WO2019095442A1 - 化学气相沉积设备及成膜方法 - Google Patents

化学气相沉积设备及成膜方法 Download PDF

Info

Publication number
WO2019095442A1
WO2019095442A1 PCT/CN2017/114090 CN2017114090W WO2019095442A1 WO 2019095442 A1 WO2019095442 A1 WO 2019095442A1 CN 2017114090 W CN2017114090 W CN 2017114090W WO 2019095442 A1 WO2019095442 A1 WO 2019095442A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
chemical vapor
vapor deposition
recess
recessed portion
Prior art date
Application number
PCT/CN2017/114090
Other languages
English (en)
French (fr)
Inventor
邢升阳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2019095442A1 publication Critical patent/WO2019095442A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Definitions

  • the present application relates to a chemical vapor deposition apparatus and a film formation method using the same.
  • Chemical Vapor Deposition has become an important process for thin film deposition technology due to its high film formation efficiency and good film formation quality.
  • the working principle of the CVD process is roughly as follows: two electrode plates parallel to each other are placed in a vacuum environment, one of which is connected to a radio frequency (RF) power supply and the other electrode plate is grounded. A radio frequency electric field is generated between the two electrode plates, and the substrate to be film-formed is placed between the two electrode plates, and the film-forming process gas enters between the two electrode plates and is excited into a plasma under the action of a radio frequency electric field. The plasma is adsorbed on the surface of the substrate or reacts with the surface of the substrate to form a thin film on the surface of the substrate.
  • RF radio frequency
  • the main object of the present application is to provide a chemical vapor deposition apparatus which is relatively uniform in film formation.
  • the present application provides a chemical vapor deposition apparatus including: a cavity, a first electrode, a second electrode, a deposition substrate, an air inlet, an exhaust pipe, and a connection RF power source; the first electrode and the The second electrode is disposed opposite to the cavity in parallel; the first electrode is connected to the RF power source; the second electrode is grounded; the deposition substrate is disposed between the first electrode and the second electrode; The air inlet and the air suction pipe are respectively connected to the cavity; a side of the first electrode adjacent to the second electrode is a non-planar structure.
  • the first electrode includes an opposite first surface facing the deposition substrate, and the first surface is concave in the middle portion and has an upturned shape
  • the non-planar structure is formed.
  • the middle portion of the first surface has a first recessed portion, and the first recessed portion has a shape recessed away from the deposition substrate, and the two ends of the first surface respectively have a second portion a recessed portion having a shape recessed away from the deposition substrate, and the second recessed portion is spaced apart from the first recessed portion.
  • the depth and the area of the recess of the second recess are smaller than the depth and the area of the recess of the first recess.
  • a spindle is further disposed on a side of the second electrode away from the first electrode for supporting the second electrode.
  • the first electrode plate is provided with a plurality of through holes, and a film forming process gas flows from the through holes to between the first electrode and the second electrode to form a uniform plasma.
  • the present application also provides a film forming method of the above chemical vapor deposition apparatus, the film forming method comprising the steps of:
  • the gas to be film-forming process gas is introduced into the cavity.
  • the present application also provides a chemical vapor deposition apparatus comprising: a cavity, a first electrode, a second electrode, a shielding body, a deposition substrate, a carrying unit, an air inlet, an exhaust pipe, and a radio frequency power source;
  • the first electrode, the second electrode, the shielding body, the deposition substrate, and the carrying unit are received therein; the first electrode and the second electrode are disposed opposite to each other in the shielding body,
  • the first electrode is connected to the RF power source, the second electrode is grounded; an air flow channel is formed between the first electrode and the second electrode;
  • the shielding body defines an opening, and the opening is connected to the air flow channel
  • the deposition substrate is disposed opposite to the opening; the air inlet and the air suction tube are respectively connected to the cavity; and a side of the first electrode adjacent to the second electrode is a non-planar structure.
  • one side of the first electrode is away from one end of the opening, and faces away from the second electrode.
  • the direction is recessed to form at least one recess.
  • the depth and the area of the recess of the second recess are smaller than the depth and the area of the recess of the first recess.
  • the first electrode of the chemical vapor deposition apparatus provided by the present application has a non-planar structure on a side adjacent to the second electrode, which can improve film formation uniformity due to differences in plasma density and airflow density across the surface of the first electrode. Poor question.
  • FIG. 1 is a schematic structural view of a chemical vapor deposition apparatus according to a preferred embodiment of the present application
  • FIG. 2 is a schematic structural view of a chemical vapor deposition apparatus according to another preferred embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a chemical vapor deposition apparatus 100 (CVD) according to a preferred embodiment of the present application. It can be understood that FIG. 1 is only a schematic diagram for explaining the structure of the chemical vapor deposition apparatus 100. The actual structure of the chemical vapor deposition apparatus 100 is much more complicated and finer.
  • the chemical vapor deposition apparatus 100 includes a cavity 110, a first electrode 120, a second electrode 130, a spindle 140, a deposition substrate 150, an air inlet 160, an exhaust pipe 170, and a connection RF power source 180.
  • the first electrode 120 and the second electrode 130 are disposed opposite to each other in the cavity 110.
  • the first electrode 120 is connected to the RF power source 180.
  • the second electrode 130 is grounded.
  • the main shaft 140 is used to support the second electrode 130 plate, and the main shaft 140 can also drive the second electrode 130 to move up and down.
  • the spindle 140 can be a lift cylinder.
  • the periphery of the main shaft 140 may be sleeved with a seal to maintain the tightness of the entire cavity 110.
  • the second electrode 130 plate may be grounded through the main shaft 140.
  • the deposition substrate 150 is disposed between the first electrode 120 and the second electrode 130, and the second electrode 130 carries the deposition substrate 150.
  • the air inlet 160 and the air exhaust pipe 170 are respectively connected to the cavity 110, and the film forming process gas is to be formed.
  • the air inlet 160 enters the cavity 110, and air in the cavity 110 can be extracted through the air exhaust pipe 170 to realize a vacuum state in the cavity 110.
  • the air inlet 160 is located above the first electrode 120 such that the gas to be film forming process enters from above the first electrode 120.
  • the exhaust pipe 170 is located below the second electrode 130.
  • the first electrode 120 is provided with a plurality of through holes 121, and a film forming process gas enters from above the first electrode 120, and flows through the through holes 121 to the first electrode 120 and the Between the second electrodes 130 to form a uniform plasma.
  • a side of the first electrode 120 adjacent to the second electrode 130 is a non-planar structure.
  • the first electrode 120 includes an opposite first surface 122 facing the deposition substrate 150, and a first surface 122 facing the deposition substrate 150.
  • the first surface 122 is a non-planar structure.
  • the first surface 122 has a concave shape in the middle portion and an upturned shape.
  • the second surface 123 is a flat surface.
  • the intermediate portion of the first surface 122 has a first recessed portion 1221 that is recessed in a direction away from the deposition substrate 150.
  • Each of the two ends of the first surface 122 has a second recessed portion 1222 , and the second recessed portion 1222 has a shape recessed away from the deposition substrate 150 .
  • the second recessed portion 1222 is spaced apart from the first recessed portion 1221 , and the depth and the region of the second recessed portion 1222 are smaller than the depth and the region where the first recessed portion 1221 is recessed.
  • the intermediate portion of the first surface 122 is concave, so that the plasma density of the intermediate portion of the first surface 122 is higher than other regions, and the film formation rate is higher, resulting in poor film formation uniformity. The problem.
  • the peripheral area of the first surface 122 is concave, so that the film formation rate due to the high airflow density of the surrounding area of the first surface 122 is high, and the film formation uniformity is not good.
  • the chemical vapor deposition apparatus 100 first evacuates the air in the cavity 110 through the exhaust pipe 170 to bring the cavity 110 into a vacuum state. Then, the RF power source is turned on to generate a radio frequency electric field between the first electrode 120 and the second electrode 130, and simultaneously the gas to be film-forming process enters the cavity 110, the gas to be film-forming process It is excited into a plasma under the action of the radio frequency electric field. The plasma is adsorbed on the surface of the deposition substrate 150 or reacts with the surface of the deposition substrate 150 to form a thin film on the surface of the deposition substrate 150. Due to the first electrode The first surface 122 of the 120 is a non-planar structure, so that the problem of poor film formation uniformity due to the difference in film formation rates between the intermediate portion and the peripheral region of the first electrode of the planar structure can be effectively improved.
  • the chemical vapor deposition apparatus 100 is a Plasma Enhanced Chemical Vapor Deposition (PECVD) apparatus.
  • the PECVD device can be used for depositing a silicon nitride film, a silicon oxide film, a silicon dioxide film, an amorphous silicon film, a silicon carbide film, a solar material film, a diamond-like film, an optical film, a conductive metal film, a carbon nanotube A variety of film materials such as (CNT) films.
  • the PECVD device is preferably used in the preparation of a gate, a channel layer, a source, and a drain of a Thin Film Transistor (TFT) of a display.
  • TFT Thin Film Transistor
  • FIG. 2 is a schematic structural diagram of a chemical vapor deposition apparatus 200 according to another preferred embodiment of the present application. It can be understood that FIG. 2 is only a schematic diagram for explaining the structure of the chemical vapor deposition apparatus 200. The actual structure of the chemical vapor deposition apparatus 200 is much more complicated and finer.
  • the chemical vapor deposition apparatus 200 includes a cavity 210, a first electrode 220, a second electrode 230, a shielding body 290, a deposition substrate 250, a carrying unit 251, an air inlet 260, a nozzle structure 261, an exhaust pipe 270, and a radio frequency power source 280.
  • the cavity 210 houses the first electrode 220, the second electrode 230, the shielding body 290, the deposition substrate 250, the carrying unit 251, and the nozzle structure 261.
  • the first electrode 220 and the second electrode 230 are disposed in parallel with each other in the shielding body 290.
  • An air flow passage 240 is formed between the first electrode 220 and the second electrode 230 for the gas to be formed into a film forming process.
  • the first electrode 220 is connected to the radio frequency electrode, and the second electrode 230 is grounded.
  • the shielding body 290 defines an opening 291.
  • the opening 291 is located directly above the first electrode 220 and the second electrode 230 to communicate with the air flow passage 240. After the gas to be film-forming process gas enters between the first electrode 220 and the second electrode 230, the shielding body 290 can only flow out from the opening 291.
  • the deposition substrate 250 is disposed above the opening 291.
  • the gas to be film-forming process gas flows out of the opening 291 after passing through the gas flow channel 240, and finally forms a film on the deposition substrate 250.
  • the carrying unit 251 carries the deposition substrate 250, and the carrying unit 251 may be movable in parallel.
  • the air inlet 260 is disposed at the bottom of the shielding body 290, the nozzle structure 261 is connected to the air inlet 260, and the gas to be film-forming process enters the air inlet 260, and the nozzle structure is 261 is ejected to the air flow passage 240.
  • One end of the air suction pipe 270 is connected to the cavity 210, and the other end is connected to a vacuum pump VP. Pass The air suction pipe 270 pumps the air in the cavity 210 to achieve a vacuum state in the cavity 210.
  • a side of the first electrode 220 adjacent to the second electrode 230 is a non-planar structure. Specifically, a lower end of the side surface of the first electrode 220, that is, an end of the first electrode 220 away from the opening 291, is recessed away from the second electrode 230 to form at least one recessed portion 221. Wherein, when the number of the at least one recessed portion 221 is more than one, the degree of the recess of the recessed portion 221 of the plurality of the recessed portions 221 on the side of the first electrode 220 is closer to the opening 291 The smaller.
  • the side of the first electrode 220 adjacent to the second electrode 230 and the side of the second electrode 230 adjacent to the first electrode 220 are both non-planar structures.
  • the lower end of the first electrode 220 that is, the one end of the first electrode 220 away from the opening 291 is recessed in a direction away from the second electrode 230 to form a recessed portion 221.
  • the lower end of the second electrode 230 that is, the end away from the opening 291
  • the presence of the depressed portion 221 can overcome the problem of poor film formation uniformity due to plasma density and airflow density in the vicinity of the air inlet 260 being higher than other regions.
  • the film forming process is performed using the chemical vapor deposition apparatus 200
  • air in the cavity 210 is first evacuated through the evacuation tube 270 to bring the cavity 210 into a vacuum state; then the RF power source 280 is turned on.
  • a radio frequency electric field is generated between the first electrode 220 and the second electrode 230; at the same time, the gas to be film-forming process gas is introduced into the cavity 210.
  • the RF power source 280 is turned on and the gas to be film-forming process gas is introduced into the cavity 210.
  • the two steps may be performed sequentially or simultaneously.

Abstract

一种化学气相沉积设备,包括:腔体(110)、第一电极(120)、第二电极(130)、沉积基板(150)、进气口(160)、抽气管(170)和连接射频电源(180)。所述第一电极(120)和所述第二电极(130)平行相对设置于所述腔体(110)内。所述第一电极(120)连接射频电源(180)。所述第二电极(130)接地;所述沉积基板(150)设于所述第一电极(120)和所述第二电极(130)之间。所述进气口(160)和所述抽气管(170)分别连接所述腔体(110)。所述第一电极(120)邻近所述第二电极(130)的一侧为非平面结构。还提供一种使用该化学气相沉积设备的成膜方法。

Description

化学气相沉积设备及成膜方法
本申请要求于2017年11月14日提交中国专利局、申请号为2017111412189、申请名称为“化学气相沉积设备及成膜方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及一种化学气相沉积设备及使用该化学气相沉积设备的成膜方法。
背景技术
化学气相沉积(Chemical Vapor Deposition,CVD)工艺因其成膜效率高、成膜质量好等优点,已成为薄膜沉积技术的重要工艺。CVD工艺的工作原理大致是:相互平行相对的两块电极板置于真空环境中,其中一块电极板接射频(Radio Frequency,RF)电源,另一块电极板接地。使两块电极板之间产生射频电场,将需要成膜的基板放置于两块电极板间,待成膜工艺气体进入两块电极板之间,在射频电场的作用下被激发成为等离子体。等离子体吸附在基板表面或者和基板表面发生反应从而在基板表面形成薄膜。
然而,受离子密度和气流的影响,现有CVD工艺成膜时,中间区域和四周区域成膜速率存在差异,会导致成膜均匀性不佳,是该工艺需改善的一大难题。
申请内容
本申请的主要目的是提供一种成膜较均匀的化学气相沉积设备。
为实现上述目的,本申请提供一种化学气相沉积设备,包括:腔体、第一电极、第二电极、沉积基板、进气口、抽气管和连接射频电源;所述第一电极和所述第二电极平行相对设置于所述腔体内;所述第一电极连接射频电源;所述第二电极接地;所述沉积基板设于所述第一电极和所述第二电极之间;所述 进气口和所述抽气管分别连接所述腔体;所述第一电极邻近所述第二电极的一侧为非平面结构。
可选的,所述第一电极包括相对的第一表面和第二表面,所述第一表面面对所述沉积基板,所述第一表面呈中间区域上凹,四周上翘的形状,从而形成所述非平面结构。
可选的,所述第一表面的中间部分具有第一凹陷部,所述第一凹陷部呈朝远离所述沉积基板的方向凹陷的形状,所述第一表面的两端分别具有一第二凹陷部,所述第二凹陷部呈朝远离所述沉积基板的方向凹陷的形状,所述第二凹陷部与所述第一凹陷部间隔设置。
可选的,所述第二凹陷部凹陷的深度和区域均较所述第一凹陷部凹陷的深度和区域小。
可选的,还包括主轴,所述主轴设于所述第二电极远离所述第一电极的一侧,用于支撑所述第二电极。
可选的,所述第一电极板开设有多个通孔,待成膜工艺气体自所述通孔流至所述第一电极和所述第二电极之间,以形成均匀的等离子体。
本申请还提供一种上述化学气相沉积设备的成膜方法,该成膜方法包括步骤:
通过所述抽气管将所述腔体内空气抽掉以使所述腔体处于真空状态;
打开所述射频电源,使所述第一电极和所述第二电极之间产生射频电场;
使所述待成膜工艺气体进入所述腔体。
本申请还提供一种化学气相沉积设备,包括:腔体、第一电极、第二电极、遮蔽体、沉积基板、承载单元、进气口、抽气管和射频电源;所述腔体将所述第一电极、所述第二电极、所述遮蔽体、所述沉积基板、所述承载单元收容其中;所述第一电极和所述第二电极平行对立地设置于所述遮蔽体内,所述第一电极连接所述射频电源,所述第二电极接地;所述第一电极和所述第二电极之间形成气流通道;所述遮蔽体开设有一开口,所述开口与所述气流通道连通;所述沉积基板与所述开口正对设置;所述进气口和所述抽气管分别连接所述腔体;所述第一电极邻近所述第二电极的一侧为非平面结构。
可选的,所述第一电极的一侧远离所述开口的一端,朝远离所述第二电极 的方向凹陷,从而形成至少一凹陷部。
可选的,所述第二凹陷部凹陷的深度和区域均较所述第一凹陷部凹陷的深度和区域小。
本申请所提供的化学气相沉积设备的第一电极邻近第二电极的一侧为非平面结构,能够改善由于等离子密度和气流密度在第一电极表面各处有差异,而造成的成膜均匀性不佳的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提供的一较佳实施方式的化学气相沉积设备的结构示意图;
图2为本申请提供的另一较佳实施方式的化学气相沉积设备的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
主要元件符号说明:
化学气相沉积设备     100,200
腔体                 110,210
第一电极             120,220
通孔                 121
第一表面             122
凹陷部               221
第一凹陷部           1221
第二凹陷部           1222
第二表面             123
第二电极             130,230
气流通道             240
主轴                 140
沉积基板             150,250
承载单元             251
进气口               160,260
喷嘴结构             261
抽气管               170,270
射频电源             180,280
遮蔽体               290
开口                 291
真空泵               VP
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参照图1,图1为本申请提供的一较佳实施方式的化学气相沉积设备100(Chemical Vapor Deposition,CVD)的结构示意图。可以理解,图1仅为方便理解所述化学气相沉积设备100的结构示意图,该化学气相沉积设备100实际结构要复杂和精细得多。所述化学气相沉积设备100包括腔体110、第一电极120、第二电极130、主轴140、沉积基板150、进气口160、抽气管170和连接射频电源180。
所述第一电极120和所述第二电极130平行相对设置于所述腔体110内,所述第一电极120连接射频电源180。所述第二电极130接地。
所述第二电极130远离所述第一电极120的一侧连接所述主轴140的一端,所述主轴140的另一端伸出所述腔体110之外。所述主轴140用于支撑所述第二电极130板,所述主轴140还可带动第二电极130板上下移动。所述主轴140可为升降气缸。所述主轴140外围可套有密封件以,以保持整个腔体110的密封性。在其中一实施方式中,所述第二电极130板可通过所述主轴140接地。
所述沉积基板150设于所述第一电极120和所述第二电极130之间,所述第二电极130承载所述沉积基板150。
所述进气口160和所述抽气管170分别连接所述腔体110,待成膜工艺气体 自所述进气口160进入所述腔体110,所述腔体110内的空气可通过所述抽气管170抽出,而实现所述腔体110内的真空状态。所述进气口160位于所述第一电极120上方,从而所述待成膜工艺气体自所述第一电极120上方进入。所述抽气管170位于所述第二电极130下方。
进一步地,所述第一电极120板开设有多个通孔121,待成膜工艺气体自所述第一电极120的上方进入,通过所述通孔121流至所述第一电极120和所述第二电极130之间,以形成均匀的等离子体。
所述第一电极120邻近所述第二电极130的一侧为非平面结构。具体地,所述第一电极120包括相对的第一表面122和第二表面123,所述第一表面122面对所述沉积基板150,所述第一表面122为非平面结构,整体上看,所述第一表面122呈中间区域上凹,四周上翘的形状。所述第二表面123为平面。
更具体地,所述第一表面122的中间部分具有第一凹陷部1221,所述第一凹陷部1221呈朝远离所述沉积基板150的方向凹陷的形状。所述第一表面122的两端分别具有一第二凹陷部1222,所述第二凹陷部1222呈朝远离所述沉积基板150的方向凹陷的形状。所述第二凹陷部1222与所述第一凹陷部1221间隔设置,所述第二凹陷部1222凹陷的深度和区域均较所述第一凹陷部1221凹陷的深度和区域小。
所述第一表面122中间区域上凹,从而能够克服由于所述第一表面122的中间区域的等离子体密度较其他区域高,而造成的成膜速率较高,导致的成膜均匀性不佳的问题。
所述第一表面122的四周区域上凹,从而能够克服由于所述第一表面122的四周区域的气流密度大造成的成膜速率较高,而导致的成膜均匀性不佳的问题。
所述化学气相沉积设备100在实际工作时,首先通过所述抽气管170将所述腔体110内空气抽掉以使所述腔体110处于真空状态。然后打开所述射频电源,使所述第一电极120和所述第二电极130之间产生射频电场,同时使所述待成膜工艺气体进入所述腔体110,所述待成膜工艺气体在所述射频电场的作用下被激发成为等离子体。等离子体吸附在所述沉积基板150表面或者和所述沉积基板150表面发生反应从而在所述沉积基板150表面形成薄膜。由于所述第一电极 120的第一表面122为非平面结构,从而能够有效地改善由于平面结构的第一电极的中间区域和四周区域成膜速率存在差异,而导致的成膜均匀性不佳的问题。
本实施方式中,所述化学气相沉积设备100为等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)设备。所述PECVD设备能够用于沉积氮化硅薄膜、一氧化硅薄膜、二氧化硅薄膜、非晶硅薄膜、碳化硅薄膜、太阳能材料薄膜、类金刚石薄膜、光学薄膜、导电金属薄膜、炭纳米管(CNT)薄膜等多种薄膜材料。该PECVD设备较佳应用在显示器的薄膜晶体管(Thin Film Transistor,TFT)的栅极、通道层、源极、漏极的制备中。
请参照图2,图2为本申请提供的另一较佳实施方式的化学气相沉积设备200的结构示意图。可以理解,图2仅为方便理解所述化学气相沉积设备200的结构示意图,该化学气相沉积设备200实际结构要复杂和精细得多。该化学气相沉积设备200包括腔体210、第一电极220、第二电极230、遮蔽体290、沉积基板250、承载单元251、进气口260、喷嘴结构261、抽气管270和射频电源280。
所述腔体210将所述第一电极220、所述第二电极230、所述遮蔽体290、所述沉积基板250、所述承载单元251和所述喷嘴结构261均收容其中。
所述第一电极220和所述第二电极230平行对立地设置于所述遮蔽体290内。所述第一电极220和所述第二电极230之间形成供待成膜工艺气体流通的气流通道240。所述第一电极220连接所述射频电极,所述第二电极230接地。
所述遮蔽体290开设有一开口291。所述开口291位于所述第一电极220和所述第二电极230之间的正上方,从而与所述气流通道240连通。所述待成膜工艺气体进入所述第一电极220和所述第二电极230之间后,仅可以从所述开口291流出所述遮蔽体290。所述开口291正对的上方设置所述沉积基板250,所述待成膜工艺气体经过所述气流通道240后自所述开口291流出,最后在所述沉积基板250上成膜。所述承载单元251承载所述沉积基板250,所述承载单元251可以是可平行移动的。
所述进气口260设置于所述遮蔽体290底部,所述喷嘴结构261连接所述进气口260,所述待成膜工艺气体进所述进气口260进入,并自所述喷嘴结构261喷出至所述气流通道240。
所述抽气管270的一端连接所述腔体210,另一端连接一真空泵VP。通过 所述抽气管270,所述真空泵VP将所述腔体210内空气抽走,以实现所述腔体210内的真空状态。
本实施方式中,所述第一电极220邻近所述第二电极230的一侧为非平面结构。具体地,所述第一电极220侧面的下端,也就是所述第一电极220远离所述开口291的一端,朝远离所述第二电极230的方向凹陷从而形成至少一凹陷部221。其中,当所述至少一凹陷部221的数量不止为一个时,多个所述凹陷部221在所述第一电极220的侧面上,越靠近所述开口291的所述凹陷部221的凹陷程度越小。
在一变更实施方式中,所述第一电极220邻近所述第二电极230的一侧及所述第二电极230邻近所述第一电极220的一侧,均为非平面结构。所述第一电极220的下端,也就是第一电极220远离所述开口291的一端,朝远离所述第二电极230的方向凹陷从而形成有凹陷部221。同时所述第二电极230的下端,也就是远离所述开口291的一端,朝远离所述第一电极220的方向凹陷从而形成有凹陷部221。所述凹陷部221的存在,能够克服由于所述进气口260附近的等离子体密度和气流密度较其他区域高,导致的成膜均匀性不佳的问题。
使用所述化学气相沉积设备200进行成膜工艺时,首先通过所述抽气管270将所述腔体210内的空气抽掉以使所述腔体210处于真空状态;然后打开所述射频电源280,使所述第一电极220和所述第二电极230之间产生射频电场;以此同时,使所述待成膜工艺气体进入所述腔体210。其中,打开所述射频电源280和使所述待成膜工艺气体进入所述腔体210中,这两个步骤可以先后进行,或者同时进行。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请的描述中,术语“上方”、“下方”、“中间”、“两端”、“四周”、“底部”、“下端”等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (15)

  1. 一种化学气相沉积设备,包括:腔体、第一电极、第二电极、沉积基板、进气口、抽气管和连接射频电源;所述第一电极和所述第二电极平行相对设置于所述腔体内;所述第一电极连接射频电源;所述第二电极接地;所述沉积基板设于所述第一电极和所述第二电极之间;所述进气口和所述抽气管分别连接所述腔体;所述第一电极邻近所述第二电极的一侧为非平面结构。
  2. 如权利要求1所述的化学气相沉积设备,其中,所述第一电极包括相对的第一表面和第二表面,所述第一表面面对所述沉积基板,所述第一表面呈中间区域上凹,四周上翘的形状,从而形成所述非平面结构。
  3. 如权利要求2所述的化学气相沉积设备,其中,所述第一表面的中间部分具有第一凹陷部,所述第一凹陷部呈朝远离所述沉积基板的方向凹陷的形状,所述第一表面的两端分别具有一第二凹陷部,所述第二凹陷部呈朝远离所述沉积基板的方向凹陷的形状,所述第二凹陷部与所述第一凹陷部间隔设置。
  4. 如权利要求3所述的化学气相沉积设备,其中,所述第二凹陷部凹陷的深度和区域均较所述第一凹陷部凹陷的深度和区域小。
  5. 如权利要求1所述的化学气相沉积设备,其中,还包括主轴,所述主轴设于所述第二电极远离所述第一电极的一侧,用于支撑所述第二电极。
  6. 如权利要求1所述的化学气相沉积设备,其中,所述第一电极板开设有多个通孔,待成膜工艺气体自所述通孔流至所述第一电极和所述第二电极之间,以形成均匀的等离子体。
  7. 一种成膜方法,使用如权利要求1所述的化学气相沉积设备,其中,该成膜方法包括步骤:
    通过所述抽气管将所述腔体内空气抽掉以使所述腔体处于真空状态;
    打开所述射频电源,使所述第一电极和所述第二电极之间产生射频电场;
    使所述待成膜工艺气体进入所述腔体。
  8. 如权利要求7所述的成膜方法,其中,所述第一电极包括相对的第一表面和第二表面,所述第一表面面对所述沉积基板,所述第一表面呈中间区域上凹,四周上翘的形状,从而形成所述非平面结构。
  9. 如权利要求8所述的成膜方法,其中,所述第一表面的中间部分具有第一凹陷部,所述第一凹陷部呈朝远离所述沉积基板的方向凹陷的形状,所述第一表面的两端分别具有一第二凹陷部,所述第二凹陷部呈朝远离所述沉积基板的方向凹陷的形状,所述第二凹陷部与所述第一凹陷部间隔设置。
  10. 如权利要求9所述的成膜方法,其中,所述第二凹陷部凹陷的深度和区域均较所述第一凹陷部凹陷的深度和区域小。
  11. 如权利要求7所述的成膜方法,其中,还包括主轴,所述主轴设于所述第二电极远离所述第一电极的一侧,用于支撑所述第二电极。
  12. 如权利要求7所述的成膜方法,其中,所述第一电极板开设有多个通孔,待成膜工艺气体自所述通孔流至所述第一电极和所述第二电极之间,以形成均匀的等离子体。
  13. 一种化学气相沉积设备,包括:腔体、第一电极、第二电极、遮蔽体、沉积基板、承载单元、进气口、抽气管和射频电源;所述腔体将所述第一电极、所述第二电极、所述遮蔽体、所述沉积基板、所述承载单元收容其中;所述第一电极和所述第二电极平行对立地设置于所述遮蔽体内,所述第一电极连接所述射频电源,所述第二电极接地;所述第一电极和所述第二电极之间形成气流通道;所述遮蔽体开设有一开口,所述开口与所述气流通道连通;所述沉积基板与所述开口正对设置;所述进气口和所述抽气管分别连接所述腔体;所述第一电极邻近所述第二电极的一侧为非平面结构。
  14. 如权利要求13所述的化学气相沉积设备,其中,所述第一电极的一侧远离所述开口的一端,朝远离所述第二电极的方向凹陷,从而形成至少一凹陷部。
  15. 如权利要求14所述的化学气相沉积设备,其中,所述第二凹陷部凹陷的深度和区域均较所述第一凹陷部凹陷的深度和区域小。
PCT/CN2017/114090 2017-11-14 2017-11-30 化学气相沉积设备及成膜方法 WO2019095442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711141218.9 2017-11-14
CN201711141218.9A CN107937886A (zh) 2017-11-14 2017-11-14 化学气相沉积设备及成膜方法

Publications (1)

Publication Number Publication Date
WO2019095442A1 true WO2019095442A1 (zh) 2019-05-23

Family

ID=61931565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114090 WO2019095442A1 (zh) 2017-11-14 2017-11-30 化学气相沉积设备及成膜方法

Country Status (2)

Country Link
CN (1) CN107937886A (zh)
WO (1) WO2019095442A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009920A (en) * 1990-03-30 1991-04-23 Honeywell Inc. Method for applying optical interference coating
CN101560652A (zh) * 2008-04-18 2009-10-21 群康科技(深圳)有限公司 等离子辅助化学气相沉积装置
CN102098863A (zh) * 2009-12-14 2011-06-15 北京北方微电子基地设备工艺研究中心有限责任公司 用于等离子体加工设备的电极板和清除工艺沉积物的方法
US20120304932A1 (en) * 2009-08-25 2012-12-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
CN205529029U (zh) * 2016-01-21 2016-08-31 合肥鑫晟光电科技有限公司 气体扩散装置、工艺腔室及半导体加工设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487740B2 (en) * 2003-09-10 2009-02-10 Oerlikon Trading Ag, Truebbach Voltage non-uniformity compensation method for high frequency plasma reactor for the treatment of rectangular large area substrates
JP2005093740A (ja) * 2003-09-18 2005-04-07 Sanyo Electric Co Ltd プラズマcvd装置の異常検出方法
US20050230350A1 (en) * 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
US8097082B2 (en) * 2008-04-28 2012-01-17 Applied Materials, Inc. Nonplanar faceplate for a plasma processing chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009920A (en) * 1990-03-30 1991-04-23 Honeywell Inc. Method for applying optical interference coating
CN101560652A (zh) * 2008-04-18 2009-10-21 群康科技(深圳)有限公司 等离子辅助化学气相沉积装置
US20120304932A1 (en) * 2009-08-25 2012-12-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
CN102098863A (zh) * 2009-12-14 2011-06-15 北京北方微电子基地设备工艺研究中心有限责任公司 用于等离子体加工设备的电极板和清除工艺沉积物的方法
CN205529029U (zh) * 2016-01-21 2016-08-31 合肥鑫晟光电科技有限公司 气体扩散装置、工艺腔室及半导体加工设备

Also Published As

Publication number Publication date
CN107937886A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
KR101056219B1 (ko) 샤워헤드 및 기판 처리 장치
JP5202486B2 (ja) ガスディフューザのホールデザインによるプラズマ均一性制御
US10533252B2 (en) Showerhead, semicondcutor processing apparatus having the same and semiconductor process
JP6240607B2 (ja) 直線型大面積プラズマリアクタ内における均一プロセスのためのガス送出及び分配
JP5179389B2 (ja) シャワーヘッド及び基板処理装置
TWI465158B (zh) 微波電漿激發裝置
CN1715442A (zh) 用于大区域等离子体加强化学气相沉积的气体扩散喷头
CN101740298B (zh) 等离子体处理装置及其构成部件
CN1407135A (zh) 表面处理装置
CN103649368B (zh) 气体喷注装置、原子层沉积装置以及使用该原子层沉积装置的原子层沉积方法
CN101144154B (zh) 采用气体扩散板通道设计的等离子体均匀度控制
CN103403847A (zh) 氮化硅膜的成膜方法、有机电子器件的制造方法和氮化硅膜的成膜装置
WO2010131365A1 (ja) 表面波プラズマcvd装置および成膜方法
TWI824379B (zh) Pecvd鍍膜系統和鍍膜方法
WO2019095442A1 (zh) 化学气相沉积设备及成膜方法
KR101388224B1 (ko) 다이렉트 플라즈마 형성 증착장치
KR20100077887A (ko) 플라즈마 처리장치
KR20130072646A (ko) 증착 장치
TWI409358B (zh) 電漿輔助化學氣相沉積裝置
CN215481251U (zh) 气体喷淋头以及等离子体处理装置
CN220012796U (zh) 镀膜设备进片室装置
TW200413564A (en) Apparatus and method for forming a thin film
JPH11144891A (ja) プラズマ処理装置
CN205662591U (zh) 改进型的活化反应离子镀试验装置
TW202410259A (zh) 氣體噴射裝置、基板處理設備及沉積薄膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932438

Country of ref document: EP

Kind code of ref document: A1