WO2019095322A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019095322A1
WO2019095322A1 PCT/CN2017/111739 CN2017111739W WO2019095322A1 WO 2019095322 A1 WO2019095322 A1 WO 2019095322A1 CN 2017111739 W CN2017111739 W CN 2017111739W WO 2019095322 A1 WO2019095322 A1 WO 2019095322A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol group
symbol
uplink subframe
frequency hopping
groups
Prior art date
Application number
PCT/CN2017/111739
Other languages
English (en)
French (fr)
Inventor
罗之虎
金哲
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17932143.5A priority Critical patent/EP3700285B1/en
Priority to BR112020009594-0A priority patent/BR112020009594A2/pt
Priority to PCT/CN2017/111739 priority patent/WO2019095322A1/zh
Priority to NZ764640A priority patent/NZ764640A/en
Priority to JP2020526917A priority patent/JP6987991B2/ja
Priority to CN201780096686.0A priority patent/CN111316745B/zh
Priority to RU2020119799A priority patent/RU2747268C1/ru
Publication of WO2019095322A1 publication Critical patent/WO2019095322A1/zh
Priority to US16/875,203 priority patent/US11343856B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • the 3rd Generation Partnership Project (3GPP) of the Mobile Communications Standardization Organization proposes the Narrowband Internet of Things (NB-IoT) technology. Similar to the Long Term Evolution (LTE) system, the NB-IoT technology is divided into time division duplex (TDD) NB-IoT and frequency division duplex (FDD) NB-IoT.
  • TDD time division duplex
  • FDD frequency division duplex
  • the terminal device needs to access the base station by means of random access.
  • the terminal device needs to send a random access preamble on a narrowband Physical Random Access Channel (NPRACH) channel.
  • NPRACH narrowband Physical Random Access Channel
  • a preamble includes 4 symbol groups, and each symbol group occupies a length of 1.4 ms or 1.6 ms, that is, the length of a continuous uplink resource occupied by a preamble is 5.6 ms or 6.4 ms.
  • the continuous uplink resource included in one radio frame has a maximum of 3 subframes, and the length of one subframe is 1 ms, so the terminal device cannot transmit the length of time through 3 subframes. It is a preamble of 5.6ms or 6.4ms, so that it cannot access the base station.
  • a communication device that needs to access a base station such as a terminal device, how to send a preamble to a base station is an urgent problem to be solved.
  • the purpose of the embodiments of the present application is to provide a communication method and apparatus for solving the problem of how a communication device including a terminal device transmits a preamble in a TDD mode.
  • the embodiment of the present application provides a communication method, including:
  • the terminal device determines a preamble; the preamble includes M symbol groups, and M is a positive integer greater than one;
  • the terminal device sends the M symbol groups by using K uplink subframe sets; any one of the K uplink subframe sets includes at least one consecutive uplink subframe, and the K uplink subframes Any two uplink subframe sets in the frame set are separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group, where K is a positive integer greater than 1.
  • K is less than or equal to M; the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping is frequency hopping between adjacent symbol groups in the M symbol groups, the N The frequency hopping direction of at least two frequency hopping frequencies in the secondary frequency hopping is opposite, and N is smaller than M.
  • the terminal sends the M symbol groups in the preamble through the K uplink subframe sets. Because at least one downlink subframe is separated between any two uplink subframe sets in the K uplink subframe sets, the terminal can pass the terminal. Transmitting a preamble in a plurality of discontinuous uplink subframes in a radio frame, thereby implementing a preamble by using a discontinuous uplink resource in the time domain, and improving the problem that the terminal device cannot transmit the preamble in the TDD NB-IoT Resource utilization. Since the frequency hopping direction of at least two hopping frequencies in the N frequency hopping is reversed, the phase influence due to the frequency offset can be eliminated, thereby improving the reliability of the network device estimating the time arrival of the terminal according to the received preamble.
  • M is equal to 6;
  • K is equal to 2
  • the terminal device sends 3 symbols through each of the uplink subframe sets in the 2 uplink subframe sets. Number group.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the terminal device sends the M symbol groups by using K uplink subframe sets, including:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2
  • the terminal device sends two symbol groups by using each of the two uplink subframe sets in the two uplink subframe sets.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the terminal device sends the M symbol groups in the preamble by using K uplink subframe sets, including:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • each of the M symbol groups occupies 1 subcarrier.
  • the method before the determining, by the terminal device, the preamble, the method further includes:
  • the preamble format information indicates at least one or more of the following:
  • the embodiment of the present application provides a communication method, including:
  • the network device receives a preamble sent by the terminal device through the K uplink subframe sets, where the preamble includes M symbol groups; and any one of the K uplink subframe sets includes at least one consecutive uplink sub-frame a frame, where any two uplink subframe sets in the K uplink subframe set are separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group.
  • K is a positive integer greater than 1
  • M is a positive integer greater than 1
  • K is less than or equal to M
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is the M Frequency hopping between adjacent symbol groups in the symbol group, wherein at least two frequency hopping frequencies of the N frequency hopping are opposite in direction, and N is less than M;
  • the network device performs uplink synchronization measurement according to the preamble.
  • the preamble received by the network device is sent by the terminal through the K uplink subframe sets. Because at least one downlink subframe is separated between any two uplink subframe sets in the K uplink subframe set, the terminal may Transmitting a preamble by using a plurality of discontinuous uplink subframes in a radio frame, so that the preamble is transmitted by using a discontinuous uplink resource in the time domain, and the problem that the terminal device cannot transmit the preamble in the TDD NB-IoT is solved. Improve resource utilization. Since the frequency hopping direction of at least two hopping frequencies in the N frequency hopping is reversed, the phase influence due to the frequency offset can be eliminated, thereby improving the reliability of the network device estimating the time arrival of the terminal according to the received preamble.
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the network device receives a preamble sent by the terminal device by using the K uplink subframe sets, including:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the network device receives a preamble sent by the terminal device through the K uplink subframe sets, and includes:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • each of the M symbol groups occupies 1 subcarrier.
  • the method further includes:
  • the network device sends a random access configuration parameter to the terminal device, where the random access configuration parameter includes preamble format information;
  • the preamble format information indicates at least one or more of the following:
  • the embodiment of the present application provides a communication method, including:
  • the terminal device determines a preamble; the preamble includes M symbol groups, and M is a positive integer greater than one;
  • the terminal device sends the M symbol groups by using K uplink subframe sets; any one of the K uplink subframe sets includes at least one consecutive uplink subframe, and the K uplink subframes Any two uplink subframe sets in the frame set are separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group, where K is a positive integer greater than 0, and K is less than or equal to M; each of the M symbol groups occupies 2 consecutive subcarriers.
  • the terminal transmits M symbol groups in the preamble through the K uplink subframe sets, and each symbol group occupies 2 consecutive subcarriers, thereby shortening the length of the preamble, thereby enabling implementation in K uplink subframes.
  • the preamble is sent in the collection.
  • the terminal can send the preamble through multiple discontinuous uplink subframes in one radio frame, thereby realizing utilization.
  • the preamble is sent by the discontinuous uplink resource on the domain, and the problem that the terminal device cannot transmit the preamble in the TDD NB-IoT is solved, and the resource utilization rate is improved.
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is a frequency hopping between adjacent symbol groups in the M symbol groups, and the N times hopping
  • the frequency hopping direction of at least two frequency hopping frequencies is opposite, and N is less than M.
  • K is equal to 1 and M is equal to 3;
  • the terminal device sends the M symbol groups by using K uplink subframe sets, including:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the second symbol group and the third symbol group, the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the second symbol group and the third symbol group are the same.
  • K is equal to 1 and M is equal to 2;
  • the terminal device sends the M symbol groups by using K uplink subframe sets, including:
  • the hopping interval between the first symbol group and the second symbol group is the width of the E/2 subcarrier spacing, and E is the number of subcarriers included in the hopping range, and E is agreed by the protocol.
  • K is equal to 2 and M is equal to 2;
  • the terminal device sends the M symbol groups by using K uplink subframe sets, including:
  • the hopping interval between the first symbol group and the second symbol group is the width of the E/2 subcarrier spacing, and E is the number of subcarriers included in the hopping range, and E is agreed by the protocol.
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is a frequency hopping between adjacent symbol groups in the M symbol groups, and the N times hopping
  • the frequency hopping direction of at least two frequency hopping frequencies is opposite, N is less than M
  • the method before the determining, by the terminal device, the preamble, the method further includes:
  • the preamble format information indicates at least one or more of the following:
  • the embodiment of the present application provides a communication device, including: a processing unit and a transceiver unit;
  • the processing unit is configured to determine a preamble; the preamble includes M symbol groups, and M is a positive integer greater than one;
  • the transceiver unit is configured to send the M symbol groups by using K uplink subframe sets; any one of the K uplink subframe sets includes at least one consecutive uplink subframe, where the K Each of the two uplink subframe sets in the uplink subframe set is separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group, where K is greater than 1. a positive integer, and K is less than or equal to M; the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping is frequency hopping between adjacent symbol groups in the M symbol groups, The frequency hopping direction of at least two of the N frequency hopping frequencies is opposite, and N is less than M.
  • M is equal to 6;
  • K is equal to 2
  • three symbol groups are transmitted through each of the two uplink subframe sets in the set of uplink subframes.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • a frequency hopping interval between the fourth symbol group and the fifth symbol group, and the fifth symbol group and the sixth symbol The frequency hopping interval between the groups of numbers is the same; the frequency hopping direction between the fourth symbol group and the fifth symbol group and the frequency hopping direction between the fifth symbol group and the sixth symbol group are opposite .
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • each of the M symbol groups occupies 1 subcarrier.
  • the transceiver unit is further configured to:
  • the preamble format information indicates at least one or more of the following:
  • the embodiment of the present application provides a communication device, including: a processing unit and a transceiver unit;
  • the transceiver unit is configured to receive a preamble that is sent by the terminal device by using the K uplink subframe sets, where the preamble includes M symbol groups; and any one of the K uplink subframe sets includes at least one uplink subframe set.
  • a continuous uplink subframe at least one downlink subframe is separated between any two uplink subframe sets in the K uplink subframe set, and each uplink subframe set in the K uplink subframe sets can be sent
  • At least one symbol group K is a positive integer greater than 1
  • M is a positive integer greater than 1
  • K is less than or equal to M
  • the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping For frequency hopping between adjacent symbol groups in the M symbol groups, the frequency hopping direction of at least two hopping frequencies in the N frequency hopping is opposite, and N is less than M;
  • the processing unit is configured to perform uplink synchronization measurement according to the preamble.
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the transceiver unit is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • each of the M symbol groups occupies 1 subcarrier.
  • the embodiment of the present application provides a communication device, including: a processor and a transceiver;
  • the processor is configured to determine a preamble; the preamble includes M symbol groups, and M is a positive integer greater than one;
  • the transceiver is configured to send the M symbol groups by using K uplink subframe sets; any one of the K uplink subframe sets includes at least one consecutive uplink subframe, where the K Each of the two uplink subframe sets in the uplink subframe set is separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group, where K is greater than 1. a positive integer, and K is less than or equal to M; the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping is frequency hopping between adjacent symbol groups in the M symbol groups, The frequency hopping direction of at least two of the N frequency hopping frequencies is opposite, and N is less than M.
  • M is equal to 6;
  • K is equal to 2
  • three symbol groups are transmitted through each of the two uplink subframe sets in the set of uplink subframes.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver is specifically used to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • a frequency hopping interval between the fourth symbol group and the fifth symbol group, and the fifth symbol group and the sixth symbol The frequency hopping interval between the groups of numbers is the same; the frequency hopping direction between the fourth symbol group and the fifth symbol group and the frequency hopping direction between the fifth symbol group and the sixth symbol group are opposite .
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver is specifically used to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • each of the M symbol groups occupies 1 subcarrier.
  • the transceiver is further configured to:
  • the preamble format information indicates at least one or more of the following:
  • the embodiment of the present application provides a communication device, including: a processor and a communication interface;
  • the communication interface is configured to receive a preamble that is sent by the terminal device by using the K uplink subframe sets, where the preamble includes M symbol groups; and any one of the K uplink subframe sets includes at least one uplink subframe set.
  • a continuous uplink subframe at least one downlink subframe is separated between any two uplink subframe sets in the K uplink subframe set, and each uplink subframe set in the K uplink subframe sets can be sent
  • At least one symbol group K is a positive integer greater than 1
  • M is a positive integer greater than 1
  • K is less than or equal to M
  • the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping For frequency hopping between adjacent symbol groups in the M symbol groups, the frequency hopping direction of at least two hopping frequencies in the N frequency hopping is opposite, and N is less than M;
  • the processor is configured to perform uplink synchronization measurement according to the preamble.
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the communication interface is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the communication interface is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • each of the M symbol groups occupies 1 subcarrier.
  • the present application also provides a communication device comprising: a memory for storing instructions, the processor for executing instructions stored by the memory, and execution of instructions stored in the memory such that The processor is configured to perform any of the communication methods described above.
  • the embodiment of the present application further provides a computer readable storage medium comprising computer readable instructions, when the communication device reads and executes the computer readable instructions, causing the communication device to perform any of the above communication methods.
  • Embodiments of the present application also provide a computer program product comprising computer readable instructions that, when read and executed by a communication device, cause the communication device to perform any of the communication methods described above.
  • the embodiment of the present application further provides a communication system, which includes the terminal device or the network device provided by any one of the foregoing designs.
  • the system may further include the terminal device provided by the embodiment of the present application. Or other device that the network device interacts with.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a frequency hopping rule according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a symbol group structure transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • NR New Radio
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE Evolved Long Term Evolution
  • FIG. 1 is a schematic diagram showing a system architecture applicable to the embodiment of the present application.
  • the network device and the terminal device 1 to the terminal device 6 form a communication system, in which the network device sends The information is sent to one or more of the terminal devices 1 to 6 .
  • the terminal device 4 to the terminal device 6 also constitute a communication system in which the terminal device 5 can transmit information to one or more of the terminal device 4 and the terminal device 6.
  • the terminal device can support the NB-IoT technology, and can be referred to as a User Equipment (UE), an access terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and a remote terminal device.
  • UE User Equipment
  • Mobile devices wireless communication devices, cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistant (PDA), with Handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks, and the like.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a network device which may be referred to as a radio access network (RAN) device, is hereinafter collectively referred to as a network device, and is mainly responsible for providing a wireless connection for the terminal device and ensuring reliable transmission of uplink and downlink data of the terminal device.
  • the network device can be a gNB (generation Node B) in a 5G system, and can be a Global System of Mobile communication (GSM) system or a base station in Code Division Multiple Access (CDMA) (Base Transceiver Station).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or may be an evolved base station in a Long Term Evolution (LTE) system ( Evolutional Node B, eNB or eNodeB), etc.
  • NodeB Node B
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FIG. 2 it is a schematic flowchart of a communication method provided by an embodiment of the present application. Referring to Figure 2, the method includes:
  • Step 201 The terminal device determines a preamble; the preamble includes M symbol groups, and M is a positive integer greater than 1.
  • the terminal device may be referred to as a TDD terminal device, hereinafter referred to as a terminal device.
  • the terminal device can support the TDD technology. Further, the terminal device can support the NB-IoT technology, and the terminal device can be referred to as a TDD terminal device.
  • the terminal device may refer to any communication device that needs to access the mobile communication system through the network device, and the type of the terminal device is not limited herein.
  • the terminal before transmitting the preamble, the terminal needs to determine the time-frequency resource of the preamble to be transmitted, and the preamble format information of the preamble, which are respectively described below.
  • the terminal may obtain a random access configuration parameter from the network device, where the random access configuration parameter includes but is not limited to one or more of the following:
  • RSRP Reference Signal Received Power
  • the resource configuration parameter set may include one or more of the following parameters: a random access resource period; a starting subcarrier frequency domain location; a number of subcarriers used for random access; a random access repetition number; and a random connection Initial start time; maximum number of retransmissions of the random access preamble; configuration parameters of the common search space for random access: including the starting position of the common search space, the number of repetitions of the common search space, and the offset of the common search space Wait.
  • the preamble format information indicates at least one or more of the following:
  • the preamble format may be the number of symbol groups included in the preamble, the number of symbols included in each symbol group, the length of the cyclic prefix in each symbol group, the number of subcarriers occupied by each symbol group, and the frequency hopping of the preamble.
  • the rules are associated, and the preamble format information may be a preamble format index value.
  • Each preamble index value corresponds to the number of symbol groups included in one preamble, the number of symbols included in each symbol group, the length of the cyclic prefix in each symbol group, the number of subcarriers occupied by each symbol group, and the preamble Code hopping rules.
  • the number of symbols included in each symbol group the length of the cyclic prefix in each symbol group, and the sub-occupation of each symbol group in the symbol group included in one preamble.
  • the number of carriers is the same.
  • the preamble format information needs to indicate the information, and the number of consecutive subcarriers occupied by each symbol group is only one possible case, and the preamble format information is used. This information may not be indicated. For example, when the preamble format information does not indicate the number of consecutive subcarriers occupied by each symbol group, each symbol group may occupy one subcarrier by default.
  • the M symbol groups included in the preamble are hopped and transmitted on the PRACH, and the hopping rule of the preamble indicates how the M symbol groups perform frequency hopping transmission.
  • the frequency hopping rule of the preamble can be as shown in FIG. 3.
  • FIG. 3 is a schematic diagram of a preamble frequency hopping according to an embodiment of the present application.
  • the preamble includes four sets of symbols, and is referred to as a first symbol group, a second symbol group, a third symbol group, and a fourth symbol group in chronological order.
  • the preamble has two hopping intervals on the PRACH in one transmission period, which are 3.75 kHz and 22.5 kHz, respectively.
  • the frequency hopping interval is the subcarrier bandwidth.
  • the minimum hop interval and the subcarrier bandwidth are the same.
  • the frequency hopping interval between the first symbol group and the second symbol group is 3.75 kHz
  • the frequency hopping interval between the third symbol group and the fourth symbol group is 3.75 kHz.
  • the frequency hopping interval between the second symbol group and the third symbol group is 22.5 kHz.
  • Pseudo-random frequency hopping is used between two adjacent transmission periods, and the frequency hopping range is limited to 12 sub-carriers.
  • the specific structure of each symbol group can be as shown in FIG.
  • a symbol group consists of a cyclic prefix and 5 symbols, the subcarrier bandwidth is 3.75 kHz, the cyclic prefix can be 66.7 ⁇ s or 266.67 ⁇ s, and the cyclic prefix is followed by 5 symbols, the length of each symbol. It is 266.67 ⁇ s.
  • the structure of all symbol groups in each preamble is the same.
  • the information indicated by the preamble format information may be as follows: the number of symbol groups included in the preamble is 4; the number of symbols included in each symbol group is 5; the length of the cyclic prefix in each symbol group is 66.7 ⁇ s; The number of subcarriers occupied by each symbol group is 1.
  • the above is only an example, and the information indicated by the preamble format information may also be in other forms, and details are not described herein again.
  • the meanings of the symbols include, but are not limited to, Orthogonal Frequency Division Multiplexing (OFDM) symbols, and filtered Orthogonal Frequency Division Multiplexing (F - OFDM) symbols, etc., may be determined according to actual conditions, and will not be described herein.
  • OFDM Orthogonal Frequency Division Multiplexing
  • F - OFDM filtered Orthogonal Frequency Division Multiplexing
  • the resource configuration parameter set may have a corresponding relationship with the coverage level of the terminal, and different coverage levels correspond to different resource configuration parameter sets, and the random access configuration parameter may include a resource configuration parameter set corresponding to different coverage levels. .
  • the different coverage levels may correspond to the same resource configuration parameter set.
  • the random access configuration parameter may include only one resource configuration parameter set.
  • the terminal device may measure the RSRP of the reference signal sent by the network device, and compare the measured RSRP with the RSRP threshold in the random access configuration parameter to determine the coverage level of the terminal device.
  • the RSRP threshold is 0 to 11 dB corresponding to the coverage level 1; the RSRP threshold is 12 to 23 dB corresponding to the coverage level 2; and the RSRP threshold is 24 to 35 dB corresponding to the coverage level 3.
  • the measured RSRP of the terminal device is 13 dB, and the corresponding coverage level 2 of the terminal device can be determined.
  • the reference signal may be a Cell Specific Reference Signal (CRS), a Narrowband Reference Signal, or the like, which is not limited in this embodiment of the present application.
  • CRS Cell Specific Reference Signal
  • Narrowband Reference Signal or the like, which is not limited in this embodiment of the present application.
  • the terminal device may determine the time domain resource and the frequency domain resource of the preamble to be transmitted according to the resource configuration parameter set in the random access configuration parameter.
  • the resource configuration parameter set and the coverage level of the terminal have a corresponding relationship, and the terminal device may determine the resource configuration parameter set according to the coverage level of the terminal device, and determine the time domain resource and the frequency domain resource of the sending preamble according to the resource configuration parameter set.
  • the determining, by the terminal device, the frequency domain resource for transmitting the preamble according to the resource configuration parameter set includes: determining, by the terminal device, the frequency domain resource set according to the resource configuration parameter set corresponding to the coverage level, and the terminal device randomly selecting one frequency domain resource as the preamble in the frequency domain resource set.
  • the frequency domain resource may be one subcarrier or multiple subcarriers, and the number of subcarriers occupied by each symbol group is related. If the number of consecutive subcarriers occupied by each symbol group is 1 subcarrier, the frequency domain resource is 1 For consecutive subcarriers, if the number of consecutive subcarriers occupied by each symbol group is 2 consecutive subcarriers, the frequency domain resource is 2 consecutive subcarriers.
  • the determining, by the terminal device, the time domain resource for transmitting the preamble according to the resource configuration parameter set includes: determining, by the terminal device, the period and the starting position of the preamble transmission according to the resource configuration parameter set corresponding to the coverage level, and determining, by the terminal device, a valid period and a starting position.
  • the time domain resource of the preamble may select the period and the starting position closest to the random access initiation time.
  • the terminal may directly determine the preamble format information of the preamble to be transmitted, thereby determining information such as the number of symbol groups included in the preamble.
  • the terminal device may be based on the coverage of the terminal device, etc.
  • the level determines the preamble format information of the preamble. Specifically, the correspondence between the preamble format information and the coverage level may be pre-agreed by the protocol, and the terminal device determines the preamble format information corresponding to the coverage level of the terminal device according to the foregoing correspondence.
  • Step 202 The terminal device sends the M symbol groups by using K uplink subframe sets.
  • any one of the K uplink subframe sets includes at least one consecutive uplink subframe, and any two uplink subframe sets of the K uplink subframe sets are separated by at least one downlink subframe.
  • each of the K uplink subframe sets is capable of transmitting at least one symbol group, K is a positive integer greater than 1, and K is less than or equal to M.
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is frequency hopping between adjacent symbol groups in the M symbol groups, and at least one of the N frequency hopping frequencies The frequency hopping of the two frequency hopping is reversed, and N is less than M.
  • the frequency hopping may refer to that the frequency of the subcarriers occupied by the adjacent symbol groups during transmission is different, and the symbol group transmitted after time is frequency hopped with respect to the symbol group transmitted first in time.
  • the M symbol groups have N frequency hoppings, wherein each frequency hopping is frequency hopping between adjacent symbol groups in the M symbol groups.
  • the frequency hopping direction can include two types: jumping from high frequency to low frequency and jumping from low frequency to high frequency.
  • the K uplink subframe sets may be located within one radio frame. Of course, the K uplink subframe sets may also be distributed among multiple consecutive radio frames.
  • time domain length of each uplink subframe set is greater than or equal to the time domain length of the symbol group sent in the uplink subframe set.
  • a guard time may be included in each uplink subframe set to avoid interference of the preamble to subsequent downlink subframes. In this case, the time domain length of each uplink subframe set is greater than The time domain length of the symbol group sent in the uplink subframe set.
  • step 202 the M symbol groups in the preamble are transmitted in a frequency hopping manner, and there are N frequency hopping between adjacent symbol groups in the M symbol groups, and at least two frequency hopping in the N frequency hopping. In the opposite direction, N is less than M. Correspondingly, there may be multiple cases for the values of M and K.
  • the number of consecutive subframes included in each uplink subframe set may also be various, which are described below in combination with different situations.
  • the first case is a first case:
  • M When a symbol group occupies one subcarrier, M may be equal to 6, and each symbol group includes at most 3 symbols and a cyclic prefix, and the terminal device may send, by using, each uplink subframe set in the K uplink subframe sets.
  • 3 symbol groups, where K is equal to 2 and the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the number of symbols included in each of the M symbol groups and the number of consecutive subframes included in the uplink subframe set may have the following correspondences:
  • the uplink-downlink configuration relationship in the uplink-downlink subframe configuration ratio of the existing radio frame at most three uplink subframes in one radio frame are consecutive in time, so a maximum of three consecutive sub-frames are included in one uplink subframe set. frame.
  • the number of consecutive uplink subframes included in each uplink subframe set is one or two or three.
  • the length of an uplink subframe is 1 ms.
  • One symbol length of each symbol group of the preamble is inversely proportional to the subcarrier bandwidth of the preamble. For example, if the subcarrier bandwidth of the preamble is 3.75 kHz, one symbol length of each symbol group of the preamble is 1/3.75. kHz ⁇ 266.67 ⁇ s.
  • each symbol group of the preamble may include three or two or one symbols.
  • each symbol group of the preamble may include two or one symbols.
  • each symbol group of the preamble may include one symbol.
  • Duration of the cyclic prefix The total duration of all symbols in each uplink subframe set is subtracted from the duration of each uplink subframe set, and then divided by the number of symbol groups in each uplink subframe set (there is no GT in each uplink subframe set) Or divide by the number of symbol groups in each uplink subframe set plus 1 (there are GTs in each uplink subframe set, and the GT duration is equal to the CP duration).
  • the terminal device may send the first symbol group, the second symbol group, and the third symbol group in the M symbol groups by using the first uplink subframe set, and may pass the second uplink.
  • the subframe set transmits a fourth symbol group, a fifth symbol group, and a sixth symbol group among the M symbol groups.
  • the first symbol group to the sixth symbol group are M symbol groups marked in chronological order. For details, refer to the example in FIG. 5 and the like.
  • a frequency hopping interval between the first symbol group and the second symbol group and a frequency hopping between the second symbol group and the third symbol group The interval is the same, which is ⁇ f 1 ; the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the second symbol group and the third symbol group.
  • a hopping interval between the fourth symbol group and the fifth symbol group and a hopping interval between the fifth symbol group and the sixth symbol group are the same as ⁇ f 2 a frequency hopping direction between the fourth symbol group and the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group, that is, ⁇ f 1 is smaller than ⁇ f 2 , for example, ⁇ f 1 is equal to 1 subcarrier.
  • the bandwidth of the frequency band, ⁇ f 2 is equal to the width of the E/2 subcarrier spacing, and E is the number of subcarriers included in the frequency hopping range of the symbol group in the preamble, and E can be agreed by the protocol.
  • FIG. 5 it is a schematic diagram of a preamble transmission provided by an embodiment of the present application. In FIG.
  • the frequency hopping interval between the first symbol group and the second symbol group is the same as the hopping interval between the second symbol group and the third symbol group, Is ⁇ f 1 ; the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the second symbol group and the third symbol group.
  • the frequency hopping interval between the fourth symbol group and the fifth symbol group is the same as the hopping interval between the fifth symbol group and the sixth symbol group, ⁇ f 2 , ⁇ f 2 may be equal to 6 ⁇ f 1 .
  • the frequency hopping direction between the fourth symbol group and the fifth symbol group and the frequency hopping direction between the fifth symbol group and the sixth symbol group are opposite.
  • the hopping interval between the first symbol group and the second symbol group may also be greater than the hopping interval between the fourth symbol group and the fifth symbol group, that is, ⁇ f 1 is greater than ⁇ f 2 , and details are not described herein again.
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are different; the first symbol group
  • the frequency hopping direction between the second symbol group and the frequency hopping direction between the second symbol group and the third symbol group may be the same or opposite.
  • the hopping interval between the fourth symbol group and the fifth symbol group and the hopping interval between the fifth symbol group and the sixth symbol group are different; the hop between the fourth symbol group and the fifth symbol group
  • the frequency direction and the frequency hopping direction between the fifth symbol group and the sixth symbol group may be the same or opposite.
  • a frequency hopping direction between the second symbol group and the third symbol group is opposite to a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the fourth symbol group and the fifth symbol group may be the same, and may be reversed.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the second symbol group and the third symbol group, and a frequency hopping interval between the fourth symbol group and the fifth symbol group It is smaller than the frequency hopping interval between the fifth symbol group and the sixth symbol group.
  • FIG. 6 a schematic diagram of preamble transmission provided by an embodiment of the present application.
  • the frequency hopping interval between the first symbol group and the second symbol group is ⁇ f 1 ; and the frequency hopping interval between the second symbol group and the third symbol group It is ⁇ f 2 ; the frequency hopping direction between the first symbol group and the second symbol group is the same as the frequency hopping direction between the second symbol group and the third symbol group.
  • the frequency hopping interval between the fourth symbol group and the fifth symbol group is ⁇ f 1 ; and the hopping interval between the fifth symbol group and the sixth symbol group is ⁇ f 2 ; ⁇ f 2 may be equal to 6 ⁇ f 1 .
  • the frequency hopping direction between the fourth symbol group and the fifth symbol group and the frequency hopping direction between the fifth symbol group and the sixth symbol group are the same.
  • a frequency hopping direction between the first symbol group and the second symbol group and a frequency hopping direction between the fourth symbol group and the fifth symbol group, and a frequency hopping direction between the second symbol group and the third symbol group The frequency hopping direction between the five symbol group and the sixth symbol group is opposite.
  • the M symbol groups may have other frequency hopping rules, which are not illustrated one by one.
  • the second case is a first case
  • M may be equal to 4
  • the terminal device may send 2 symbol groups by using each of the K uplink subframe sets, where K is equal to 2, and the K
  • the uplink subframe set includes a first uplink subframe set and a second uplink subframe set.
  • the number of symbols included in each of the M symbol groups and the number of consecutive subframes included in the uplink subframe set may have the following correspondences:
  • the uplink-downlink configuration relationship in the uplink-downlink subframe configuration ratio of the existing radio frame at most three uplink subframes in one radio frame are consecutive in time, so a maximum of three consecutive sub-frames are included in one uplink subframe set. frame.
  • the number of consecutive uplink subframes included in each uplink subframe set is one or two or three.
  • the length of an uplink subframe is 1 ms.
  • One symbol length of each symbol group of the preamble is inversely proportional to the subcarrier bandwidth of the preamble. For example, if the subcarrier bandwidth of the preamble is 3.75 kHz, one symbol length of each symbol group of the preamble is 1/3.75. kHz ⁇ 266.67 ⁇ s.
  • each symbol group of the preamble may include five or four or three or two or one symbols.
  • each symbol group of the preamble may include three or two or one symbols.
  • each symbol group of the preamble may include one symbol.
  • the duration of the cyclic prefix is the duration of each uplink subframe set minus the total duration of all symbols in each uplink subframe set, and then divided by the number of symbol groups in each uplink subframe set (in each uplink subframe set) There is no GT in it, or divided by the number of symbol groups in each uplink subframe set plus 1 (there are GTs in each uplink subframe set, and the GT duration is equal to the CP duration).
  • the terminal device may send the first symbol group and the second symbol group in the M symbol groups by using the first uplink subframe set, and may send the second uplink subframe set through the second uplink subframe set.
  • the third symbol group and the fourth symbol group of the M symbol groups are described.
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group may be opposite.
  • a frequency hopping interval between the first symbol group and the second symbol group and a frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • the hopping interval between the first symbol group and the second symbol group is equal to the bandwidth of one subcarrier
  • the hopping interval between the third symbol group and the fourth symbol group is equal to the width of the E/2 subcarrier spacing
  • E is the number of subcarriers included in the frequency hopping range of the symbol group in the preamble
  • E can be agreed by a protocol.
  • FIG. 7 a schematic diagram of preamble transmission provided by an embodiment of the present application.
  • the frequency hopping interval between the first symbol group and the second symbol group is ⁇ f 1 .
  • the frequency hopping interval between the third symbol group and the fourth symbol group is ⁇ f 2 , and ⁇ f 2 may be equal to 6 ⁇ f 1 .
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite.
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group may also be the same, as shown in FIG. 8 .
  • the M symbol groups may have other frequency hopping rules, which are not illustrated one by one.
  • M when one symbol group occupies one subcarrier, M may be equal to 4, and K is equal to 1.
  • the terminal device may send 4 symbol groups by using one uplink subframe set.
  • the number of uplink subframes included in the uplink subframe set may be two or three.
  • the terminal device may send the first symbol group, the second symbol group, the third symbol group, and the fourth symbol group in the M symbol groups by using the K uplink subframe sets.
  • a frequency hopping direction between the first symbol group and the second symbol group and a frequency hopping direction between the third symbol group and the fourth symbol group are opposite.
  • a frequency hopping interval between the first symbol group and the second symbol group is ⁇ f
  • a frequency hopping interval between the second symbol group and the third symbol group is ⁇ f ⁇ E/2
  • the frequency hopping interval between the third symbol group and the fourth symbol group is ⁇ f. E can be agreed by agreement, specifically, as shown in FIG.
  • the hopping rule of the symbol group in the preamble shown in FIG. 9 is the same as the hopping rule of the symbol group in the preamble in the FDD NB-IoT, so that the same arrival time as the preamble in the FDD NB-IoT can be achieved (Time of Arrival) , ToA) Estimated accuracy.
  • the M symbol groups may have other frequency hopping rules, which are not illustrated one by one.
  • FIG. 5 to FIG. 9 are only examples, and the M symbol groups in the preamble may also be transmitted according to other frequency hopping rules, which are not illustrated one by one.
  • the hopping interval between the two nearest symbol groups in the adjacent uplink subframe set may be a fixed interval, or may be pseudo-random frequency hopping.
  • the mode determines the frequency hopping interval.
  • Step 203 The network device receives a preamble sent by the terminal device through the K uplink subframe sets, where the preamble includes M symbol groups.
  • step 203 For details of the step 203, reference may be made to the description in the step 201 to the step 202, and details are not described herein again.
  • Step 204 The network device performs uplink synchronization measurement according to the preamble.
  • the network device may measure a difference between an actual time that the preamble sent by the terminal device reaches the network device and a time predicted by the network device, and the network device may perform uplink synchronization of the terminal device according to the difference.
  • one symbol group occupies one subcarrier as an example.
  • one symbol group can also occupy two or more consecutive subcarriers, and the following is occupied by one symbol group. Two consecutive subcarriers are described as an example. For other cases, reference may be made to the description herein, and details are not described herein again.
  • the terminal device can transmit the preamble through the K uplink subframe sets. M symbol groups in the code.
  • any one of the K uplink subframe sets includes at least one consecutive uplink subframe, and any two uplink subframe sets of the K uplink subframe sets Intersect at least one downlink subframe, each of the K uplink subframe sets capable of transmitting at least one symbol group, K being a positive integer greater than 0, and K being less than or equal to M.
  • Each of the M symbol groups occupies 2 consecutive subcarriers.
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is frequency hopping between adjacent symbol groups in the M symbol groups, and at least one of the N frequency hopping frequencies The frequency hopping of the two frequency hopping is reversed, and N is less than M.
  • each uplink subframe set may also be various, which are described below in combination with different situations.
  • M When a symbol group occupies 2 consecutive subcarriers, M may be equal to 3, K is equal to 1, and the terminal device may transmit 3 symbol groups through one uplink subframe set.
  • the number of uplink subframes included in the uplink subframe set may be two or three.
  • the number of consecutive uplink subframes included in each uplink subframe set is one or two or three.
  • the length of an uplink subframe is 1 ms.
  • One symbol length of each symbol group of the preamble is inversely proportional to the subcarrier bandwidth of the preamble. For example, if the subcarrier bandwidth of the preamble is 3.75 kHz, one symbol length of each symbol group of the preamble is 1/3.75. kHz ⁇ 266.67 ⁇ s.
  • each symbol group of the preamble may include three or two or one symbols.
  • each symbol group of the preamble may include two or one symbols.
  • each symbol group of the preamble may include one symbol.
  • the duration of the cyclic prefix is the duration of each uplink subframe set minus the total duration of all symbols in each uplink subframe set, and then divided by the number of symbol groups in each uplink subframe set (in each uplink subframe set) There is no GT in it, or divided by the number of symbol groups in each uplink subframe set plus 1 (there are GTs in each uplink subframe set, and the GT duration is equal to the CP duration).
  • the terminal device transmits the first symbol group, the second symbol group, and the third symbol group of the M symbol groups by using the one uplink subframe set.
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the second symbol group and the third symbol group, the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the second symbol group and the third symbol group are the same.
  • each symbol group in the preamble occupies 2 consecutive subcarriers, and the frequency hopping interval between the first symbol group and the second symbol group is ⁇ f 2 ; between the second symbol group and the third symbol group
  • the frequency hopping interval is ⁇ f 2 , ⁇ f 2 can be equal to 6 ⁇ f, and ⁇ f is the subcarrier width.
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the second symbol group and the third symbol group are opposite.
  • the meaning of the frequency hopping interval between two symbol groups is the interval between the subcarriers occupied by the two symbol groups, for example, the first symbol group occupies the subcarrier f1. And f2, f1 is located at a low frequency position relative to f2, that is, f1 ⁇ f2, the second symbol group occupies subcarriers f3 and f4, f2 is located at a low frequency position with respect to f3, and f3 is located at a low frequency position with respect to f4, that is, f2 ⁇ f3 ⁇ f4,
  • the frequency hopping interval between a symbol group and the second symbol group indicates an interval of f1 to f3, or an interval of f2 to f4.
  • the meaning of the frequency hopping interval between the two symbol groups described in any of the following cases can be referred to the definition herein.
  • M symbol groups can have other frequency hopping rules.
  • Example description when M is equal to 3 and K is equal to 1, M symbol groups can have other frequency hopping rules.
  • the fifth case one symbol group occupies 2 consecutive subcarriers, K is equal to 2, and M is equal to 2.
  • the terminal device may send, by using the first uplink subframe set in the two uplink subframe sets, the first symbol group in the M symbol groups, and the second uplink in the two uplink subframe sets.
  • the subframe set transmits the second symbol group of the M symbol groups.
  • the number of uplink subframes included in each uplink subframe set may be one or two or three.
  • the uplink-downlink configuration relationship in the uplink-downlink subframe configuration ratio of the existing radio frame at most three uplink subframes in one radio frame are consecutive in time, so a maximum of three consecutive sub-frames are included in one uplink subframe set. frame.
  • the number of consecutive uplink subframes included in each uplink subframe set is one or two or three.
  • the length of an uplink subframe is 1 ms.
  • One symbol length of each symbol group of the preamble is inversely proportional to the subcarrier bandwidth of the preamble. For example, if the subcarrier bandwidth of the preamble is 3.75 kHz, one symbol length of each symbol group of the preamble is 1/3.75. kHz ⁇ 266.67 ⁇ s.
  • each symbol group of the preamble may include five or four or three or two or one symbols.
  • each symbol group of the preamble may include three or two or one symbols.
  • each symbol group of the preamble may include one symbol.
  • the duration of the cyclic prefix is the duration of each uplink subframe set minus the total duration of all symbols in each uplink subframe set, and then divided by the number of symbol groups in each uplink subframe set (in each uplink subframe set) There is no GT in it, or divided by the number of symbol groups in each uplink subframe set plus 1 (there are GTs in each uplink subframe set, and the GT duration is equal to the CP duration).
  • the hopping interval between the first symbol group and the second symbol group is the width of the E/2 subcarrier spacing, and E is the number of subcarriers included in the hopping range. E can be agreed by agreement. Certainly, the hopping interval between the first symbol group and the second symbol group may also be other widths, which are not illustrated one by one.
  • each symbol group in the preamble occupies 2 consecutive subcarriers
  • the first uplink subframe set of the terminal device transmits the first symbol group
  • the second symbol group transmits the second symbol group, the first symbol by the second uplink subframe set.
  • the frequency hopping interval between the group and the second symbol group is ⁇ f 2
  • the frequency hopping interval between the second symbol group and the third symbol group is ⁇ f 2
  • ⁇ f 2 may be equal to 6 ⁇ f
  • ⁇ f is the subcarrier width.
  • the M symbol groups may have other frequency hopping rules, which are not illustrated one by one.
  • the terminal device may send the first symbol group and the second symbol group in the M symbol groups by using the one uplink subframe set.
  • the hopping interval between the first symbol group and the second symbol group is a width of E/2 subcarrier spacings, and E is a frequency hopping range of the first symbol group and the second symbol group.
  • the hopping interval between the first symbol group and the second symbol group may also be other widths, which are not illustrated one by one.
  • each symbol group in the preamble occupies 2 consecutive subcarriers, and the terminal device transmits a first symbol group and a second symbol group in an uplink subframe group, and between the first symbol group and the second symbol group.
  • the frequency hopping interval is ⁇ f 2 ; the frequency hopping interval between the second symbol group and the third symbol group is ⁇ f 2 , ⁇ f 2 may be equal to 6 ⁇ f, and ⁇ f is the subcarrier width.
  • M symbol groups can have other frequency hopping rules.
  • Example description when M is equal to 2 and K is equal to 1, the M symbol groups can have other frequency hopping rules.
  • the uplink-downlink configuration relationship in the uplink-downlink subframe configuration ratio of the existing radio frame at most three uplink subframes in one radio frame are consecutive in time, so a maximum of three consecutive sub-frames are included in one uplink subframe set. frame.
  • the number of consecutive uplink subframes included in each uplink subframe set is 1, 2, or 3.
  • the length of an uplink subframe is 1 ms.
  • One symbol length of each symbol group of the preamble is inversely proportional to the subcarrier bandwidth of the preamble. For example, if the subcarrier bandwidth of the preamble is 3.75 kHz, one symbol length of each symbol group of the preamble is 1/3.75. kHz ⁇ 266.67 ⁇ s.
  • each symbol group of the preamble may include 11 or 10 or 9 or 8 or 7 or 6 or 5 Or 4 or 3 or 2 or 1 symbol.
  • each symbol group of the preamble may include 7 or 6 or 5 or 4 or 3 or 2 or 1 Symbol symbol.
  • each symbol group of the preamble may include three or two or one symbols.
  • the duration of the cyclic prefix is the duration of each uplink subframe set minus the total duration of all symbols in each uplink subframe set, and then divided by the number of symbol groups in each uplink subframe set (in each uplink subframe set) There is no GT in it, or divided by the number of symbol groups in each uplink subframe set plus 1 (there are GTs in each uplink subframe set, and the GT duration is equal to the CP duration).
  • the hopping interval between the two nearest symbol groups in the adjacent uplink subframe set may be a fixed interval, or may be pseudo-random frequency hopping.
  • the mode determines the frequency hopping interval.
  • the embodiment of the present application further provides a communication device, which can perform step 201, step 202 in the flow shown in FIG. 2, and content related to step 201 and step 202.
  • FIG. 13 a schematic structural diagram of a communication device is provided in this embodiment of the present application.
  • the communication device 1300 includes: a processing unit 1301 and a transceiver unit 1302;
  • the processing unit 1301 is configured to determine a preamble; the preamble includes M symbol groups, and M is a positive integer greater than one;
  • the transceiver unit 1302 is configured to send the M symbol groups by using K uplink subframe sets, where any one of the K uplink subframe sets includes at least one consecutive uplink subframe, where the K Any two uplink subframe sets in the uplink subframe set are separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group, where K is greater than 1.
  • An integer, and K is less than or equal to M;
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is a frequency hopping between adjacent symbol groups in the M symbol groups, The frequency hopping direction of at least two frequency hoppings in the N frequency hopping is opposite, and N is smaller than M.
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit 1302 is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit 1302 is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • the embodiment of the present application further provides a communication device, which can perform step 203, step 204, and content related to step 203 and step 204 in the flow shown in FIG. 2 .
  • FIG. 14 a schematic structural diagram of a communication device is provided in an embodiment of the present application.
  • the communication device 1400 includes: a transceiver unit 1401 and a processing unit 1402;
  • the transceiver unit 1401 is configured to receive a preamble that is sent by the terminal device by using the K uplink subframe sets, where the preamble includes M symbol groups, and any one of the K uplink subframe sets includes at least one a continuous uplink subframe, where at least one downlink subframe is separated between any two uplink subframe sets in the K uplink subframe set, and each uplink subframe set in the K uplink subframe sets can send at least a symbol group, K is a positive integer greater than 1, M is a positive integer greater than 1, and K is less than or equal to M; the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping is Frequency hopping between adjacent symbol groups in the M symbol groups, wherein at least two frequency hopping frequencies of the N frequency hopping are opposite in direction, and N is less than M;
  • the processing unit 1402 is configured to perform uplink synchronization measurement according to the preamble.
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver unit is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • the embodiment of the present application further provides a communication device, which can perform step 201, step 202 in the flow shown in FIG. 2, and content related to step 201 and step 202.
  • FIG. 15 a schematic structural diagram of a communication device is provided in an embodiment of the present application.
  • the communication device 1500 includes a processor 1501 and a transceiver 1502.
  • the processor 1501 is configured to determine a preamble; the preamble includes M symbol groups, and M is a positive integer greater than one;
  • the transceiver 1502 is configured to send, by using the K uplink subframe sets, the M symbol groups; any one of the K uplink subframe sets includes at least one consecutive uplink subframe, where the K Any two uplink subframe sets in the uplink subframe set are separated by at least one downlink subframe, and each of the K uplink subframe sets is capable of transmitting at least one symbol group, where K is greater than 1.
  • An integer, and K is less than or equal to M;
  • the M symbol groups have N frequency hopping, and each of the N frequency hopping frequencies is a frequency hopping between adjacent symbol groups in the M symbol groups, The frequency hopping direction of at least two frequency hoppings in the N frequency hopping is opposite, and N is smaller than M.
  • the communication device 1500 may further include a memory 1503 that may be used to store programs/codes pre-installed at the time of shipment of the communication device 1500, and may also store program codes or the like including computer operation instructions when the processor 1501 is executed.
  • the memory 1503 may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory. ), hard disk drive (HDD) or solid-state drive (SSD).
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver 1502 is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the transceiver 1502 is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • the embodiment of the present application further provides a communication device, which can perform step 203, step 204, and content related to step 203 and step 204 in the flow shown in FIG. 2 .
  • FIG. 16 a schematic structural diagram of a communication device is provided in an embodiment of the present application.
  • the communication device 1600 includes a processor 1601 and a communication interface 1602.
  • the communication interface 1602 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a wireless local area network interface.
  • the communication interface 1602 is configured to receive a preamble sent by the terminal device by using the K uplink subframe sets, where the preamble includes M symbol groups, and any one of the K uplink subframe sets includes at least one a continuous uplink subframe, where at least one downlink subframe is separated between any two uplink subframe sets in the K uplink subframe set, and each uplink subframe set in the K uplink subframe sets can send at least a symbol group, K is a positive integer greater than 1, M is a positive integer greater than 1, and K is less than or equal to M; the M symbol groups have N frequency hopping, and each frequency hopping in the N frequency hopping is Frequency hopping between adjacent symbol groups in the M symbol groups, wherein at least two frequency hopping frequencies of the N frequency hopping are opposite in direction, and N is less than M;
  • the processor 1601 is configured to perform uplink synchronization measurement according to the preamble.
  • the communication device 1600 can also include a memory 1603 that can be used to store programs/codes that are pre-installed at the time of shipment of the communication device 1600, as well as program code or the like that includes computer operating instructions for execution by the processor 1601.
  • M is equal to 6;
  • K is equal to 2
  • each of the two uplink subframe sets sends three symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the communication interface 1602 is specifically configured to:
  • the hopping interval between the first symbol group and the second symbol group and the hopping interval between the second symbol group and the third symbol group are the same; the first symbol group and a frequency hopping direction between the second symbol group and a frequency hopping direction between the second symbol group and the third symbol group;
  • the fourth symbol group and the fourth symbol group A frequency hopping direction between the fifth symbol group and a frequency hopping direction between the fifth symbol group and the sixth symbol group.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the fourth symbol group and the fifth symbol group.
  • M is equal to 4.
  • K is equal to 2, and each of the two uplink subframe sets sends two symbol groups.
  • the K uplink subframe sets include a first uplink subframe set and a second uplink subframe set.
  • the communication interface 1602 is specifically configured to:
  • the frequency hopping direction between the first symbol group and the second symbol group and the frequency hopping direction between the third symbol group and the fourth symbol group are opposite; the first symbol group and The frequency hopping interval between the second symbol groups and the frequency hopping interval between the third symbol group and the fourth symbol group are different.
  • a hopping interval between the first symbol group and the second symbol group is smaller than a hopping interval between the third symbol group and the fourth symbol group.
  • the embodiment of the present application further provides a computer readable storage medium for storing computer software instructions required to execute the foregoing processor, which includes a program for executing the above-mentioned processor.
  • each device embodiment may refer to related methods in the related method embodiments. Partial understanding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中方法包括:终端设备确定前导码;所述前导码包括M个符号组,M为大于1的正整数;所述终端设备通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
移动通信标准化组织第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了窄带物联网(Narrowband Internet of Things,NB-IoT)技术。类似于长期演进(Long Term Evolution,LTE)系统,NB-IoT技术分为时分双工(time division duplex,TDD)NB-IoT和频分双工(frequency division duplex,FDD)NB-IoT。NB-IoT技术中,终端设备需要通过随机接入的方式接入基站。NB-IoT中,终端设备需要在窄带物理随机接入信道(Narrowband Physical Random Access Channel,NPRACH)信道上发送随机接入前导码(preamble)。在FDD NB-IoT中,一个preamble包括4个符号组,每个符号组占用的时间长度为1.4ms或1.6ms,即一个preamble占用的连续的上行资源的时间长度为5.6ms或6.4ms。然而,对于以带内模式部署的TDD NB-IoT,一个无线帧中包括的连续的上行资源最多只有3个子帧,一个子帧的时间长度为1ms,因此终端设备无法通过3个子帧传输时间长度为5.6ms或6.4ms的preamble,从而无法接入基站。
综上,TDD NB-IoT中,需要接入基站的通信设备,例如终端设备等设备,如何向基站发送preamble,是一个亟待解决的问题。
发明内容
本申请实施方式的目的在于提供一种通信方法及装置,用以解决包括终端设备在内的通信设备在TDD方式下如何发送preamble的问题。
本申请实施例提供一种通信方法,包括:
终端设备确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
所述终端设备通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
根据上述方法,终端通过K个上行子帧集合发送前导码中的M个符号组,由于K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,因此终端可以通过一个无线帧中多个不连续的上行子帧发送前导码,从而实现利用时域上不连续的上行资源发送前导码,在解决TDD NB-IoT中终端设备无法发送前导码的问题的同时,提高资源利用率。由于N次跳频中至少有两次跳频的跳频方向相反,可以消除由于频偏带来的相位影响,从而提升对网络设备根据接收到的前导码对终端的时间到达估计的可靠性。
可选的,M等于6;
K等于2,所述终端设备通过所述2个上行子帧集合中每个上行子帧集合发送3个符 号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述终端设备通过K个上行子帧集合发送所述M个符号组,包括:
所述终端设备通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
所述终端设备通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述终端设备通过所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述终端设备通过K个上行子帧集合发送所述前导码中的M个符号组,包括:
所述终端设备通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
所述终端设备通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
可选的,所述M个符号组中每个符号组占用1个子载波。
可选的,所述终端设备确定前导码之前,所述方法还包括:
所述终端设备接收网络设备发送的随机接入配置参数,所述随机接入配置参数中包括前导码格式信息;
前导码格式信息指示出以下至少一项或多项:
前导码包括的符号组的数量;
每个符号组中包括的符号数量;
每个符号组中循环前缀(Cyclic Prefix,CP)的时间长度;
每个符号组占用的连续子载波数量;
前导码的跳频规则。
本申请实施例提供一种通信方法,包括:
网络设备接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
所述网络设备根据所述前导码进行上行同步测量。
根据上述方法,网络设备接收到的前导码是终端通过K个上行子帧集合发送的,由于K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,因此终端可以通过一个无线帧中多个不连续的上行子帧发送前导码,从而实现利用时域上不连续的上行资源发送前导码,在解决TDD NB-IoT中终端设备无法发送前导码的问题的同时,提高资源利用率。由于N次跳频中至少有两次跳频的跳频方向相反,可以消除由于频偏带来的相位影响,从而提升对网络设备根据接收到的前导码对终端的时间到达估计的可靠性。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述网络设备接收终端设备通过K个上行子帧集合发送的前导码,包括:
所述网络设备通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三符号组;通过所述第二上行子帧集合接收所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述网络设备接收终端设备通过K个上行子帧集合发送的前导码,包括:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
可选的,所述M个符号组中每个符号组占用1个子载波。
可选的,所述方法还包括:
所述网络设备向所述终端设备发送随机接入配置参数,所述随机接入配置参数中包括前导码格式信息;
前导码格式信息指示出以下至少一项或多项:
前导码包括的符号组的数量;
每个符号组中包括的符号数量;
每个符号组中循环前缀的时间长度;
每个符号组占用的连续子载波数量;
前导码的跳频规则。
本申请实施例提供一种通信方法,包括:
终端设备确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
所述终端设备通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于0正整数,且K小于等于M;所述M个符号组中每个符号组占用2个连续的子载波。
根据上述方法,终端通过K个上行子帧集合发送前导码中的M个符号组,每个符号组占用2个连续的子载波从而可以缩短前导码的长度,从而能够实现在K个上行子帧集合中发送前导码。同时,由于K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,因此终端可以通过一个无线帧中多个不连续的上行子帧发送前导码,从而实现利用时域上不连续的上行资源发送前导码,在解决TDD NB-IoT中终端设备无法发送前导码的问题的同时,提高资源利用率。
可选的,所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
上述方案中,由于N次跳频的符号组中至少有两个跳频的跳频方向相反,可以消除由于频偏带来的相位影响,从而提升对网络设备根据接收到的前导码对终端的时间到达估计的可靠性。
可选的,K等于1,M等于3;
所述终端设备通过K个上行子帧集合发送所述M个符号组,包括:
所述终端设备通过所述1个上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同。
可选的,K等于1,M等于2;
所述终端设备通过K个上行子帧集合发送所述M个符号组,包括:
所述终端设备通过所述1个上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔为E/2个子载波间隔的宽度,E为跳频范围中包括的子载波数量,E通过协议约定。
可选的,K等于2,M等于2;
所述终端设备通过K个上行子帧集合发送所述M个符号组,包括:
所述终端设备通过所述2个上行子帧集合中的第一上行子帧集合发送所述M个符号组中的第一符号组;
所述终端设备通过所述2个上行子帧集合中的第二上行子帧集合发送所述M个符号组中的第二符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔为E/2个子载波间隔的宽度,E为跳频范围中包括的子载波数量,E通过协议约定。
可选的,所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M
可选的,所述终端设备确定前导码之前,所述方法还包括:
所述终端设备接收网络设备发送的随机接入配置参数,所述随机接入配置参数中包括前导码格式信息;
前导码格式信息指示出以下至少一项或多项:
前导码包括的符号组的数量;
每个符号组中包括的符号数量;
每个符号组中循环前缀的时间长度;
每个符号组占用的连续子载波数量;
前导码的跳频规则。
本申请实施例提供一种通信设备,包括:处理单元和收发单元;
所述处理单元,用于确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
所述收发单元,用于通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
可选的,M等于6;
K等于2,通过所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符 号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
可选的,所述M个符号组中每个符号组占用1个子载波。
可选的,所述收发单元还用于:
接收网络设备发送的随机接入配置参数,所述随机接入配置参数中包括前导码格式信息;
前导码格式信息指示出以下至少一项或多项:
前导码包括的符号组的数量;
每个符号组中包括的符号数量;
每个符号组中循环前缀(Cyclic Prefix,CP)的时间长度;
每个符号组占用的连续子载波数量;
前导码的跳频规则。
本申请实施例提供一种通信设备,包括:处理单元和收发单元;
所述收发单元,用于接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
所述处理单元,用于根据所述前导码进行上行同步测量。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述收发单元具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三符号组;通过所述第二上行子帧集合接收所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
可选的,所述M个符号组中每个符号组占用1个子载波。
本申请实施例提供一种通信设备,包括:处理器和收发机;
所述处理器,用于确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
所述收发机,用于通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
可选的,M等于6;
K等于2,通过所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发机具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符 号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发机具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
可选的,所述M个符号组中每个符号组占用1个子载波。
可选的,所述收发机还用于:
接收网络设备发送的随机接入配置参数,所述随机接入配置参数中包括前导码格式信息;
前导码格式信息指示出以下至少一项或多项:
前导码包括的符号组的数量;
每个符号组中包括的符号数量;
每个符号组中循环前缀(Cyclic Prefix,CP)的时间长度;
每个符号组占用的连续子载波数量;
前导码的跳频规则。
本申请实施例提供一种通信设备,包括:处理器和通信接口;
所述通信接口,用于接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
所述处理器,用于根据所述前导码进行上行同步测量。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述通信接口具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三符号组;通过所述第二上行子帧集合接收所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述通信接口具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
可选的,所述M个符号组中每个符号组占用1个子载波。
本申请还提供了一种通信设备,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行上述任一通信方法。
本申请实施例还提供了一种计算机可读存储介质,包括计算机可读指令,当通信设备读取并执行所述计算机可读指令时,使得所述通信设备执行上述任一通信方法。
本申请实施例还提供了一种计算机程序产品,包括计算机可读指令,当通信设备读取并执行所述计算机可读指令,使得所述通信设备执行上述任一通信方法。
本申请实施例还提供了一种通信系统,该系统包括上述任意一种设计提供的终端设备或网络设备,可选的,该系统还可以包括本申请实施例提供的方案中与所述终端设备或网络设备进行交互的其他设备。
附图说明
图1为适用于本申请实施例的一种系统架构示意图;
图2为本申请实施例提供的一种通信方法流程示意图;
图3为本申请实施例提供的一种跳频规则示意图;
图4为本申请实施例提供的一种符号组结构输示意图;
图5为本申请实施例提供的一种前导码传输示意图;
图6为本申请实施例提供的一种前导码传输示意图;
图7为本申请实施例提供的一种前导码传输示意图;
图8为本申请实施例提供的一种前导码传输示意图;
图9为本申请实施例提供的一种前导码传输示意图;
图10为本申请实施例提供的一种前导码传输示意图;
图11为本申请实施例提供的一种前导码传输示意图;
图12为本申请实施例提供的一种前导码传输示意图;
图13为本申请实施例提供的一种通信设备结构示意图;
图14为本申请实施例提供的一种通信设备结构示意图;
图15为本申请实施例提供的一种通信设备结构示意图;
图16为本申请实施例提供的一种通信设备结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(New Radio,NR)系统、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)系统等其它移动通信系统。
图1示例性示出了适用于本申请实施例的一种系统架构示意图,如图1所示,网络设备和终端设备1~终端设备6组成一个通信系统,在该通信系统中,网络设备发送信息给终端设备1~终端设备6中的一个或多个终端设备。此外,终端设备4~终端设备6也组成一个通信系统,在该通信系统中,终端设备5可以发送信息给终端设备4、终端设备6中的一个或多个终端设备。
本申请实施例中,终端设备可以支持NB-IoT技术,可以指用户设备(User Equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、无线通信设备、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
网络设备,可以称之为无线接入网(Radio Access Network,RAN)设备,以下统称为网络设备,主要负责为终端设备提供无线连接,保证终端设备的上下行数据的可靠传输等。网络设备可为5G系统中的gNB(generation Node B),可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)等。
结合上述描述,如图2所示,为本申请实施例提供的一种通信方法流程示意图。参见图2,该方法包括:
步骤201:终端设备确定前导码;所述前导码包括M个符号组,M为大于1的正整数。
本申请实施例中,所述终端设备可以称为TDD终端设备,以下简称终端设备。所述终端设备可以支持TDD技术,进一步的,所述终端设备可以支持NB-IoT技术,所述终端设备可以称为TDD终端设备。所述终端设备可以是指任意一种需要通过网络设备接入移动通信系统的通信设备,在此并不对终端设备的类型进行限定。
本申请实施例中,终端在发送前导码之前需要确定发送前导码的时频资源,以及前导码的前导码格式信息,下面分别进行描述。
终端可以从网络设备获取随机接入配置参数,所述随机接入配置参数中包括但不限于以下一项或多项:
参考信号接收功率(Reference Signal Received Power,RSRP)门限,不同RSRP门限对应不同覆盖等级(coverage level);
资源配置参数集合;
前导码格式信息。
其中,资源配置参数集合中可以包括以下一项或多项参数:随机接入资源周期;起始子载波频域位置;用于随机接入的子载波数;随机接入的重复次数;随机接入起始时刻;随机接入前导码最大重传次数;用于随机接入的公共搜索空间的配置参数:包括公共搜索空间的起始位置、公共搜索空间的重复次数、公共搜索空间的偏置等。
前导码格式信息指示出以下至少一项或多项:
前导码包括的符号组的数量;
每个符号组中包括的符号数量;
每个符号组中循环前缀(Cyclic Prefix,CP)的时间长度;
每个符号组占用的连续子载波数量;
前导码的跳频规则。
前导码格式可以与前导码包括的符号组的数量、每个符号组中包括的符号数量、每个符号组中循环前缀的时间长度、每个符号组占用的子载波数量、前导码的跳频规则等关联,这时前导码格式信息可以为前导码格式索引值。每一个前导码索引值对应一种前导码包括的符号组的数量、每个符号组中包括的符号数量、每个符号组中循环前缀的时间长度、每个符号组占用的子载波数量、前导码的跳频规则。
需要说明的是,本申请实施例中,一个前导码中所包括的符号组中,每个符号组中包括的符号数量、每个符号组中循环前缀的时间长度、每个符号组占用的子载波数量都是相同的。
每个符号组占用的连续子载波数量存在多种可能的情况下,前导码格式信息需要指示出该信息,每个符号组占用的连续子载波数量只有一种可能的情况下,前导码格式信息可以不指示出该信息。例如,在前导码格式信息未指示出每个符号组占用的连续子载波数量时,可以默认每个符号组占用1个子载波。
本申请实施例中,前导码包括的M个符号组在PRACH上是跳频传输的,前导码的跳频规则指示出所述M个符号组如何进行跳频传输。前导码的跳频规则可以如图3所示,图3为本申请实施例提供的一种前导码跳频示意图。图3中,前导码包括4组符号,按照时间先后顺序记为第1符号组、第2符号组、第3符号组、第4符号组。前导码在一个发送周期内在PRACH上有两种跳频间隔,分别为3.75kHz和22.5kHz。跳频间隔为子载波带宽 的整数倍,最小跳频间隔和子载波带宽相同。第1符号组和第2符号组之间的跳频间隔为3.75kHz,第3符号组和第4符号组之间的跳频间隔为3.75kHz。第2符号组和第3符号组之间的跳频间隔为22.5kHz。相邻两次发送周期之间采用伪随机跳频,跳频范围限制在12个子载波内。每个符号组的具体结构可以如图4所示。图4中,一个符号组包括一个循环前缀以及5个符号,子载波带宽为3.75kHz,循环前缀的时间长度可以为66.7μs或266.67μs,循环前缀后面是5个符号,每个符号的时间长度为266.67μs。每个前导码中的所有符号组的结构相同。结合图4,前导码格式信息指示的信息可以如下:前导码包括的符号组的数量为4;每个符号组中包括的符号数量为5;每个符号组中循环前缀的长度为66.7μs;每个符号组占用的子载波数量为1。当然以上只是示例,前导码格式信息指示的信息还可以为其他形式,在此不再赘述。
需要说明的是,本申请实施例中,符号的含义,包括但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号等,具体可以根据实际情况确定,在此不再赘述。
本申请实施例中,资源配置参数集合可以和终端的覆盖等级存在对应关系,不同的覆盖等级对应不同的资源配置参数集合,随机接入配置参数中可以包括不同的覆盖等级对应的资源配置参数集合。当然,不同的覆盖等级可以与相同的资源配置参数集合对应,此时随机接入配置参数中可以只包括一个资源配置参数集合。
终端设备可以测量网络设备发送的参考信号的RSRP,并将测量得到的RSRP与随机接入配置参数中的RSRP门限进行对比,从而确定终端设备的覆盖等级。例如,RSRP门限为0~11dB对应覆盖等级1;RSRP门限为12~23dB对应覆盖等级2;RSRP门限为24~35dB对应覆盖等级3。终端设备测量得到的RSRP为13dB,则可以确定终端设备对应覆盖等级2。其中,参考信号可为小区特定参考信号(Cell Specific Reference Signal,CRS),窄带参考信号(Narrowband Reference Signal)等,本申请实施例对此并不限定。
结合前面的描述,终端设备可以根据随机接入配置参数中的资源配置参数集合确定需要发送的前导码的时域资源和频域资源。例如,资源配置参数集合和终端的覆盖等级存在对应关系,终端设备可以根据终端设备的覆盖等级确定资源配置参数集合,并根据资源配置参数集合确定发送前导码的时域资源和频域资源。
其中根据资源配置参数集合确定发送前导码的频域资源包括:终端设备根据覆盖等级对应的资源配置参数集合确定频域资源集合,终端设备在频域资源集合中随机选择一个频域资源作为前导码的频域资源。所述频域资源可以为一个子载波或者多个子载波,和每个符号组占用的子载波数量有关,如果每个符号组占用的连续子载波数量为1个子载波,则频域资源为1个连续子载波,如果每个符号组占用的连续子载波数量为2连续个子载波,则频域资源为2个连续子载波。其中根据资源配置参数集合确定发送前导码的时域资源包括:终端设备根据覆盖等级对应的资源配置参数集合确定前导码发送的周期和起始位置,终端设备确定一个有效的周期和起始位置作为前导码的时域资源,比如可以选择距离随机接入发起时刻最近的周期和起始位置。
本申请实施例中,随机接入配置参数中包括前导码格式信息时,终端可以直接确定需要发送的前导码的前导码格式信息,从而确定前导码包括的符号组的数量等信息。
随机接入配置参数中不包括前导码格式信息时,终端设备可以根据终端设备的覆盖等 级确定前导码的前导码格式信息。具体的,可通过协议预先约定前导码格式信息和覆盖等级的对应关系,终端设备根据上述对应关系,确定与终端设备的覆盖等级对应的前导码格式信息。
步骤202:所述终端设备通过K个上行子帧集合发送所述M个符号组。
其中,所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M。所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
其中,跳频可以是指相邻符号组在传输时占用的子载波的频率不同,在时间上后传输的符号组相对于时间上先传输的符号组发生了跳频。所述M个符号组存在N次跳频,其中的每次跳频为所述M个符号组中相邻符号组之间的跳频。
跳频方向可以包括两种:从高频跳向低频以及从低频跳向高频。
K个上行子帧集合可以位于一个无线帧之内。当然,K个上行子帧集合也可以分布于多个连续的无线帧之内。
需要说明的是,每个上行子帧集合的时域长度大于或等于在该上行子帧集合中发送的符号组的时域长度。在每个上行子帧集合内可以包含保护时间(GT,Guard Time),用于避免前导码对后续下行子帧的干扰,在这种情况下,每个上行子帧集合的时域长度大于在该上行子帧集合中发送的符号组的时域长度。
步骤202中,前导码中的M个符号组通过跳频方式传输,M个符号组中相邻的符号组之间有N次跳频,所述N次跳频中至少有两次跳频的方向相反,N小于M。相应的,M和K的取值可以有多种情况,每个上行子帧集合中包括的连续的子帧数量也可以有多种情况,下面结合不同情况分别进行描述。
第一种情况:
当一个符号组占用一个子载波时,M可以等于6,每个符号组中最多包括3个符号和一个循环前缀,终端设备可以通过所述K个上行子帧集合中每个上行子帧集合发送3个符号组,此时K等于2,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合。
在该情况下,M个符号组中的每个符号组中包括的符号数,与上行子帧集合中包括的连续的子帧数量,可以有如下对应关系:
根据现有的无线帧中上下行子帧配置比中的上下行配置关系,一个无线帧中最多有3个上行子帧在时间上连续,因此一个上行子帧集合中最多包括3个连续的子帧。每个上行子帧集合中,包括的连续上行子帧数量为1个或2个或3个。一个上行子帧的时间长度为1ms。前导码的每个符号组的一个符号长度与前导码的子载波带宽成反比,例如,如果前导码的子载波带宽为3.75kHz时,前导码的每个符号组的一个符号长度为1/3.75kHz≈266.67μs。当每个上行子帧集合中包括的连续上行子帧数量为3个时,前导码的每个符号组中可以包含3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含1个符号。循环前缀的时长 为每个上行子帧集合的时长减去每个上行子帧集合内所有符号的总时长,然后除以每个上行子帧集合内符号组个数(在每个上行子帧集合内没有GT),或者除以每个上行子帧集合内符号组个数加1(在每个上行子帧集合内有GT,且GT时长等于CP时长)。
在该情况下,所述终端设备可以通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组,可以通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组。
其中,第一符号组至第六符号组是M个符号组按照时间顺序标记的,具体可以参考后的图5等附图中的示例。
在第一种情况的第一种场景中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同,为Δf1;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反。
进一步的,所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同,为Δf2;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
进一步的,第一符号组与第二符号组之间的跳频间隔小于第四符号组与第五符号组之间的跳频间隔,即Δf1小于Δf2,例如,Δf1等于1个子载波的频带宽度,Δf2等于E/2个子载波间隔的宽度,E为前导码中符号组的跳频范围中包括的子载波数量,E可以通过协议约定。举例来说,如图5所示,为本申请实施例提供的一种前导码传输示意图。图5中,第一上行子帧集合发送的符号组中,第一符号组与第二符号组之间的跳频间隔和第二符号组与第三符号组之间的跳频间隔相同,均为Δf1;第一符号组与第二符号组之间的跳频方向和第二符号组与第三符号组之间的跳频方向相反。第二上行子帧集合发送的符号组中,第四符号组与第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同,均为Δf2,Δf2可以等于6Δf1。第四符号组与第五符号组之间的跳频方向和第五符号组与第六符号组之间的跳频方向相反。
当然,第一符号组与第二符号组之间的跳频间隔也可以大于第四符号组与第五符号组之间的跳频间隔,即Δf1大于Δf2,在此不再赘述。
在第一种情况的第二种场景中,第一符号组与第二符号组之间的跳频间隔和第二符号组与第三符号组之间的跳频间隔不相同;第一符号组与第二符号组之间的跳频方向和第二符号组与第三符号组之间的跳频方向可以相同,也可以相反。
进一步的,第四符号组与第五符号组之间的跳频间隔和第五符号组与第六符号组之间的跳频间隔不相同;第四符号组与第五符号组之间的跳频方向和第五符号组与第六符号组之间的跳频方向可以相同,也可以相反。
进一步地,第二符号组与第三符号组之间的跳频方向与第五符号组与第六符号组之间的跳频方向相反。第一符号组与第二符号组之间的跳频方向和第四符号组与第五符号组之间的跳频方向可以相同,可以相反。
进一步的,第一符号组与第二符号组之间的跳频间隔小于第二符号组与第三符号组之间的跳频间隔,第四符号组与第五符号组之间的跳频间隔小于第五符号组与第六符号组之间的跳频间隔。
举例来说,如图6所示,为本申请实施例提供的一种前导码传输示意图。图6中,第一上行子帧集合发送的符号组中,第一符号组与第二符号组之间的跳频间隔为Δf1;第二 符号组与第三符号组之间的跳频间隔为Δf2;第一符号组与第二符号组之间的跳频方向和第二符号组与第三符号组之间的跳频方向相同。第二上行子帧集合发送的符号组中,第四符号组与第五符号组之间的跳频间隔为Δf1;第五符号组与第六符号组之间的跳频间隔为Δf2;Δf2可以等于6Δf1。第四符号组与第五符号组之间的跳频方向和第五符号组与第六符号组之间的跳频方向相同。第一符号组与第二符号组之间的跳频方向和第四符号组与第五符号组之间的跳频方向相反,第二符号组与第三符号组之间的跳频方向与第五符号组与第六符号组之间的跳频方向相反。
当然,M等于6,K等于2时,M个符号组还可以有其他跳频规则,在此不再逐一举例说明。
第二种情况:
当一个符号组占用一个子载波时,M可以等于4,终端设备可以通过所述K个上行子帧集合中每个上行子帧集合发送2个符号组,此时K等于2,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合。
在该情况下,M个符号组中的每个符号组中包括的符号数,与上行子帧集合中包括的连续的子帧数量,可以有如下对应关系:
根据现有的无线帧中上下行子帧配置比中的上下行配置关系,一个无线帧中最多有3个上行子帧在时间上连续,因此一个上行子帧集合中最多包括3个连续的子帧。每个上行子帧集合中,包括的连续上行子帧数量为1个或2个或3个。一个上行子帧的时间长度为1ms。前导码的每个符号组的一个符号长度与前导码的子载波带宽成反比,例如,如果前导码的子载波带宽为3.75kHz时,前导码的每个符号组的一个符号长度为1/3.75kHz≈266.67μs。当每个上行子帧集合中包括的连续上行子帧数量为3个时,前导码的每个符号组中可以包含5个或4个或3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含1个符号。循环前缀的时长为每个上行子帧集合的时长减去每个上行子帧集合内所有符号的总时长,然后除以每个上行子帧集合内符号组个数(在每个上行子帧集合内没有GT),或者除以每个上行子帧集合内符号组个数加1(在每个上行子帧集合内有GT,且GT时长等于CP时长)。
在该情况下,所述终端设备可以通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组,可以通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组。
在第二种情况中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向可以相反。
进一步的,所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
进一步的,第一符号组与第二符号组之间的跳频间隔小于第三符号组与第四符号组之间的跳频间隔。例如,第一符号组与第二符号组之间的跳频间隔等于1个子载波的频带宽度,第三符号组与第四符号组之间的跳频间隔等于E/2个子载波间隔的宽度,E为前导码中符号组的跳频范围中包括的子载波数量,E可以通过协议约定。
举例来说,如图7所示,为本申请实施例提供的一种前导码传输示意图。图7中,第 一上行子帧集合发送的符号组中,第一符号组与第二符号组之间的跳频间隔为Δf1。第二上行子帧集合发送的符号组中,第三符号组与第四符号组之间的跳频间隔为Δf2,Δf2可以等于6Δf1。第一符号组与第二符号组之间的跳频方向和第三符号组与第四符号组之间的跳频方向相反。
当然,第一符号组与第二符号组之间的跳频方向和第三符号组与第四符号组之间的跳频方向也可以相同,具体如图8所示。
当然,M等于4,K等于2时,M个符号组还可以有其他跳频规则,在此不再逐一举例说明。
第三种情况
本申请实施例中,当一个符号组占用一个子载波时,M可以等于4,K等于1,终端设备可以通过1个上行子帧集合发送4个符号组。该上行子帧集合中包括的上行子帧的数量可以为2个或3个。
在该情况下,所述终端设备可以通过所述K个上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组、第四符号组。
第一符号组至第四符号组之间可以由两种跳频间隔:Δf和Δf×E/2,Δf为子载波宽度,E为前导码中符号组的跳频范围中包括的子载波数量。
在该情况下,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反。
进一步的,所述第一符号组与所述第二符号组之间的跳频间隔为Δf,所述第二符号组与所述第三符号组之间的跳频间隔为Δf×E/2,所述第三符号组与所述第四符号组之间的跳频间隔为Δf。E可以通过协议约定,具体的,可以参考图9所示。
图9所示的前导码中符号组的跳频规则与FDD NB-IoT中前导码中符号组的跳频规则相同,因此可以达到和FDD NB-IoT中前导码相同的到达时间(Time of Arrival,ToA)估计精度。
当然,M等于4,K等于1时,M个符号组还可以有其他跳频规则,在此不再逐一举例说明。
需要说明的是,图5至图9只是示例,前导码中的M个符号组还可以根据其他跳频规则进行传输,在此不再逐一举例说明。
需要说明的是,上述任一种情况中,相邻的上行子帧集合中在时域上最近的两个符号组的之间的跳频间隔可以为固定间隔,也可以通过伪随机跳频的方式确定跳频间隔。
步骤203:网络设备接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组。
步骤203的具体内容,可以参考步骤201至步骤202中的描述,在此不再赘述。
步骤204:网络设备根据所述前导码进行上行同步测量。
具体的,网络设备可以测量终端设备发送的前导码到达网络设备的实际时间与网络设备预测的时间之间的差值,网络设备从而可以根据所述差值将所述终端设备上行同步。
前面描述的各种情况是以一个符号组占用1个子载波为例进行描述的,本申请实施例中,一个符号组还可以占用2个或2个以上连续的子载波,下面以一个符号组占用2个连续的子载波为例进行描述,其他情况可以参考此处的描述,在此不再赘述。
一个符号组占用2个连续的子载波时,终端设备可以通过K个上行子帧集合发送前导 码中的M个符号组。
和图2的流程相对应,所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于0的正整数,且K小于等于M。所述M个符号组中每个符号组占用2个连续的子载波。所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
相应的,M和K的取值可以有多种情况,每个上行子帧集合中包括的连续的子帧数量也可以有多种情况,下面结合不同情况分别进行描述。
第四种情况:
当一个符号组占用2个连续的子载波时,M可以等于3,K等于1,终端设备可以通过1个上行子帧集合发送3个符号组。该上行子帧集合中包括的上行子帧的数量可以为2个或3个。
每个上行子帧集合中,包括的连续上行子帧数量为1个或2个或3个。一个上行子帧的时间长度为1ms。前导码的每个符号组的一个符号长度与前导码的子载波带宽成反比,例如,如果前导码的子载波带宽为3.75kHz时,前导码的每个符号组的一个符号长度为1/3.75kHz≈266.67μs。当每个上行子帧集合中包括的连续上行子帧数量为3个时,前导码的每个符号组中可以包含3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含1个符号。循环前缀的时长为每个上行子帧集合的时长减去每个上行子帧集合内所有符号的总时长,然后除以每个上行子帧集合内符号组个数(在每个上行子帧集合内没有GT),或者除以每个上行子帧集合内符号组个数加1(在每个上行子帧集合内有GT,且GT时长等于CP时长)。
在该情况下,所述终端设备通过所述1个上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组。
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同。
举例来说,如图10所示,为本申请实施例提供的一种前导码传输示意图。图10中,前导码中的每个符号组占用2个连续的子载波,第一符号组与第二符号组之间的跳频间隔为Δf2;第二符号组与第三符号组之间的跳频间隔为Δf2,Δf2可以等于6Δf,Δf为子载波宽度。第一符号组与第二符号组之间的跳频方向和第二符号组与第三符号组之间的跳频方向相反。
需要说明的是,本申请实施例中,两个符号组之间的跳频间隔的含义是该两个符号组分别占用的子载波之间的间隔,比如所述第一符号组占用子载波f1和f2,f1相对f2位于低频位置,即f1<f2,所述第二符号组占用子载波f3和f4,f2相对f3位于低频位置,f3相对f4位于低频位置,即f2<f3<f4,第一符号组与第二符号组之间的跳频间隔表示f1到f3的间隔,或者f2到f4的间隔。以下任一情况中描述的两个符号组之间的跳频间隔的含义均可以参考此处的定义。
当然,M等于3,K等于1时,M个符号组还可以有其他跳频规则,在此不再逐一举 例说明。
第五种情况:一个符号组占用2个连续的子载波,K等于2,M等于2。
所述终端设备可以通过所述2个上行子帧集合中的第一上行子帧集合发送所述M个符号组中的第一符号组,通过所述2个上行子帧集合中的第二上行子帧集合发送所述M个符号组中的第二符号组。
每个上行子帧集合中包括的上行子帧的数量可以为1个或2个或3个。
根据现有的无线帧中上下行子帧配置比中的上下行配置关系,一个无线帧中最多有3个上行子帧在时间上连续,因此一个上行子帧集合中最多包括3个连续的子帧。每个上行子帧集合中,包括的连续上行子帧数量为1个或2个或3个。一个上行子帧的时间长度为1ms。前导码的每个符号组的一个符号长度与前导码的子载波带宽成反比,例如,如果前导码的子载波带宽为3.75kHz时,前导码的每个符号组的一个符号长度为1/3.75kHz≈266.67μs。当每个上行子帧集合中包括的连续上行子帧数量为3个时,前导码的每个符号组中可以包含5个或4个或3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含1个符号。循环前缀的时长为每个上行子帧集合的时长减去每个上行子帧集合内所有符号的总时长,然后除以每个上行子帧集合内符号组个数(在每个上行子帧集合内没有GT),或者除以每个上行子帧集合内符号组个数加1(在每个上行子帧集合内有GT,且GT时长等于CP时长)。
其中,所述第一符号组与所述第二符号组之间的跳频间隔为E/2个子载波间隔的宽度,E为跳频范围中包括的子载波数量。E可以通过协议约定。当然,所述第一符号组与所述第二符号组之间的跳频间隔还可以为其他宽度,在此不再逐一举例说明。
举例来说,如图11所示,为本申请实施例提供的一种前导码传输示意图。图11中,前导码中的每个符号组占用2个连续的子载波,终端设备第一上行子帧集合发送第一符号组,通过第二上行子帧集合发送第二符号组,第一符号组与第二符号组之间的跳频间隔为Δf2;第二符号组与第三符号组之间的跳频间隔为Δf2,Δf2可以等于6Δf,Δf为子载波宽度。
当然,M等于2,K等于2时,M个符号组还可以有其他跳频规则,在此不再逐一举例说明。
第六种情况:一个符号组占用2个连续的子载波,K等于1,M等于2。
所述终端设备可以通过所述1个上行子帧集合发送所述M个符号组中的第一符号组、第二符号组。
其中,所述第一符号组与所述第二符号组之间的跳频间隔为E/2个子载波间隔的宽度,E为所述第一符号组与所述第二符号组的跳频范围中包括的子载波数量。当然,所述第一符号组与所述第二符号组之间的跳频间隔还可以为其他宽度,在此不再逐一举例说明。
举例来说,如图12所示,为本申请实施例提供的一种前导码传输示意图。图12中,前导码中的每个符号组占用2个连续的子载波,终端设备一个上行子帧集合发送第一符号组、第二符号组,第一符号组与第二符号组之间的跳频间隔为Δf2;第二符号组与第三符号组之间的跳频间隔为Δf2,Δf2可以等于6Δf,Δf为子载波宽度。
当然,M等于2,K等于1时,M个符号组还可以有其他跳频规则,在此不再逐一举 例说明。
根据现有的无线帧中上下行子帧配置比中的上下行配置关系,一个无线帧中最多有3个上行子帧在时间上连续,因此一个上行子帧集合中最多包括3个连续的子帧。每个上行子帧集合中,包括的连续上行子帧数量为1个,2个或3个。一个上行子帧的时间长度为1ms。前导码的每个符号组的一个符号长度与前导码的子载波带宽成反比,例如,如果前导码的子载波带宽为3.75kHz时,前导码的每个符号组的一个符号长度为1/3.75kHz≈266.67μs。当每个上行子帧集合中包括的连续上行子帧数量为3个时,前导码的每个符号组中可以包含11个或10个或9个或8个或7个或6个或5个或4个或3个或2个或1个符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含7个或6个或5个或4个或3个或2个或1个符号符号。当每个上行子帧集合中包括的连续上行子帧数量为2个时,前导码的每个符号组中可以包含3个或2个或1个符号。循环前缀的时长为每个上行子帧集合的时长减去每个上行子帧集合内所有符号的总时长,然后除以每个上行子帧集合内符号组个数(在每个上行子帧集合内没有GT),或者除以每个上行子帧集合内符号组个数加1(在每个上行子帧集合内有GT,且GT时长等于CP时长)。
需要说明的是,上述任一种情况中,相邻的上行子帧集合中在时域上最近的两个符号组的之间的跳频间隔可以为固定间隔,也可以通过伪随机跳频的方式确定跳频间隔。
基于相同的技术构思,本申请实施例还提供一种通信设备,该通信设备可执行图2所示的流程中的步骤201、步骤202,以及与步骤201、步骤202相关的内容。
如图13所示,为本申请实施例提供一种通信设备结构示意图。
参见图13,该通信设备1300包括:处理单元1301和收发单元1302;
处理单元1301,用于确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
收发单元1302,用于通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元1302具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元1302具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。
基于相同的技术构思,本申请实施例还提供一种通信设备,该通信设备可执行图2所示的流程中的步骤203、步骤204,以及与步骤203、步骤204相关的内容。
如图14所示,为本申请实施例提供一种通信设备结构示意图。
参见图14,该通信设备1400包括:收发单元1401和处理单元1402;
收发单元1401,用于接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
处理单元1402,用于根据所述前导码进行上行同步测量。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三符号组;通过所述第二上行子帧集合接收所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发单元具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。
基于相同的技术构思,本申请实施例还提供一种通信设备,该通信设备可执行图2所示的流程中的步骤201、步骤202,以及与步骤201、步骤202相关的内容。
如图15所示,为本申请实施例提供一种通信设备结构示意图。
参见图15,该通信设备1500包括:处理器1501和收发机1502。
处理器1501,用于确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
收发机1502,用于通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
该通信设备1500还可以包括存储器1503,该存储器1503可以用于存储通信设备1500出厂时预装的程序/代码,也可以存储用于处理器1501执行时的包括计算机操作指令的程序代码等。存储器1503可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发机1502具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三 符号组;所述M个符号组中的第四符号组、第五符号组、第六符号组通过所述第二上行子帧集合发送;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述收发机1502具体用于:
通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
基于相同的技术构思,本申请实施例还提供一种通信设备,该通信设备可执行图2所示的流程中的步骤203、步骤204,以及与步骤203、步骤204相关的内容。
如图16所示,为本申请实施例提供一种通信设备结构示意图。
参见图16,该通信设备1600包括:处理器1601和通信接口1602。
通信接口1602可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为无线局域网接口。
通信接口1602,用于接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
处理器1601,用于根据所述前导码进行上行同步测量。
该通信设备1600还可以包括存储器1603,该存储器1603可以用于存储通信设备1600出厂时预装的程序/代码,也可以存储用于处理器1601执行时的包括计算机操作指令的程序代码等。
可选的,M等于6;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述通信接口1602具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三符号组;通过所述第二上行子帧集合接收所述M个符号组中的第四符号组、第五符号组、第六符号组;
其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
可选的,M等于4;
K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
可选的,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
所述通信接口1602具体用于:
通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
可选的,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成,所述的程序可以存储于一个设备的可读存储介质中,该程序在执行时,包括上述全部或部分步骤,所述的存储介质,如:磁盘存储器、光学存储器等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,不同的实施例可以进行组合,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何组合、修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
    所述终端设备通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
  2. 根据权利要求1所述的方法,其特征在于,M等于6;
    K等于2,所述终端设备通过所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
  3. 根据权利要求2所述的方法,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述终端设备通过K个上行子帧集合发送所述M个符号组,包括:
    所述终端设备通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
    所述终端设备通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
    所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
  4. 根据权利要求3所述的方法,其特征在于,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
  5. 根据权利要求1所述的方法,其特征在于,M等于4;
    K等于2,所述终端设备通过所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
  6. 根据权利要求5所述的方法,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述终端设备通过K个上行子帧集合发送所述前导码中的M个符号组,包括:
    所述终端设备通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
    所述终端设备通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述 第三符号组与所述第四符号组之间的跳频间隔不同。
  7. 根据权利要求6所述的方法,其特征在于,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
  8. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备通过K个上行子帧集合发送的前导码,所述前导码包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
    所述网络设备根据所述前导码进行上行同步测量。
  9. 根据权利要求8所述的方法,其特征在于,M等于6;
    K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
  10. 根据权利要求9所述的方法,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述网络设备接收终端设备通过K个上行子帧集合发送的前导码,包括:
    所述网络设备通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组、第三符号组;通过所述第二上行子帧集合接收所述M个符号组中的第四符号组、第五符号组、第六符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
    所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
  11. 根据权利要求10所述的方法,其特征在于,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
  12. 根据权利要求8所述的方法,其特征在于,M等于4;
    K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
  13. 根据权利要求12所述的方法,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述网络设备接收终端设备通过K个上行子帧集合发送的前导码,包括:
    通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
  15. 一种通信设备,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于确定前导码;所述前导码包括M个符号组,M为大于1的正整数;
    所述收发单元,用于通过K个上行子帧集合发送所述M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M。
  16. 根据权利要求15所述的通信设备,其特征在于,M等于6;
    K等于2,所述2个上行子帧集合中每个上行子帧集合发送3个符号组。
  17. 根据权利要求16所述的通信设备,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述收发单元具体用于:
    通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组、第三符号组;
    通过所述第二上行子帧集合发送所述M个符号组中的第四符号组、第五符号组、第六符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频间隔和所述第二符号组与所述第三符号组之间的跳频间隔相同;所述第一符号组与所述第二符号组之间的跳频方向和所述第二符号组与所述第三符号组之间的跳频方向相反;
    所述第四符号组与所述第五符号组之间的跳频间隔和所述第五符号组与所述第六符号组之间的跳频间隔相同;所述第四符号组与所述第五符号组之间的跳频方向和所述第五符号组与所述第六符号组之间的跳频方向相反。
  18. 根据权利要求17所述的通信设备,其特征在于,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第四符号组与所述第五符号组之间的跳频间隔。
  19. 根据权利要求15所述的通信设备,其特征在于,M等于4;
    K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
  20. 根据权利要求19所述的通信设备,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述收发单元具体用于:
    通过所述第一上行子帧集合发送所述M个符号组中的第一符号组、第二符号组;
    通过所述第二上行子帧集合发送所述M个符号组中的第三符号组、第四符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
  21. 根据权利要求20所述的通信设备,其特征在于,所述第一符号组与所述第二符号组之间的跳频间隔小于所述第三符号组与所述第四符号组之间的跳频间隔。
  22. 一种通信设备,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收终端设备通过K个上行子帧集合发送的前导码,所述前导码 包括M个符号组;所述K个上行子帧集合中的任一上行子帧集合包括至少一个连续的上行子帧,所述K个上行子帧集合中任意两个上行子帧集合之间间隔至少一个下行子帧,所述K个上行子帧集合中的每一个上行子帧集合能够发送至少一个符号组,K为大于1的正整数,M为大于1的正整数,且K小于等于M;所述M个符号组存在N次跳频,所述N次跳频中每次跳频为所述M个符号组中相邻符号组之间的跳频,所述N次跳频中至少有两次跳频的跳频方向相反,N小于M;
    所述处理单元,用于根据所述前导码进行上行同步测量。
  23. 根据权利要求22所述的通信设备,其特征在于,M等于4;
    K等于2,所述2个上行子帧集合中每个上行子帧集合发送2个符号组。
  24. 根据权利要求23所述的通信设备,其特征在于,所述K个上行子帧集合中包括第一上行子帧集合和第二上行子帧集合;
    所述收发单元具体用于:
    通过所述第一上行子帧集合接收所述M个符号组中的第一符号组、第二符号组;通过所述第二上行子帧集合接收所述M个符号组中的第三符号组、第四符号组;
    其中,所述第一符号组与所述第二符号组之间的跳频方向和所述第三符号组与所述第四符号组之间的跳频方向相反;所述第一符号组与所述第二符号组之间的跳频间隔和所述第三符号组与所述第四符号组之间的跳频间隔不同。
  25. 一种通信设备,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求1至14中任一项所述的通信方法。
  26. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当通信设备读取并执行所述计算机可读指令时,使得所述通信设备执行如权利要求1至14中任一项所述的通信方法。
  27. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信设备读取并执行所述计算机可读指令,使得所述通信设备执行如权利要求1至14中任一项所述的通信方法。
PCT/CN2017/111739 2017-11-17 2017-11-17 一种通信方法及装置 WO2019095322A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17932143.5A EP3700285B1 (en) 2017-11-17 2017-11-17 Communication method and apparatus
BR112020009594-0A BR112020009594A2 (pt) 2017-11-17 2017-11-17 método e aparelho de comunicação
PCT/CN2017/111739 WO2019095322A1 (zh) 2017-11-17 2017-11-17 一种通信方法及装置
NZ764640A NZ764640A (en) 2017-11-17 2017-11-17 Preamble transmission method and apparatus
JP2020526917A JP6987991B2 (ja) 2017-11-17 2017-11-17 通信方法及び装置
CN201780096686.0A CN111316745B (zh) 2017-11-17 2017-11-17 一种通信方法及设备、计算机可读存储介质、程序产品
RU2020119799A RU2747268C1 (ru) 2017-11-17 2017-11-17 Устройство и способ связи
US16/875,203 US11343856B2 (en) 2017-11-17 2020-05-15 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111739 WO2019095322A1 (zh) 2017-11-17 2017-11-17 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/875,203 Continuation US11343856B2 (en) 2017-11-17 2020-05-15 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019095322A1 true WO2019095322A1 (zh) 2019-05-23

Family

ID=66539335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111739 WO2019095322A1 (zh) 2017-11-17 2017-11-17 一种通信方法及装置

Country Status (8)

Country Link
US (1) US11343856B2 (zh)
EP (1) EP3700285B1 (zh)
JP (1) JP6987991B2 (zh)
CN (1) CN111316745B (zh)
BR (1) BR112020009594A2 (zh)
NZ (1) NZ764640A (zh)
RU (1) RU2747268C1 (zh)
WO (1) WO2019095322A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156618A1 (en) * 2018-02-06 2019-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for a random access preamble
CN110831238B (zh) * 2018-08-09 2022-12-30 中兴通讯股份有限公司 数据的发送、资源的获取方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184548A (zh) * 2014-04-17 2014-12-03 中兴通讯股份有限公司 随机接入序列传输方法和装置
US20150365977A1 (en) * 2014-06-13 2015-12-17 Apple Inc. Enhanced PRACH Scheme for Power Savings, Range Improvement and Improved Detection
CN106465428A (zh) * 2014-06-13 2017-02-22 苹果公司 用于功率节省、范围改善和改善的检测的增强型prach方案
WO2017167309A1 (en) * 2016-04-01 2017-10-05 Mediatek Inc. Physical random access channel design in elaa

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018037B1 (ko) * 2006-01-20 2011-03-02 노키아 코포레이션 향상된 커버리지가 있는 임의 접속 절차
US8280391B2 (en) * 2009-08-21 2012-10-02 Samsung Electronics Co., Ltd. Method and apparatus for identifying downlink message responsive to random access preambles transmitted in different uplink channels in mobile communication system supporting carrier aggregation
US9055527B2 (en) * 2010-05-06 2015-06-09 Telefonaktiebolaget L M Ericsson (Publ) Method and system for determining a time synchronization offset between radio base stations
US9572171B2 (en) 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
EP3393069B1 (en) * 2015-12-18 2021-03-17 LG Electronics Inc. -1- Method and wireless device for transmitting random-access preamble by means of single-tone method
US10904923B2 (en) * 2016-01-29 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for random access
US10148461B2 (en) * 2016-05-06 2018-12-04 Telefonaktiebolaget L M Ericsson (Publ) Preamble detection and time-of-arrival estimation for a single-tone frequency hopping random access preamble
US11146377B2 (en) * 2016-08-02 2021-10-12 Samung Electronics Co., Ltd Method and apparatus for communicating in a wireless communication system
US10454657B2 (en) * 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
WO2018200779A1 (en) * 2017-04-28 2018-11-01 Sharp Laboratories Of America, Inc. Random access procedure(s) for radio system
US11116005B2 (en) * 2017-06-26 2021-09-07 Lg Electronics Inc. Method and device for transmitting NPRACH preamble in narrowband IoT system supporting frame structure type 2
EP4307599A3 (en) * 2017-08-08 2024-05-01 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving uplink control information and for requesting random access in wireless communication system
CN109392106A (zh) * 2017-08-08 2019-02-26 北京三星通信技术研究有限公司 随机接入请求的方法及用户设备
BR112020002784A2 (pt) * 2017-08-10 2020-07-28 Huawei Technologies Co., Ltd. método e dispositivo de envio de sinais e método e dispositivo de recepção de sinais
WO2019032833A1 (en) * 2017-08-10 2019-02-14 Intel IP Corporation UPLINK TRANSMISSION IN TDD SUPPORTING FENB-IOT OPERATION
EP3688915B1 (en) * 2017-09-28 2023-02-22 Telefonaktiebolaget LM Ericsson (Publ) Nprach formats for nb-iot transmission in tdd mode
CN110892778B (zh) * 2017-11-14 2023-09-12 Lg电子株式会社 在支持时分双工的窄带iot系统中发送随机接入前导码的方法及其设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184548A (zh) * 2014-04-17 2014-12-03 中兴通讯股份有限公司 随机接入序列传输方法和装置
US20150365977A1 (en) * 2014-06-13 2015-12-17 Apple Inc. Enhanced PRACH Scheme for Power Savings, Range Improvement and Improved Detection
CN106465428A (zh) * 2014-06-13 2017-02-22 苹果公司 用于功率节省、范围改善和改善的检测的增强型prach方案
WO2017167309A1 (en) * 2016-04-01 2017-10-05 Mediatek Inc. Physical random access channel design in elaa

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Discussion on the UL aspects for TDD support in feNB- IoT", 3GPP TSG RAN WG1 MEETING #90BIS RL-1717348, 13 October 2017 (2017-10-13), XP051340538 *
ZTE: "Considerations on uplink aspects to support TDD NB-IoT", 3GPP TSG RAN WG1 MEETING #90 RL-1713012, 25 August 2017 (2017-08-25), XP051315821 *

Also Published As

Publication number Publication date
NZ764640A (en) 2022-04-29
BR112020009594A2 (pt) 2020-10-13
EP3700285B1 (en) 2023-08-23
JP6987991B2 (ja) 2022-01-05
US11343856B2 (en) 2022-05-24
EP3700285A1 (en) 2020-08-26
EP3700285A4 (en) 2020-11-25
CN111316745A (zh) 2020-06-19
US20200281024A1 (en) 2020-09-03
JP2021503799A (ja) 2021-02-12
RU2747268C1 (ru) 2021-05-04
CN111316745B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7462007B2 (ja) 無線システムにおけるフレーミング、スケジューリング、および同期化
JP7374162B2 (ja) 狭帯域lte動作のための方法および手順
CN111066361B (zh) 未许可频谱中的免授权上行链路传输
JP6682000B2 (ja) アップリンク制御チャネル上で送信をするためのパラメータを決定するための方法
CN107439045B (zh) 在eLAA中的物理随机接入信道方法以及用户设备
WO2018177196A1 (zh) 一种数据发送方法、相关设备及系统
CN106538026B (zh) 在无线通信系统中在非许可频谱中发送wi-fi信号的方法和装置
US20190335496A1 (en) Channel listening method and apparatus
JP2019531633A (ja) フレキシブルなリソース使用状況のための方法
RU2721385C1 (ru) Способ и терминальное устройство для передачи данных
US11122630B2 (en) Information sending method and apparatus and information receiving method and apparatus
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
WO2019128765A1 (zh) 一种信道侦听类型的指示方法及装置
CN108605353B (zh) 确定竞争窗信息的方法和装置
WO2017101799A1 (zh) 信息的传输方法、装置及计算机存储介质
EP3013093A1 (en) Terminal device, base station device, integrated circuit, and wireless communication method
EP3113537B1 (en) Terminal device, integrated circuit, and radio communication method
US11343856B2 (en) Communication method and apparatus
KR20200102926A (ko) 통신 시스템에서 가변 대역폭을 사용하여 신호를 송수신하는 방법 및 장치
JP7455539B2 (ja) 端末装置、および通信方法
US20190386789A1 (en) A Wireless Device, a Network Node and Methods Therein for Handling Transmissions in a Wireless Communications Network
WO2018073812A1 (en) Coverage extension frequency hopping scheme
RU2796259C2 (ru) Способ, выполняемый оборудованием пользователя, и оборудование пользователя
WO2023127293A1 (ja) 端末装置、基地局装置、および、通信方法
KR20170103300A (ko) 협대역 사물통신 방법, 이를 수행하는 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017932143

Country of ref document: EP

Effective date: 20200519

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009594

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009594

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200514