WO2019095409A1 - Instrument d'essai multifonctionnel intégré destiné à la réaction biologique et à la mécanique des tissus mous - Google Patents
Instrument d'essai multifonctionnel intégré destiné à la réaction biologique et à la mécanique des tissus mous Download PDFInfo
- Publication number
- WO2019095409A1 WO2019095409A1 PCT/CN2017/112222 CN2017112222W WO2019095409A1 WO 2019095409 A1 WO2019095409 A1 WO 2019095409A1 CN 2017112222 W CN2017112222 W CN 2017112222W WO 2019095409 A1 WO2019095409 A1 WO 2019095409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test
- sample
- soft tissue
- stretching
- stage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
Definitions
- the invention relates to a multifunctional test instrument for biological reaction and soft tissue mechanics, belonging to the field of biomedical engineering.
- the object of the present invention is to provide a multi-functional test instrument for biological reaction and soft tissue mechanics.
- a biological reaction and soft tissue mechanics multifunctional test integrated device which comprises a stretching device, a pressing device, a shearing device and a sample placing tank.
- the sample placement tank is used to place the test sample, and is also used as a biological reaction vessel for preparing the sample, or as a sample pre-stress and boundary condition simulation device;
- the stretching device comprises at least two stretching modules arranged to move in different directions, one-to-one correspondingly At least two motors that drive the stretching module to move, at least two first pressure sensors for correspondingly measuring the force of the tensile module during the tensile test, at least two stretching modules are disposed around the sample placement slot, each The tensile module has a connection portion detachably connected to the test sample;
- the squeezing device comprises an extrusion test head arranged above the sample placement groove and movable up and down, an adjustment mechanism connected to the extrusion test head and driving the extrusion test head to move in a horizontal direction, for use in the extrusion test a displacement sensor and a second pressure sensor for squeezing the test head for distance measurement and force measurement;
- the shearing device comprises an adjustment block capable of adjusting the thickness of the shear plate to accommodate different test specimens, a third pressure sensor for measuring the shear force during the shear test, for placing the test sample and capable of being horizontally a moving stage having at least four mounting states, the at least four mounting states including a first state of horizontal mounting, a second state rotated 90 degrees relative to the first state, and a horizontal state relative to the first state The third state in which the upper state is rotated by 180° and the fourth state in which the first state is rotated by 270° on the horizontal plane.
- the connecting portion can detachably clamp the test sample.
- the stretching module has at least two pairs, wherein one pair is symmetrically arranged and the moving direction is in the left-right direction, and the other pair is symmetrically arranged and the moving direction is in the front-rear direction.
- sample placement groove has four extensions extending in the forward, rear, left, and right directions, respectively, so that the sample placement groove has a cross shape.
- the adjusting mechanism comprises a fixedly arranged support frame, a lead screw which is arranged to be movable back and forth on the support frame, and a sliding member which is movably connected to the lead screw, and the extrusion test head is movably connected in the up and down direction. Below the sliding part.
- the lead screw adjusts the moving position of the lead screw by adjusting the handle.
- the stage drives its movement by a motor.
- the stage can be taken out in the sample placement tank, and when the shear test is performed, the stage is in the mounted state and is separated from the sample placement groove; when performing the tensile test or the extrusion test, The stage is placed in the sample placement slot.
- At least four mounting states of the stage are detachably mounted by a jig.
- the bioreactor and soft tissue mechanics multifunctional test integrated instrument of the present invention has the following advantages compared with the prior art:
- the present invention is directed to the technical difficulties in the multi-modal test, where the tensile and shear test structures are difficult to be unified, quasi-static and dynamic tests are difficult to combine, and the interchangeable structure is used to interactively arrange different modes in the plane and the three-dimensional space. Drive structure; using spatial stereo layout, multiple test modes are integrated on the same test platform to achieve multi-modal integration test;
- multi-modal test can be carried out at the same time, and the soft tissue under different boundary conditions is simulated test: stress pre-adjustment and simulation of the force state of the sample in the body, soft tissue in the state close to the real environment of the body
- the sample was tested for comprehensive mechanical properties.
- the planar drive structure of the tester is calculated according to the reverse of the prestress, and the planar test module can be driven accordingly to reproduce the state of the soft tissue sample in the body.
- the tester can conveniently apply boundary conditions to the sample through the planar and vertical drive modules, realize the consistency of the boundary conditions in the dynamic test in vivo and in vitro, and test and analyze the effect of the multimodal model test;
- FIG. 1 is a schematic perspective view showing a three-dimensional structure of a biological reaction and soft tissue mechanics multifunctional test integrated instrument of the present invention
- Figure 2 is a perspective view showing the three-dimensional structure of the biological reaction and soft tissue mechanics multifunctional test integrated instrument of the present invention, the perspective of which is different from that of Figure 1;
- FIG. 3 is a schematic front view showing the structure of a multifunctional test apparatus for biological reaction and soft tissue mechanics according to the present invention.
- the bioreactor and soft tissue mechanics multi-function tester of the present embodiment includes a test stand 1, a stretching device, a pressing device, a shearing device, and The sample is placed in slot 2.
- the sample placement tank 2 is fixedly disposed on the test stand 1 for placing a test sample, and is also used as a biological reaction container for preparing a sample.
- the sample placement slot 2 has four forward and backward, respectively.
- the left and right four horizontally extending extensions are such that the sample placement groove 2 has a cross shape to cooperate with the stretching device for uniaxial stretching or biaxial stretching of the test sample, and at the same time, to position the stage 18 The movement of the stage 18 in the sample placement tank 2 is avoided to affect the test results.
- the stage 18 will be described below.
- the stretching device is used to perform a one-way or two-way tensile test on the test sample.
- the utility model comprises at least two stretching modules 4 arranged to move in different directions, at least two motors 3 respectively driving the stretching module 4 to move one by one, for correspondingly exerting force on the stretching module 4 during the tensile test.
- At least two first pressure sensors 7 are measured. The distance measurement of the tensile module 4 in the tensile test is determined and calculated by the output of its corresponding motor 3.
- At least two stretching modules 4 are disposed around the sample placement slot 2.
- the stretching module 4 has at least four, that is, two pairs, wherein one pair is respectively moved in the left-right direction and symmetrically disposed, and the other pair is respectively moved in the front-rear direction and symmetrically disposed.
- the stretching module 4 is coupled to a slider 5, and the motor 3 is driven to move by the slider 5 by a screw nut mechanism.
- the slider 5 is movably coupled to a guide rail 6 and moves along the length of the guide rail 6.
- the guide rail 6 and the motor 3 are fixedly connected to the test stand 1.
- the longitudinal direction of each of the guide rails 6 is respectively disposed along the extending direction of the four extension portions of the cruciform sample placement groove 2.
- Each tensile module 4 has a connection that is detachably connected to the test sample.
- the connecting portion in this embodiment adopts a clamping structure to detachably clamp the test sample. And using the principle of leverage, the tensile force of the test sample is equivalently transmitted to the first pressure sensor 7.
- the stretching apparatus in this embodiment can achieve biaxial stretching of the test sample. Therefore, the sample placement tank 2 in this embodiment can also be used as a sample prestressing and boundary condition simulation device. Pass Stress pre-adjustment and simulation of the force state of the sample in the body, comprehensive mechanical properties test of the soft tissue sample in the state close to the real environment of the body, through the calculation of the stress distribution and tensile force of the sample in the biaxial tensile test Analysis, combined with numerical simulation, reversed the stress distribution of soft tissue in the in vivo environment.
- the planar drive structure of the test MFP is calculated according to the reverse calculation of the prestress, and the plane test module can be driven correspondingly to reproduce the state of the soft tissue sample in the body.
- the test versatile instrument can conveniently apply boundary conditions to the sample through the planar and vertical drive modules, realize the consistency of the boundary conditions in the dynamic test in vivo and in vitro, and test and analyze the effect of the multimodal model test.
- the squeezing device comprises a squeezing test head 10 disposed above the sample placing tank 2 and movable up and down, an adjusting mechanism connected to the squeezing test head 10 and driving the squeezing test head 10 to move in a horizontal direction, for squeezing
- the displacement sensor 9 and the second pressure sensor 8 that perform distance measurement and force measurement on the extrusion test head 10 during the pressure test.
- the adjustment mechanism includes a fixed support frame 11 , a lead screw 12 that is movably disposed on the support frame 11 , and a sliding member 13 that is movably coupled to the lead screw 12 .
- the squeeze test head 10 is squeezed. It is movably connected to the lower side of the sliding member 13 in the up and down direction.
- the lead screw 12 adjusts the moving position of the lead screw 12 by adjusting the handle 14.
- the shearing device comprises an adjustment block 15 capable of adjusting the shearing movement of the shearing plate 16 to accommodate different test sample thicknesses, a third pressure sensor 19 for measuring the shearing force during the shearing test, for placing the test sample and capable of The stage 18 moves in the horizontal direction.
- the shearing plate 16 and the third pressure sensor 19 are connected to the adjustment block 15.
- the movement of the stage 18 is driven by one of the above-described motors 3.
- the stage 18 is disposed on one of the above-described sliders 5, and is driven by a motor 3 that connects the sliders 5.
- the stage 18 is detachably coupled to the slider 5.
- the stage 18 has at least four mounting states including a horizontally mounted first state, a second state rotated 90 degrees relative to the first state on a horizontal plane, and a horizontal plane relative to the first state The third state in which the upper state is rotated by 180°, the fourth state in which the first state is rotated by 270° on the horizontal surface, and the second state in which the first state is rotated by 90° on the horizontal surface.
- the stage 18 can be mounted arbitrarily rotated 90° about its vertical central axis on a horizontal plane to effect shearing of the sample in different directions.
- at least four mounting states of the stage 18 are detachably mounted by the clamp 20, and the clamp 20 clamps the stage 18 to the slider 5 described above, and can be rotated 90° arbitrarily after being detached.
- the slider 5 is connected so that the positional adjustment of the test sample on the stage 18 in the horizontal direction (front, rear, left and right) is achieved by a drive motor 3.
- the vertical distance between the shear plate 16 and the stage 18 is adjusted by the up and down movement of the adjustment block 15 to accommodate the thickness of the test sample.
- the stage 18 is removably placed in the sample placement slot 2, and when performing the shear test, the stage 18 is attached to the slider 5 and is associated with the sample placement slot 2. When the tensile test or the extrusion test is performed, the stage 18 is separated from the slider 5 and placed in the sample placing tank 2.
- the stage 18 is of a cruciform design, and when placed in the sample placement slot 2 in a cooperative manner, the sample placement slot 2 can limit the movement of the stage 18 in the horizontal direction, preventing the stage 18 from moving in the sample placement slot 2. And affect the test results.
- the shearing device also includes a fixedly disposed guide member 17 to which the adjustment block 15 is movably coupled by a screw nut mechanism.
- the guide member 17 is fixedly coupled to the test stand 1 and is located on one side of the motor 3 that drives the stage 18 to move.
- the bioreactor and soft tissue mechanics multifunctional test integrated instrument of the present invention has the following advantages: 1.
- the present invention is difficult to unify, quasi-static and dynamic test in the tensile and shear test structures for multi-modal testing.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
L'invention concerne un instrument d'essai multifonctionnel intégré destiné à la réaction biologique et à la mécanique des tissus mous, comprenant un dispositif d'étirage, un dispositif d'extrusion, un dispositif de cisaillement et un réservoir de placement d'échantillon (2), le réservoir de placement d'échantillon (2) étant utilisé pour le placement d'un échantillon d'essai et étant également utilisé comme récipient de réaction biologique pour préparer l'échantillon ; le dispositif d'étirement comprend au moins deux modules d'étirement (4) disposé de façon mobile dans différentes directions, au moins deux moteurs (3) permettant d'entraîner le déplacement des modules d'étirage (4), et au moins deux premiers capteurs de pression (7) ; le dispositif d'extrusion comprend une tête d'essai d'extrusion (10) disposée au-dessus du réservoir de placement d'échantillon (2) et mobile vers le haut et vers le bas, un mécanisme de réglage relié à la tête d'essai d'extrusion (10) et entraînant le déplacement de la tête d'essai d'extrusion (10) dans une direction horizontale, un capteur de déplacement (9) et un deuxième capteur de pression (8) ; et le dispositif de cisaillement comprend un bloc de réglage (15) permettant d'entraîner le déplacement d'une plaque de cisaillement (16) vers le haut et vers le bas, un troisième capteur de pression (19), et une table d'objet (118) qui est utilisée pour le placement de l'échantillon d'essai et qui est mobile dans la direction horizontale. Ledit instrument d'essai multifonctionnel intégré intègre des modes d'essai multiples sur la même plateforme d'essai dans un mode d'agencement tridimensionnel spatial, ce qui permet d'effectuer un essai intégré multimodal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711127119.5A CN107941613B (zh) | 2017-11-15 | 2017-11-15 | 生物反应与软组织力学多功能测试一体仪 |
CN201711127119.5 | 2017-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019095409A1 true WO2019095409A1 (fr) | 2019-05-23 |
Family
ID=61932226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112222 WO2019095409A1 (fr) | 2017-11-15 | 2017-11-22 | Instrument d'essai multifonctionnel intégré destiné à la réaction biologique et à la mécanique des tissus mous |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107941613B (fr) |
WO (1) | WO2019095409A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113075032A (zh) * | 2021-03-06 | 2021-07-06 | 朱彦诚 | 一种模拟绷带使用实况并检测其韧性的设备 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287548B2 (en) * | 2016-06-29 | 2019-05-14 | General Electric Company | Method and device for closed system culture of cartilage tissue |
CN110687042A (zh) * | 2019-09-16 | 2020-01-14 | 浙江理工大学 | 离体软组织多轴拉伸测量平台及其测量方法 |
CN111208007B (zh) * | 2020-01-20 | 2022-06-03 | 通标标准技术服务有限公司 | 纺织材料力学性能检测方法 |
CN112113812A (zh) * | 2020-09-02 | 2020-12-22 | 四川大学 | 一种制备软质生物材料样品平整断面的工艺及装置 |
CN115500814A (zh) * | 2022-10-14 | 2022-12-23 | 复旦大学 | 一种足底软组织在体多维应力-应变检测设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009175149A (ja) * | 2008-01-25 | 2009-08-06 | Jaroslav Benedik | 血管壁の品質およびソリッドネスを検出するための装置 |
CN104977211A (zh) * | 2015-07-14 | 2015-10-14 | 苏州大学张家港工业技术研究院 | 生物软组织的力学特性测试仪 |
CN105300812A (zh) * | 2015-10-26 | 2016-02-03 | 苏州大学张家港工业技术研究院 | 生物软组织力学特性测试仪及生物软组织的力学测试方法 |
CN105571956A (zh) * | 2016-01-05 | 2016-05-11 | 郑州大学 | 一种测量生物软组织力学性能的剪切装置 |
CN205483873U (zh) * | 2016-01-25 | 2016-08-17 | 中国科学院声学研究所东海研究站 | 生物组织弹性测量仪 |
CN106706430A (zh) * | 2017-03-10 | 2017-05-24 | 山东大学 | 一种用于活性生物双轴拉伸的测试装置及在软材料中应用 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62187237A (ja) * | 1986-02-14 | 1987-08-15 | Toshiba Corp | 脆性材料の引張試験装置 |
CN87205653U (zh) * | 1987-03-28 | 1987-12-02 | 华南工学院 | 机械式双向拉伸试验仪 |
CN2551177Y (zh) * | 2002-06-25 | 2003-05-21 | 中国中医研究院骨伤科研究所 | 指环式软组织力学测试仪 |
JP5002827B2 (ja) * | 2007-03-23 | 2012-08-15 | 中国電力株式会社 | 岩盤不連続面のせん断試験装置 |
KR100986904B1 (ko) * | 2008-11-10 | 2010-10-08 | 한국항공우주산업 주식회사 | 일체형 전단 및 굽힘 시험 장치 |
KR20130034321A (ko) * | 2011-09-28 | 2013-04-05 | 한국건설기술연구원 | Shtb를 이용한 콘크리트 인장 시험 장치 및 방법 |
CN202514756U (zh) * | 2012-02-26 | 2012-11-07 | 南昌大学 | 一种带有按摩功能的雨伞 |
CN102706731B (zh) * | 2012-06-14 | 2014-12-03 | 河南理工大学 | 一种测试金属板材性能的双向拉伸试验装置 |
CN103308404B (zh) * | 2013-06-14 | 2015-04-08 | 吉林大学 | 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪 |
CN103487315B (zh) * | 2013-08-28 | 2015-11-18 | 吉林大学 | 一种材料力学性能测试装置 |
CN104359767B (zh) * | 2014-10-18 | 2017-01-25 | 吉林大学 | 高温双向拉伸装置 |
CN104330299B (zh) * | 2014-11-07 | 2017-03-22 | 山东大学 | 一种微小生物软组织力学性能测试系统及工作方法 |
CN104502202B (zh) * | 2014-12-15 | 2017-01-25 | 吉林大学 | 服役温度下材料双轴静动态性能在线测试平台 |
CN104568591B (zh) * | 2015-01-06 | 2019-02-19 | 上海交通大学 | 一种双轴拉伸测试装置 |
CN205080003U (zh) * | 2015-07-14 | 2016-03-09 | 苏州大学张家港工业技术研究院 | 生物软组织的力学特性测试仪 |
CN105158074A (zh) * | 2015-09-29 | 2015-12-16 | 北京航空航天大学 | 一种热环境双向拉伸十字形试件 |
CN205192870U (zh) * | 2015-10-26 | 2016-04-27 | 苏州大学张家港工业技术研究院 | 生物软组织力学特性测试仪 |
CN205301100U (zh) * | 2016-01-05 | 2016-06-08 | 郑州大学 | 一种测量生物软组织力学性能的剪切装置 |
CN105842055B (zh) * | 2016-03-15 | 2018-05-18 | 北京航空航天大学 | 一种利用单轴试验机进行变比例双轴加载的强度试验卡具 |
CN106226152B (zh) * | 2016-07-08 | 2018-06-01 | 吉林大学 | 静动态载荷谱下材料力学性能原位测试系统与方法 |
CN206248460U (zh) * | 2016-10-13 | 2017-06-13 | 苏州大学张家港工业技术研究院 | 生物软组织微观力学特性测试仪 |
CN106525585A (zh) * | 2016-11-16 | 2017-03-22 | 北方工业大学 | 双向拉压力学试验机以及双向拉压力学试验方法 |
CN106644720A (zh) * | 2016-12-27 | 2017-05-10 | 重庆大学 | 基于单向试验机实现应力与应变比可调的双向拉伸装置 |
CN206362642U (zh) * | 2016-12-27 | 2017-07-28 | 吉林大学 | 高温双轴同步拉伸力学性能测试仪器 |
CN206557011U (zh) * | 2017-01-19 | 2017-10-13 | 苏州大学 | 软组织各向异性剪切力学特性测试仪 |
CN106896028A (zh) * | 2017-02-28 | 2017-06-27 | 天津工业大学 | 三维织物剪切、双轴向拉伸试验装置及方法 |
CN107271287A (zh) * | 2017-07-06 | 2017-10-20 | 东南大学 | 一种卧式双轴拉伸测试试验机及拉伸测试方法 |
-
2017
- 2017-11-15 CN CN201711127119.5A patent/CN107941613B/zh not_active Expired - Fee Related
- 2017-11-22 WO PCT/CN2017/112222 patent/WO2019095409A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009175149A (ja) * | 2008-01-25 | 2009-08-06 | Jaroslav Benedik | 血管壁の品質およびソリッドネスを検出するための装置 |
CN104977211A (zh) * | 2015-07-14 | 2015-10-14 | 苏州大学张家港工业技术研究院 | 生物软组织的力学特性测试仪 |
CN105300812A (zh) * | 2015-10-26 | 2016-02-03 | 苏州大学张家港工业技术研究院 | 生物软组织力学特性测试仪及生物软组织的力学测试方法 |
CN105571956A (zh) * | 2016-01-05 | 2016-05-11 | 郑州大学 | 一种测量生物软组织力学性能的剪切装置 |
CN205483873U (zh) * | 2016-01-25 | 2016-08-17 | 中国科学院声学研究所东海研究站 | 生物组织弹性测量仪 |
CN106706430A (zh) * | 2017-03-10 | 2017-05-24 | 山东大学 | 一种用于活性生物双轴拉伸的测试装置及在软材料中应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113075032A (zh) * | 2021-03-06 | 2021-07-06 | 朱彦诚 | 一种模拟绷带使用实况并检测其韧性的设备 |
CN113075032B (zh) * | 2021-03-06 | 2022-12-13 | 青岛大学附属医院 | 一种模拟绷带使用实况并检测其韧性的设备 |
Also Published As
Publication number | Publication date |
---|---|
CN107941613B (zh) | 2020-10-09 |
CN107941613A (zh) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019095409A1 (fr) | Instrument d'essai multifonctionnel intégré destiné à la réaction biologique et à la mécanique des tissus mous | |
WO2021179608A1 (fr) | Appareil de mesures micromécaniques et procédé associé | |
CN111579360B (zh) | 一种高通量小试样拉、压、弯测试系统及方法 | |
CN103487315B (zh) | 一种材料力学性能测试装置 | |
CN103308404A (zh) | 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪 | |
CN111337347B (zh) | 植物微观力学检测装置及其检测方法 | |
TWI546531B (zh) | 拉拔力測試機構及拉拔力測試方法 | |
WO2018068338A1 (fr) | Testeur de propriétés micromécaniques de tissu mou biologique | |
WO2017008319A1 (fr) | Testeur de propriété mécanique pour tissus biologiques mous | |
CN206683954U (zh) | 纤维拉伸测试装置 | |
CN105973694A (zh) | 拉伸-四点弯曲预载荷下纳米压痕测试装置 | |
KR101737817B1 (ko) | 재료 시험 장치 및 이를 이용한 재료 시험방법 | |
CN203337492U (zh) | 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪 | |
CN103760019B (zh) | 原子力显微镜配套用卧式材料拉伸压缩试验机 | |
CN110823684A (zh) | 一种钢材拉伸性能测量装置及系统 | |
CN105403466B (zh) | 一种用于电子显微镜的原位定量力热耦合拉伸试验装置 | |
CN203643278U (zh) | 显微镜下的四点弯曲材料微观力学性能原位测试装置 | |
CN106404539B (zh) | 一种实现均匀单向拉伸的试验方法 | |
CN106341769B (zh) | 一种围脖耳机拉伸测试仪 | |
CN210893503U (zh) | 一种保持中心位置不动的残余应力引入装置 | |
CN210690253U (zh) | 一种建筑保温材料拉压性能检测装置 | |
CN208313705U (zh) | 可调张力的织物剪切性能测试夹具 | |
CN102384878A (zh) | 显微组件下跨尺度原位微纳米拉伸/压缩液压驱动测试装置 | |
CN217520712U (zh) | 一种汽车门把手测试装置 | |
JP2014190703A (ja) | カテーテルの摩擦評価装置及びその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17932098 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17932098 Country of ref document: EP Kind code of ref document: A1 |