WO2019095629A1 - 一种磁性树脂促进反硝化去除水中硝态氮的方法 - Google Patents

一种磁性树脂促进反硝化去除水中硝态氮的方法 Download PDF

Info

Publication number
WO2019095629A1
WO2019095629A1 PCT/CN2018/083896 CN2018083896W WO2019095629A1 WO 2019095629 A1 WO2019095629 A1 WO 2019095629A1 CN 2018083896 W CN2018083896 W CN 2018083896W WO 2019095629 A1 WO2019095629 A1 WO 2019095629A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
water
magnetic
pool
reactor
Prior art date
Application number
PCT/CN2018/083896
Other languages
English (en)
French (fr)
Inventor
双陈冬
张光
叶婷
李爱民
谭亮
王珂
Original Assignee
南京大学
南京大学盐城环保技术与工程研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学, 南京大学盐城环保技术与工程研究院 filed Critical 南京大学
Priority to US16/764,847 priority Critical patent/US11254598B2/en
Publication of WO2019095629A1 publication Critical patent/WO2019095629A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2833Anaerobic digestion processes using fluidized bed reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2813Anaerobic digestion processes using anaerobic contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a magnetic resin for promoting denitrification to remove nitrate nitrogen in water, more specifically to carry out water or sewage by simultaneously exerting the ion exchange effect of the magnetic resin ion exchange group and the biological action enhanced by the magnetic material.
  • a method for efficient removal of nitrate nitrogen is also known as a magnetic resin for promoting denitrification to remove nitrate nitrogen in water, more specifically to carry out water or sewage by simultaneously exerting the ion exchange effect of the magnetic resin ion exchange group and the biological action enhanced by the magnetic material.
  • Nitrate nitrogen is widely present in various water bodies in nature. With the rapid development of China's industry and agriculture and the frequent production activities of human beings, the nitrate nitrogen in industrial wastewater, rural and urban sewage is continuously discharged into the natural world, and the concentration of nitrate nitrogen in natural water increases sharply. Surface water and groundwater are polluted by severe nitrate nitrogen, and the presence of nitrate nitrogen in drinking water is endangering human health.
  • conventional water treatment methods include biological treatment method, reverse osmosis method, anion resin exchange method, chemical catalytic reduction method and electrodialysis. Based on technical maturity, operational effectiveness and cost considerations, more biological methods are currently used.
  • the traditional biological method is denitrification, which has low operating cost and is widely used by sewage treatment plants. However, the denitrification effect is greatly affected by temperature, and it is difficult to guarantee efficient and stable operation in some seasons and northern regions.
  • the anion exchange method recommended by the Environmental Protection Agency (EPA) removes nitrate from groundwater. The method has high removal efficiency and stable effluent operation, but requires high-concentration brine to regenerate the resin, and the resulting high-salt desorption liquid is difficult to handle.
  • EPA Environmental Protection Agency
  • an ion exchange and denitrification integrated method for removing nitrate nitrogen in water disclosed in Chinese Patent Publication No. 201510571917.1 removes nitrate nitrogen in water by anion exchange resin, and then adsorbs The nitrate-containing anion exchange resin is regenerated by denitrification after transfer, thereby achieving the effect of recycling the anion exchange resin.
  • the method enables the nitrate nitrogen to be efficiently concentrated by the resin and then removed by biological methods, but the resin is at risk of being contaminated by biological substances.
  • the technical problem to be solved by the present invention is to provide a method for promoting denitrification to remove nitrate nitrogen in water by magnetic resin, thereby efficiently removing total nitrogen in water or sewage, and further reducing cost.
  • a method for promoting denitrification to remove nitrate nitrogen in water by a magnetic resin comprising the following steps:
  • Magnetic resin adsorption process water containing nitrate nitrogen is mixed into the magnetic resin in the pool A and the pool A, and the nitrate-nitrogen in the water is removed by controlling the flow ratio of the magnetic resin to the water and the adsorption time, and the adsorption time is 5 to 60 minutes;
  • the flow ratio of the magnetic resin to water is 1:3 to 200.
  • the magnetic resin is a nano/micron-sized ferroferric oxide-supported strong base anion exchange resin, a nano/micron-sized iron oxide-supported strong base anion exchange resin or a magnetic method prepared by a copolymerization method.
  • Base anion exchange resin is a nano/micron-sized ferroferric oxide-supported strong base anion exchange resin, a nano/micron-sized iron oxide-supported strong base anion exchange resin or a magnetic method prepared by a copolymerization method.
  • the electron donor is one or more of methanol, sodium acetate, glucose, starch, lactic acid, lactate, sulfur, a ferrous salt or ferrous sulfide.
  • One or more of activated sludge, denitrifying bacteria or anaerobic sludge is added to the reactor C.
  • the amount of activated sludge, denitrifying bacteria or anaerobic sludge added to the reactor C is such that the volatile solid of the solution is 0.1-20 g/L.
  • the amount of the electron donor added to the reactor C is such that the C/N ratio in the solution is between 5.5 and 7.5, which ensures an adequate carbon source during the reaction.
  • the residence time of the magnetic resin in the pool C was 1 hour, and the temperature was maintained at 30 °C.
  • the present invention has the following advantages:
  • the surface of the magnetic resin is adhered to the denitrifying microorganism, and the magnetic material can enhance the metabolic process of the microorganism. Therefore, in normal operation, both the ion exchange and the denitrification enhanced by the magnetic material are simultaneously present in the pool A and the reactor B, the residence time is shortened, the reactor volume is reduced, and the nitrate removal effect is improved.
  • the denitrification treatment process is only for the resin after the adsorption of nitrate nitrogen, and the control conditions such as temperature residence time and temperature are essential for denitrification, and the treatment amount is significantly reduced, so that the temperature control cost is significantly reduced.
  • FIG. 1 is a flow chart of a process for promoting denitrification to remove nitrate nitrogen in water by a magnetic resin of the present invention.
  • a process for promoting denitrification of the present invention to remove nitrate nitrogen in water is further illustrated by the following examples.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a sewage is 115mg/L, which is processed by the following steps:
  • the apparatus was operated continuously for 10 days, and the sewage was mixed by contact with a magnetic anion exchange resin.
  • the removal rate of nitrate nitrogen reaches 95 ⁇ 4%, and the sewage and common strong base anion exchange tree
  • the removal rate of nitrate nitrogen in the water output is only 83% ⁇ 6%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a sewage is 112mg/L, which is processed by the following steps:
  • the sewage was supplied to the tank A and mixed with a magnetic microsphere resin (the resin disclosed in Chinese Patent No. 201110327637.8) in which the flow ratio of the resin to water was 1:200 and the contact time was 60 minutes.
  • a magnetic microsphere resin the resin disclosed in Chinese Patent No. 201110327637.8 in which the flow ratio of the resin to water was 1:200 and the contact time was 60 minutes.
  • the apparatus was operated continuously for 15 days, and the sewage was mixed by contact with the magnetic microsphere resin. In the water output from the final device, the nitrate removal rate reached 91 ⁇ 2%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a food wastewater is 82 mg/L, which is processed by the following steps:
  • the food waste water is input into the tank A, and is in contact with the magnetic acrylic strong base anion exchange microsphere resin (the resin disclosed in Chinese Patent No. 201010017687.1), wherein the flow ratio of the resin to the water is 1:50, the contact time. It is 45 minutes.
  • the magnetic acrylic strong base anion exchange microsphere resin the resin disclosed in Chinese Patent No. 201010017687.1
  • the apparatus was continuously operated for 7 days, and the food waste water was mixed and mixed by contact with a magnetic acrylic strong base anion exchange microsphere resin. In the water output from the final device, the nitrate removal rate reached 94 ⁇ 3%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a petrochemical wastewater is 45mg/L, which is processed by the following steps:
  • the apparatus was continuously operated for 8 days, and the food waste water was mixed and contacted by contact with a magnetic strong basic anion exchange resin. In the water output from the final device, the nitrate removal rate reached 96 ⁇ 2%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a test water is 150mg/L, which is processed by the following steps:
  • the experimental water distribution is input into the pool A, and is separately mixed with a magnetic anion exchange resin (Wu Xuehui et al. Journal of Guangxi University (Natural Science Edition), 1999, 24(2): 163-166.), wherein the resin and water are mixed.
  • the flow ratio is 1:3 and the contact time is 5 minutes.
  • the apparatus was operated continuously for 7 days, and the experimental water distribution was mixed by contact with a magnetic anion exchange resin. In the water output from the final device, the nitrate removal rate reached 87 ⁇ 5%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a food wastewater is 75mg/L, which is processed by the following steps:
  • the food waste water is fed into the tank A and separately mixed with the magnetic anion exchange resin, wherein the flow ratio of the resin to the water is 1:150, and the contact time is 50 minutes.
  • the magnetic resin used is nano/micron-sized ferric oxide loaded in Strong base anion exchange resin on.
  • the apparatus was operated continuously for 12 days, and the food waste water was mixed by contact with a magnetic anion exchange resin. In the water output from the final device, the nitrate removal rate reached 92 ⁇ 2%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a sewage is 68mg/L, which is processed by the following steps:
  • the sewage is supplied to the tank A and separately mixed with the magnetic anion exchange resin, wherein the flow ratio of the resin to the water is 1:80, and the contact time is 30 minutes.
  • the magnetic resin used was a magnetic strong base anion exchange resin prepared by a copolymerization method of the macroporous anion exchange resin D201.
  • the apparatus was operated continuously for 9 days and the sewage was mixed by contact with a magnetic anion exchange resin.
  • the nitrate removal rate reached 92 ⁇ 2%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a test water is 100mg/L, which is processed by the following steps:
  • the experimental water distribution is input into the pool A, and respectively contacted and mixed with a magnetic acrylic strong base anion exchange microsphere resin (the resin disclosed in the patent ZL201010017687.1), wherein the flow ratio of the resin to the water is 1:60, the contact time It is 20 minutes.
  • a magnetic acrylic strong base anion exchange microsphere resin the resin disclosed in the patent ZL201010017687.1
  • the apparatus was continuously operated for 10 days, and the experimental water distribution was contacted by contact with a magnetic acrylic strong base anion exchange microsphere resin. In the water output from the final device, the nitrate removal rate reached 90 ⁇ 3%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a sewage is 92mg/L, which is processed by the following steps:
  • the apparatus was operated continuously for 15 days, and the sewage was mixed and contacted by contact with a magnetic strong basic anion exchange resin. In the water output from the final device, the nitrate removal rate reached 90 ⁇ 3%.
  • the magnetic resin of the present embodiment promotes denitrification to remove nitrate nitrogen in water by the following steps:
  • the concentration of nitrate nitrogen in a test water is 120mg/L, which is processed by the following steps:
  • the flow ratio described in the above embodiment means that a certain amount of water is uniformly mixed with the resin, so that the resin forms a fluidized state, that is, the ratio of the volume of the resin that needs to enter the reactor A per hour and the volume of the sewage to be treated. .

Abstract

一种磁性树脂促进反硝化去除水中硝态氮的方法,使用磁性阴离子交换树脂与污水接触混合,通过磁性阴离子交换树脂与污水中的硝态氮发生离子交换和经磁性材料增强的反硝化双重作用,实现污水中硝态氮的快速高效去除,同时通过微生物反硝化作用实现磁性阴离子交换树脂的再生和回用。该方法能够缩短污水在反应器中的停留时间,同时降低了反应器体积,提高污水中硝态氮的去除效果。

Description

一种磁性树脂促进反硝化去除水中硝态氮的方法 技术领域
本发明涉及一种磁性树脂促进反硝化去除水中硝态氮的方法,更具体地说是一种通过同时发挥磁性树脂离子交换基团的离子交换作用和磁性材料增强的生物作用进行水或污水中硝酸盐氮的高效去除的方法。
背景技术
硝态氮在自然界的各种水体中广泛存在。随着我国工业、农业的快速发展以及人类生产活动的频繁,工业废水、农村和城市污水中的硝态氮不断排放进入自然界,自然界水中的硝态氮浓度急剧增大。地表水、地下水均受到了严重的硝态氮污染,其存在在饮用水中的硝态氮正危害着人体健康。
近年来,各种水体中硝态氮浓度不断升高,已成为水体中最受关注的污染物指标之一。我国将城镇污水污染物中总氮排放限值设定为15mg/L(城镇污水处理厂污染物排放标准一级A标准)作为最高允许排放浓度(GB18918-2002),甚至在水体富营养化问题突出的地区排水的总氮设定为10mg/L。
针对水中硝态氮的处理,常规水处理方法有:生物处理法,反渗透法,阴离子树脂交换法,化学催化还原法和电渗析等方法。基于技术成熟度、运行效果和成本方面的考虑,目前使用较多为生物法。传统的生物法为反硝化法,其运行成本较低,被污水处理厂广泛采用。但反硝化效果受温度影响较大,在一些季节和北方地区难以保障其高效、稳定的运行。而美国环境保护署(Environmental Protection Agency,EPA)推荐的阴离子交换法去除地下水中的硝态氮。该方法去除效率较高,且出水运行稳定,但需要使用高浓度盐水进行树脂的再生,产生的高盐脱附液难以处理。因此,离子交换法一直难以在污水处理中大规模推广应用。 针对阴离子交换树脂去除硝态氮的缺陷,中国专利公开文件201510571917.1中所公开的一种离子交换与反硝化集成去除水中硝态氮的方法,通过阴离子交换树脂去除水中的硝酸盐氮,再将吸附有硝酸盐的阴离子交换树脂转移后通过反硝化进行再生,达到重复利用阴离子交换树脂的作用。该方法能够使硝态氮通过树脂高效浓缩,再通过生物法去除,但树脂有被生物物质污染的风险。而中国专利申请文件201710296407.7中所公开的一种深度去除废水中高浓度硝态氮的方法,通过反硝化深床滤池技术对废水中硝态氮的初步消减能力,与磁性离子交换树脂吸附技术对废水中硝态氮的高效深度去除作用相结合,且二者均在能一定程度上耐低温的特点,集成一种经济高效深度去除废水中高浓度硝态氮的耐寒方法。该方法能够将废水中的高浓度硝态氮去除,但对于高浓度的硝态氮废水会因树脂再生频繁而造成操作困难,其再生液为高浓度硝态氮废水,仍需进一步处理,用此方法去除废水中高浓度硝态氮是比较繁琐的。
发明内容
本发明所要解决的技术问题是提供一种磁性树脂促进反硝化去除水中硝态氮的方法,以高效去除水或污水中的总氮,同时进一步降低成本。
为解决上述技术问题,本发明采用的技术方案如下:
一种磁性树脂促进反硝化去除水中硝态氮的方法,它包括以下步骤:
(1)磁性树脂吸附过程:将含有硝态氮的水放进池A与池A中的磁性树脂混合,通过控制磁性树脂与水的流量比例和吸附时间去除水中的硝态氮,吸附时间为5~60分钟;
(2)分离:从池A流出的水进入到反应器B中,经过旋流分离后流出的水,分离出的磁性树脂中,0~70%的磁性树脂打回池A中,剩余的磁性树脂进入反硝化反应器C中;
(3)反硝化处理:向反应器C中加入电子供体,磁性树脂 在池C中的停留时间为0.5~8小时,并维持温度在15~38℃内;
(4)树脂回用:通过自然沉降的方式将池C底部的磁性树脂打回池A中,进行循环使用。
步骤(1)中,所述的磁性树脂与水的流量比为1:3~200。
步骤(1)中,所述的磁性树脂为纳米/微米级四氧化三铁负载的强碱阴离子交换树脂、纳米/微米级三氧化二铁负载的强碱阴离子交换树脂或共聚法制备的磁性强碱阴离子交换树脂。
步骤(3)中,所述的电子供体为甲醇、乙酸钠、葡萄糖、淀粉、乳酸、乳酸盐、硫、二价铁盐或硫化亚铁中的一种或几种。
所述反应器C中加有活性污泥、反硝化菌剂或厌氧污泥中的一种或几种。
所述反应器C中加入的活性污泥、反硝化菌剂或厌氧污泥的用量使得溶液的可挥发性固体为0.1—20g/L。
步骤(3)中,所述反应器C中加入的电子供体的用量使得溶液中的C/N比在5.5-7.5之间,能够保证反应过程中充足的碳源。
步骤(3)中,所诉磁性树脂在池C中的停留时间为1小时,维持温度为30℃。
具体来说,本发明具有如下优势:
(1)磁性树脂表面粘附有反硝化微生物,而且,磁性材料能够增强微生物的代谢过程。因此,正常运行时,池A和反应器B中同时存在离子交换和经磁性材料增强的反硝化双重作用,缩短了停留时间,降低了反应器体积,提高了硝酸盐的去除效果。
(2)采用旋流分离器(反应器B)和对分离后树脂的反硝化反应器(反应器C),可极大的降低传统反硝化工艺的占地面积,从而显著削减投资成本。此外,与传统反硝化工艺相比,较小的反应器(反应器C)一方面节约占地,另一方面使得生化条件过程中温度,pH和加药量便于调控,有利于简化操作步骤,且控制的成本可显著降低。
(3)反硝化处理过程仅针对吸附硝态氮后的树脂,而且温度停留时间和温度等控制条件对反硝化至关重要,处理量的显著降低,使得温度等条件控制成本显著降低。
(4)树脂回用,达到重复循环利用,节约成本。
附图说明
图1为本发明的一种磁性树脂促进反硝化去除水中硝态氮的工艺的流程图。
具体实施方式
通过以下实施例对本发明的一种磁性树脂促进反硝化去除水中硝态氮的工艺作进一步的说明。
实施例1:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某污水中含硝态氮浓度为115mg/L,经过以下步骤处理:
(1)将污水输入池A中,然后分别与磁性阴离子交换树脂和非磁性阴离子交换树脂
Figure PCTCN2018083896-appb-000001
接触混合,其中树脂与水的流量比为1:100,接触时间为40分钟。所采用的磁性阴离子交换树脂为纳米/微米级四氧化三铁负载在
Figure PCTCN2018083896-appb-000002
上的强碱性阴离子交换树脂。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,30%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为乙酸钠,并维持温度为35℃,然后让磁性树脂在池C中停留5小时。工艺启动时,在反应器C中加入反硝化菌剂。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行10天,污水通过与磁性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到95±4%,而污水与 普通强碱阴离子交换树
Figure PCTCN2018083896-appb-000003
接触混合,其输出的水中,硝态氮去除率却只有83%±6%。
实施例2:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某污水中含硝态氮浓度为112mg/L,经过以下步骤处理:
(1)将污水输入池A中并与磁性微球树脂(中国发明专利201110327637.8中所公开的树脂)接触混合,其中树脂与水的流量比为1:200,接触时间为60分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,20%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为葡萄糖,并维持温度为38℃,然后让磁性树脂在池C中停留7小时。工艺启动时,在反应器C中加入活性污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行15天,污水通过与磁性微球树脂接触混合。最终装置输出的水中,硝态氮去除率达到91±2%。
实施例3:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某食品废水中含硝态氮浓度为82mg/L,经过以下步骤处理:
(1)将食品废水输入池A中,并与磁性丙烯酸系强碱阴离子交换微球树脂(中国发明专利201010017687.1所公开的树脂)接触混合,其中树脂与水的流量比为1:50,接触时间为45分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,45%的磁性树脂打回池A中,剩余的磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为甲醇,并维持温度为30℃,然后让磁性树脂在池C中停留8小时。工艺启动时,在反应器C中加入厌氧污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行7天,食品废水通过与磁性丙烯酸系强碱阴离子交换微球树脂接触混合。最终装置输出的水中,硝态氮去除率达到94±3%。
实施例4:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某石化废水中含硝态氮浓度为45mg/L,经过以下步骤处理:
(1)将石化废水输入池A中,并与磁性强碱性阴离子交换树脂(Song H,et al.Journal of Industrial&Engineering Chemistry,2014,20(5):2888-2894.)接触混合,其中树脂与水的流量比为1:20,接触时间为10分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,60%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为淀粉,并维持温度为20℃,然后让磁性树脂在池C中停留1小时。工艺启动时,在反应器C中加入活性污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行8天,食品废水通过与磁性强碱性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到96±2%。
实施例5:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某实验配水中含硝态氮浓度为150mg/L,经过以下步骤处理:
(1)将实验配水输入池A中,并分别与磁性阴离子交换树脂(吴雪辉等.广西大学学报(自然科学版),1999,24(2):163-166.)接触混合,其中树脂与水的流量比为1:3,接触时间为5分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,70%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为乳酸,并维持温度为18℃,然后让磁性树脂在池C中停留0.5小时。工艺启动时,在反应器C中加入反硝化菌剂。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行7天,实验配水通过与磁性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到87±5%。
实施例6:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某食品废水中含硝态氮浓度为75mg/L,经过以下步骤处理:
(1)将食品废水输入池A中,并分别与磁性阴离子交换树脂接触混合,其中树脂与水的流量比为1:150,接触时间为50分钟。所采用的磁性树脂为纳米/微米级三氧化二铁负载在
Figure PCTCN2018083896-appb-000004
上的强碱阴离子交换树脂。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,5%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为乙酸钠和葡萄糖,并维持温度为35℃,然后让磁性树脂在池C中停留6.5小时。工艺启动时,在反应器C中加入活性污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行12天,食品废水通过与磁性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到92±2%。
实施例7:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某污水中含硝态氮浓度为68mg/L,经过以下步骤处理:
(1)将污水输入池A中,并分别与磁性阴离子交换树脂接触混合,其中树脂与水的流量比为1:80,接触时间为30分钟。所使用的磁性树脂是大孔型阴离子交换树脂D201采用共聚法制备的磁性强碱阴离子交换树脂。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,10%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为硫化亚铁,并维持温度为25℃,然后让磁性树脂在池C中停留5.5小时。工艺启动时,在反应器C中加入反硝化菌剂。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行9天,污水通过与磁性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到92±2%。
实施例8:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某实验配水中含硝态氮浓度为100mg/L,经过以下步骤处理:
(1)将实验配水输入池A中,并分别与磁性丙烯酸系强碱阴离子交换微球树脂(专利ZL201010017687.1所公开树脂)接 触混合,其中树脂与水的流量比为1:60,接触时间为20分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,35%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为乙酸钠、葡萄糖和淀粉,并维持温度为30℃,然后让磁性树脂在池C中停留3.5小时。工艺启动时,在反应器C中加入反硝化菌剂和厌氧污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行10天,实验配水通过与磁性丙烯酸系强碱阴离子交换微球树脂接触混合。最终装置输出的水中,硝态氮去除率达到90±3%。
实施例9:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某污水中含硝态氮浓度为92mg/L,经过以下步骤处理:
(1)将污水输入池A中,并分别与磁性强碱性阴离子交换树脂(树脂同文献Journal of Industrial&Engineering Chemistry,2014,20(5):2888-2894.)接触混合,其中树脂与水的流量比为1:30,接触时间为35分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,50%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为二价铁盐和硫化亚铁,并维持温度为25℃,然后让磁性树脂在池C中停留2小时。工艺启动时,在反应器C中加入活性污泥和厌氧污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回 池A中,循环使用。
装置连续运行15天,污水通过与磁性强碱性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到90±3%。
实施例10:
如图1所示,本实施例的磁性树脂促进反硝化去除水中硝态氮的工艺按以下步骤进行:
某实验配水中含硝态氮浓度为120mg/L,经过以下步骤处理:
(1)将实验配水输入池A中,并分别与磁性强碱性阴离子交换树脂(树脂同文献Journal of Industrial&Engineering Chemistry,2014,20(5):2888-2894.)接触混合,其中树脂与水的流量比为1:40,接触时间为50分钟。
(2)池A流出的水经旋流分离(反应器B)后,分离出的磁性树脂中,0%的磁性树脂打回池A中,剩余磁性树脂进入反硝化反应器(反应器C)。
(3)向反应器C中加入电子供体,其中电子供体为二价铁盐和硫化亚铁,并维持温度为15℃,然后让磁性树脂在池C中停留3小时。工艺启动时,在反应器C中加入活性污泥和厌氧污泥。
(4)最后通过自然沉降的方式将池C底部的磁性树脂打回池A中,循环使用。
装置连续运行13天,污水通过与磁性强碱性阴离子交换树脂接触混合。最终装置输出的水中,硝态氮去除率达到88±3%。
上述实施例中所述的流量比,是指将一定量的水与树脂混合均匀,使得树脂形成流化状态,即每小时需要进入反应器A中的树脂体积和需要处理的污水的体积之比。
本发明涉及的其它未说明部分与现有技术相同。

Claims (8)

  1. 一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于,所述方法包括以下步骤:
    (1)磁性树脂吸附过程:将含有硝态氮的水放进池A与池A中的磁性树脂混合,通过控制磁性树脂与水的流量比例和吸附时间去除水中的硝态氮,吸附时间为5~60分钟;
    (2)分离:从池A流出的水进入到反应器B中,经过旋流分离后流出的水,分离出的磁性树脂中,0~70%的磁性树脂打回池A中,剩余的磁性树脂进入反硝化反应器C中;
    (3)反硝化处理:向反应器C中加入电子供体,磁性树脂在池C中的停留时间为0.5~8小时,并维持温度在15~38℃内;
    (4)树脂回用:通过自然沉降的方式将池C底部的磁性树脂打回池A中,进行循环使用。
  2. 根据权利要求1所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:步骤(1)中,所述的磁性树脂与水的流量比为1:3~200。
  3. 根据权利要求1所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:步骤(1)中,所述的磁性树脂为纳米/微米级四氧化三铁负载的强碱阴离子交换树脂、纳米/微米级三氧化二铁负载的强碱阴离子交换树脂或共聚法制备的磁性强碱阴离子交换树脂。
  4. 根据权利要求1所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:步骤(3)中,所述的电子供体为甲醇、乙酸钠、葡萄糖、淀粉、乳酸、乳酸盐、硫、二价铁盐或硫化亚铁中的一种或几种。
  5. 根据权利要求1所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:所述反应器C中加有活性污泥、反硝化菌剂或厌氧污泥中的一种或几种。
  6. 根据权利要求5所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:所述反应器C中加入的活性污泥、反硝化菌剂或厌氧污泥的用量使得溶液的可挥发性固体为0.1—20g/L。
  7. 根据权利要求1所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:步骤(3)中,所述反应器C中加入的电子供体的用量使得溶液中的C/N比在5.5-7.5之间,能够保证反应过程中充足的碳源。
  8. 根据权利要求1所述的一种磁性树脂促进反硝化去除水中硝态氮的方法,其特征在于:步骤(3)中,所诉磁性树脂在池C中的停留时间为1小时,维持温度为30℃。
PCT/CN2018/083896 2017-11-17 2018-04-20 一种磁性树脂促进反硝化去除水中硝态氮的方法 WO2019095629A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,847 US11254598B2 (en) 2017-11-17 2018-04-20 Method for promoting denitrification to remove nitrate nitrogen in water by magnetic resins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711146955.8 2017-11-17
CN201711146955.8A CN107651815A (zh) 2017-11-17 2017-11-17 一种磁性树脂促进反硝化去除水中硝态氮的方法

Publications (1)

Publication Number Publication Date
WO2019095629A1 true WO2019095629A1 (zh) 2019-05-23

Family

ID=61120410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083896 WO2019095629A1 (zh) 2017-11-17 2018-04-20 一种磁性树脂促进反硝化去除水中硝态氮的方法

Country Status (3)

Country Link
US (1) US11254598B2 (zh)
CN (1) CN107651815A (zh)
WO (1) WO2019095629A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107651815A (zh) * 2017-11-17 2018-02-02 南京大学 一种磁性树脂促进反硝化去除水中硝态氮的方法
CN110156107A (zh) * 2019-06-11 2019-08-23 泉州南京大学环保产业研究院 低浓度硝氮废水的处理方法
CN111018268A (zh) * 2019-12-31 2020-04-17 南京大学 一种树脂耦合反硝化脱氮的方法
CN111320338A (zh) * 2020-04-17 2020-06-23 山西润潞碧水环保科技股份有限公司 一种不受回流比限制的高脱氮装置及方法
CN112174339B (zh) * 2020-09-30 2022-11-11 南京环保产业创新中心有限公司 一种生物磁性树脂的制备方法及其在微污染水体处理中的应用
CN114315029A (zh) * 2021-12-29 2022-04-12 南京环保产业创新中心有限公司 一种磁性树脂促进反硝化去除水中硝态氮的方法
CN115536100A (zh) * 2022-08-22 2022-12-30 南京工大开元环保科技有限公司 一种能够深度脱氮的材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137973A (ja) * 2003-11-04 2005-06-02 Futaba Shoji Kk 磁性吸着剤およびその製造方法並びに水処理方法
US20090277843A1 (en) * 2008-05-08 2009-11-12 Kabushiki Kaisha Toshiba Polymer composite, water-treatment method using the same and manufacturing method of the same
CN101746930A (zh) * 2009-12-25 2010-06-23 南京中电联环保股份有限公司 一种农药工业废水深度处理方法
CN102603100A (zh) * 2012-04-01 2012-07-25 南京大学 一种基于分体式水力循环反应器的水中重金属离子快速去除系统与方法
WO2013155641A1 (es) * 2012-04-16 2013-10-24 Pontificaia Universidad Católica De Chile Medio sorbente para la remoción selectiva de contaminantes del agua
WO2016120942A1 (ja) * 2015-01-28 2016-08-04 株式会社 東芝 軟水機用吸着材、軟水機および電解水製造装置
CN106892543A (zh) * 2017-04-28 2017-06-27 南京环保产业创新中心有限公司 深度去除废水中高浓度硝态氮的方法
CN107651815A (zh) * 2017-11-17 2018-02-02 南京大学 一种磁性树脂促进反硝化去除水中硝态氮的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108464A (en) * 1978-02-14 1979-08-25 Chiyoda Chem Eng & Constr Co Ltd Method of biologically treating drainage by downward flow
JP3729585B2 (ja) * 1997-01-14 2005-12-21 前澤工業株式会社 排水処理設備
US6544421B2 (en) * 2001-03-31 2003-04-08 Council Of Scientific And Industrial Research Method for purification of waste water and “RFLR” device for performing the same
CN101254976B (zh) * 2008-03-28 2011-04-20 北京科技大学 一种用于污水处理的磁性生物载体的制备方法
CN102335628B (zh) * 2011-07-21 2013-04-10 南京大学 一种负载型纳米双金属复合催化剂及其制备方法
CN102430433B (zh) * 2011-10-25 2013-07-17 南京大学 一种选择性去除硝态氮的磁性微球树脂及其制备方法
CN103145231B (zh) * 2013-02-28 2014-08-20 华东理工大学 一种离子交换树脂再生废液的处理与回用方法及包含该方法的地下水中硝酸盐的脱除方法
CN104140175B (zh) * 2014-08-20 2016-04-13 南京大学 一种城市生活污水生化出水的深度处理和回用方法
CN105036495B (zh) * 2015-09-09 2017-03-15 南京大学 一种离子交换与反硝化集成去除水中硝态氮的方法
CN105906072A (zh) * 2016-06-22 2016-08-31 同济大学 一种去除水中高氯酸盐的方法
CN106946375A (zh) * 2017-03-28 2017-07-14 华南师范大学 一种纳米零价铁联合离子交换树脂去除水中总氮的方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137973A (ja) * 2003-11-04 2005-06-02 Futaba Shoji Kk 磁性吸着剤およびその製造方法並びに水処理方法
US20090277843A1 (en) * 2008-05-08 2009-11-12 Kabushiki Kaisha Toshiba Polymer composite, water-treatment method using the same and manufacturing method of the same
CN101746930A (zh) * 2009-12-25 2010-06-23 南京中电联环保股份有限公司 一种农药工业废水深度处理方法
CN102603100A (zh) * 2012-04-01 2012-07-25 南京大学 一种基于分体式水力循环反应器的水中重金属离子快速去除系统与方法
WO2013155641A1 (es) * 2012-04-16 2013-10-24 Pontificaia Universidad Católica De Chile Medio sorbente para la remoción selectiva de contaminantes del agua
WO2016120942A1 (ja) * 2015-01-28 2016-08-04 株式会社 東芝 軟水機用吸着材、軟水機および電解水製造装置
CN106892543A (zh) * 2017-04-28 2017-06-27 南京环保产业创新中心有限公司 深度去除废水中高浓度硝态氮的方法
CN107651815A (zh) * 2017-11-17 2018-02-02 南京大学 一种磁性树脂促进反硝化去除水中硝态氮的方法

Also Published As

Publication number Publication date
CN107651815A (zh) 2018-02-02
US20200339459A1 (en) 2020-10-29
US11254598B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2019095629A1 (zh) 一种磁性树脂促进反硝化去除水中硝态氮的方法
Karri et al. Critical review of abatement of ammonia from wastewater
Soares Biological denitrification of groundwater
Anderson et al. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends
CN105036495B (zh) 一种离子交换与反硝化集成去除水中硝态氮的方法
Tabassum A combined treatment method of novel Mass Bio System and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies
CN102775029A (zh) 城镇污水深度处理系统及方法
CN104176824B (zh) 一种硝酸铵废水生化处理装置及运行方法
CN101423265A (zh) 离子交换脱氮除磷深度处理方法
WO2012040943A1 (zh) 一种同步去除饮用水中重金属和硝酸盐的方法及其装置
CN109626672A (zh) 基于电化学和树脂组合工艺深度处理废水中硝态氮方法
CN110526504B (zh) 一种靶向脱氮除磷树脂再生废液处理的系统及方法
CN104003581A (zh) 一种高浓度难降解有机废水的处理工艺
Atkinson et al. Bioremediation of metal-contaminated industrial effluents using waste sludges
CN102897898A (zh) 一种采用曝气生物滤池处理猪场氮磷回收后的沼液的方法
CN110885162A (zh) 一种垃圾渗滤液零回灌处理工艺
CN111115661B (zh) 硝酸废水的处理系统和处理方法
CN202808537U (zh) 城镇污水深度处理系统
CN1242927C (zh) 污泥吸附剂的制备方法和利用其强化处理生活污水的方法
CN106517669A (zh) 黑臭水a/o正渗透处理系统及处理工艺
CN103303995A (zh) 一种利用硅藻土对废水进行深度处理的方法
CN206624744U (zh) 微电解‑芬顿‑egsb‑a/o‑bco‑baf‑混凝处理制药废水系统
CN211078800U (zh) 一种靶向脱氮除磷树脂再生废液处理的系统
CN101973661B (zh) 处理五倍子加工废水的方法
CN210367111U (zh) 一种混凝深度除砷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877920

Country of ref document: EP

Kind code of ref document: A1