WO2012040943A1 - 一种同步去除饮用水中重金属和硝酸盐的方法及其装置 - Google Patents

一种同步去除饮用水中重金属和硝酸盐的方法及其装置 Download PDF

Info

Publication number
WO2012040943A1
WO2012040943A1 PCT/CN2010/077734 CN2010077734W WO2012040943A1 WO 2012040943 A1 WO2012040943 A1 WO 2012040943A1 CN 2010077734 W CN2010077734 W CN 2010077734W WO 2012040943 A1 WO2012040943 A1 WO 2012040943A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
column
raw water
layer
heavy metals
Prior art date
Application number
PCT/CN2010/077734
Other languages
English (en)
French (fr)
Inventor
黄斌
史奕
陈欣
Original Assignee
中国科学院沈阳应用生态研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳应用生态研究所 filed Critical 中国科学院沈阳应用生态研究所
Publication of WO2012040943A1 publication Critical patent/WO2012040943A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to environmental protection, and more particularly to a method and apparatus for simultaneously removing heavy metals and nitrates from drinking water. Background technique
  • Activated carbon has a certain physical adsorption capacity for heavy metals.
  • Iron-manganese sand containing iron oxides and manganese oxides can also adsorb heavy metals such as iron, manganese and arsenic by physical and chemical action.
  • the physicochemical adsorption capacity of iron oxides or manganese oxides is affected by its microscopic morphology and structure, and the ability of new iron oxides and nascent manganese oxides to adsorb heavy metals is higher.
  • KDF (copper-zinc) alloy and activated carbon has been used to remove heavy metals from drinking water.
  • Heavy metals in drinking water are removed by the redox action of copper and zinc into a form that is easily adsorbed by activated carbon. However, this process will release copper and zinc. If these heavy metals exceed the standard, it may lead to excessive copper and zinc in the effluent.
  • Methods for removing nitrate from drinking water include ion exchange, reverse osmosis, chemical, and biological denitrification. Among them, ion exchange, reverse osmosis, and high cost, the wastewater generated after treatment can cause secondary pollution. Chemical methods, such as iron powder reduction, have a low reaction rate and many by-products (such as ammonia).
  • Removal of drinking water nitrate by biological denitrification generally requires the addition of an appropriate amount of reducing material as an electron donor.
  • Biodenitrification is classified into heterotrophic denitrification and autotrophic denitrification depending on the electron donor used.
  • Heterotrophic denitrification electron donors can be either small organic molecules or biodegradable macromolecules such as cotton and wood chips.
  • the addition of organic small molecules as a carbon source generally reaches more than 120% of the theoretical carbon source required for complete removal of nitrate. It is easy to cause excessive growth of microorganisms and high organic carbon in effluent.
  • Biodegradable macromolecules are generally made into a permeability denitrification reaction wall for the in situ removal of groundwater nitrate.
  • the autotrophic denitrification method mainly uses elemental sulfur or hydrogen as an electron donor.
  • concentration of nitrate is high (such as above 45 mgN / L)
  • the autotrophic denitrification alone will lead to a decrease in the pH of the effluent, and the sulfate content will increase significantly and exceed the standard.
  • the effluent P H is lower than 8.3, removal of sulfate by calcium carbonate may cause release of calcium ions and increase the hardness of the water.
  • hydrogen is used as a self-supporting source, the safety management of external hydrogen supply is high, and hydrogen is generally supplied by electrolysis. However, hydrogen has a low solubility in water and a low hydrogen utilization rate.
  • a method for simultaneously removing heavy metals and nitrates in drinking water adding to the raw water to be treated, formic acid-based small-molecular organic carbon supplemented by acetic acid or ethanol, the amount of which is heterotrophic denitrification completely removes the average amount of raw water 80-90% of the carbon source required for nitrate; the addition of small molecule organic carbon based on formic acid and supplemented by acetic acid or ethanol to make the pH of the raw water reach 5-3.9; the acidified raw water passes under aerobic conditions.
  • the metal removal column uses the filler to remove heavy metals; the raw water for removing heavy metals enters the denitrification reaction column, and the small amount of organic carbon remaining as a carbon source is used as a carbon source to remove most of the nitrate in the raw water by heterotrophic denitrification.
  • the filler in the denitrification reaction column is used as an electron donor source, and the residual nitrate in the raw water is removed by autotrophic denitrification; then the other residual substances in the raw water are removed by aerobic circulation filtration, thereby obtaining drinking for removing heavy metals and nitrates. water.
  • the filler layer of the metal removal column is repeatedly laid in the order of quartz sand and iron oxide layer, quartz sand layer, activated carbon and ferrous sulfide layer and quartz sand layer; wherein quartz sand and iron oxide layer, quartz sand layer
  • the volume ratio of activated carbon to ferrous sulfide layer and quartz sand layer is 20-2: 1: 20-2: 1; the volume ratio of quartz sand to iron oxide layer, quartz sand and iron oxide is 20-2: 1
  • the activated carbon and the ferrous sulfide layer, the volume ratio of the activated carbon to the ferrous sulfide is 50-5:1.
  • the filler in the denitrification reaction column, the upper half filler layer is activated carbon and ferrous sulfide, and the volume ratio is 50-5:1; the lower half filler layer is activated carbon and iron oxide particles, and the volume ratio is 100- 10: 1.
  • the raw water to be treated is added with small molecular organic carbon mainly composed of acetic acid or ethanol to make the pH reach 5-3.9, and the acidified raw water passes through the metal removal column, and the iron oxide particles are filled by the inner filling material.
  • the activated carbon and the ferrous sulfide particles adsorb and precipitate the heavy metals in the raw water to be treated;
  • the nascent iron oxide formed by the reaction between the ferrous sulfide in the filler and the dissolved oxygen in the raw water also adsorbs the heavy metals in the raw water to be treated;
  • the small molecule organic carbon supplemented by acetic acid or ethanol is a small molecule organic carbon supplemented with acetic acid or ethanol mainly for formic acid. It is required for heterotrophic denitrification to completely remove the average nitrate content in the influent. 80-90% of the carbon source.
  • the pH is between 5 and 3.9.
  • the acidified raw water passes through the metal removal column, and the heavy metal of the raw water to be treated is adsorbed by the iron oxide particles, the activated carbon and the ferrous sulfide particles.
  • the nascent iron oxide formed by the reaction of the ferrous sulfide in the filler with the dissolved oxygen in the raw water also adsorbs the heavy metal in the raw water to be treated.
  • a small amount of organic carbon added as a carbon source is added to the raw water to be treated to acidify, and most of the nitrate in the raw water is removed by heterotrophic denitrification.
  • Iron is the source of electron donors, and the residual nitrate in raw water is removed by auto-trophic denitrification and autoclaving denitrification by ferrous iron.
  • the raw water treated by the denitrification reaction column is subjected to aerobic circulation filtration of the drip filter column to remove residual nitrite and organic carbon in the raw water, and then filtered by ozone treatment and activated carbon to obtain removal of heavy metals and nitrates. drinking water.
  • the drip filter column is composed of a quartz sand layer and an activated carbon layer, wherein the volume ratio of the quartz sand layer to the activated carbon layer is 1:5-25.
  • the denitrification column and the trickling column are subjected to a five-week joint start-up phase.
  • the denitrification reaction column and the drip filter column were inoculated with a 100-200 dilution suspension of aerobic activated sludge at room temperature of 20-28 °C.
  • the treatment device can treat the heavy metal and nitrate complex contaminated drinking water.
  • the treated raw water is first aerated in the original pool, and then filtered through a fine quartz sand layer laid on the bottom of the original pool into the distribution pool and distribution pool. Only a formic acid-based carbon source supplemented with acetic acid or ethanol is added to the distribution tank.
  • the water in the pool and the distribution basin flows into the mixing tank in their volume ratio.
  • the water flow in the mixing tank is sequentially passed through the heavy metal removal column and the denitrification reaction column.
  • the water flowing out of the denitrification column merges with the upward circulating water stream from the trickling filter, flows down through the drip filter column, and enters the trickling filter.
  • the amount of water in the drip filter exceeds a certain volume, it automatically overflows into the ozone treatment tank.
  • the ozone treatment tank is full of water, under the action of the ozone generator, the ozone is disinfected from the bottom of the ozone treatment tank, and then filtered through the activated carbon column to enter the storage tank.
  • a device for simultaneously removing heavy metals and nitrates in drinking water including raw water pool, distribution tank, mixing tank, heavy metal removal column, denitrification reaction column, drip filter column, trickling filter, ozone treatment tank, ozone generator, activated carbon column And a storage tank; wherein the original pool, the distribution pool, the mixing pool, the heavy metal removal column, and the denitrification reaction column are sequentially connected through the pipeline, and the outlet of the denitrification reaction column is connected to the water inlet of the drip filter column through the pipeline, and the filtration column There is a drip filter below the drip filter, and the drip filter is connected to the water outlet of the drip filter through a pipeline.
  • the outlet of the drip filter is connected to the inlet of the ozone treatment tank through a pipeline, and the pipeline is provided at the bottom of the ozone treatment tank.
  • the ozone generator connected to the ozone treatment tank is connected to the activated carbon column and the storage tank in turn.
  • a quartz sand layer is laid on the bottom of the original pool.
  • the original water pool is provided with two water outlets, and the two water outlets respectively connect the first distribution pool and the second distribution pool through the pipeline, and the water outlets of the first distribution pool and the second distribution pool are connected to the mixing pool.
  • the raw water treated by the invention does not need to be deoxidized, the dissolved oxygen in the raw water and the added organic acid strengthen the heavy metal to remove the iron oxide and the ferrous sulfide filler in the column to adsorb and remove the heavy metal in the raw water.
  • the present invention uses formic acid as the main carbon source and acidifies the raw water, and it is not necessary to adjust the pH of the water during the denitrification process.
  • the amount of carbon source added is not left, generally 80-90% of the carbon source needed to completely remove the average nitrate content in the influent water, mainly heterotrophic denitrification, supplemented by autotrophic denitrification Make full use of the synergistic effect of ferrous iron autotrophic denitrification and sulfur autotrophic denitrification to effectively remove nitrate.
  • the treatment method of the invention can automatically adjust the relative action intensity of heterotrophic denitrification and autotrophic denitrification without changing the carbon source supply and processing conditions, and is effective Remove nitrate from raw water.
  • the denitrified water of the present invention is subjected to aerobic circulation filtration treatment, so that the nitrite, ammonia nitrogen and organic carbon content in the effluent are low, which facilitates rapid ozone disinfection.
  • the treated water of the present invention is weakly alkaline, the sulfate concentration is not significantly increased, and the contents of heavy metals, nitrites, ammonia nitrogen and organic carbon are not exceeded.
  • FIG. 1 is a diagram of a treatment apparatus for removing heavy metals and nitrates from drinking water according to the present invention. detailed description
  • the metal removal column 5 has a diameter of 10 cm and a height of 100 cm, and the filler layer is laid five times in the order of quartz sand and iron oxide layer, quartz sand layer, activated carbon and ferrous sulfide layer and quartz sand layer; quartz sand and The volume ratio of the iron oxide layer, the quartz sand layer, the activated carbon to the ferrous sulfide layer and the quartz sand layer is 4:1:4:1; in the quartz sand and iron oxide layer, the volume of the quartz sand and the iron oxide is 5: 1; in the activated carbon and ferrous sulfide layer, the volume ratio of activated carbon to ferrous sulfide is 10:1. Quartz sand and iron oxide have a particle size of ⁇ l mm, and ferrous sulfide and activated carbon have a particle size of 1-4 mm.
  • Denitrification column 6 has a diameter of 15 cm and a height of lm.
  • the upper part of the packing is activated carbon and ferrous sulfide, and the volume ratio is 10:1.
  • the packing of the lower part of the denitrification column is activated carbon and iron oxide. It is 20:1. Quartz sand and iron oxide have a particle size of ⁇ l mm, and ferrous sulfide and activated carbon have a particle size of 1-4 mm.
  • the drip filter column 7 has a diameter of 10 cm and a height of 1 m and is composed of a quartz sand layer and an activated carbon layer.
  • the quartz sand layer is 10 cm high, with a particle size of ⁇ 1 mm, an activated carbon layer with a height of 90 cm and a particle size of 1-4 mm.
  • the denitrification column 6 and the trickling column were subjected to a five-week joint start-up operation before the treatment unit treated the raw water containing heavy metals and nitrates.
  • the denitrification reaction column 6 and the trickling column 7 were inoculated with a 200-fold diluted suspension of aerobic activated sludge at room temperature (20-28 ° C).
  • the distribution tank 2 and the distribution tank 3 were filled with water in a 1:1 volume, and the nitrates 98 mgN/L were added to both the distribution tank 2 and the distribution tank 3, but only 10 mM formic acid was added to the distribution tank 2 1.5 mM acetic acid and 6 mM ethanol.
  • the effluent of the water distribution tank 2 and the distribution tank 3 was mixed into the mixing tank 4 at the same flow rate of 0.9 IJh, and the pH of the mixed water was 4.0.
  • the effluent from the mixing tank 4 was passed up through the heavy metal removal column 5 and the denitrification reaction column 6 at a flow rate of 1.8 IJh.
  • the effluent from the denitrification column 6 merges with the upward circulating water stream (36 IJh) from the trickle filter 8 and flows down through the trickling column 7 into the trickling filter 8 .
  • the acetic acid content of the water in the water distribution tank 2 was reduced to 0.5 mM, and the other conditions were unchanged.
  • the denitrification reaction column 6 and the drip filter column 7 were used.
  • the treatment device treats the heavy metal and nitrate complex contaminated drinking water as follows:
  • the foam board 90% of the water surface of the distribution tank 2 is covered by the foam board, and the foam board can float up and down as the water level changes.
  • the pH of the distribution tank 2 and the effluent of the distribution tank 3 entered the 2 L volume mixing tank 4 at the same flow rate and the pH became 4.3.
  • the water in the mixing tank 4 is sequentially passed through the heavy metal removal column 5 and the denitrification reaction column 6 at a flow rate of 1.8 L/h.
  • the filler material in the metal removal column 5, the iron oxide particles, the activated carbon and the ferrous sulfide particles directly adsorb the heavy metals in the raw water to be treated.
  • the nascent iron oxide formed by the reaction of ferrous sulfide with dissolved oxygen in the raw water can also adsorb and remove heavy metals in the raw water.
  • the source of the electron donor is the source of the electron donor.
  • the lower part of the denitrification reaction column is mainly used, and formic acid and ethanol are used as carbon sources to support heterotrophic denitrification to remove most of the nitrate in the raw water; when the carbon source such as formic acid is consumed, the denitrification reaction column 6 is used.
  • the upper part is dominated, and ferrous sulfide is used as an electron donor source to support ferrous iron autotrophic denitrification and vulcanization autotrophic denitrification to remove the remaining water. Nitrate.
  • the effluent from the denitrification column 6 merges with the upward circulating water stream from the trickling filter 8, and flows downward through the drip column 7 into the trickling filter.
  • the upward circulating water flow rate of the trickling filter 8 is 36 IJh.
  • Embodiment 1 The difference from Embodiment 1 is that:
  • Embodiment 1 The difference from Embodiment 1 is that:
  • Embodiment 1 The difference from Embodiment 1 is that
  • the carbon source is supplied and treated under the same conditions, but the treatment system It can effectively remove N0 3 —, arsenic and cadmium, and the N0 2 in the effluent – and TOC meet the standard.
  • Table 4 heavy metal and nitrate contaminated drinking water treatment before and after water quality changes into the water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

一种同歩去除饮用水中重金属和硝酸盐的方法及其装置 技术领域
本发明涉及环境保护,具体的说是一种同步去除饮用水中重金属和硝酸盐的方法 及其装置。 背景技术
由于地质成因或矿业生产活动, 中国一些地区的饮用水,特别是地下饮用水中的 砷、镉等重金属常常超标。 这些地区也会因为农业生产过量施氮、畜禽养殖废水和城 镇生活污水处理不足等导致地下饮用水硝酸盐超标严重。其结果是饮用水中的重金属 和硝酸盐均超标, 严重危害人们的身体健康。
活性炭对重金属有一定的物理吸附能力。含铁氧化物和锰氧化物的铁锰砂石也可 通过物理化学作用吸附沉淀铁、锰、砷等重金属。但铁氧化物或锰氧化物的物理化学 吸附能力受其微观形态与结构影响,新生铁氧化物和新生锰氧化物吸附重金属的能力 较高。 KDF (铜锌)合金和活性炭的组合已被用于去除饮用水中的重金属。 饮用水中 的重金属通过铜锌的氧化还原作用转化为易被活性炭吸附的形态而被去除。不过, 这 一过程会释放铜和锌, 如果这些重金属超标较为严重, 又可能导致出水铜和锌超标。
去除饮用水中硝酸盐的方法有离子交换法、反渗透法、化学法、生物反硝化法等。 其中离子交换, 反渗透法, 成本昂贵, 处理后产生的废水可造成二次污染。 化学法, 比如铁粉还原法, 反应速率不易控制, 副产物 (如氨) 多。
生物反硝化法去除饮用水硝酸盐一般需添加适量还原性物质作为电子供体。依据 所用电子供体的不同, 生物反硝化分为异养反硝化和自养反硝化。异养反硝化的电子 供体既可是有机小分子, 也可是生物可降解大分子 (如棉花和碎木屑)。 不过, 依靠 异养反硝化作用完全去除硝酸盐并确保出水亚硝酸根不超标,以有机小分子为碳源的 添加量一般要达到理论上完全去除硝酸盐所需碳源量的 120%以上, 容易导致微生物 过度生长和出水有机碳较高。 同时,异养反硝化过程中产生碱度而需要添加无机酸来 调控 pH。 生物可降解大分子一般做成通透性反硝化反应墙, 用于地下水硝酸盐的原 位去除。
自养反硝化法主要采用单质硫或氢气作为电子供体。当硝酸盐的浓度较高(比如 45 mgN/L以上)时, 单纯依靠硫自养反硝化会导致出水 pH下降,硫酸盐含量增加明 显而超标。 只要出水 PH低于 8.3, 若用碳酸钙去硫酸根除又可能导致钙离子释放而 增加出水硬度。用氢气作为自养源时, 外源供氢安全管理要求高, 一般采用电解方法 供氢。 不过, 氢气在水中溶解度小, 氢气利用率低。 为了克服这一问题, 通过调节外 源电压,把电子传递到电极上, 让生长在电极上的电化活性反硝化菌直接利用电子和 水中的氢离子还原硝酸盐 (如专利公开号 CN 101381128A)。 为了弥补单一方法的不 足, 也可用复合处理方法, 比如自养反硝化与电化反硝化的复合处理方法(如授权公 告号 CN 1162356C), 异养反硝化与电化反硝化的复合处理方法 (如授权公告号 CN
Figure imgf000003_0001
发明内容 本发明目的在于提供一种同步去除饮用水中重金属和硝酸盐的方法及其处理装 置。
为实现上述目的, 本发明采用的技术方案为:
一种同步去除饮用水中重金属和硝酸盐的方法: 待处理原水中添加以甲酸为主 的、 以乙酸或乙醇为辅的小分子有机碳,添加量为异养反硝化作用完全去除原水中平 均含量硝酸盐所需碳源的 80-90%; 以甲酸为主的、 以乙酸或乙醇为辅的小分子有机 碳的添加使原水 pH达到 5-3.9; 酸化后的原水在有氧条件下通过金属去除柱,利用其 中的填料去除重金属; 去除重金属的原水进入反硝化反应柱,利用添加量不过剩的小 分子有机碳作为碳源,通过异养反硝化作用去除原水中的大部分硝酸盐,利用反硝化 反应柱中的填料为电子供体源,通过自养反硝化作用去除原水中的残余硝酸盐; 而后 通过有氧循环过滤去除原水中其它残留物质, 即得到去除重金属和硝酸盐的饮用水。
所述金属去除柱的填料层按石英砂与氧化铁层、石英砂层、活性炭与硫化亚铁层 和石英砂层的顺序重复多次铺设而成; 其中石英砂与氧化铁层、石英砂层、活性炭与 硫化亚铁层和石英砂层的体积比为 20-2: 1: 20-2: 1; 所述石英砂与氧化铁层, 石英 砂与氧化铁的体积比为 20-2: 1; 所述活性炭与硫化亚铁层, 活性炭与硫化亚铁的体 积比为 50-5: 1。
所述反硝化反应柱中的填料, 上半部填料层为活性炭和硫化亚铁, 按体积比为 50-5: 1; 下半部填料层为活性炭和氧化铁颗粒, 按体积比为 100-10: 1。
所述待处理原水中加入以甲酸为主的、 以乙酸或乙醇为辅的小分子有机碳使其 pH达到 5-3.9, 酸化后的原水通过金属去除柱, 利用其内填充材料氧化铁颗粒、 活性 炭和硫化亚铁颗粒吸附沉淀待处理原水中的重金属;填料中的硫化亚铁与原水中的溶 解氧反应形成的新生铁氧化物也吸附沉淀待处理原水中的重金属; 所述以甲酸为主 的、以乙酸或乙醇为辅的小分子有机碳为以甲酸为主的以乙酸或乙醇为辅的小分子有 机碳的添加量为异养反硝化作用完全去除进水中平均含量硝酸盐所需碳源的 80-90%。
待处理原水中进入混合池后 pH在 5-3.9之间, 酸化后的原水通过金属去除柱, 利用其内填充材料氧化铁颗粒、活性炭和硫化亚铁颗粒吸附沉淀待处理原水中的重金 属。填料中的硫化亚铁与原水中的溶解氧反应形成的新生铁氧化物也吸附沉淀待处理 原水中的重金属。
在所述反硝化反应柱内,以酸化待处理原水时所添加的添加量不过剩的小分子有 机碳作为碳源,通过异养反硝化作用去除原水中的大部分硝酸盐, 以填料硫化亚铁为 电子供体源, 通过亚铁自养反硝化和硫化自养反硝化作用去除原水中的剩余硝酸盐。
所述通过反硝化反应柱处理后的原水通过滴滤柱的有氧循环过滤作用去除原水 中残余的亚硝酸盐和有机碳, 而后再通过臭氧处理和活性炭过滤, 即得到去除重金属 和硝酸盐的饮用水。
所述滴滤柱由石英砂层和活性炭层构成, 其中石英砂层和活性炭层的体积比为 1:5-25。
处理装置处理含重金属和硝酸盐的原水之前,反硝化反应柱和滴滤柱要经过一个 为期五周的联合启动运行阶段。 室温 20-28°C条件下, 用好氧活性污泥的 100-200倍 稀释悬浮液对反硝化反应柱和滴滤柱接种。 第一周内, 在含硝酸盐 60-120 mgN/L的 原水中添加以甲酸为主的、 以乙酸或乙醇为辅的碳源, 使原水 pH在 5-3.9之间, 然 后原水以向上流形式通过重金属去除柱和反硝化反应柱,与来自滴滤池的向上循环水 流汇合, 向下流形式经过滴滤柱, 进入所述滴滤池。足量以甲酸为主的碳源是指完全 去除水中硝酸盐所需碳源量的 120-140%。 后四周期间运行期间, 降低碳源添加量至 完全去除硝酸盐所需量的 50-70%, 其它条件不变。 当反硝化反应柱和滴滤柱完成启 动阶段的培养后, 处理装置可对重金属和硝酸盐复合污染饮用水进行处理。
被处理原水首先在原水池内曝气,然后经过原水池底部铺设的细石英砂层过滤进 入配水池与配水池。只在配水池内添加以甲酸为主的、 以乙酸或乙醇为辅的碳源。配 水池和配水池的水按它们的体积比流入混合池。混合池内的水上流式依次通过重金属 去除柱和反硝化反应柱。 从反硝化反应柱流出的水与来自滴滤池的向上循环水流汇 合, 向下流形式经过滴滤柱, 进入滴滤池。 当滴滤池内水量超过一定体积后, 自动溢 出流入臭氧处理池。臭氧处理池储水满后, 在臭氧发生器作用下, 从臭氧处理池底部 进行臭氧消毒, 再经过活性炭柱过滤, 进入储水池。
同步去除饮用水中重金属和硝酸盐方法的装置: 包括原水池、 配水池、 混合池、 重金属去除柱、 反硝化反应柱、 滴滤柱、 滴滤池、 臭氧处理池、 臭氧发生器、 活性炭 柱及储水池; 其中原水池、 配水池、 混合池、 重金属去除柱、 反硝化反应柱通过管路 依次相连, 反硝化反应柱的出水口通过管路与滴滤柱的进水口相连, 滴滤柱的下方设 有滴滤池, 滴滤池通过管路与滴滤柱的出水口相连, 滴滤池的出水口通过管路与臭氧 处理池的进水口相连,臭氧处理池底部设有通过管路与其连接的臭氧发生器,臭氧处 理池出水口依次连接活性炭柱、 储水池。
所述原水池底部铺设石英砂层。所述原水池设有两个出水口, 两个出水口分别通 过管路连接第一配水池和第二配水池,第一配水池和第二配水池的出水口汇合后与混 合池相连。
本发明所具有的优点:
1. 本发明所处理的原水无需除氧, 原水中的溶解氧和添加的有机酸强化重金属 去除柱内氧化铁和硫化亚铁填料吸附沉淀去除原水中的重金属的能力。
2. 本发明以甲酸为主要碳源并酸化原水, 反硝化过程中无需调节水的 pH。
3. 本发明处理水时控制碳源添加量不过剩, 一般为完全去除进水中平均含量硝 酸盐所需碳源的 80-90%, 以异养反硝化为主, 自养反硝化为辅, 充分利用亚铁自养 反硝化与硫自养反硝化的协同作用有效去除硝酸盐。当进水中的硝酸盐浓度提高或降 低幅度小于 10 mgN/L时, 本发明处理方法可自动调节异养反硝化和自养反硝化的相 对作用强度而无需改变碳源供给和处理条件, 有效去除原水中的硝酸盐。
4. 本发明反硝化处理后的水进行有氧循环过滤处理, 使得出水中亚硝酸盐、 氨 氮和有机碳含量低, 利于臭氧快速消毒。
5. 本发明处理后的水为弱碱性, 硫酸根浓度没有明显升高, 重金属、 亚硝酸盐、 氨氮和有机碳含量不超标。 附图说明
图 1为本发明去除饮用水重金属和硝酸盐的处理装置图。 具体实施方式
实施例 1
金属去除柱 5的直径 10 cm, 高 100 cm, 其填料层按石英砂与氧化铁层、石英砂 层、 活性炭与硫化亚铁层和石英砂层的顺序重复五次铺设而成; 石英砂与氧化铁层、 石英砂层、活性炭与硫化亚铁层和石英砂层的体积比为 4:1:4:1 ;所述石英砂与氧化铁 层中, 石英砂与氧化铁的体积为 5:1 ; 所述活性炭与硫化亚铁层中, 活性炭与硫化亚 铁的体积比为 10:1。 石英砂和氧化铁的粒度为 < l mm, 硫化亚铁和活性碳的粒度为 1-4 mm。
反硝化反应柱 6的直径 15 cm, 高 l m, 其上半部的填料为活性炭和硫化亚铁, 体积比为 10:1 ; 反硝化反应柱下半部的填料为活性炭和氧化铁, 体积比为 20:1。石英 砂和氧化铁的粒度为 < l mm, 硫化亚铁和活性碳的粒度为 1-4 mm。
滴滤柱 7的直径 10 cm,高 1 m,由石英砂层和活性炭层构成。石英砂层高 10 cm, 粒度 < 1 mm, 活性炭层高 90 cm, 粒度 1-4 mm。
处理装置方处理含重金属和硝酸盐的原水之前,反硝化反应柱 6和滴滤柱 Ί进行 了为期五周的联合启动运行。 室温 (20-28°C) 条件下, 用好氧活性污泥的 200倍稀 释悬浮液对反硝化反应柱 6和滴滤柱 7接种。 第一周运行期间, 配水池 2与配水池 3 按 1:1体积进水, 在配水池 2与配水池 3中均添加硝酸盐 98 mgN/L, 但只在配水池 2 中添加 10 mM甲酸、 1.5 mM乙酸和 6 mM乙醇。配水池 2和配水池 3的出水以 0.9 IJh 的相同流速进入混合池 4混合, 混合的水的 pH为 4.0。 混合池 4的出水以 1.8 IJh的 流速依次上流式经过重金属去除柱 5和反硝化反应柱 6。 反硝化反应柱 6的出水与来 自滴滤池 8的向上循环水流 (36 IJh) 汇合, 向下流形式经过滴滤柱 7, 进入滴滤池 8。 后四周运行期间, 配水池 2中水的乙酸含量降低至 0.5 mM, 其它条件不变, 启动 运转后反硝化反应柱 6和滴滤柱 7待用。
反硝化反应柱 6和滴滤柱 7完成五周的联合启动运行后,处理装置对重金属和硝 酸盐复合污染饮用水进行如下处理:
处理过程: 在室温条件下, 将 50 L含重金属和硝酸盐的待处理原水饮用水 (pH 7.1, 硝酸盐 56 mg N/L, 砷 0.10 mg/L, 镉 0.10 mg/L) 在 50 L原水池 1曝气 15分钟 后经过石英砂层过滤进入 25 L配水池 2和 25 L配水池 3。 配水池 2与配水池 3形状 相同, 各装水 25 L。 配水池 2内添加浓度为 10 mM甲酸和浓度为 1 mM乙醇, 碳源 添加量为理论上完全去除配水池 2和配水池 3水中硝酸盐所需碳源量的 80%。配水池 2的水面 90%被泡沫板覆盖, 且泡沫板可随水位变化而上下浮动。配水池 2与配水池 3的出水以相同的流速进入 2 L容积的混合池 4后 pH变为 4.3。混合池 4内的水以 1.8 L/h的流速上流式依次通过重金属去除柱 5和反硝化反应柱 6。 金属去除柱 5内的填 充材料氧化铁颗粒、活性炭和硫化亚铁颗粒直接吸附沉淀待处理原水中的重金属。硫 化亚铁与原水中的溶解氧反应形成的新生铁氧化物也可吸附沉淀去除原水中的重金 属。 少量溶解但未被氧气氧化的硫化亚铁, 以 HS—和 Fe2+形式流出重金属去除柱 5进 入反硝化反应柱 6, 与反硝化反应柱 6内的硫化亚铁填料共同成为自养反硝化的电子 供体源。 以反硝化反应柱的下半部为主, 甲酸和乙醇作为碳源支持异养反硝化去除原 水中的大部分硝酸盐;当甲酸等碳源被消耗殆尽后,以反硝化反应柱 6的上半部为主, 硫化亚铁作为电子供体源支持亚铁自养反硝化和硫化自养反硝化去除原水中的剩余 硝酸盐。反硝化反应柱 6的出水与来自滴滤池 8的向上循环水流汇合, 向下流形式经 过滴滤柱 7, 进入滴滤池。 其中滴滤池 8的向上循环水流流速为 36 IJh。 当滴滤池内 水量超过 25 L后,自动溢出流入臭氧处理池 9。50 L原水用 28个小时左右处理完毕。 在臭氧发生器 10作用下, 从臭氧处理池 9的底部对处理后的水进行臭氧消毒 0.5小 时, 经过活性炭柱 11过滤, 进入储水池 12, 处理后水水质参见表 1。
提高或降低原水中硝酸盐浓度 10 mg N/L, 其他运行条件不变, 运行 28个小时。 处理结果如表 1所示, 当原水中硝酸盐含量在 46-66 mgN/L范围之内变化时, 不改变 碳源供给和处理条件, 该处理过程可有效去除 N03—、 砷和镉, 并且出水中的 N02—与 TOC达标。 表 1、 重金属和硝酸盐污染的饮用水处理前后水质变化 进水 出水
水质 水质
PH N03— As Cd PH N03— NH4+ N02- As Cd TOC S04 2" mgN L mg L mg L mgN/L mgN/L mgN L mg L mg L mgC/L mg L
7.1 46 0.10 0.10 7.9 2.7 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 56 0.10 0.10 7.9 3.5 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 66 0.10 0.10 7.8 5.8 <0.5 <0.01 <0.005 <0.005 <0.5 <150 实施例 2
与实施例 1不同之处在于:
依据处理 56 mg N03"-N/L的所需碳源量的 80%在配水池 2内添加甲酸 (10 mM) 和乙酸 (1.5 mM) , 配水池 2与配水池 3的出水以 1 : 1流入混合池, 流入混合池后水的 pH为 4.0。对于硝酸盐含量在中高浓度范围之内的三种原水(如表 2所示)依次进行 处理,其他运行条件与实施例 1一致。处理结果如表 2所示,对于硝酸盐含量在 46-66 mg N/L范围之内变化的原水, 碳源供给和处理条件一样, 但该处理系统可有效去除 N03 砷和镉, 并且出水中的 N02—与 TOC达标。 表 2、 重金属和硝酸盐污染的饮用水处理前后水质变化 进水 出水
水质 水质
PH N03" As Cd PH N03" NH4 + N02- As Cd TOC S04 2" mgN/L mg L mg L mgN L mgN/L mgN L mg L mg L mgC L mg L
7.1 46 0.1 0.1 7.9 2.3 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 56 0.1 0.1 7.8 3.4 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 66 0.1 0.1 7.8 5.2 <0.5 <0.01 <0.005 <0.005 <0.5 <150 实施例 3
与实施例 1不同之处在于:
依据处理 28 mg N03"-N/L的所需碳源量的 80%在配水池 2内添加 8 mM甲酸, 配水池 2与配水池 3的出水以 1 : 1流入混合池,流入混合池后水的 pH为 4.9。对于硝 酸盐含量在中低浓度范围之内的三种原水(如表 3所示)依次进行处理。原水通过重 金属去除柱和反硝化反应柱的流速为 3.6 IJh, 其他运行条件与实施例 1一致。 处理 结果如表 3所示, 对于硝酸盐含量在 18-38 mg N/L范围之内变化的原水, 碳源供给 和处理条件一样,但该处理系统可有效去除 N03—、砷和镉,并且出水中的 N02—与 TOC 达标。 表 3、 重金属和硝酸盐污染的饮用水处理前后水质变化 进水 出水
水质 水质
PH N03- As Cd PH N03- NH4+ N02- As Cd TOC so4 2- mgN/L mg L mg L mgN L mgN/L mgN L mg L mg L mgC L mg L
7.1 18 0.10 0.10 7.6 1.6 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 28 0.10 0.10 7.5 2.2 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 38 0.10 0.10 7.5 3.6 <0.5 <0.01 <0.005 <0.005 <0.5 <150 实施例 4
与实施例 1不同之处在于
依据处理 84 mg N03"-N/L的所需碳源量的 90%添加在配水池 2内添加 12 mM甲 酸和 2.5 mM乙醇, 配水池 2与配水池 3的出水以 1 : 1流入混合池, 流入混合池后水 的 pH为 3.9。 对于硝酸盐含量在高度范围之内的三种原水 (如表 4所示) 依次进行 处理。 原水通过重金属去除柱和反硝化反应柱的流速为 1.2 IJh, 其他运行条件与实 施例 1一致。 处理结果如表 4所示, 对于硝酸盐含量在 74-94 mg N/L范围之内变化 的原水, 碳源供给和处理条件一样, 但该处理系统可有效去除 N03—、 砷和镉, 并且 出水中的 N02—与 TOC达标。 表 4、 重金属和硝酸盐污染的饮用水处理前后水质变化 进水 出水
水质 水质
PH N03- As Cd PH N03- NH4+ N02- As Cd TOC so4 2- mgN/L mg L mg L mgN L mgN/L mgN L mg L mg L mgC L mg L
7.1 74 0.10 0.10 8.1 2.3 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 84 0.10 0.10 8.1 3.6 <0.5 <0.01 <0.005 <0.005 <0.5 <150
7.1 94 0.10 0.10 8.0 6.5 <0.5 <0.01 <0.005 <0.005 <0.5 <150

Claims

1. 一种同步去除饮用水中重金属和硝酸盐的方法, 其特征在于: 待处理原水中 添加以甲酸为主的、以乙酸或乙醇为辅的小分子有机碳进行酸化,使其 pH达到 5-3.9, 酸化后的原水在有氧条件下通过金属去除柱,利用其中的填料去除重金属; 去除重金 属的原水进入反硝化反应柱, 以酸化时所添加的添加量不过剩的小分子有机碳为碳 源, 以反硝化反应柱中的填料为电子供体源,通过异养和自养反硝化的协同作用去除 原水中的硝酸盐, 而后通过有氧循环过滤去除原水中残留物质, 即得到去除重金属和 硝酸盐的饮用水。
2. 按权利要求 1所述的同步去除饮用水中重金属和硝酸盐的方法,其特征在于: 所述金属去除柱的填料层按石英砂与氧化铁层、石英砂层、活性炭与硫化亚铁层和石 英砂层的顺序重复多次铺设而成; 其中石英砂与氧化铁层、石英砂层、活性炭与硫化 亚铁层和石英砂层的体积比为 20-2: 1: 20-2: 1; 所述石英砂与氧化铁层, 石英砂与 氧化铁的体积比为 20-2: 1; 所述活性炭与硫化亚铁层, 活性炭与硫化亚铁的体积比 为 50-5: 1。
3. 按权利要求 1所述的同步去除饮用水中重金属和硝酸盐的方法,其特征在于: 所述反硝化反应柱中的填料, 上半部填料层为活性炭和硫化亚铁, 按体积比为 50-5: 1 ; 下半部填料层为活性炭和氧化铁颗粒, 按体积比为 100-10: 1。
4. 按权利要求 1、 2或 3所述同步去除饮用水中重金属和硝酸盐的方法, 其特征 在于: 所述待处理原水中加入以甲酸为主的、 以乙酸或乙醇为辅的小分子有机碳使其 pH达到 5-3.9, 酸化后的原水通过金属去除柱, 利用其内填充材料氧化铁颗粒、 活性 炭和硫化亚铁颗粒吸附沉淀待处理原水中的重金属;填料中的硫化亚铁与原水中的溶 解氧反应形成的新生铁氧化物也吸附沉淀待处理原水中的重金属; 所述以甲酸为主 的、以乙酸或乙醇为辅的小分子有机碳的添加量为异养反硝化作用完全去除进水中平 均含量硝酸盐所需碳源的 80-90%; 以甲酸为主的、 以乙酸或乙醇为辅的小分子有机 碳中, 甲酸的添加量占 70-100%, 其余为乙酸或乙醇。
5. 按权利要求 1所述同步去除饮用水中重金属和硝酸盐的方法, 其特征在于: 在所述反硝化反应柱内,以酸化待处理原水时所添加的添加量不过剩的小分子有机碳 作为碳源,通过异养反硝化作用去除原水中的大部分硝酸盐, 以填料硫化亚铁为电子 供体源, 通过亚铁自养反硝化和硫化自养反硝化作用去除原水中的剩余硝酸盐。
6. 按权利要求 1或 5所述同步去除饮用水中重金属和硝酸盐的方法, 其特征在 于:所述通过反硝化反应柱处理后的原水通过滴滤柱的有氧循环过滤作用去除原水中 残余的亚硝酸盐和有机碳, 而后再通过臭氧处理和活性炭过滤, 即得到去除重金属和 硝酸盐的饮用水。
7. 按权利要求 6所述同步去除饮用水中重金属和硝酸盐的方法, 其特征在于: 所述滴滤柱由石英砂层和活性炭层构成, 其中石英砂层和活性炭层的体积比为 1:5-25。
8. 一种按权利要求 1所述同步去除饮用水中重金属和硝酸盐方法的装置, 其特 征在于: 包括原水池 (1 )、 配水池、 混合池 (4)、 重金属去除柱 (5)、 反硝化反应柱 (6)、滴滤柱(7)、滴滤池(8)、臭氧处理池(9)、臭氧发生器(10)、活性炭柱(11 ) 及储水池 (12); 其中原水池 (1 )、 配水池、 混合池 (4)、 重金属去除柱 (5)、 反硝 化反应柱(6)通过管路依次相连,反硝化反应柱(6)的出水口通过管路与滴滤柱(7) 的进水口相连, 滴滤柱 (7) 的下方设有滴滤池 (8), 滴滤池 (8)通过管路与滴滤柱 (7) 的出水口相连, 滴滤池 (8) 的出水口通过管路与臭氧处理池 (9) 的进水口相 连,臭氧处理池(9)底部设有通过管路与其连接的臭氧发生器(10),臭氧处理池(9) 出水口依次连接活性炭柱 (11 )、 储水池 (12)。
9. 按权利要求 8所述的同步去除饮用水中重金属和硝酸盐的装置,其特征在于: 所述原水池 (1 ) 底部铺设石英砂层。
10.按权利要求 8所述的同步去除饮用水中重金属和硝酸盐的装置,其特征在于: 所述原水池(1 )设有两个出水口, 两个出水口分别通过管路连接第一配水池(2)和 第二配水池 (3), 第一配水池 (2)和第二配水池 (3) 的出水口汇合后与混合池 (4) 相连。
PCT/CN2010/077734 2010-09-29 2010-10-14 一种同步去除饮用水中重金属和硝酸盐的方法及其装置 WO2012040943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102961166A CN101973666B (zh) 2010-09-29 2010-09-29 一种同步去除饮用水中重金属和硝酸盐的方法及其装置
CN201010296116.6 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012040943A1 true WO2012040943A1 (zh) 2012-04-05

Family

ID=43573583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077734 WO2012040943A1 (zh) 2010-09-29 2010-10-14 一种同步去除饮用水中重金属和硝酸盐的方法及其装置

Country Status (2)

Country Link
CN (1) CN101973666B (zh)
WO (1) WO2012040943A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968126B2 (en) 2017-07-07 2021-04-06 Katz Water Tech, Llc Pretreatment of produced water to facilitate improved metal extraction

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121758B (zh) * 2013-03-05 2014-04-16 中国科学院新疆生态与地理研究所 利用厌氧铁氧化反硝化菌净化污水中砷和硝酸盐的方法
CN104609545B (zh) * 2013-11-05 2017-01-11 中国科学院沈阳应用生态研究所 一种生化处理高浓度硝酸盐废水的方法及其装置
CN103693806B (zh) * 2013-12-06 2014-11-19 浙江大学 一种自生高铁化学除磷-厌氧铁氧化生物脱氮一体化装置
CN105906045B (zh) * 2016-06-21 2018-03-09 知和环保科技有限公司 一种基于肼硫协同生物作用去除水中硝酸盐的反应器
CN106495323B (zh) * 2016-11-07 2019-06-18 中国科学院生态环境研究中心 异养自养串联反硝化去除养殖海水中硝酸盐的方法及装置
CN107082489B (zh) * 2017-03-23 2020-04-24 西安建筑科技大学 一种地下水中锰和硝酸盐同步去除方法
CN108862574A (zh) * 2018-06-22 2018-11-23 河海大学 基于还原态Fe自养/木屑异养协同反硝化的人工湿地系统及其污水脱氮方法
CN109626729A (zh) * 2018-12-26 2019-04-16 东华大学 一种生活污水有机物回收耦合铁自养反硝化/硝化脱氮及除磷的方法
CN109848203A (zh) * 2019-03-23 2019-06-07 中国农业科学院农田灌溉研究所 一种降解土壤镉的修复方法
CN116715357B (zh) * 2023-08-11 2023-10-31 上海勘测设计研究院有限公司 硫自养反硝化生物脱氮的复合填料、脱氮滤池及脱氮方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9503501L (sv) * 1995-10-09 1997-04-10 Nordic Water Prod Ab Bäddmaterial för biologiskt bäddfilter
KR20000066395A (ko) * 1999-04-16 2000-11-15 정명식 지하수원으로부터 질산성 질소 이온의 제거방법
US6322700B1 (en) * 1995-04-11 2001-11-27 Arcadis Geraghty & Miller Engineered in situ anaerobic reactive zones
EP1270517A1 (en) * 2000-03-24 2003-01-02 Japan Science and Technology Corporation Method for direct clarification of ground water polluted with nitrate
CN101306906A (zh) * 2008-03-19 2008-11-19 北京碧水源科技股份有限公司 一种微污染水的处理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2604598B2 (ja) * 1987-09-07 1997-04-30 大樹 中山 汚泥から重金属を除去する方法
CN1040773A (zh) * 1989-08-10 1990-03-28 厦门大学 一种改进的光催化处理废水的方法
JPH05285471A (ja) * 1992-04-08 1993-11-02 Bridgestone Corp 浄化・活水装置の構造
CN1210216C (zh) * 2002-12-13 2005-07-13 南开大学 城市生活污水处理工艺流程及方法
WO2007101253A2 (en) * 2006-02-28 2007-09-07 Auburn Universtity In-situ immobilization of metals in contaminated sites using stabilized nanoparticles
CN101412547B (zh) * 2008-10-27 2010-11-10 合肥工业大学 用来消除湖泊内源污染的矿物复合材料及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322700B1 (en) * 1995-04-11 2001-11-27 Arcadis Geraghty & Miller Engineered in situ anaerobic reactive zones
SE9503501L (sv) * 1995-10-09 1997-04-10 Nordic Water Prod Ab Bäddmaterial för biologiskt bäddfilter
KR20000066395A (ko) * 1999-04-16 2000-11-15 정명식 지하수원으로부터 질산성 질소 이온의 제거방법
EP1270517A1 (en) * 2000-03-24 2003-01-02 Japan Science and Technology Corporation Method for direct clarification of ground water polluted with nitrate
CN101306906A (zh) * 2008-03-19 2008-11-19 北京碧水源科技股份有限公司 一种微污染水的处理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968126B2 (en) 2017-07-07 2021-04-06 Katz Water Tech, Llc Pretreatment of produced water to facilitate improved metal extraction
US11685676B2 (en) 2017-07-07 2023-06-27 Katz Water Tech, Llc Pretreatment of produced water to facilitate improved metal extraction

Also Published As

Publication number Publication date
CN101973666A (zh) 2011-02-16
CN101973666B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2012040943A1 (zh) 一种同步去除饮用水中重金属和硝酸盐的方法及其装置
Kong et al. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment
Tabassum A combined treatment method of novel Mass Bio System and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies
Zhou et al. Mainstream nitrogen separation and side-stream removal to reduce discharge and footprint of wastewater treatment plants
Liu et al. Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism
CN101704609A (zh) 预臭氧与曝气生物活性炭给水处理方法
Hasan et al. On–off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system
CN105036495A (zh) 一种离子交换与反硝化集成去除水中硝态氮的方法
CN103787525B (zh) 一种城市污水二级生化出水深度处理的方法
TWI429600B (zh) A denitrification treatment method and a denitrification treatment apparatus
Guo et al. Optimization of high-rate TN removal in a novel constructed wetland integrated with microelectrolysis system treating high-strength digestate supernatant
JP4826982B2 (ja) 廃水処理方法
CN101987757B (zh) 去除饮用水中高浓度氨氮的方法以及系统
CN205088074U (zh) 一种ro浓水处理装置
Klas et al. Minimizing brine discharge in a combined biophysical system for nitrate removal from inland groundwater
CN106145555A (zh) 一种针对高氨氮原水的高效组合处理系统
JP3477187B2 (ja) 排水の脱色方法および装置
JP4838872B2 (ja) 水処理装置及び水処理方法
CN113493274A (zh) 一种水体的深度高效净化方法
CN111484173A (zh) 一种水体的深度高效净化系统
CN206033502U (zh) 一种针对高氨氮原水的高效组合处理系统
CN109796105A (zh) 一种高难度有机废水处理工艺
CN104556372A (zh) 一种剩余污泥吸附分离有机物的方法
Shahalam et al. Treatment of concentrated nutrients in reject wastewater of reverse osmosis process treating tertiary effluent from conventional biological treatment of municipal wastewater
CN109896702A (zh) 一种合成橡胶生产污水处理办法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857706

Country of ref document: EP

Kind code of ref document: A1