的使用寿命获得较大的提升。
进一步的,本发明材料制备的OLED器件在低温下工作时效率也比较稳定,将器件实施例5、7、16和器件比较例1在-10~80℃进行效率测试,所得结果如表4、图2所示。
表4
Figure PCTCN2018110695-appb-000041
从表4的数据可知,器件实施例5、7、16为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
综上,以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种以吡啶并吲哚为核心的化合物,其特征在于,该化合物结构如通式(1)所示:
    Figure PCTCN2018110695-appb-100001
    其中,X 1,X 2,X 3和X 4分别独立的表示为CH或N原子,所述X 1,X 2,X 3和X 4中至少有一个表示为N原子;
    Ar表示为经取代或未经取代的C 6至C 30芳基和经取代或未经取代的C 5至C 30杂芳基中的一种;
    Ar 1表示为单健、经取代或未经取代的C 6至C 30亚芳基和经取代或未经取代的C 5至C 30亚杂芳基中的一种;
    R 1、R 2分别独立的表示为氢原子、苯基、萘基、二联苯基、三联苯基、咔唑基、呋喃基、吡啶基、菲基、蒽基、二苯并呋喃、二苯并噻吩、9,9-二甲基芴、N-苯基咔唑或者通式(2)、通式(3)、通式(4)和通式(5)中任一所示的结构;R 1和R 2相同或者不同;
    Figure PCTCN2018110695-appb-100002
    通式(2)和通式(3)中,X 5、X 6、X 7分别独立的表示为氧原子、硫原子、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
    通式(5)中,R 3、R 4分别独立的表示为苯基、萘基、二联苯基、三联苯基、咔唑基、呋喃基、吡啶基、菲基、蒽基、二苯并呋喃、二苯并噻吩、9,9-二甲基芴或N-苯基咔唑中的一种;R3和R4相同或者不同;
    *表示通式(2)、通式(3)、通式(4)与C L1-C L2键、C L2-C L3键、C L3-C L4键、C L’1-C L’2键、C L'2-C L’3键或C L’3-C L’4键并环连接的键位。
  2. 根据权利要求1所述的化合物,其特征在于,通式(1)如通式(6)、通式(7)、通 式(8)或通式(9)的任一种所示:
    Figure PCTCN2018110695-appb-100003
  3. 根据权利要求1所述的化合物,其特征在于,所述Ar表示为苯基、萘基、联苯基、蒽基、呋喃基、咔唑基、萘啶基、喹啉基、噻吩基、吡啶基、苝基、9,9-二甲基芴基、菲基、二苯并呋喃基、二苯并噻吩基中的一种;
    所述Ar 1表示为单键、亚苯基、亚萘基、亚联苯基、亚蒽基、亚呋喃基、亚咔唑基、亚萘啶基、亚喹啉基、亚噻吩基、亚吡啶基、亚苝基、亚9,9-二甲基芴基、亚菲基、亚二苯并呋喃基、亚二苯并噻吩基中的一种。
  4. 根据权利要求1所述的有机化合物,其特征在于,其特征在于,所述通式(1)中的
    Figure PCTCN2018110695-appb-100004
    可用通式(2-1)~(2-10)中的任一种表示:
    Figure PCTCN2018110695-appb-100005
    Figure PCTCN2018110695-appb-100006
  5. 根据权利要求1所述的化合物,其特征在于,所述化合物的具体结构为:
    Figure PCTCN2018110695-appb-100007
    Figure PCTCN2018110695-appb-100008
    Figure PCTCN2018110695-appb-100009
    Figure PCTCN2018110695-appb-100010
    Figure PCTCN2018110695-appb-100011
    Figure PCTCN2018110695-appb-100012
    Figure PCTCN2018110695-appb-100013
    Figure PCTCN2018110695-appb-100014
    Figure PCTCN2018110695-appb-100015
    Figure PCTCN2018110695-appb-100016
    Figure PCTCN2018110695-appb-100017
    Figure PCTCN2018110695-appb-100018
    Figure PCTCN2018110695-appb-100019
    Figure PCTCN2018110695-appb-100020
    Figure PCTCN2018110695-appb-100021
    Figure PCTCN2018110695-appb-100022
    中的任一种。
  6. 一种如权利要求1~5任一项所述的化合物的制备方法,其特征在于,制备所述化合物的反应方程式为:
    (1)当Ar 1为单键时,化合物的制备方程式为:
    Figure PCTCN2018110695-appb-100023
    具体的制备方法为:将原料A与中间体B溶解于无水甲苯中,除氧后加入叔丁醇钠和Pd(dppf)Cl 2,在惰性气氛下95~110℃反应10~24个小时,反应过程中用TLC监测反应进程,待原料反应完全后,冷却、过滤,将滤液旋蒸除去溶剂,粗产品过硅胶柱,即可得到目标产物;
    其中,甲苯用量为每克原料A使用30-50ml甲苯,所述原料A与中间体B的摩尔比为1:(1.1~2.5),Pd(dppf)Cl 2与原料A的摩尔比为(0.006~0.02):1,叔丁醇钠与原料A的摩尔比为(1.5~2):1;
    (2)当Ar 1不为单键时,化合物的制备方程式为:
    Figure PCTCN2018110695-appb-100024
    具体制备方法为:以原料A和中间体B为原料,将原料在甲苯溶解,除氧后加入Pd(PPh 3) 4和碳酸钠,在氮气保护下,将上述混合溶液于95~110℃,反应10~24小时,自然冷却至室温,并过滤反应溶液,滤液进行减压旋蒸,过中性硅胶柱,即可得到目标产物;
    其中,甲苯用量为每克原料A使用30-50ml甲苯,所述原料A与中间体B的摩尔比为1:(1.0~1.5);所述Pd(PPh 3) 4与原料A的摩尔比为(0.005~0.01):1,所述碳酸钠与原料A的摩尔比为(1.5~3.0):1。
  7. 一种有机电致发光器件,包括至少一层功能层,其特征在于,所述功能层含有权利要求1~5任一项所述的以吡啶并吲哚为核心的化合物。
  8. 一种有机电致发光器件,包括空穴传输层/电子阻挡层,其特征在于,所述空穴传输层/电子阻挡层由包含权利要求1~5任一项所述的以吡啶并吲哚为核心的化合物的材料制成。
  9. 一种有机电致发光器件,包括发光层,其特征在于,所述发光层包括权利要求1~5任一项所述的以吡啶并吲哚为核心的化合物。
  10. 一种照明或显示元件,其特征在于,包括如权利要求7~9中至少一项所述的有机电致发光器件。
PCT/CN2018/110695 2017-11-16 2018-10-17 一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用 WO2019095920A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711137989.0 2017-11-16
CN201711137989 2017-11-16
CN201810124427.0A CN109802056A (zh) 2017-11-16 2018-02-07 一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用
CN201810124427.0 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019095920A1 true WO2019095920A1 (zh) 2019-05-23

Family

ID=66540064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110695 WO2019095920A1 (zh) 2017-11-16 2018-10-17 一种以吡啶并吲哚为核心的化合物及其在有机电致发光器件上的应用

Country Status (1)

Country Link
WO (1) WO2019095920A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502107B1 (en) * 2017-12-20 2022-01-26 Samsung Display Co., Ltd. 1-aminodibenzofuran-based compound and organic light-emitting device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000640A (ko) * 2012-06-22 2014-01-03 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자
US20140138627A1 (en) * 2012-11-20 2014-05-22 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence
KR20150072644A (ko) * 2013-12-20 2015-06-30 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 이를 포함하는 유기전계발광소자
KR20170057796A (ko) * 2015-11-17 2017-05-25 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
CN106800555A (zh) * 2017-01-19 2017-06-06 江西冠能光电材料有限公司 一种有机半导体主体材料及其有机发光二极管应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000640A (ko) * 2012-06-22 2014-01-03 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자
US20140138627A1 (en) * 2012-11-20 2014-05-22 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence
KR20150072644A (ko) * 2013-12-20 2015-06-30 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 이를 포함하는 유기전계발광소자
KR20170057796A (ko) * 2015-11-17 2017-05-25 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
CN106800555A (zh) * 2017-01-19 2017-06-06 江西冠能光电材料有限公司 一种有机半导体主体材料及其有机发光二极管应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502107B1 (en) * 2017-12-20 2022-01-26 Samsung Display Co., Ltd. 1-aminodibenzofuran-based compound and organic light-emitting device including the same

Similar Documents

Publication Publication Date Title
EP4063368A1 (en) Nitrogen-containing compound and electronic element comprising same, and electronic apparatus
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
KR101421365B1 (ko) 비스카르바졸 유도체, 유기 일렉트로루미네선스 소자용 재료 및 그것을 사용한 유기 일렉트로루미네선스 소자
WO2017215549A1 (zh) 一种有机电致发光化合物及其应用
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
EP2388842A1 (en) Organic electroluminescent element
WO2020135686A1 (zh) 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
WO2019185061A1 (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
CN112876489B (zh) 有机电致发光材料及其器件
CN110835318B (zh) 一种以氮杂芴为核心的有机化合物及其制备方法与应用
EP4123735A1 (en) Organoelectroluminescent device using polycyclic aromatic compounds
KR102618829B1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
CN110835304A (zh) 一种以螺芴烯结构为核心的化合物及其制备方法和其应用
CN109796450B (zh) 一种以吡啶并吲哚为核心的化合物及其在电致发光器件上的应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN109574908B (zh) 一种含螺二甲基蒽芴的化合物及其在有机电致发光器件上的应用
CN110963904A (zh) 一种以酮和芴为核心的化合物、制备方法及其应用
CN110655486A (zh) 一种以二苯并环庚烯为核心的化合物及其应用
CN110642732A (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
WO2019114769A1 (zh) 一种含有吡啶并吲哚的化合物及其在有机电致发光器件上的应用
CN111848589B (zh) 氧杂蒽酮衍生物、其制法、用途及包含其的发光器件
CN110835305B (zh) 一种含二苯并环庚烯的有机化合物及其制备方法和其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879731

Country of ref document: EP

Kind code of ref document: A1