WO2019095780A1 - 一种动车组开关型电空阀控制方法及装置 - Google Patents

一种动车组开关型电空阀控制方法及装置 Download PDF

Info

Publication number
WO2019095780A1
WO2019095780A1 PCT/CN2018/102641 CN2018102641W WO2019095780A1 WO 2019095780 A1 WO2019095780 A1 WO 2019095780A1 CN 2018102641 W CN2018102641 W CN 2018102641W WO 2019095780 A1 WO2019095780 A1 WO 2019095780A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference
electropneumatic valve
processor
amount
gas pressure
Prior art date
Application number
PCT/CN2018/102641
Other languages
English (en)
French (fr)
Inventor
高珊
张新永
温从溪
曲秋芬
谢春杰
孟庆栋
陈磊
孙会智
许红梅
尚礼明
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Publication of WO2019095780A1 publication Critical patent/WO2019095780A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes

Definitions

  • the present application relates to the field of track equipment, and in particular to a control method and device for an EMU switch type electropneumatic valve.
  • the switch type electropneumatic valve used in the EMU brake system is mainly composed of a brake solenoid valve, a mitigation solenoid valve, a pipeline, a controller and a pressure sensor, as shown in Fig. 1.
  • an input pressure signal is given to the electric air valve.
  • the brake solenoid valve is energized, the valve port is opened, and the air source and the volume chamber are turned on.
  • the volume chamber pressure fed back by the pressure sensor over time The moment is compared with the pressure signal.
  • the control logic output signal controls the brake solenoid valve to inflate.
  • the control logic output signal controls the mitigation solenoid valve to exhaust to maintain the volume. The amount of pressure in the room.
  • the controller gives a signal that the input pressure is zero.
  • the brake solenoid valve is de-energized, the electromagnetic valve is relieved, and the pressure in the volume chamber is discharged to the atmosphere until the pressure in the volume chamber Reduced to atmospheric pressure.
  • the relevant brake system usually uses PWM signal and PID control method to control the switch type electric air valve, as shown in Figure 2. Firstly, the difference between the collected pressure value of the sensor and the set pressure value is calculated. If the difference exceeds the preset error range, the error is input to the PID adjustment controller to obtain the control output, and the output is calculated by the linear mapping function. Finally, the output PWM signal controls the brake solenoid valve and the relief solenoid valve adjusts the volume of the volume chamber.
  • K is the control precision of the pressure
  • the mapping function of the duty ratio is linear, which can be expressed as:
  • i(t) represents the duty cycle
  • k represents the linear ratio
  • u(t) represents the error value after the calculation by the PID.
  • the above-mentioned method for the control of the electropneumatic valve has higher requirements on the performance of the solenoid valve, and the solenoid valve must use a high-speed solenoid valve. Moreover, the solenoid valve moves frequently during the control process, and the solenoid valve actuation time in each pressure sampling cycle reduces the life of the solenoid valve. In addition, PID parameters and PWM carrier frequency settings are also difficult.
  • embodiments of the present application are expected to provide an EMU switch type electropneumatic valve control method.
  • the second action of the electropneumatic valve is controlled based on the difference and the average amount of change.
  • the comparing the difference with a preset error value to obtain a comparison result includes:
  • the process of controlling the first action of the electropneumatic valve according to the comparison result and the difference comprises:
  • control electropneumatic valve suspends inflation or exhaust and enters a hold state.
  • the process of controlling the first action of the electropneumatic valve according to the comparison result and the difference further includes:
  • the comparison result is that the absolute value of the difference is greater than or equal to the preset error value, it is determined whether the difference is less than zero, and then, the electric air valve is controlled to perform the first action to enter the inflated state.
  • the method further includes: detecting whether the current electropneumatic valve is in an inflated state, and Calculate the average amount of change in real-time gas pressure acquired during the preset sampling period.
  • the calculating the average amount of change in the real-time gas pressure obtained during the preset sampling period is:
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the electropneumatic valve is controlled to perform the first action to enter the inflated state, and at this time, the average change of the real-time gas pressure acquired during the preset sampling period is obtained.
  • the amount is zero, and the number of cycles after the electropneumatic valve enters the inflated state is zero.
  • controlling the second action of the electropneumatic valve according to the difference and the average amount of change comprises:
  • the electropneumatic valve is controlled to perform the second action according to the magnitude relationship between the difference and the amount of change in hysteresis.
  • the amount of hysteresis variation is the product of the average amount of change and the set hysteresis factor.
  • controlling the second action of the electropneumatic valve according to the magnitude relationship between the difference and the amount of hysteresis variation includes:
  • the process of controlling the second action of the electropneumatic valve according to the magnitude relationship between the difference and the amount of hysteresis variation further includes:
  • the inflated state of the current electropneumatic valve is suspended and the hold state is entered.
  • the process of controlling the first action of the electropneumatic valve according to the comparison result and the difference further includes:
  • control electropneumatic valve performs the first action to enter the exhaust state.
  • the method further includes: detecting whether the current electric air valve is in an exhaust state, , the average amount of change in the real-time gas pressure acquired during the preset sampling period is calculated.
  • the calculating the average amount of change in the real-time gas pressure obtained during the preset sampling period is:
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the electropneumatic valve is controlled to perform the first action to enter the exhaust state, and at this time, the real-time gas pressure obtained during the preset sampling period is collected.
  • the average amount of change is zero, and the number of cycles after the electropneumatic valve enters the exhaust state is zero.
  • controlling the second action of the electropneumatic valve according to the difference and the average amount of change comprises:
  • the electropneumatic valve is controlled to perform the second action according to the magnitude relationship between the difference and the amount of change in hysteresis.
  • the amount of hysteresis variation is the product of the average amount of change and the set hysteresis factor.
  • controlling the second action of the electropneumatic valve according to the magnitude relationship between the difference and the amount of hysteresis variation includes:
  • the process of controlling the second action of the electropneumatic valve according to the magnitude relationship between the difference and the amount of hysteresis variation further includes:
  • the exhaust state of the current electropneumatic valve is suspended and the hold state is entered.
  • the application also provides an EMU switch type electropneumatic valve control device, the device comprising:
  • a pressure sensor for collecting real-time gas pressure in the volume chamber of the electropneumatic valve
  • a processor configured with processor-executable instructions to perform operations, the operations comprising:
  • the second action of the electropneumatic valve is controlled based on the difference and the average amount of change.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • control electropneumatic valve suspends inflation or exhaust and enters a hold state.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the comparison result is that the absolute value of the difference is greater than or equal to the preset error value, it is determined whether the difference is less than zero, and then, the electric air valve is controlled to perform the first action to enter the inflated state.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the method further comprises: detecting whether the current electropneumatic valve is in an inflated state, and then calculating the acquired in the preset sampling period. The average amount of change in real-time gas pressure.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the electropneumatic valve is controlled to perform the first action to enter the inflated state. At this time, the average variation of the real-time gas pressure acquired during the preset sampling period is zero, and the electropneumatic valve enters the inflation. The number of cycles after the state is zero.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the electropneumatic valve is controlled to perform the second action according to the magnitude relationship between the difference and the amount of change in hysteresis.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising: obtaining a hysteresis variation by calculating a product of the average delta and the set hysteresis coefficient.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the inflated state of the current electropneumatic valve is suspended and the hold state is entered.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • control electropneumatic valve performs the first action to enter the exhaust state.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the method further comprises: detecting whether the current electropneumatic valve is in an exhaust state, and then calculating the preset sampling period. The average amount of change in real-time gas pressure obtained.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the electropneumatic valve is controlled to perform the first action to enter the exhaust state.
  • the average variation of the real-time gas pressure acquired during the preset sampling period is zero, and the electropneumatic valve The number of cycles after entering the exhaust state is zero.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the electropneumatic valve is controlled to perform the second action according to the magnitude relationship between the difference and the amount of change in hysteresis.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising: obtaining a hysteresis variation by calculating a product of the average delta and the set hysteresis coefficient.
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the processor is configured with processor-executable instructions to perform operations, the operations further comprising:
  • the exhaust state of the current electropneumatic valve is suspended and the hold state is entered.
  • the beneficial effects of the present application are as follows:
  • the electropneumatic valve control method and apparatus described in the present application can realize continuous electropneumatic valve inflation or exhaust control, and has the advantages of rapid adjustment; by introducing an average air pressure change value and a hysteresis coefficient to inflate or The process of exhausting is adjusted and the regulation is stable.
  • the solenoid valve only acts once in multiple sampling cycles, which greatly reduces the operating frequency of the solenoid valve, reduces the requirement for the performance of the solenoid valve, and prolongs the service life of the solenoid valve.
  • FIG. 1 is a schematic structural view of a switch type electropneumatic valve
  • FIG. 2 is a flow chart of control of a conventional switch type electropneumatic valve
  • FIG. 3 is a flow chart of a control method of a switch type electric air valve according to the embodiment.
  • FIG. 5 is a simulation diagram of a control method of a switch type electropneumatic valve according to the embodiment.
  • FIG. 6 is a schematic diagram of the principle of the switch type electric air valve control device according to the embodiment.
  • this embodiment provides a control method for an EMU switch type electropneumatic valve, and the method includes:
  • the pressure sensor is used to collect the gas pressure in the volume chamber of the electropneumatic valve to obtain the real-time gas pressure, and then the difference between the collected real-time gas pressure and the preset gas pressure is calculated to obtain a difference, which may also be referred to as error.
  • the preset error value is the allowable error range of the air pressure during the control of the electropneumatic valve. Obtaining, by comparing the absolute value of the difference value with the preset error value, a comparison result that the absolute value of the difference value is greater than or equal to the preset error value, or obtaining an absolute value of the difference value is smaller than The comparison result of the preset error value provides data support for the control of the subsequent electropneumatic valve.
  • S103 Calculate an average change amount of the real-time gas pressure acquired in the preset sampling period, and control the electric air valve action according to the average change amount, the comparison result, and the difference.
  • the electropneumatic valve includes three states: inflation, hold, and exhaust.
  • control electropneumatic valve suspends inflation or exhaust, and enters a holding state, at which time the solenoid valve inside the electropneumatic valve only acts once.
  • the absolute value of the difference is greater than or equal to the preset error value, it is further determined whether the difference is less than zero, and then, the inflation state of the electropneumatic valve is controlled, otherwise, the power is The exhaust state of the air valve is controlled.
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the control electropneumatic valve If it is detected that the current electropneumatic valve is not in the inflated state, the control electropneumatic valve enters the inflated state, and the average change amount mp of the real-time gas pressure acquired during the preset sampling period is zero, and the electropneumatic valve enters the inflated state.
  • the number n of cycles is also zero.
  • the average change amount mp is multiplied by the hysteresis coefficient k to obtain a hysteresis change amount. And comparing the hysteresis variation amount with the absolute value of the difference value, and maintaining an inflated state of the current electropneumatic valve when the absolute value of the difference value is greater than the hysteresis variation amount; when the difference is absolute When the value is not greater than the hysteresis variation amount, the inflation state of the current electropneumatic valve is suspended, thereby entering the holding state, and at this time, the solenoid valve inside the electropneumatic valve only operates once.
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the control electropneumatic valve enters the exhaust state, and the average change amount mp of the real-time gas pressure acquired in the preset sampling period is zero, and the electropneumatic valve enters the exhaust.
  • the number n of periods after the state is also zero.
  • the average change amount mp is multiplied by the hysteresis coefficient k to obtain a hysteresis change amount. And comparing the hysteresis variation amount with the absolute value of the difference value, and maintaining an exhaust state of the current electropneumatic valve when the absolute value of the difference is greater than the hysteresis variation amount; When the absolute value is not more than the hysteresis variation amount, the exhaust state of the current electropneumatic valve is suspended, thereby entering the holding state, and at this time, the solenoid valve inside the electropneumatic valve only operates once.
  • the control electropneumatic valve enters an inflated state. At this time, the average change amount mp of the real-time gas pressure acquired in the preset sampling period is zero, and the number n of the cycle after the electropneumatic valve enters the inflated state is also zero, and then executed. S9;
  • the method of the embodiment first calculates the difference between the collected pressure value of the sensor and the set pressure value. If the difference exceeds the preset error range, the electric air valve is controlled to be inflated or vented according to the positive and negative of the error. During the inflation or exhaust process, the collected pressure value and the error change are monitored, and the average change amount of the collected pressure value is calculated in the latest preset number of sampling periods during the inflation or exhaust process, and the average change amount is multiplied by After the coefficient is used as the hysteresis change amount, when the absolute value of the error is larger than the hysteresis change amount, the electropneumatic valve continues to be inflated or exhausted, and the solenoid valve does not operate.
  • the electropneumatic valve suspends inflation or exhaust. , enter the hold state, the solenoid valve only acts once. Due to the hysteresis of the pressure change of the volume chamber, the error will be small. If the preset error range is entered, the inflation or exhaust will end. If the preset error range is not entered, the amount of hysteresis will decrease rapidly, and the absolute value of the error will be Re-greater than the hysteresis change, the electropneumatic valve continues to be inflated or vented until the error enters the preset error range, completing the inflation or exhaust process.
  • the simulation results are shown in Fig. 5, where 1 is the preset gas pressure curve, 2 is The real-time gas pressure curve, 3 is a curve for controlling the state of charge of the electro-pneumatic valve, and 4 is a curve for controlling the exhaust state of the electro-pneumatic valve. It can be seen from the figure that the method described in this embodiment is fast and accurate, and the solenoid valve operates once in 20 sampling periods in the charging phase, and the solenoid valve acts once in the exhaust phase for about 15 sampling periods, and the solenoid valve operating frequency Significantly lower.
  • the embodiment further provides an EMU switch type electropneumatic valve control device, and the device includes:
  • a pressure sensor for collecting real-time gas pressure in the volume chamber of the electropneumatic valve
  • a processor configured with processor-executable instructions to perform operations, the operations comprising:
  • the second action of the electropneumatic valve is controlled based on the difference and the average amount of change.
  • the preset error value is the allowable error range of the air pressure during the control of the electropneumatic valve. Obtaining, by comparing the absolute value of the difference value with the preset error value, a comparison result that the absolute value of the difference value is greater than or equal to the preset error value, or obtaining an absolute value of the difference value is smaller than The comparison result of the preset error value provides data support for the control of the subsequent electropneumatic valve.
  • Electropneumatic valves include three state forms: inflation, hold, and exhaust.
  • control electropneumatic valve suspends inflation or exhaust, and enters a holding state, at which time the solenoid valve inside the electropneumatic valve only acts once.
  • the absolute value of the difference is greater than or equal to the preset error value, it is further determined whether the difference is less than zero, and then, the inflation state of the electropneumatic valve is controlled, otherwise, the power is The exhaust state of the air valve is controlled.
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the control electropneumatic valve If it is detected that the current electropneumatic valve is not in the inflated state, the control electropneumatic valve enters the inflated state, and the average change amount mp of the real-time gas pressure acquired during the preset sampling period is zero, and the electropneumatic valve enters the inflated state.
  • the number n of cycles is also zero.
  • the average change amount mp is multiplied by the hysteresis coefficient k to obtain a hysteresis change amount. And comparing the hysteresis variation amount with the absolute value of the difference value, and maintaining an inflated state of the current electropneumatic valve when the absolute value of the difference value is greater than the hysteresis variation amount; when the difference is absolute When the value is not greater than the hysteresis variation amount, the inflation state of the current electropneumatic valve is suspended, thereby entering the holding state, and at this time, the solenoid valve inside the electropneumatic valve only operates once.
  • mp is the average variation of the real-time gas pressure acquired during the preset sampling period
  • p(i) is the real-time gas pressure of the ith sampling period
  • min(N,n) is the smaller of N and n.
  • N is the number of preset sampling periods
  • n is the number of cycles after the electropneumatic valve enters the inflated state or the exhausted state.
  • the control electropneumatic valve enters the exhaust state, and the average change amount mp of the real-time gas pressure acquired in the preset sampling period is zero, and the electropneumatic valve enters the exhaust.
  • the number n of periods after the state is also zero.
  • the average change amount mp is multiplied by the hysteresis coefficient k to obtain a hysteresis change amount. And comparing the hysteresis variation amount with the absolute value of the difference value, and maintaining an exhaust state of the current electropneumatic valve when the absolute value of the difference is greater than the hysteresis variation amount; When the absolute value is not more than the hysteresis variation amount, the exhaust state of the current electropneumatic valve is suspended, thereby entering the holding state, and at this time, the solenoid valve inside the electropneumatic valve only operates once.
  • the device in the embodiment considers the hysteresis of the rise or decrease of the pressure of the volume chamber, introduces the average variation of the air pressure and the hysteresis coefficient in the control method, adjusts the inflation or exhaust process, and controls the rapid and stable, multiple pressure sampling.
  • the solenoid valve only acts once, which greatly reduces the operating frequency of the solenoid valve, reduces the requirement for the performance of the solenoid valve, and prolongs the service life of the solenoid valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Fluid Pressure (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种动车组开关型电空阀控制方法及装置,其中方法包括:将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值;将差值与预设的误差值进行比较,获得比较结果;根据比较结果以及差值控制电空阀的第一次动作;计算预设采样周期内采集获得的实时气体压力的平均变化量;根据差值与平均变化量控制电空阀的第二次动作。通过引入平均气压变化值和滞后系数对充气或排气的过程进行调整,调节稳定。

Description

一种动车组开关型电空阀控制方法及装置 技术领域
本申请涉及轨道设备领域,尤其涉及一种动车组开关型电空阀控制方法及装置。
背景技术
动车组制动系统中用到的开关型电空阀主要是由一个制动电磁阀、一个缓解电磁阀、管路、控制器和压力传感器等组成,如图1所示。
列车在制动时,给定电空阀一个输入压力信号,此时制动电磁阀得电,阀口打开,气源与容积室导通,随着时间的推移,压力传感器反馈的容积室压力时刻与压力信号进行比较,当压力信号大于反馈信号时,控制逻辑输出信号控制制动电磁阀进行充气,当压力信号小于反馈信号时,控制逻辑输出信号控制缓解电磁阀进行排气,以保持容积室中的压力大小。
列车在缓解时,控制器给定电空阀一个输入压力为零的的信号,此时制动电磁阀断电,缓解电磁阀得电,将容积室中压力排到大气,直到容积室中压力降为大气压。
相关制动系统通常采用PWM信号以及PID控制方法对开关型电空阀进行控制,如图2所示。首先计算传感器采集压力值和设定压力值的差值,如果差值超过了预设的误差范围,将误差输入到PID调节控制器后得到控制输出,将输出通过线性映射函数计算出占空比,最后输出PWM信号控制制动电磁阀和缓解电磁阀对容积室压力进行调节。该控制方法的流程图如图2所示,其中,K为压力的控制精度,占空比的映射函数为线性的,可以表示为:
i(t)=k·u(t)
其中i(t)表示占空比,k表示线性比例,u(t)表示通过PID计算过后的误差值。
上述方式对电空阀控制的方案对于电磁阀的性能要求比较高,电磁阀必须选用高速电磁阀。并且在控制过程中电磁阀动作频繁,每个压力采样周期内电磁阀动作多次会降低电磁阀的寿命。此外,PID参数和PWM载波频率设定也较为困难。
发明内容
有鉴于此,本申请实施例期望提供一种动车组开关型电空阀控制方法。
为达到上述目的,本申请实施例的技术方案是这样实现的:
将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值;
将所述差值与预设的误差值进行比较,获得比较结果;
根据所述比较结果以及所述差值控制电空阀的第一次动作;
计算预设采样周期内采集获得的实时气体压力的平均变化量;
根据所述差值与所述平均变化量控制电空阀的第二次动作。
在一些可选的实现方式中,所述将所述差值与预设的误差值进行比较,获得比较结果的过程包括:
将所述差值的绝对值与预设的误差值进行比较,获得所述差值的绝对值大于或等于所述预设的误差值的比较结果,或获得所述差值的绝对值小于所述预设的误差值的比较结果。
在一些可选的实现方式中,所述根据所述比较结果以及所述差值控制电空阀的第一次动作的过程包括:
当比较结果为所述差值的绝对值小于所述预设的误差值时,控制电空阀暂停充气或排气,进入保持状态。
在一些可选的实现方式中,所述根据所述比较结果以及所述差值控制电空阀的第一次动作的过程还包括:
当比较结果为所述差值的绝对值大于或等于所述预设的误差值时,判断所述差值是否小于零,是,则控制电空阀进行第一次动作进入充气状态。
在一些可选的实现方式中,在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入充气状态之前还包括对当前电空阀是否处于充气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
在一些可选的实现方式中,所述计算预设采样周期内采集获得的实时气体压力的平均变化量的过程为:
mp=p(i)-p(i-min(N,n)),且n=n+1,
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
在一些可选的实现方式中,若当前电空阀不处于充气状态,则控制电空阀进行第一次动作进入充气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入充气状态后的周期个数为零。
在一些可选的实现方式中,所述根据所述差值与所述平均变化量控制电空阀的第二次动作的过程包括:
根据所述平均变化量计算滞后变化量;
根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
在一些可选的实现方式中,所述滞后变化量为平均变化量与设置的滞后系数的乘积。
在一些可选的实现方式中,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程包括:
判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的充气状态。
在一些可选的实现方式中,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程还包括:
若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的充气状态,进入保持状态。
在一些可选的实现方式中,所述根据所述比较结果以及所述差值控制电空阀的第一次动作的过程还包括:
若所述差值是否大于或等于零,则控制电空阀进行第一次动作进入排气状态。
在一些可选的实现方式中,在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入排气状态之前还包括对当前电空阀是否处于排气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
在一些可选的实现方式中,所述计算预设采样周期内采集获得的实时气体压力的平均变化量的过程为:
mp=p(i-min(N,n))-p(i),且n=n+1,
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
在一些可选的实现方式中,若当前电空阀不处于排气状态,则控制电空阀进行第一次动作进入排气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入排气状态后的周期个数为零。
在一些可选的实现方式中,所述根据所述差值与所述平均变化量控制电空阀的第二次动作的过程包括:
根据所述平均变化量计算滞后变化量;
根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
在一些可选的实现方式中,所述滞后变化量为平均变化量与设置的滞后系数的乘积。
在一些可选的实现方式中,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程包括:
判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的排气状态。
在一些可选的实现方式中,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程还包括:
若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的排气状态,进入保持状态。
本申请还提供了一种动车组开关型电空阀控制装置,所述装置包括:
压力传感器,用于采集电空阀容积室内的实时气体压力;
处理器,其被配置有处理器可执行指令以执行操作,所述操作包括:
将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值;
将所述差值与预设的误差值进行比较,获得比较结果;
根据所述比较结果以及所述差值控制电空阀的第一次动作;
计算预设采样周期内采集获得的实时气体压力的平均变化量;
根据所述差值与所述平均变化量控制电空阀的第二次动作。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
将所述差值的绝对值与预设的误差值进行比较,获得所述差值的绝对值大于或等于所述预设的误差值的比较结果,或获得所述差值的绝对值小于所述预设的误差值的比较结果。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
当比较结果为所述差值的绝对值小于所述预设的误差值时,控制电空阀暂停充气或排气,进入保持状态。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
当比较结果为所述差值的绝对值大于或等于所述预设的误差值时,判断所述差值是否小于零,是,则控制电空阀进行第一次动作进入充气状态。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入充气状态之前还包括对当前电空阀是否处于充气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
通过
mp=p(i)-p(i-min(N,n)),且n=n+1,
计算预设采样周期内采集获得的实时气体压力的平均变化量,
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
若当前电空阀不处于充气状态,则控制电空阀进行第一次动作进入充气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入充气状态后的周期个数为零。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
根据所述平均变化量计算滞后变化量;
根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:通过计算平均变化量与设置的滞后系数的乘积获得滞后变化量。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操 作,所述操作还包括:
判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的充气状态。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的充气状态,进入保持状态。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
若所述差值是否大于或等于零,则控制电空阀进行第一次动作进入排气状态。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入排气状态之前还包括对当前电空阀是否处于排气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
通过
mp=p(i-min(N,n))-p(i),且n=n+1,
计算预设采样周期内采集获得的实时气体压力的平均变化量,
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
若当前电空阀不处于排气状态,则控制电空阀进行第一次动作进入排气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入排气状态后的周期个数为零。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
根据所述平均变化量计算滞后变化量;
根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:通过计算平均变化量与设置的滞后系数的乘积获得滞后变化量。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的排气状态。
在一些可选的实现方式中,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的排气状态,进入保持状态。
本申请的有益效果如下:本申请所述的电空阀控制方法及装置能够实现连续的电空阀充气或排气控制,具有调节快速的优点;通过引入平均气压变化值和滞后系数对充气或排气的过程进行调整,调节稳定。多个采样周期内电磁阀只动作一次,大大降低了电磁阀的动作频率,降低了对电磁阀性能的要求,延长了电磁阀的使用寿命。
附图说明
图1为开关型电空阀的结构示意图;
图2为现有的开关型电空阀控制流程图;
图3为本实施例所述的开关型电空阀控制方法流程图;
图4为本实施例所述的开关型电空阀控制方法实际应用的工作流程图;
图5为本实施例所述的开关型电空阀控制方法的仿真图;
图6为本实施例所述的开关型电空阀控制装置的原理示意图。
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
如图3所示,本实施例提出了一种动车组开关型电空阀控制方法,所述方法包括:
S101、将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值。
具体的,本实施例采用压力传感器采集电空阀容积室内的气体压力获得实时气体压力,然后将采集到的实时气体压力与预设的气体压力进行差值计算,获得差值,也可以称为误差。
S102、将所述差值与预设的误差值进行比较,获得比较结果。
具体的,预设的误差值即为电空阀控制过程中气压可允许的误差范围。通过将差值的绝对值与预设的误差值进行比较,从而获得所述差值的绝对值大于或等于所述预设的误差值的比较结果,或获得所述差值的绝对值小于所述预设的误差值的比较结果,为后续电空阀的控制提供数据支持。
S103、计算预设采样周期内采集获得的实时气体压力的平均变化量,并根据所述平均变化量、所述比较结果以及所述差值控制电空阀动作。
具体的,电空阀包括三种状态形式:充气、保持以及排气。
首先,当所述差值的绝对值小于所述预设的误差值时,控制电空阀暂停充气或排气,进入保持状态,此时电空阀内部的电磁阀只动作一次。
其次,当所述差值的绝对值大于或等于所述预设的误差值时,进而判断所述差值是否小于零,是,则对电空阀的充气状态进行控制,否,则对电空阀的排气状态进行控制。
对电空阀的充气状态进行控制过程:
当所述差值小于零时,检测当前电空阀是否正处于充气状态,是,则通过:
mp=p(i)-p(i-min(N,n)),且n=n+1,
计算预设采样周期内采集获得的实时气体压力的平均变化量。
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
如果检测到当前电空阀没有处于充气状态,则控制电空阀进入充气状态,此时预设采样周期内采集获得的实时气体压力的平均变化量mp为零,电空阀进入充气状态后的周期个数n也为零。
在确定预设采样周期内采集获得的实时气体压力的平均变化量mp后,将所述平均变化量mp乘以滞后系数k后获得滞后变化量。再将所述滞后变化量与所述差值的绝对值进行比较,当所述差值的绝对值大于所述滞后变化量时,维持当前电空阀的充气状态;当所述差值的绝对值不大于所述滞后变化量时,暂停当前电空阀的充气状态,从而进入保持状态,此时,电空阀内部的电磁阀只动作一次。
与对电空阀的充气状态进行控制过程相类似的,对电空阀的排气状态进行控制的过程如下:
当所述差值不小于零时,检测当前电空阀是否正处于排气状态,是,则通过:
mp=p(i-min(N,n))-p(i),且n=n+1,
计算预设采样周期内采集获得的实时气体压力的平均变化量。
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为 第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
如果检测到当前电空阀没有处于排气状态,则控制电空阀进入排气状态,此时预设采样周期内采集获得的实时气体压力的平均变化量mp为零,电空阀进入排气状态后的周期个数n也为零。
在确定预设采样周期内采集获得的实时气体压力的平均变化量mp后,将所述平均变化量mp乘以滞后系数k后获得滞后变化量。再将所述滞后变化量与所述差值的绝对值进行比较,当所述差值的绝对值大于所述滞后变化量时,维持当前电空阀的排气状态;当所述差值的绝对值不大于所述滞后变化量时,暂停当前电空阀的排气状态,从而进入保持状态,此时,电空阀内部的电磁阀只动作一次。
下面结合图4以及上述所述的本实施例所述方法进一步完整说明本实施例的实际工作流程,本实施例以st=-1表示电空阀处于排气状态、st=0表示电空阀处于保持状态、st=1表示电空阀处于充气状态。
S1、设置预设气体压力T(i);
S2、采集电空阀容积室的实时气体压力p(i);
S3、计算差值e=p(i)-T(i);
S4、判断所述差值e是否小于预设的误差值Tor,是,则执行S5,否,则执行S6;
S5、暂停当前电空阀的充气状态或排气状态,进入保持状态st=0;
S6、判断差值e是否小于零,是,则执行S7,否,则执行S11;
S7、检测当前电空阀是否处于充气状态,是,则执行S8,否,则执行S10;
S8、计算预设采样周期内采集获得的实时气体压力的平均变化量mp=p(i)-p(i-min(N,n)),且n=n+1;
S9、判断所述差值e的绝对值是否大于所述平均变化量mp与滞后系数k的乘积,是,则维持当前电空阀的充气状态,否,则暂停当前电空阀的充气状态, 从而进入保持状态;
S10、控制电空阀进入充气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量mp为零,电空阀进入充气状态后的周期个数n也为零,然后执行S9;
S11、检测当前电空阀是否处于排气状态,是,则执行S12,否,则执行S14;
S12、计算预设采样周期内采集获得的实时气体压力的平均变化量mp=p(i-min(N,n))-p(i),且n=n+1;
S13、判断所述差值e的绝对值是否大于所述平均变化量mp与滞后系数k的乘积,是,则维持当前电空阀的排气状态,否,则暂停当前电空阀的排气状态,从而进入保持状态;
S14、控制电空阀进入排气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量mp为零,电空阀进入排气状态后的周期个数n也为零,然后执行S13。
本实施例所述方法首先计算传感器采集压力值和设定压力值的差值,如果差值超过了预设的误差范围,根据误差的正负控制电空阀进行充气或者排气。在充气或者排气过程中对采集压力值和误差的变化进行监控,计算处充气或者排气过程中最新的预设个数采样周期内采集压力值的平均变化量,把平均变化量乘以之后系数后作为滞后变化量,当误差绝对值比滞后变化量大时,电空阀继续充气或者排气,电磁阀不动作,当误差绝对值比滞后变化量小时,电空阀暂停充气或者排气,进入保持状态,电磁阀只动作一次。由于容积室气压变化的滞后性,误差会较小,若进入了预设的误差范围则充气或者排气结束,若未进入预设误差范围则滞后变化量会快速减小,误差绝对值又会重新大于滞后变化量,电空阀继续充气或者排气直到误差进入预设的误差范围,完成充气或者排气过程。
以N=5,k=6,Tor=0.1bar,采样周期为0.05s为例对本实施例所述方法进行仿真实验获得仿真结果如图5所示,其中1为预设气体压力曲线,2为实 时气体压力曲线,3为控制电空阀进行充气状态的曲线,4为控制电空阀进行排气状态的曲线。从图中可以看出,本实施例所述的方法控制快速且准确,在充气阶段20个采样周期内电磁阀动作一次,在排气阶段约15个采样周期电磁阀动作一次,电磁阀动作频率显著降低。
对应的,如图6所示,本实施例还提出了一种动车组开关型电空阀控制装置,所述装置包括:
压力传感器,用于采集电空阀容积室内的实时气体压力;
处理器,其被配置有处理器可执行指令以执行操作,所述操作包括:
将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值;
将所述差值与预设的误差值进行比较,获得比较结果;
根据所述比较结果以及所述差值控制电空阀的第一次动作;
计算预设采样周期内采集获得的实时气体压力的平均变化量;
根据所述差值与所述平均变化量控制电空阀的第二次动作。
具体的,预设的误差值即为电空阀控制过程中气压可允许的误差范围。通过将差值的绝对值与预设的误差值进行比较,从而获得所述差值的绝对值大于或等于所述预设的误差值的比较结果,或获得所述差值的绝对值小于所述预设的误差值的比较结果,为后续电空阀的控制提供数据支持。
电空阀包括三种状态形式:充气、保持以及排气。
首先,当所述差值的绝对值小于所述预设的误差值时,控制电空阀暂停充气或排气,进入保持状态,此时电空阀内部的电磁阀只动作一次。
其次,当所述差值的绝对值大于或等于所述预设的误差值时,进而判断所述差值是否小于零,是,则对电空阀的充气状态进行控制,否,则对电空阀的排气状态进行控制。
对电空阀的充气状态进行控制过程:
当所述差值小于零时,检测当前电空阀是否正处于充气状态,是,则通过:
mp=p(i)-p(i-min(N,n)),且n=n+1,
计算预设采样周期内采集获得的实时气体压力的平均变化量。
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
如果检测到当前电空阀没有处于充气状态,则控制电空阀进入充气状态,此时预设采样周期内采集获得的实时气体压力的平均变化量mp为零,电空阀进入充气状态后的周期个数n也为零。
在确定预设采样周期内采集获得的实时气体压力的平均变化量mp后,将所述平均变化量mp乘以滞后系数k后获得滞后变化量。再将所述滞后变化量与所述差值的绝对值进行比较,当所述差值的绝对值大于所述滞后变化量时,维持当前电空阀的充气状态;当所述差值的绝对值不大于所述滞后变化量时,暂停当前电空阀的充气状态,从而进入保持状态,此时,电空阀内部的电磁阀只动作一次。
与对电空阀的充气状态进行控制过程相类似的,对电空阀的排气状态进行控制的过程如下:
当所述差值不小于零时,检测当前电空阀是否正处于排气状态,是,则通过:
mp=p(i-min(N,n))-p(i),且n=n+1,
计算预设采样周期内采集获得的实时气体压力的平均变化量。
其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
如果检测到当前电空阀没有处于排气状态,则控制电空阀进入排气状态,此时预设采样周期内采集获得的实时气体压力的平均变化量mp为零,电空阀进入排气状态后的周期个数n也为零。
在确定预设采样周期内采集获得的实时气体压力的平均变化量mp后,将所述平均变化量mp乘以滞后系数k后获得滞后变化量。再将所述滞后变化量与所述差值的绝对值进行比较,当所述差值的绝对值大于所述滞后变化量时,维持当前电空阀的排气状态;当所述差值的绝对值不大于所述滞后变化量时,暂停当前电空阀的排气状态,从而进入保持状态,此时,电空阀内部的电磁阀只动作一次。
本实施例所述装置考虑了容积室气压上升或者下降变化的滞后性,在控制方法中引入气压的平均变化量以及滞后系数,对充气或排气过程进行调整,控制快速稳定,多个压力采样周期内电磁阀只动作一次,大大降低了电磁阀的动作频率,降低了对电磁阀性能的要求,延长了电磁阀的使用寿命。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种动车组开关型电空阀控制方法,其特征在于,所述方法包括:
    将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值;
    将所述差值与预设的误差值进行比较,获得比较结果;
    根据所述比较结果以及所述差值控制电空阀的第一次动作;
    计算预设采样周期内采集获得的实时气体压力的平均变化量;
    根据所述差值与所述平均变化量控制电空阀的第二次动作。
  2. 根据权利要求1所述的方法,其特征在于,所述将所述差值与预设的误差值进行比较,获得比较结果的过程包括:
    将所述差值的绝对值与预设的误差值进行比较,获得所述差值的绝对值大于或等于所述预设的误差值的比较结果,或获得所述差值的绝对值小于所述预设的误差值的比较结果。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述比较结果以及所述差值控制电空阀的第一次动作的过程包括:
    当比较结果为所述差值的绝对值小于所述预设的误差值时,控制电空阀暂停充气或排气,进入保持状态。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述比较结果以及所述差值控制电空阀的第一次动作的过程还包括:
    当比较结果为所述差值的绝对值大于或等于所述预设的误差值时,判断所述差值是否小于零,是,则控制电空阀进行第一次动作进入充气状态。
  5. 根据权利要求4所述的方法,其特征在于,在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入充气状态之前还包括对当前电空阀是否处于充气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
  6. 根据权利要求5所述的方法,其特征在于,所述计算预设采样周期内采 集获得的实时气体压力的平均变化量的过程为:
    mp=p(i)-p(i-min(N,n)),且n=n+1,
    其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
  7. 根据权利要求6所述的方法,其特征在于,若当前电空阀不处于充气状态,则控制电空阀进行第一次动作进入充气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入充气状态后的周期个数为零。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述差值与所述平均变化量控制电空阀的第二次动作的过程包括:
    根据所述平均变化量计算滞后变化量;
    根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
  9. 根据权利要求8所述的方法,其特征在于,所述滞后变化量为平均变化量与设置的滞后系数的乘积。
  10. 根据权利要求9所述的方法,其特征在于,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程包括:
    判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的充气状态。
  11. 根据权利要求10所述的方法,其特征在于,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程还包括:
    若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的充气状态,进入保持状态。
  12. 根据权利要求4所述的方法,其特征在于,所述根据所述比较结果以及所述差值控制电空阀的第一次动作的过程还包括:
    若所述差值是否大于或等于零,则控制电空阀进行第一次动作进入排气状 态。
  13. 根据权利要求12所述的方法,其特征在于,在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入排气状态之前还包括对当前电空阀是否处于排气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
  14. 根据权利要求13所述的方法,其特征在于,所述计算预设采样周期内采集获得的实时气体压力的平均变化量的过程为:
    mp=p(i-min(N,n))-p(i),且n=n+1,
    其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
  15. 根据权利要求14所述的方法,其特征在于,若当前电空阀不处于排气状态,则控制电空阀进行第一次动作进入排气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入排气状态后的周期个数为零。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述差值与所述平均变化量控制电空阀的第二次动作的过程包括:
    根据所述平均变化量计算滞后变化量;
    根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
  17. 根据权利要求16所述的方法,其特征在于,所述滞后变化量为平均变化量与设置的滞后系数的乘积。
  18. 根据权利要求17所述的方法,其特征在于,根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作的过程包括:
    判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的排气状态。
  19. 根据权利要求18所述的方法,其特征在于,根据所述差值与滞后变化 量的大小关系控制电空阀进行第二次动作的过程还包括:
    若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的排气状态,进入保持状态。
  20. 一种动车组开关型电空阀控制装置,其特征在于,所述装置包括:
    压力传感器,用于采集电空阀容积室内的实时气体压力;
    处理器,其被配置有处理器可执行指令以执行操作,所述操作包括:
    将接收到的采集电空阀容积室获得的实时气体压力与预设气体压力进行差值计算,获得差值;
    将所述差值与预设的误差值进行比较,获得比较结果;
    根据所述比较结果以及所述差值控制电空阀的第一次动作;
    计算预设采样周期内采集获得的实时气体压力的平均变化量;
    根据所述差值与所述平均变化量控制电空阀的第二次动作。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    将所述差值的绝对值与预设的误差值进行比较,获得所述差值的绝对值大于或等于所述预设的误差值的比较结果,或获得所述差值的绝对值小于所述预设的误差值的比较结果。
  22. 根据权利要求21所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    当比较结果为所述差值的绝对值小于所述预设的误差值时,控制电空阀暂停充气或排气,进入保持状态。
  23. 根据权利要求22所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    当比较结果为所述差值的绝对值大于或等于所述预设的误差值时,判断所述差值是否小于零,是,则控制电空阀进行第一次动作进入充气状态。
  24. 根据权利要求23所述的装置,其特征在于,所述处理器配置有处理器 可执行指令以执行操作,所述操作还包括:
    在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入充气状态之前还包括对当前电空阀是否处于充气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
  25. 根据权利要求24所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    通过
    mp=p(i)-p(i-min(N,n))且n=n+1,
    计算预设采样周期内采集获得的实时气体压力的平均变化量,
    其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    若当前电空阀不处于充气状态,则控制电空阀进行第一次动作进入充气状态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入充气状态后的周期个数为零。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    根据所述平均变化量计算滞后变化量;
    根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:通过计算平均变化量与设置的滞后系数的乘积获得滞后变化量。
  29. 根据权利要求28所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的充气状态。
  30. 根据权利要求29所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的充气状态,进入保持状态。
  31. 根据权利要求23所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    若所述差值是否大于或等于零,则控制电空阀进行第一次动作进入排气状态。
  32. 根据权利要求31所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    在判断所述差值是否小于零之后且控制电空阀进行第一次动作进入排气状态之前还包括对当前电空阀是否处于排气状态进行检测,是,则计算预设采样周期内采集获得的实时气体压力的平均变化量。
  33. 根据权利要求32所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    通过
    mp=p(i-min(N,n))-p(i),且n=n+1,
    计算预设采样周期内采集获得的实时气体压力的平均变化量,
    其中,mp为预设采样周期内采集获得的实时气体压力的平均变化量,p(i)为第i个采样周期的实时气体压力,min(N,n)为取N和n中的较小值,N为预设采样周期个数,n为电空阀进入充气状态或排气状态后的周期个数。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    若当前电空阀不处于排气状态,则控制电空阀进行第一次动作进入排气状 态,此时,预设采样周期内采集获得的实时气体压力的平均变化量为零,电空阀进入排气状态后的周期个数为零。
  35. 根据权利要求34所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    根据所述平均变化量计算滞后变化量;
    根据所述差值与滞后变化量的大小关系控制电空阀进行第二次动作。
  36. 根据权利要求35所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:通过计算平均变化量与设置的滞后系数的乘积获得滞后变化量。
  37. 根据权利要求36所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    判断所述差值的绝对值是否大于所述滞后变化量,是,则维持当前电空阀的排气状态。
  38. 根据权利要求37所述的装置,其特征在于,所述处理器配置有处理器可执行指令以执行操作,所述操作还包括:
    若所述差值的绝对值小于或等于所述滞后变化量,则暂停当前电空阀的排气状态,进入保持状态。
PCT/CN2018/102641 2017-11-20 2018-08-28 一种动车组开关型电空阀控制方法及装置 WO2019095780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711159515.6 2017-11-20
CN201711159515.6A CN109808665B (zh) 2017-11-20 2017-11-20 一种动车组开关型电空阀控制方法及装置

Publications (1)

Publication Number Publication Date
WO2019095780A1 true WO2019095780A1 (zh) 2019-05-23

Family

ID=66540033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102641 WO2019095780A1 (zh) 2017-11-20 2018-08-28 一种动车组开关型电空阀控制方法及装置

Country Status (2)

Country Link
CN (1) CN109808665B (zh)
WO (1) WO2019095780A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937628B (zh) * 2021-03-12 2023-09-22 中国铁道科学研究院集团有限公司 列车制动缸压力控制方法及系统
CN114706431A (zh) * 2022-03-29 2022-07-05 北京七星华创流量计有限公司 反应腔室的压力控制方法、装置和半导体工艺设备
CN115009245B (zh) * 2022-06-27 2023-04-07 中国农业大学 可自标定与在线自适应的电控气压制动系统压力控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2310708Y (zh) * 1997-02-28 1999-03-17 株洲电力机车厂 机车电空制动机控制装置
CN201882072U (zh) * 2010-12-08 2011-06-29 中国铁道科学研究院机车车辆研究所 电空制动系统
CN105452076A (zh) * 2013-08-12 2016-03-30 克诺尔商用车制动系统有限公司 电-气动式驻车制动组件
CN105564403A (zh) * 2016-01-05 2016-05-11 中车株洲电力机车有限公司 一种机车制动机的控制系统及方法
CN206510905U (zh) * 2016-12-06 2017-09-22 张川宝 一种用于动车组制动系统的ep阀控制装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212950A (ja) * 2004-01-29 2005-08-11 Avr:Kk 整形機におけるビーム硬度の制御方法
CN201792855U (zh) * 2010-09-03 2011-04-13 南车株洲电力机车有限公司 轨道交通列车管控制系统
DE102011078890A1 (de) * 2011-07-08 2013-01-10 Robert Bosch Gmbh Überwachungsvorrichtung für zumindest eine Untereinheit eines hydraulischen Bremssystems und Verfahren zum Untersuchen einer Funktionsfähigkeit zumindest einer Untereinheit eines hydraulischen Bremssystems
CN104930243B (zh) * 2014-03-18 2019-09-10 费希尔控制国际公司 集成式变换器
CN104228867B (zh) * 2014-10-17 2017-04-19 南车株洲电力机车有限公司 机车制动缸压力的单独缓解方法及系统
KR101703602B1 (ko) * 2015-08-13 2017-02-07 현대자동차 주식회사 유압 클러치용 유압 센서의 선형성 편차 학습 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2310708Y (zh) * 1997-02-28 1999-03-17 株洲电力机车厂 机车电空制动机控制装置
CN201882072U (zh) * 2010-12-08 2011-06-29 中国铁道科学研究院机车车辆研究所 电空制动系统
CN105452076A (zh) * 2013-08-12 2016-03-30 克诺尔商用车制动系统有限公司 电-气动式驻车制动组件
CN105564403A (zh) * 2016-01-05 2016-05-11 中车株洲电力机车有限公司 一种机车制动机的控制系统及方法
CN206510905U (zh) * 2016-12-06 2017-09-22 张川宝 一种用于动车组制动系统的ep阀控制装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU JIAN ET AL.: "Simulation research on hte On-off Valves Based on AMESIM", AMESIM, vol. 52, no. 4, 30 April 2014 (2014-04-30) *
SHAO JIANSHUAI ET AL.: "Analysis of switch-tpe MU EP Valve Performance Parameter", RAILWAY LOCOMOTIVE AND MOTOR CAR, vol. 7, 31 July 2015 (2015-07-31) *

Also Published As

Publication number Publication date
CN109808665B (zh) 2020-03-17
CN109808665A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2019095780A1 (zh) 一种动车组开关型电空阀控制方法及装置
JP7041697B2 (ja) チャンバ圧力制御方法及び装置、半導体設備
JP6393213B2 (ja) 室圧制御システムおよび室圧制御方法
JP5111519B2 (ja) 真空容器の圧力制御方法および圧力制御装置
JP6960778B2 (ja) 真空発生器を含む真空システムの制御
JP5778475B2 (ja) 室圧制御システム
JP5342489B2 (ja) 薬液供給システム
JP6940303B2 (ja) 真空発生装置を含む真空システムの制御
US20120000542A1 (en) Mass flow controller, mass flow controller system, substrate processing device, and gas flow rate adjusting method
GB2501735A (en) Warming a vacuum pump arrangement
CN108027621B (zh) 用于使用比例流量阀控制气体流的方法和系统
CN114641620B (zh) 用于控制气动致动装置的力的方法
US9880569B2 (en) Pressure control method for process chamber and pressure control device for process chamber
JP5832391B2 (ja) 列車ブレーキ制御装置
CN114706431A (zh) 反应腔室的压力控制方法、装置和半导体工艺设备
JP5331867B2 (ja) 真空圧力制御装置
CN212275901U (zh) 气体密度继电器的接点温度补偿校验装置
CN112455408B (zh) 一种制动系统的控制方法及装置、设备、介质
WO2017008549A1 (zh) 一种呼吸机的闭环容量控制方法
JP2010100287A (ja) ブレーキ圧力調整弁における油圧差の検出方法及び装置
TWI834342B (zh) 將工件引入到半導體處理工具的系統及半導體處理系統
JP2016068827A (ja) エアサスペンション装置
JPH02302644A (ja) 集合胴圧力制御装置
JP2020084985A (ja) 真空生成装置を備えた真空システムの制御
RU2568525C1 (ru) Способ электро-пневмо преобразования

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878566

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18878566

Country of ref document: EP

Kind code of ref document: A1