WO2019095909A1 - 化霜方法、化霜系统、计算机可读存储介质和制冷设备 - Google Patents

化霜方法、化霜系统、计算机可读存储介质和制冷设备 Download PDF

Info

Publication number
WO2019095909A1
WO2019095909A1 PCT/CN2018/110186 CN2018110186W WO2019095909A1 WO 2019095909 A1 WO2019095909 A1 WO 2019095909A1 CN 2018110186 W CN2018110186 W CN 2018110186W WO 2019095909 A1 WO2019095909 A1 WO 2019095909A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
compressor
defrosting
temperature
difference
Prior art date
Application number
PCT/CN2018/110186
Other languages
English (en)
French (fr)
Inventor
滕春华
Original Assignee
合肥美的电冰箱有限公司
合肥华凌股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的电冰箱有限公司, 合肥华凌股份有限公司, 美的集团股份有限公司 filed Critical 合肥美的电冰箱有限公司
Publication of WO2019095909A1 publication Critical patent/WO2019095909A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/008Defroster control by timer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate

Definitions

  • the present invention relates to the field of household appliances, and in particular to a defrosting method, a defrosting system, a computer readable storage medium, and a refrigerating apparatus.
  • the defrosting method of the existing refrigeration equipment uses a heater defrosting, and generally uses the total time for judging the cumulative operation of the press, or combines the ambient temperature and humidity, the opening time, etc. to determine the defrosting operation.
  • These kinds of schemes can only estimate the approximate frosting amount, and can only indirectly judge the frosting amount of the evaporator, but the user's usage habits are different, and the type of food put by the user every time the door is opened is unknown, the quantity of food is unknown.
  • the actual moisture content may be completely different, so even if it is the same as the traditional determination condition parameters, the actual frosting amount may be different. That is, the traditional control scheme cannot accurately determine the actual frosting amount of the evaporator, and the main disadvantages are:
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • Another object of the present invention is to provide a defrosting system.
  • the technical solution of the first aspect of the present invention provides a defrosting method for a refrigerating apparatus, comprising: determining a single running time of a compressor in a refrigerating apparatus; according to a single running time and a preset time The size relationship determines the detection time; when the compressor runs to the detection time, the temperature difference between the evaporator temperature of the refrigeration device and the outlet temperature is determined; and whether the defrosation is determined according to the magnitude relationship between the temperature difference and the preset difference.
  • the evaporator evaporates and absorbs heat to provide a cooling amount, and the fan rotates the return air through the evaporator to exchange heat, and then sends out to the indoor compartment of the refrigeration device through the air outlet, if the amount of frost on the evaporator is higher If there is less, the evaporator resistance is small, that is, the wind resistance in the air duct is small.
  • the air flow rate will be larger, and the temperature felt by the air outlet temperature sensor is close to the temperature of the evaporator, so the air outlet temperature and the evaporator
  • the temperature difference is relatively small; as the cooling time is extended or the wet load of the food is increased, the frost on the evaporator will be more and more, and the degree of blockage of the evaporator is increased, the wind resistance of the air duct is increased.
  • the air volume at the air outlet will decrease, and the temperature difference between the evaporator temperature and the air outlet temperature will increase, indicating that the evaporator needs defrosting, that is, when cooling, the actual frosting amount of the evaporator can be judged by the temperature difference between the outlet temperature and the evaporator temperature.
  • the single running time of the compressor in the refrigeration device is determined, that is, the cumulative time from the start time to the time between the stop time and the next start time is determined, and the detection is determined according to the relationship between the single running time and the preset time.
  • the detection timing of detecting the temperature difference between the evaporator temperature of the refrigeration device and the outlet temperature is determined, and then the temperature difference between the evaporator temperature of the refrigeration device and the outlet temperature is determined when the compressor is operated to the detection timing, and finally According to the relationship between the temperature difference and the preset difference, it is determined whether or not the evaporator heating is defrosted.
  • the temperature difference between the evaporator temperature and the air outlet is determined. If the temperature difference is greater than the threshold, the defrosting is started, and the actual knot is achieved. The amount of frost starts the defrosting, which improves the energy saving effect and preservation effect of the refrigeration equipment.
  • the temperature sensor for detecting the temperature of the evaporator is located on the coil of the evaporator.
  • the defrosting can be used to sense the temperature when the evaporator is heated during defrosting to determine when to stop defrosting. Because it is disposed on the coil of the evaporator, the temperature of the evaporator during cooling can be accurately sensed; in addition, the temperature sensor that detects the temperature of the tuyere is located on the windward side of the air outlet of the air duct.
  • determining the detection time according to the magnitude relationship between the single running time and the preset time specifically, if the running time is greater than or equal to the preset time, determining that the detecting time is after the preset time of the compressor operation At the moment, otherwise it is judged whether the operating state of the compressor is a steady state.
  • the operating state of the compressor is a steady state, it is determined that the detecting time is the stopping moment of the first stop after the compressor is in a stable state.
  • the cooling time will be longer, so if the running time is greater than or equal to the preset time, the detection is determined.
  • the moment is the time after the preset time of the compressor operation, and the timing of the compressor temperature and the outlet temperature is determined after the compressor runs to the detection time. At this time, the temperature difference between the evaporator temperature of the refrigeration equipment and the outlet temperature is determined. , reduce the long-term operation of the compressor without downtime, resulting in a lot of frost, not timely to determine whether the need for defrosting, and finally lead to hidden dangers of refrigeration failure.
  • the running time of the compressor is not particularly long.
  • the running time is less than the preset time, it is further judged whether the operating state of the compressor is stable. If it is a steady state, the detection time is after the compressor is in a stable state.
  • the stop time of the first stop that is, the timing of the compressor temperature and the outlet temperature when the compressor is running to the stop time. The temperature difference between the compressor temperature and the outlet temperature is judged after the timing of the determination is reached, thereby judging whether or not defrosting is required, and the energy saving effect of the refrigeration device is improved.
  • determining whether the operating state of the compressor is a steady state comprises: determining at least two start-stop periods of the compressor, and determining respectively, in each start-stop period, the compressor The operating rate is determined; the absolute value of the difference between the operating rates in the adjacent two start-stop periods is determined; when the absolute value of the difference is less than or equal to the difference threshold, the operating state of the compressor is determined to be a stationary state.
  • the cumulative time of the compressor from the start time, the time between the stop time and the next start time is a start-stop period, and the start-up rate of the compressor is determined according to the start-stop period, before calculation.
  • the absolute value of the difference between the operating rate and the current operating rate is less than or equal to the difference threshold, the operating state of the compressor is a steady state.
  • the main control board of the refrigeration device can collect information such as temperature signal, compressor start-up time, and downtime, and can perform data processing and command execution according to a command triggered by the information according to a certain rule.
  • determining whether to defrost according to the magnitude relationship between the temperature difference and the preset difference value comprises: performing defrost if the temperature difference is greater than or equal to the preset difference value.
  • the preset difference value may be a value determined through a large number of experiments, and the temperature difference is greater than or equal to the preset difference value, that is, the evaporator is excessively frosted, and the defrosting needs to be performed.
  • the evaporator temperature is determined during the execution of the defrosting; and the defrosting is exited when the evaporator temperature is greater than or equal to the preset defrosting temperature.
  • the evaporator temperature is greater than or equal to the preset defrosting temperature, it indicates that the frosting of the evaporator has been cleared, and the air outlet of the air outlet is large, and the defrosting is timely exited, and the evaporator is reduced.
  • the increase affects the cooling effect of the compartment of the refrigeration unit.
  • the preset difference value may be a value determined through a large number of experiments.
  • the technical solution of the second aspect of the present invention provides a defrosting system for a refrigerating apparatus, comprising: a time determining unit for determining a single running time of a compressor in the refrigerating device; and a detecting unit for performing a single time The relationship between the running time and the preset time determines the detection time; the temperature difference determining unit is configured to determine a temperature difference between the evaporator temperature of the refrigeration device and the outlet temperature when the compressor runs to the detection time; the determining unit is configured to The relationship between the temperature difference and the preset difference determines whether or not to defrost.
  • the evaporator evaporates and absorbs heat to provide a cooling amount, and the fan rotates the return air through the evaporator to exchange heat, and then sends out to the indoor compartment of the refrigeration device through the air outlet, if the amount of frost on the evaporator is higher If there is less, the evaporator resistance is small, that is, the wind resistance in the air duct is small.
  • the air flow rate will be larger, and the temperature felt by the air outlet temperature sensor is close to the temperature of the evaporator, so the air outlet temperature and the evaporator
  • the temperature difference is relatively small; as the cooling time is extended or the wet load of the food is increased, the frost on the evaporator will be more and more, and the degree of blockage of the evaporator is increased, the wind resistance of the air duct is increased.
  • the air volume at the air outlet will decrease, and the temperature difference between the evaporator temperature and the air outlet temperature will increase, indicating that the evaporator needs defrosting, that is, when cooling, the actual frosting amount of the evaporator can be judged by the temperature difference between the outlet temperature and the evaporator temperature.
  • the single running time of the compressor in the refrigeration device is determined, that is, the cumulative time from the start time to the stop time is determined, and the detection time is determined according to the relationship between the single running time and the preset time, that is, the detection is determined.
  • the timing of detecting the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet, and then determining the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet when the compressor is running to the detection time, and finally according to the temperature difference and the preset The magnitude relationship of the differences determines whether the evaporator is heated for defrosting.
  • the temperature difference between the evaporator temperature and the air outlet is determined. If the temperature difference is greater than the threshold, the defrosting is started, and the actual knot is achieved. The amount of frost starts the defrosting, which improves the energy saving effect and preservation effect of the refrigeration equipment.
  • the temperature sensor for detecting the temperature of the evaporator is located on the coil of the evaporator.
  • the defrosting can be used to sense the temperature when the evaporator is heated during defrosting to determine when to stop defrosting. Because it is disposed on the coil of the evaporator, the temperature of the evaporator during cooling can be accurately sensed; in addition, the temperature sensor that detects the temperature of the tuyere is located on the windward side of the air outlet of the air duct.
  • the detecting unit specifically includes: a first subunit, configured to determine, when the running time is greater than or equal to the preset time, a time after the preset time is the compressor running time; the second sub The unit is used to determine whether the running state of the compressor is a steady state when the running time is less than the preset time.
  • the detecting time is determined to be the stopping moment of the first stop after the compressor is in a stable state.
  • the cooling time will be longer, so if the running time is greater than or equal to the preset time, the detection is determined.
  • the moment is the time after the preset time of the compressor operation, and the timing of the compressor temperature and the outlet temperature is determined after the compressor runs to the detection time. At this time, the temperature difference between the evaporator temperature of the refrigeration equipment and the outlet temperature is determined. , reduce the long-term operation of the compressor without downtime, resulting in a lot of frost, not timely to determine whether the need for defrosting, and finally lead to hidden dangers of refrigeration failure.
  • the running time of the compressor is not particularly long.
  • the running time is less than the preset time, it is further judged whether the operating state of the compressor is stable. If it is a steady state, the detection time is after the compressor is in a stable state.
  • the stop time of the first stop that is, the timing of the compressor temperature and the outlet temperature when the compressor is running to the stop time. The temperature difference between the compressor temperature and the outlet temperature is judged after the timing of the determination is reached, thereby judging whether or not defrosting is required, and the energy saving effect of the refrigeration device is improved.
  • the second subunit specifically comprising: an operating rate determining unit, configured to determine at least two start-stop periods of the compressor, and respectively determine that the compressor is turned on during each start-stop period. Rate; a calculation unit for determining an absolute value of a difference in the operating rate between two adjacent start-stop periods; a smooth running unit for determining the compressor when the absolute value of the difference is less than or equal to the difference threshold The running state is steady.
  • the cumulative time of the compressor from the start time, the time between the stop time and the next start time is a start-stop period, and the start-up rate of the compressor is determined according to the start-stop period, before calculation.
  • the absolute value of the difference between the operating rate and the current operating rate is less than or equal to the difference threshold, the operating state of the compressor is a steady state.
  • the main control board of the refrigeration device can collect information such as temperature signal, compressor start-up time, and downtime, and can perform data processing and command execution according to a command triggered by the information according to a certain rule.
  • the determining unit is specifically configured to perform defrosting when the temperature difference is greater than or equal to the preset difference.
  • the preset difference value may be a value determined through a large number of experiments, and the temperature difference is greater than or equal to the preset difference value, that is, the evaporator is excessively frosted, and the defrosting needs to be performed.
  • the defrosting system further includes: a temperature determining unit configured to determine an evaporator temperature during the execution of the defrosting; and a defrosting exit unit for the evaporator temperature being greater than or equal to When setting the defrosting temperature, exit the defrosting.
  • the evaporator temperature is greater than or equal to the preset defrosting temperature, it indicates that the frosting of the evaporator has been cleared, and the air outlet of the air outlet is large, and the defrosting is timely exited, and the evaporator is reduced.
  • the increase affects the cooling effect of the compartment of the refrigeration unit.
  • the preset difference value may be a value determined through a large number of experiments.
  • the technical solution of the third aspect of the present invention provides a computer readable storage medium having stored thereon a computer program, which when executed by a processor, implements any of the technical solutions proposed by the first aspect of the present invention Frost method.
  • a computer readable storage medium having stored thereon a computer program executed by a processor to implement the steps of the defrosting method according to any one of the aspects of the first aspect of the present invention, thus having All the advantageous effects of the defrosting method according to any one of the above aspects of the first aspect of the present invention.
  • the technical solution of the fourth aspect of the present invention provides a refrigeration apparatus comprising the defrosting system according to any one of the technical solutions of the second aspect of the present invention.
  • the refrigeration device includes the defrosting system according to any one of the technical solutions of the second aspect of the present invention, which realizes the defrosting according to the actual frosting amount, thereby improving the energy saving effect and the fresh-keeping effect of the refrigeration device. .
  • Embodiment 1 is a flow chart showing the defrosting method of Embodiment 1;
  • FIG. 2 is a schematic flow chart showing a defrosting method of Embodiment 2;
  • Figure 3 is a block diagram showing the structure of the defrosting system of Embodiment 3;
  • Figure 4 is a block diagram showing the structure of the defrosting system of Embodiment 4.
  • Figure 5 is a block diagram showing the structure of the defrosting system of Embodiment 5;
  • Figure 6 is a block diagram showing the structure of the defrosting system of Embodiment 6;
  • Fig. 7 is a view showing the power-time curve of the refrigeration apparatus of the present invention during operation.
  • FIG. 1 is a flow chart showing the defrosting method of Embodiment 1.
  • a defrosting method is used for a refrigerating apparatus, comprising: step S102, determining a single running time of a compressor in a refrigerating apparatus; and step S104, according to a single running time and a preset The magnitude relationship of the time determines the detection time; in step S106, when the compressor runs to the detection time, the temperature difference between the evaporator temperature of the refrigeration device and the outlet temperature is determined; and in step S108, the relationship between the temperature difference and the preset difference is determined. Whether to defrosting.
  • the evaporator evaporates and absorbs heat to provide cooling capacity.
  • the return air passes through the evaporator for heat exchange, and is sent out to the compartment of the refrigeration equipment through the air outlet. If the frost on the evaporator is less, the evaporator resistance Smaller, that is, the wind resistance in the air duct is small.
  • the air flow rate will be larger, and the temperature felt by the air outlet temperature sensor is close to the temperature of the evaporator, so the temperature difference between the air outlet temperature and the evaporator temperature is relatively small;
  • the frost on the evaporator will increase more and more, and the degree of blockage of the evaporator will increase, the wind resistance of the air duct will increase, and the air volume at the air outlet will decrease.
  • the temperature difference between the evaporator temperature and the outlet temperature increases, indicating that the evaporator needs defrosting, that is, when cooling, the actual frosting of the evaporator can be judged by the temperature difference between the outlet temperature and the evaporator temperature.
  • the single running time of the compressor in the refrigeration device is determined, that is, the cumulative time from the start time to the time between the stop times is determined, and the detection time is determined according to the relationship between the single running time and the preset time, that is, the detection is determined.
  • the timing of detecting the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet, and then determining the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet when the compressor is running to the detection time, and finally according to the temperature difference and the preset The magnitude relationship of the differences determines whether the evaporator is heated for defrosting.
  • the temperature difference between the evaporator temperature and the air outlet is determined. If the temperature difference is greater than the threshold, the defrosting is started, and the actual knot is achieved. The amount of frost starts the defrosting, which improves the energy saving effect and preservation effect of the refrigeration equipment.
  • the temperature sensor for detecting the temperature of the evaporator is located on the coil of the evaporator, and on the one hand, the defrosting can be used to sense the temperature when the evaporator is heated during defrosting to determine when to stop defrosting. Because it is disposed on the coil of the evaporator, the temperature of the evaporator during cooling can be accurately sensed; in addition, the temperature sensor that detects the temperature of the tuyere is located on the windward side of the air outlet of the air duct.
  • Embodiment 2 is a flow chart showing the defrosting method of Embodiment 2.
  • a defrosting method is used for a refrigerating apparatus, comprising: step S202, determining a single running time of a compressor in a refrigerating apparatus; and step S204, determining whether a single running time is greater than or If the determination result is YES, step S206 is executed to determine that the detection time is the time after the preset time of the compressor operation; if the determination result is no, step S208 is performed to determine whether the operation state of the compressor is stable.
  • step S210 is executed to determine that the detection time is the time after the preset time of the compressor operation; if the determination result is no, return to step S204; after determining the detection time, perform step S212, at the compressor
  • the time is up to the detection time, the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet is determined; in step S214, whether the defrosting is determined according to the magnitude relationship between the temperature difference and the preset difference; and step S216, in the process of performing the defrosting Determining the evaporator temperature; and in step S218, the defrosting is exited when the evaporator temperature is greater than or equal to the preset defrosting temperature.
  • the running time is greater than or equal to the preset time, it is determined that the detection time is the compressor operation.
  • the compressor is operated to the detection time, which is the timing for judging the compressor temperature and the outlet temperature. At this time, the temperature difference between the evaporator temperature of the refrigeration equipment and the outlet temperature is determined, and the compressor is reduced. There is no downtime for long-term operation, which leads to a lot of frosting, and it is not timely to determine whether defrosting is needed, and finally the hidden trouble of cooling failure.
  • the running time of the compressor is not particularly long.
  • the running time is less than the preset time, it is further judged whether the operating state of the compressor is stable. If it is a steady state, the detection time is after the compressor is in a stable state.
  • the stop time of the first stop that is, the timing of the compressor temperature and the outlet temperature when the compressor is running to the stop time. The temperature difference between the compressor temperature and the outlet temperature is judged after the timing of the determination is reached, thereby judging whether or not defrosting is required, and the energy saving effect of the refrigeration device is improved.
  • the method for judging whether the operating state of the compressor is in a steady state is as follows: the cumulative time of the compressor from the start time, the time between the stop time and the next start time is a start-stop period, determined according to the start-stop period.
  • the operating rate of the compressor and the calculation method of the operating rate are shown in Figure 7.
  • the cumulative starting time of the compressor, Ton1, the cumulative single stop time of the compressor, Toff1, and the calculation of the operating rate K 1 (Ton1/(Ton1+) Toff1));
  • the single compressor start-up cumulative time Ton2, the compressor single stop accumulation time Toff2, calculate the operating rate K 2 (Ton2 / (Ton2 + Toff2)), calculate the difference between K 1 and K 2 Absolute value:
  • the detection time is the first time after the compressor is in a stationary state.
  • the stop time of the shutdown as shown in Figure 7, the start-up period of t1 is K 1 , the start-up period of t2 is K 2 , if
  • the main control board of the refrigeration device can collect information such as temperature signal, compressor start-up time, and downtime, and can perform data processing and command execution according to a command triggered by the information according to a certain rule.
  • Determining whether to defoase according to the relationship between the temperature difference and the preset difference value includes: performing defrosting if the temperature difference is greater than or equal to the preset difference value.
  • the preset difference value may be a value determined through a large number of experiments, and the temperature difference is greater than or equal to the preset difference value, that is, the evaporator is excessively frosted, and defrosting needs to be performed.
  • the preset difference value may be a value determined through a large number of experiments.
  • the evaporator temperature is greater than or equal to the preset defrosting temperature, it indicates that the frosting of the evaporator has been cleared, and the air outlet of the air outlet is large. At this time, the defrosting is timely exited, and the refrigeration equipment is reduced due to the rise of the evaporator. The effect of weakening the intercooling effect of the compartment.
  • Fig. 3 is a block diagram showing the structure of the defrosting system of Embodiment 3.
  • a defrosting system 300 for a refrigeration device, includes:
  • a time determining unit 302 configured to determine a single running time of the compressor in the refrigeration device
  • the detecting unit 304 is configured to determine a detection time according to a size relationship between the single running time and the preset time;
  • a temperature difference determining unit 306 configured to determine a temperature difference between an evaporator temperature of the refrigeration device and an outlet temperature when the compressor is operated to the detection time;
  • the determining unit 308 is configured to determine whether to defoase according to the magnitude relationship between the temperature difference and the preset difference, and specifically, to perform defrosting when the temperature difference is greater than or equal to the preset difference.
  • the evaporator evaporates and absorbs heat to provide cooling capacity.
  • the return air passes through the evaporator for heat exchange, and is sent out to the compartment of the refrigeration equipment through the air outlet. If the frost on the evaporator is less, the evaporator resistance Smaller, that is, the wind resistance in the air duct is small.
  • the air flow rate will be larger, and the temperature felt by the air outlet temperature sensor is close to the temperature of the evaporator, so the temperature difference between the air outlet temperature and the evaporator temperature is relatively small;
  • the frost on the evaporator will increase more and more, and the degree of blockage of the evaporator will increase, the wind resistance of the air duct will increase, and the air volume at the air outlet will decrease.
  • the temperature difference between the evaporator temperature and the outlet temperature increases, indicating that the evaporator needs defrosting, that is, when cooling, the actual frosting of the evaporator can be judged by the temperature difference between the outlet temperature and the evaporator temperature.
  • the single running time of the compressor in the refrigeration device is determined, that is, the cumulative time from the start time to the time between the stop times is determined, and the detection time is determined according to the relationship between the single running time and the preset time, that is, the detection is determined.
  • the timing of detecting the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet, and then determining the temperature difference between the evaporator temperature of the refrigeration device and the temperature of the air outlet when the compressor is running to the detection time, and finally according to the temperature difference and the preset The magnitude relationship of the differences determines whether the evaporator is heated for defrosting.
  • the temperature difference between the evaporator temperature and the air outlet is determined. If the temperature difference is greater than the threshold, the defrosting is started, and the actual knot is achieved. The amount of frost starts the defrosting, which improves the energy saving effect and preservation effect of the refrigeration equipment.
  • the temperature sensor for detecting the temperature of the evaporator is located on the coil of the evaporator.
  • the defrosting can be used to sense the temperature when the evaporator is heated during defrosting to determine when to stop defrosting. Because it is disposed on the coil of the evaporator, the temperature of the evaporator during cooling can be accurately sensed; in addition, the temperature sensor that detects the temperature of the tuyere is located on the windward side of the air outlet of the air duct.
  • Fig. 4 is a block diagram showing the structure of the defrosting system of the embodiment 4.
  • a defrosting system 400 is used for a refrigerating apparatus, including: a time determining unit 402 for determining a single running time of a compressor in a refrigerating apparatus;
  • the detecting unit 404 is configured to determine the detection time according to the relationship between the single running time and the preset time; specifically:
  • the first subunit 4042 is configured to determine, when the running time is greater than or equal to the preset time, a time after the preset time is the compressor running time;
  • the second sub-unit 4044 is configured to determine whether the operating state of the compressor is a steady state when the running time is less than the preset time, and determine that the detecting time is the first stop after the compressor is in a stable state when the operating state of the compressor is a steady state.
  • a temperature difference determining unit 406 configured to determine a temperature difference between an evaporator temperature of the refrigeration device and an outlet temperature when the compressor is operated to the detection time;
  • the determining unit 408 is configured to determine whether to defrost according to the magnitude relationship between the temperature difference and the preset difference value.
  • the running time is greater than or equal to the preset time, it is determined that the detection time is the compressor operation.
  • the compressor operation detection time is the timing for judging the compressor temperature and the outlet temperature. At this time, the temperature difference between the evaporator temperature of the refrigeration equipment and the outlet temperature is determined, and the length of the compressor is reduced. There is no downtime in the running of the time, which leads to a lot of frosting, and it is not timely to determine whether defrosting is needed, and finally the hidden trouble of cooling failure.
  • the running time of the compressor is not particularly long.
  • the running time is less than the preset time, it is further judged whether the operating state of the compressor is stable. If it is a steady state, the detection time is after the compressor is in a stable state.
  • the stop time of the first stop that is, the timing of the compressor temperature and the outlet temperature when the compressor is running to the stop time. The temperature difference between the compressor temperature and the outlet temperature is judged after the timing of the determination is reached, thereby judging whether or not defrosting is required, and the energy saving effect of the refrigeration device is improved.
  • Fig. 5 is a block diagram showing the structure of the defrosting system of the embodiment 5.
  • a defrosting system 500 is used for a refrigerating apparatus, comprising: a time determining unit 502 for determining a single running time of a compressor in a refrigerating apparatus;
  • the detecting unit 504 is configured to determine the detection time according to the relationship between the single running time and the preset time; specifically:
  • the first sub-unit 5042 is configured to determine, when the running time is greater than or equal to the preset time, a time after the preset time is the compressor running time;
  • the second subunit 5044 is configured to determine whether the operating state of the compressor is a steady state when the running time is less than the preset time, and determine that the detecting time is the first stop after the compressor is in a stable state when the running state of the compressor is a steady state.
  • Downtime specifically:
  • the operating rate determining unit 5046 is configured to determine at least two start-stop periods of the compressor, and determine the operating rate of the compressor during each start-stop period;
  • the calculating unit 5048 is configured to determine an absolute value of the difference between the operating rates in the two adjacent start and stop periods;
  • the smooth running unit 5050 is configured to determine that the operating state of the compressor is a steady state when the absolute value of the difference is less than or equal to the difference threshold.
  • a temperature difference determining unit 506 configured to determine a temperature difference between an evaporator temperature of the refrigeration device and an outlet temperature when the compressor is operated to the detection time;
  • the determining unit 508 is configured to determine whether to defrost according to the magnitude relationship between the temperature difference and the preset difference value.
  • the cumulative time of the compressor from the start-up time, the time between the stop time and the next start-up time is a start-stop period
  • the compressor start-up rate is determined according to the start-stop period
  • the previous start-up rate and the present are calculated.
  • the absolute value of the difference of the secondary operating rate when the absolute value of the difference is less than or equal to the difference threshold, the operating state of the compressor is a steady state.
  • the main control board of the refrigeration device can collect information such as temperature signal, compressor start-up time, and downtime, and can perform data processing and command execution according to a command triggered by the information according to a certain rule.
  • Fig. 6 is a block diagram showing the structure of the defrosting system of the embodiment 6.
  • a defrosting system 600 is used for a refrigerating apparatus, including: a time determining unit 602, configured to determine a single running time of a compressor in a refrigerating apparatus;
  • the detecting unit 604 is configured to determine the detection time according to the relationship between the single running time and the preset time; specifically:
  • the first subunit 6042 is configured to determine, when the running time is greater than or equal to the preset time, a time after the preset time is the compressor running time;
  • the second sub-unit 6044 is configured to determine whether the operating state of the compressor is a steady state when the running time is less than the preset time, and determine that the detecting time is the first stop after the compressor is in a stable state when the operating state of the compressor is a steady state.
  • Downtime specifically:
  • the operating rate determining unit 6046 is configured to determine at least two start-stop periods of the compressor, and determine the operating rate of the compressor during each start-stop period;
  • the calculating unit 6048 is configured to determine an absolute value of the difference between the operating rates in the two adjacent start and stop periods;
  • the smooth running unit 6050 is configured to determine that the operating state of the compressor is a steady state when the absolute value of the difference is less than or equal to the difference threshold.
  • a temperature difference determining unit 606 configured to determine a temperature difference between an evaporator temperature of the refrigeration device and an outlet temperature when the compressor is operated to the detection time;
  • the determining unit 608 is configured to determine whether to defrost according to the magnitude relationship between the temperature difference and the preset difference value.
  • a temperature determining unit 610 configured to determine an evaporator temperature during the process of performing defrosting
  • the defrosting exit unit 612 is configured to exit the defrosting when the evaporator temperature is greater than or equal to the preset defrosting temperature.
  • the evaporator temperature is greater than or equal to the preset defrosting temperature, it indicates that the frosting of the evaporator has been cleared, and the air outlet of the air outlet is large. At this time, the defrosting is timely exited, and the refrigeration equipment is reduced due to the rise of the evaporator. The effect of weakening the intercooling effect of the compartment.
  • a computer readable storage medium according to an embodiment of the present invention, wherein a computer program is stored thereon, and when the computer program is executed by the processor, the defrosting method according to any one of the embodiments of the present invention described above is implemented.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the defrosting method of any of the above-described embodiments of the present invention, and thus has the above-described present invention
  • a refrigeration apparatus includes the defrosting system of any of the above-described embodiments of the present invention.
  • the refrigerating apparatus includes the defrosting system according to any one of the embodiments of the present invention described above, and realizes defrosting according to the actual amount of frosting, thereby improving the energy saving effect and the fresh-keeping effect of the refrigerating apparatus.
  • the present invention provides a defrosting method, a defrosting system, a computer readable storage medium, and a refrigerating device, which are determined by determining the evaporator temperature of the refrigerating device and the temperature of the air outlet.
  • the temperature difference is determined according to the relationship between the temperature difference and the preset difference value, and the defrosting is realized according to the actual frosting amount, thereby improving the energy saving effect and the fresh-keeping effect of the refrigeration device.
  • the units in the apparatus of the present invention can be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Abstract

一种化霜方法、化霜系统(300,400,500,600)、计算机可读存储介质和制冷设备。化霜方法用于制冷设备,包括:确定制冷设备中压缩机的单次运行时间(S102);根据单次运行时间与预设时间的大小关系确定检测时刻(S104);在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差(S106);根据温差与预设差值的大小关系确定是否化霜(S108),从而实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。

Description

化霜方法、化霜系统、计算机可读存储介质和制冷设备
本申请要求2017年11月17日在中国国家知识产权局提交的申请号为201711142994.0、发明名称为“化霜方法、化霜系统、计算机可读存储介质和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及家用电器技术领域,具体而言,涉及一种化霜方法、化霜系统、计算机可读存储介质和制冷设备。
背景技术
目前,现有制冷设备,例如风冷冰箱的化霜方式采用加热器化霜,通常采用判断压机累积多次运行的总时间,或者结合环境温湿度、开门时间等来判断启动化霜工作,这几种方案只能预估大致的结霜量,并且只能间接判断蒸发器的结霜量,但由于用户使用习惯各不相同、且用户每次开门放入的食物种类未知、食物数量未知、实际的含湿量可能完全不同,因此即使与传统的判定条件参数均相同实际结霜量也可能不同,即传统控制方案不能准确判断蒸发器的实际结霜量,带来的主要缺点是:
1.可能会提前化霜。如实际结霜量不大(如用户开门时间长,但由于开门并未放入食物,所以实际结霜量可能并不多),但却判断到了化霜条件启动化霜,进而带来耗电量的增加;同时由于化霜加热会使冰箱内的温度回升,因此箱内食物温度会受热回升、保鲜效果也随之减弱。
2.可能会滞后化霜。如实际结霜量很大(如用户开门时间较短,但放入了太多的含湿量较大的食物,实际结霜量会很多),但却判断未到化霜条件,还在等更多的开门时间、运行时间或者其他条件,这样由于结霜量增大、蒸发器风阻增大会导致出风量减小、制冷效果减弱,进而增加了冰 箱耗能,保鲜效果变差。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的一个目的在于提供一种化霜方法。
本发明的另一个目的在于提供一种化霜系统。
本发明的再一个目的在于提供一种计算机可读存储介质。
本发明的又一个目的在于提供一种制冷设备。
为了实现上述目的,本发明的第一方面的技术方案提供了一种化霜方法,用于制冷设备,包括:确定制冷设备中压缩机的单次运行时间;根据单次运行时间与预设时间的大小关系确定检测时刻;在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;根据温差与预设差值的大小关系确定是否化霜。
在该技术方案中,制冷过程中,蒸发器蒸发吸热提供冷量,风机转动将回风经蒸发器换热后,经出风口送出到制冷设备的间室内,如果蒸发器上结霜量较少,则蒸发器阻力较小,即风道内风阻力较小,此条件下,出风量就会较大,出风口温度传感器感受的温度则接近于蒸发器的温度,因此出风口温度与蒸发器温度温差相对较小;随着制冷时间的延长或者放入食物湿负荷的增加,蒸发器上的霜会越来越多,蒸发器被堵塞的程度加重,则风道风阻力增大,此时出风口的风量将减小,则蒸发器温度和出风口温度温差增大,表明蒸发器需要化霜,即制冷时,通过出风口温度和蒸发器温度的温差可以判断蒸发器实际结霜量。
首先确定制冷设备中压缩机的单次运行时间,即确定从开机时刻开始,经停机时刻直至下次开机时刻之间的时间的累计时长,根据单次运行时间与预设时间的大小关系确定检测时刻,即确定检测制冷设备的蒸发器温度与出风口温度之间的温差的检测时机,然后在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差,最后根据温差与预设差值的大小关系,确定是否对蒸发器加热进行化霜。制冷设备运行后,通过确定蒸发器温度和出风口温差的时机,到达判断温差的时机后,判断 蒸发器温度和出风口的温差,若温差大于阈值后,则启动化霜,实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
需要说明的是,检测蒸发器温度的温度传感器位于蒸发器的盘管上,一方面化霜时可以用来感知化霜时蒸发器被加热时的温度以确定何时停止化霜,另一方面,由于其设置在蒸发器的盘管上,可以准确感知制冷时蒸发器的温度;此外,检测出风口温度的温度传感器位于风道的出风口迎风侧。
在上述技术方案中,优选地,根据单次运行时间与预设时间的大小关系确定检测时刻,具体包括:若运行时间大于或等于预设时间,则确定检测时刻为压缩机运行预设时间后的时刻,否则判断压缩机的运行状态是否为平稳状态,在压缩机的运行状态为平稳状态时,确定检测时刻为压缩机处于平稳状态后首次停机的停机时刻。
在该技术方案中,若制冷设备首次上电使用,或者用户一次性放入比较多的食物到制冷设备中,制冷的时间会比较长,因此若运行时间大于或等于预设时间,则确定检测时刻即为压缩机运行预设时间后的时刻,压缩机运行至检测时刻后即为判断压缩机温度与出风口温度的时机,此时确定制冷设备的蒸发器温度与出风口温度之间的温差,减小因压缩机长时间运行没有停机,导致结霜很多,而不及时判定是否需要化霜,最后导致制冷失效的隐患。制冷设备常规运行时,压缩机的运行时间不是特别长,若运行时间小于预设时间,则进一步判断压缩机的运行状态是否为平稳状态,如果是平稳状态,检测时刻为压缩机处于平稳状态后首次停机的停机时刻,即压缩机运行至停机时刻时,为判断压缩机温度与出风口温度的时机。在到达判定时机后才判断压缩机温度与出风口温度的温差,从而判断是否需要化霜,提升了制冷设备的节能效果。
在上述任一项技术方案中,优选地,判断压缩机的运行状态是否为平稳状态,具体包括:确定压缩机的至少两个启停周期,并分别确定在每个启停周期内,压缩机的开机率;确定在相邻两个启停周期内开机率的差值的绝对值;在差值的绝对值小于或等于差值阈值时,确定压缩机的运行状态为平稳状态。
在该技术方案中,压缩机单次的从开机时刻开始,经停机时刻直至下次开机时刻之间的时间的累计时长为一个启停周期,根据启停周期确定压缩机的开机率,计算前一次的开机率和本次开机率的差值的绝对值,当差值的绝对值小于或等于差值阈值时,压缩机的运行状态即为平稳状态。
需要说明的是,制冷设备的主控板,可以采集温度信号、压缩机开机时间、停机时间等信息,并可以按照一定的规则根据信息触发的命令进行数据处理和命令执行。
在上述任一项技术方案中,优选地,根据温差与预设差值的大小关系确定是否化霜,具体包括:若温差大于或等于预设差值,则执行化霜。
在该技术方案中,预设差值可以是经由大量实验而确定的数值,温差大于或等于预设差值,即表明蒸发器结霜过多,需要执行化霜。
在上述任一项技术方案中,优选地,在执行化霜的过程中,确定蒸发器温度;在蒸发器温度大于或等于预设化霜温度时,退出化霜。
在该技术方案中,当蒸发器温度大于或等于预设化霜温度时,表明蒸发器的结霜已清除完毕,出风口的出风量较大,此时及时退出化霜,减小因蒸发器升高使制冷设备的间室制冷效果减弱的影响。
需要说明的是,预设差值可以是经由大量实验而确定的数值。
本发明的第二方面的技术方案提出了一种化霜系统,用于制冷设备,包括:时间确定单元,用于确定制冷设备中压缩机的单次运行时间;检测单元,用于根据单次运行时间与预设时间的大小关系确定检测时刻;温差确定单元,用于在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;判断单元,用于根据温差与预设差值的大小关系确定是否化霜。
在该技术方案中,制冷过程中,蒸发器蒸发吸热提供冷量,风机转动将回风经蒸发器换热后,经出风口送出到制冷设备的间室内,如果蒸发器上结霜量较少,则蒸发器阻力较小,即风道内风阻力较小,此条件下,出风量就会较大,出风口温度传感器感受的温度则接近于蒸发器的温度,因此出风口温度与蒸发器温度温差相对较小;随着制冷时间的延长或者放入食物湿负荷的增加,蒸发器上的霜会越来越多,蒸发器被堵塞的程度加重, 则风道风阻力增大,此时出风口的风量将减小,则蒸发器温度和出风口温度温差增大,表明蒸发器需要化霜,即制冷时,通过出风口温度和蒸发器温度的温差可以判断蒸发器实际结霜量。
首先确定制冷设备中压缩机的单次运行时间,即确定从开机时刻开始,到停机时刻之间的时间的累计时长,根据单次运行时间与预设时间的大小关系确定检测时刻,即确定检测制冷设备的蒸发器温度与出风口温度之间的温差的检测时机,然后在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差,最后根据温差与预设差值的大小关系,确定是否对蒸发器加热进行化霜。制冷设备运行后,通过确定蒸发器温度和出风口温差的时机,到达判断温差的时机后,判断蒸发器温度和出风口的温差,若温差大于阈值后,则启动化霜,实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
需要说明的是,检测蒸发器温度的温度传感器位于蒸发器的盘管上,一方面化霜时可以用来感知化霜时蒸发器被加热时的温度以确定何时停止化霜,另一方面,由于其设置在蒸发器的盘管上,可以准确感知制冷时蒸发器的温度;此外,检测出风口温度的温度传感器位于风道的出风口迎风侧。
在上述技术方案中,优选地,检测单元,具体包括:第一子单元,用于在运行时间大于或等于预设时间时,确定检测时刻为压缩机运行预设时间后的时刻;第二子单元,用于运行时间小于预设时间时,判断压缩机的运行状态是否为平稳状态,在压缩机的运行状态为平稳状态时,确定检测时刻为压缩机处于平稳状态后首次停机的停机时刻。
在该技术方案中,若制冷设备首次上电使用,或者用户一次性放入比较多的食物到制冷设备中,制冷的时间会比较长,因此若运行时间大于或等于预设时间,则确定检测时刻即为压缩机运行预设时间后的时刻,压缩机运行至检测时刻后即为判断压缩机温度与出风口温度的时机,此时确定制冷设备的蒸发器温度与出风口温度之间的温差,减小因压缩机长时间运行没有停机,导致结霜很多,而不及时判定是否需要化霜,最后导致制冷失效的隐患。制冷设备常规运行时,压缩机的运行时间不是特别长,若运 行时间小于预设时间,则进一步判断压缩机的运行状态是否为平稳状态,如果是平稳状态,检测时刻为压缩机处于平稳状态后首次停机的停机时刻,即压缩机运行至停机时刻时,为判断压缩机温度与出风口温度的时机。在到达判定时机后才判断压缩机温度与出风口温度的温差,从而判断是否需要化霜,提升了制冷设备的节能效果。
在上述技术方案中,优选地,第二子单元,具体包括:开机率确定单元,用于确定压缩机的至少两个启停周期,并分别确定在每个启停周期内,压缩机的开机率;计算单元,用于确定在相邻两个启停周期内开机率的差值的绝对值;平稳运行单元,用于在差值的绝对值小于或等于差值阈值时,确定压缩机的运行状态为平稳状态。
在该技术方案中,压缩机单次的从开机时刻开始,经停机时刻直至下次开机时刻之间的时间的累计时长为一个启停周期,根据启停周期确定压缩机的开机率,计算前一次的开机率和本次开机率的差值的绝对值,当差值的绝对值小于或等于差值阈值时,压缩机的运行状态即为平稳状态。
需要说明的是,制冷设备的主控板,可以采集温度信号、压缩机开机时间、停机时间等信息,并可以按照一定的规则根据信息触发的命令进行数据处理和命令执行。
在上述技术方案中,优选地,判断单元,具体用于在温差大于或等于预设差值时,执行化霜。
在该技术方案中,预设差值可以是经由大量实验而确定的数值,温差大于或等于预设差值,即表明蒸发器结霜过多,需要执行化霜。
在上述技术方案中,优选地,化霜系统,还包括:温度确定单元,用于在执行化霜的过程中,确定蒸发器温度;化霜退出单元,用于在蒸发器温度大于或等于预设化霜温度时,退出化霜。
在该技术方案中,当蒸发器温度大于或等于预设化霜温度时,表明蒸发器的结霜已清除完毕,出风口的出风量较大,此时及时退出化霜,减小因蒸发器升高使制冷设备的间室制冷效果减弱的影响。
需要说明的是,预设差值可以是经由大量实验而确定的数值。
本发明的第三方面的技术方案提出了一种计算机可读存储介质,其上 存储有计算机程序,计算机程序被处理器执行时实现本发明的第一方面的技术方案提出的任一项的化霜方法。
在该技术方案中,计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本发明的第一方面的技术方案提出的任一项的化霜方法的步骤,因此具有上述本发明的第一方面的技术方案提出的任一项的化霜方法的全部有益效果。
本发明的第四方面的技术方案提出了一种制冷设备,包括本发明的第二方面的技术方案提出的任一项的化霜系统。
在该技术方案中,制冷设备包括本发明的第二方面的技术方案提出的任一项的化霜系统,实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
本发明的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了实施例1的化霜方法的流程示意图;
图2示出了实施例2的化霜方法的流程示意图;
图3示出了实施例3的化霜系统的结构示意框图;
图4示出了实施例4的化霜系统的结构示意框图;
图5示出了实施例5的化霜系统的结构示意框图;
图6示出了实施例6的化霜系统的结构示意框图;
图7示出了本发明中制冷设备在运行过程中的功率-时间曲线示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
实施例1:
图1示出了实施例1的化霜方法的流程示意图。
如图1所示,根据本发明的实施例的化霜方法,用于制冷设备,包括:步骤S102,确定制冷设备中压缩机的单次运行时间;步骤S104,根据单次运行时间与预设时间的大小关系确定检测时刻;步骤S106,在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;步骤S108,根据温差与预设差值的大小关系确定是否化霜。
制冷过程中,蒸发器蒸发吸热提供冷量,风机转动将回风经蒸发器换热后,经出风口送出到制冷设备的间室内,如果蒸发器上结霜量较少,则蒸发器阻力较小,即风道内风阻力较小,此条件下,出风量就会较大,出风口温度传感器感受的温度则接近于蒸发器的温度,因此出风口温度与蒸发器温度温差相对较小;随着制冷时间的延长或者放入食物湿负荷的增加,蒸发器上的霜会越来越多,蒸发器被堵塞的程度加重,则风道风阻力增大,此时出风口的风量将减小,则蒸发器温度和出风口温度温差增大,表明蒸发器需要化霜,即制冷时,通过出风口温度和蒸发器温度的温差可以判断蒸发器实际结霜量。
首先确定制冷设备中压缩机的单次运行时间,即确定从开机时刻开始,至停机时刻之间的时间的累计时长,根据单次运行时间与预设时间的大小关系确定检测时刻,即确定检测制冷设备的蒸发器温度与出风口温度之间的温差的检测时机,然后在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差,最后根据温差与预设差值的大小关系,确定是否对蒸发器加热进行化霜。制冷设备运行后,通过确定蒸发器温度和出风口温差的时机,到达判断温差的时机后,判断蒸发器温度和出风口的温差,若温差大于阈值后,则启动化霜,实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
需要说明的是,检测蒸发器温度的温度传感器位于蒸发器的盘管上, 一方面化霜时可以用来感知化霜时蒸发器被加热时的温度以确定何时停止化霜,另一方面,由于其设置在蒸发器的盘管上,可以准确感知制冷时蒸发器的温度;此外,检测出风口温度的温度传感器位于风道的出风口迎风侧。
实施例2:
图2示出了实施例2的化霜方法的流程示意图。
如图2所示,根据本发明的实施例的化霜方法,用于制冷设备,包括:步骤S202,确定制冷设备中压缩机的单次运行时间;步骤S204,判断单次运行时间是否大于或等于预设时间,若判断结果为是,则执行步骤S206,确定检测时刻为压缩机运行预设时间后的时刻;若判断结果为否,则执行步骤S208,判断压缩机的运行状态是否为平稳状态,若判断结果为是,则执行步骤S210,确定检测时刻为压缩机运行预设时间后的时刻;若判断结果为否,则返回步骤S204;确定检测时刻后,执行步骤S212,在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;步骤S214,根据温差与预设差值的大小关系确定是否化霜;步骤S216,在执行化霜的过程中,确定蒸发器温度;步骤S218,在蒸发器温度大于或等于预设化霜温度时,退出化霜。
若制冷设备首次上电使用,或者用户一次性放入比较多的食物到制冷设备中,制冷的时间会比较长,因此若运行时间大于或等于预设时间,则确定检测时刻即为压缩机运行预设时间后的时刻,压缩机运行至检测时刻后即为判断压缩机温度与出风口温度的时机,此时确定制冷设备的蒸发器温度与出风口温度之间的温差,减小因压缩机长时间运行没有停机,导致结霜很多,而不及时判定是否需要化霜,最后导致制冷失效的隐患。制冷设备常规运行时,压缩机的运行时间不是特别长,若运行时间小于预设时间,则进一步判断压缩机的运行状态是否为平稳状态,如果是平稳状态,检测时刻为压缩机处于平稳状态后首次停机的停机时刻,即压缩机运行至停机时刻时,为判断压缩机温度与出风口温度的时机。在到达判定时机后才判断压缩机温度与出风口温度的温差,从而判断是否需要化霜,提升了制冷设备的节能效果。
判断压缩机的运行状态是否为平稳状态的方法为:压缩机单次的从开 机时刻开始,经停机时刻直至下次开机时刻之间的时间的累计时长为一个启停周期,根据启停周期确定压缩机的开机率,开机率的计算方法如图7所示,统计本次压缩机的一次开机累积时间Ton1、压缩机单次停机累积时间Toff1,计算开机率K 1=(Ton1/(Ton1+Toff1));统计后一次压缩机单次开机累积时间Ton2、压缩机单次停机累积时间Toff2,计算开机率K 2=(Ton2/(Ton2+Toff2)),计算K 1与K 2的差值的绝对值:|K 1-K 2|,当差值的绝对值小于或等于差值阈值k0时,压缩机的运行状态即为平稳状态,此时,检测时刻为压缩机处于平稳状态后首次停机的停机时刻,如图7所示,t1的启停周期的开机率为K 1,t2的启停周期的开机率为K 2,如果|K 1-K 2|≤k0,则检测时刻为经过t1和t2两个启停周期后的首次停机的停机时刻T,即在T时判断压缩机温度与出风口温度的温差。
需要说明的是,制冷设备的主控板,可以采集温度信号、压缩机开机时间、停机时间等信息,并可以按照一定的规则根据信息触发的命令进行数据处理和命令执行。
根据温差与预设差值的大小关系确定是否化霜,具体包括:若温差大于或等于预设差值,则执行化霜。预设差值可以是经由大量实验而确定的数值,温差大于或等于预设差值,即表明蒸发器结霜过多,需要执行化霜。
需要说明的是,预设差值可以是经由大量实验而确定的数值。
当蒸发器温度大于或等于预设化霜温度时,表明蒸发器的结霜已清除完毕,出风口的出风量较大,此时及时退出化霜,减小因蒸发器升高使制冷设备的间室制冷效果减弱的影响。
实施例3:
图3示出了实施例3的化霜系统的结构示意框图。
如图3所示,根据本发明的实施例的化霜系统300,用于制冷设备,包括:
时间确定单元302,用于确定制冷设备中压缩机的单次运行时间;
检测单元304,用于根据单次运行时间与预设时间的大小关系确定检测时刻;
温差确定单元306,用于在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;
判断单元308,用于根据温差与预设差值的大小关系确定是否化霜,具体用于在温差大于或等于预设差值时,执行化霜。
制冷过程中,蒸发器蒸发吸热提供冷量,风机转动将回风经蒸发器换热后,经出风口送出到制冷设备的间室内,如果蒸发器上结霜量较少,则蒸发器阻力较小,即风道内风阻力较小,此条件下,出风量就会较大,出风口温度传感器感受的温度则接近于蒸发器的温度,因此出风口温度与蒸发器温度温差相对较小;随着制冷时间的延长或者放入食物湿负荷的增加,蒸发器上的霜会越来越多,蒸发器被堵塞的程度加重,则风道风阻力增大,此时出风口的风量将减小,则蒸发器温度和出风口温度温差增大,表明蒸发器需要化霜,即制冷时,通过出风口温度和蒸发器温度的温差可以判断蒸发器实际结霜量。
首先确定制冷设备中压缩机的单次运行时间,即确定从开机时刻开始,至停机时刻之间的时间的累计时长,根据单次运行时间与预设时间的大小关系确定检测时刻,即确定检测制冷设备的蒸发器温度与出风口温度之间的温差的检测时机,然后在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差,最后根据温差与预设差值的大小关系,确定是否对蒸发器加热进行化霜。制冷设备运行后,通过确定蒸发器温度和出风口温差的时机,到达判断温差的时机后,判断蒸发器温度和出风口的温差,若温差大于阈值后,则启动化霜,实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
需要说明的是,检测蒸发器温度的温度传感器位于蒸发器的盘管上,一方面化霜时可以用来感知化霜时蒸发器被加热时的温度以确定何时停止化霜,另一方面,由于其设置在蒸发器的盘管上,可以准确感知制冷时蒸发器的温度;此外,检测出风口温度的温度传感器位于风道的出风口迎风侧。
实施例4:
图4示出了实施例4的化霜系统的结构示意框图。
如图4所示,根据本发明的实施例的化霜系统400,用于制冷设备,包括:时间确定单元402,用于确定制冷设备中压缩机的单次运行时间;
检测单元404,用于根据单次运行时间与预设时间的大小关系确定至检测时刻;具体包括:
第一子单元4042,用于在运行时间大于或等于预设时间时,确定检测时刻为压缩机运行预设时间后的时刻;
第二子单元4044,用于运行时间小于预设时间时,判断压缩机的运行状态是否为平稳状态,在压缩机的运行状态为平稳状态时,确定检测时刻为压缩机处于平稳状态后首次停机的停机时刻;
温差确定单元406,用于在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;
判断单元408,用于根据温差与预设差值的大小关系确定是否化霜。
若制冷设备首次上电使用,或者用户一次性放入比较多的食物到制冷设备中,制冷的时间会比较长,因此若运行时间大于或等于预设时间,则确定检测时刻即为压缩机运行预设时间后的时刻,压缩机运行检测时刻后即为判断压缩机温度与出风口温度的时机,此时确定制冷设备的蒸发器温度与出风口温度之间的温差,减小因压缩机长时间运行没有停机,导致结霜很多,而不及时判定是否需要化霜,最后导致制冷失效的隐患。制冷设备常规运行时,压缩机的运行时间不是特别长,若运行时间小于预设时间,则进一步判断压缩机的运行状态是否为平稳状态,如果是平稳状态,检测时刻为压缩机处于平稳状态后首次停机的停机时刻,即压缩机运行至停机时刻时,为判断压缩机温度与出风口温度的时机。在到达判定时机后才判断压缩机温度与出风口温度的温差,从而判断是否需要化霜,提升了制冷设备的节能效果。
实施例5:
图5示出了实施例5的化霜系统的结构示意框图。
如图5所示,根据本发明的实施例的化霜系统500,用于制冷设备,包括:时间确定单元502,用于确定制冷设备中压缩机的单次运行时间;
检测单元504,用于根据单次运行时间与预设时间的大小关系确定检测时刻;具体包括:
第一子单元5042,用于在运行时间大于或等于预设时间时,确定 检测时刻为压缩机运行预设时间后的时刻;
第二子单元5044,用于运行时间小于预设时间时,判断压缩机的运行状态是否为平稳状态,在压缩机的运行状态为平稳状态时,确定检测时刻为压缩机处于平稳状态后首次停机的停机时刻;具体包括:
开机率确定单元5046,用于确定压缩机的至少两个启停周期,并分别确定在每个启停周期内,压缩机的开机率;
计算单元5048,用于确定在相邻两个启停周期内开机率的差值的绝对值;
平稳运行单元5050,用于在差值的绝对值小于或等于差值阈值时,确定压缩机的运行状态为平稳状态。
温差确定单元506,用于在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;
判断单元508,用于根据温差与预设差值的大小关系确定是否化霜。
压缩机单次的从开机时刻开始,经停机时刻直至下次开机时刻之间的时间的累计时长为一个启停周期,根据启停周期确定压缩机的开机率,计算前一次的开机率和本次开机率的差值的绝对值,当差值的绝对值小于或等于差值阈值时,压缩机的运行状态即为平稳状态。
需要说明的是,制冷设备的主控板,可以采集温度信号、压缩机开机时间、停机时间等信息,并可以按照一定的规则根据信息触发的命令进行数据处理和命令执行。
实施例6:
图6示出了实施例6的化霜系统的结构示意框图。
如图6所示,根据本发明的实施例的化霜系统600,用于制冷设备,包括:时间确定单元602,用于确定制冷设备中压缩机的单次运行时间;
检测单元604,用于根据单次运行时间与预设时间的大小关系确定检测时刻;具体包括:
第一子单元6042,用于在运行时间大于或等于预设时间时,确定检测时刻为压缩机运行预设时间后的时刻;
第二子单元6044,用于运行时间小于预设时间时,判断压缩机的 运行状态是否为平稳状态,在压缩机的运行状态为平稳状态时,确定检测时刻为压缩机处于平稳状态后首次停机的停机时刻;具体包括:
开机率确定单元6046,用于确定压缩机的至少两个启停周期,并分别确定在每个启停周期内,压缩机的开机率;
计算单元6048,用于确定在相邻两个启停周期内开机率的差值的绝对值;
平稳运行单元6050,用于在差值的绝对值小于或等于差值阈值时,确定压缩机的运行状态为平稳状态。
温差确定单元606,用于在压缩机运行至检测时刻时,确定制冷设备的蒸发器温度与出风口温度之间的温差;
判断单元608,用于根据温差与预设差值的大小关系确定是否化霜。
温度确定单元610,用于在执行化霜的过程中,确定蒸发器温度;
化霜退出单元612,用于在蒸发器温度大于或等于预设化霜温度时,退出化霜。
当蒸发器温度大于或等于预设化霜温度时,表明蒸发器的结霜已清除完毕,出风口的出风量较大,此时及时退出化霜,减小因蒸发器升高使制冷设备的间室制冷效果减弱的影响。
实施例7:
根据本发明的实施例的计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述本发明的实施例提出的任一项的化霜方法。
在该实施例中,计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述本发明的实施例提出的任一项的化霜方法的步骤,因此具有上述本发明的实施例提出的任一项的化霜方法的全部有益效果。
实施例8:
根据本发明的实施例的制冷设备,包括上述本发明的实施例提出的任一项的化霜系统。
制冷设备包括上述本发明的实施例提出的任一项的化霜系统,实现了 根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
以上结合附图详细说明了本发明的技术方案,本发明提出了一种化霜方法、化霜系统、计算机可读存储介质以及制冷设备,通过确定制冷设备的蒸发器温度与出风口温度之间的温差,根据温差与预设差值的大小关系确定是否化霜,实现了根据实际结霜量来启动化霜,提升了制冷设备的节能效果和保鲜效果。
本发明方法中的步骤可根据实际需要进行顺序调整、合并和删减。
本发明装置中的单元可根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种化霜方法,用于制冷设备,其特征在于,包括:
    确定所述制冷设备中压缩机的单次运行时间;
    根据所述单次运行时间与预设时间的大小关系确定检测时刻;
    在所述压缩机运行至所述检测时刻时,确定所述制冷设备的蒸发器温度与出风口温度之间的温差;
    根据所述温差与预设差值的大小关系确定是否化霜。
  2. 根据权利要求1所述的化霜方法,其特征在于,所述根据所述单次运行时间与预设时间的大小关系确定检测时刻,具体包括:
    若所述单次运行时间大于或等于所述预设时间,则确定所述检测时刻为所述压缩机运行所述预设时间后的时刻,否则判断所述压缩机的运行状态是否为平稳状态,在所述压缩机的运行状态为所述平稳状态时,确定所述检测时刻为所述压缩机处于所述平稳状态后首次停机的停机时刻。
  3. 根据权利要求2所述的化霜方法,其特征在于,所述判断所述压缩机的运行状态是否为平稳状态,具体包括:
    确定所述压缩机的至少两个启停周期,并分别确定在每个所述启停周期内,所述压缩机的开机率;
    确定在相邻两个所述启停周期内所述开机率的差值的绝对值;
    在所述差值的绝对值小于或等于差值阈值时,确定所述压缩机的运行状态为所述平稳状态。
  4. 根据权利要求1至3中任一项所述的化霜方法,其特征在于,所述根据所述温差与预设差值的大小关系确定是否化霜,具体包括:
    若所述温差大于或等于所述预设差值,则执行化霜。
  5. 根据权利要求1至4中任一项所述的化霜方法,其特征在于,还包括:
    在执行化霜的过程中,确定所述蒸发器温度;
    在所述蒸发器温度大于或等于预设化霜温度时,退出化霜。
  6. 一种化霜系统,用于制冷设备,其特征在于,包括:
    时间确定单元,用于确定所述制冷设备中压缩机的单次运行时间;
    检测单元,用于根据所述单次运行时间与预设时间的大小关系确定检测时刻;
    温差确定单元,用于在所述压缩机运行至所述检测时刻时,确定所述制冷设备的蒸发器温度与出风口温度之间的温差;
    判断单元,用于根据所述温差与预设差值的大小关系确定是否化霜。
  7. 根据权利要求6所述的化霜系统,其特征在于,所述检测单元,具体包括:
    第一子单元,用于在所述单次运行时间大于或等于所述预设时间时,确定所述检测时刻为所述压缩机运行所述预设时间后的时刻;
    第二子单元,用于所述单次运行时间小于所述预设时间时,判断所述压缩机的运行状态是否为平稳状态,在所述压缩机的运行状态为所述平稳状态时,确定所述检测时刻为所述压缩机处于所述平稳状态后首次停机的停机时刻。
  8. 根据权利要求7所述的化霜系统,其特征在于,所述第二子单元,具体包括:
    开机率确定单元,用于确定所述压缩机的至少两个启停周期,并分别确定在每个所述启停周期内,所述压缩机的开机率;
    计算单元,用于确定在相邻两个所述启停周期内所述开机率的差值的绝对值;
    平稳运行单元,用于在所述差值的绝对值小于或等于差值阈值时,确定所述压缩机的运行状态为所述平稳状态。
  9. 根据权利要求6至8中任一项所述的化霜系统,其特征在于,所述判断单元,具体用于在所述温差大于或等于所述预设差值时,执行化霜。
  10. 根据权利要求6至9中任一项所述的化霜系统,其特征在于,还包括:
    温度确定单元,用于在执行化霜的过程中,确定所述蒸发器温度;
    化霜退出单元,用于在所述蒸发器温度大于或等于预设化霜温度时,退出化霜。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的化霜方法。
  12. 一种制冷设备,其特征在于,包括权利要求6至10中任一项所述的化霜系统。
PCT/CN2018/110186 2017-11-17 2018-10-15 化霜方法、化霜系统、计算机可读存储介质和制冷设备 WO2019095909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711142994.0 2017-11-17
CN201711142994.0A CN107940873B (zh) 2017-11-17 2017-11-17 化霜方法、化霜系统、计算机可读存储介质和制冷设备

Publications (1)

Publication Number Publication Date
WO2019095909A1 true WO2019095909A1 (zh) 2019-05-23

Family

ID=61931631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110186 WO2019095909A1 (zh) 2017-11-17 2018-10-15 化霜方法、化霜系统、计算机可读存储介质和制冷设备

Country Status (2)

Country Link
CN (1) CN107940873B (zh)
WO (1) WO2019095909A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940873B (zh) * 2017-11-17 2020-12-04 合肥美的电冰箱有限公司 化霜方法、化霜系统、计算机可读存储介质和制冷设备
US11561037B2 (en) * 2018-11-04 2023-01-24 Elemental Machines, Inc. Method and apparatus for determining freezer status
KR20200062698A (ko) 2018-11-27 2020-06-04 엘지전자 주식회사 냉장고 및 그의 제어방법
CN111322812A (zh) * 2018-12-17 2020-06-23 青岛海尔生物医疗股份有限公司 风冷冰箱智能进入化霜的控制方法、控制装置及冰箱
CN110513949B (zh) * 2019-08-28 2021-03-23 长虹美菱股份有限公司 一种化霜控制方法及装置
CN110986274B (zh) * 2019-11-21 2021-04-27 珠海格力电器股份有限公司 一种防止电加热器化霜不完全的控制方法、计算机可读存储介质及空调
CN110940135A (zh) * 2019-12-09 2020-03-31 珠海格力电器股份有限公司 冰箱及其化霜检测装置和化霜控制方法
CN111536736B (zh) * 2020-04-24 2022-04-12 海信(山东)冰箱有限公司 一种冰箱及其控制方法
CN111736642B (zh) * 2020-06-23 2021-09-17 深圳创维-Rgb电子有限公司 智能鞋柜的控制方法、装置以及智能鞋柜
CN112212603A (zh) * 2020-07-30 2021-01-12 青岛海尔特种电冰柜有限公司 冷柜的控制方法
CN115265046B (zh) * 2021-04-29 2023-08-15 青岛海尔电冰箱有限公司 冰箱及其控制方法
CN114251896A (zh) * 2021-12-24 2022-03-29 海信(山东)冰箱有限公司 一种冰箱及其化霜控制方法
CN114608258A (zh) * 2022-03-11 2022-06-10 长虹美菱股份有限公司 一种基于电子膨胀阀的冰箱制冷系统化霜控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10315524A1 (de) * 2003-04-04 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät und Betriebsverfahren dafür
CN1653308A (zh) * 2002-05-16 2005-08-10 Bsh博施及西门子家用器具有限公司 具有除霜指示的冷冻装置
US20090000321A1 (en) * 2007-06-29 2009-01-01 Electrolux Home Products, Inc. Hot gas defrost method and apparatus
CN101392977A (zh) * 2008-10-10 2009-03-25 海信科龙电器股份有限公司 一种无霜冰箱控制系统及其化霜控制方法
CN101451784A (zh) * 2007-12-07 2009-06-10 三洋电机株式会社 控制装置以及控制装置的控制方法
CN201281520Y (zh) * 2008-10-10 2009-07-29 海信科龙电器股份有限公司 一种无霜冰箱控制系统
CN106052262A (zh) * 2016-07-06 2016-10-26 海信容声(广东)冰箱有限公司 一种冰箱及其冷藏间室的化霜方法
CN106969569A (zh) * 2017-03-21 2017-07-21 合肥美的电冰箱有限公司 制冷设备控制方法、系统及制冷设备
CN107940873A (zh) * 2017-11-17 2018-04-20 合肥美的电冰箱有限公司 化霜方法、化霜系统、计算机可读存储介质和制冷设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653308A (zh) * 2002-05-16 2005-08-10 Bsh博施及西门子家用器具有限公司 具有除霜指示的冷冻装置
DE10315524A1 (de) * 2003-04-04 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät und Betriebsverfahren dafür
US20090000321A1 (en) * 2007-06-29 2009-01-01 Electrolux Home Products, Inc. Hot gas defrost method and apparatus
CN101451784A (zh) * 2007-12-07 2009-06-10 三洋电机株式会社 控制装置以及控制装置的控制方法
CN101392977A (zh) * 2008-10-10 2009-03-25 海信科龙电器股份有限公司 一种无霜冰箱控制系统及其化霜控制方法
CN201281520Y (zh) * 2008-10-10 2009-07-29 海信科龙电器股份有限公司 一种无霜冰箱控制系统
CN106052262A (zh) * 2016-07-06 2016-10-26 海信容声(广东)冰箱有限公司 一种冰箱及其冷藏间室的化霜方法
CN106969569A (zh) * 2017-03-21 2017-07-21 合肥美的电冰箱有限公司 制冷设备控制方法、系统及制冷设备
CN107940873A (zh) * 2017-11-17 2018-04-20 合肥美的电冰箱有限公司 化霜方法、化霜系统、计算机可读存储介质和制冷设备

Also Published As

Publication number Publication date
CN107940873A (zh) 2018-04-20
CN107940873B (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2019095909A1 (zh) 化霜方法、化霜系统、计算机可读存储介质和制冷设备
WO2019192169A1 (zh) 风冷冰箱及其化霜的控制方法、控制系统、控制器
JP4365378B2 (ja) 除霜運転制御装置および除霜運転制御方法
WO2018127164A1 (zh) 一种冰箱的控制方法
CN111981640B (zh) 一种除霜控制方法、装置、空调器及存储介质
CN106595215A (zh) 风冷冰箱的除霜控制方法和装置
JP2007225158A (ja) 除霜運転制御装置および除霜運転制御方法
WO2006095571A1 (ja) 冷却貯蔵庫
CN102116556A (zh) 风冷冰箱及其控制方法
CN111076460B (zh) 除霜控制方法及冷藏柜
CN112460901B (zh) 一种冰箱除湿控制方法、装置及风冷冰箱
JPWO2005038365A1 (ja) 冷却貯蔵庫
CN110749040B (zh) 运行状态的检测方法、装置、风机、空调器和存储介质
CN107120796B (zh) 空调器除霜控制方法
CN106568269B (zh) 冰箱
CN111811198A (zh) 化霜控制方法、装置及用电设备
CN105180563B (zh) 冰箱及其控制方法
CN112747560A (zh) 一种冰箱间室转换控制方法及冰箱
CN114183880B (zh) 一种防霉控制方法及空调器
CN108286868B (zh) 冰箱及其控制方法
CN107289576B (zh) 空调器除霜控制方法
JP2000274916A (ja) 冷却貯蔵庫
JP3505466B2 (ja) 冷蔵庫
JP2001263912A (ja) 冷蔵庫
WO2020047757A1 (zh) 食物存储设备的控制方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879467

Country of ref document: EP

Kind code of ref document: A1