WO2017101799A1 - 信息的传输方法、装置及计算机存储介质 - Google Patents

信息的传输方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2017101799A1
WO2017101799A1 PCT/CN2016/110023 CN2016110023W WO2017101799A1 WO 2017101799 A1 WO2017101799 A1 WO 2017101799A1 CN 2016110023 W CN2016110023 W CN 2016110023W WO 2017101799 A1 WO2017101799 A1 WO 2017101799A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
subframe
symbol
subframes
length
Prior art date
Application number
PCT/CN2016/110023
Other languages
English (en)
French (fr)
Inventor
张雯
夏树强
戴博
石靖
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017101799A1 publication Critical patent/WO2017101799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0076Allocation utility-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the field of communications, and in particular to a method, an apparatus, and a computer storage medium for transmitting information.
  • Machine Type Communication MTC
  • UE User Equipment
  • M2M Machine to Machine
  • C-IOT Comb-Internet Of Things
  • 3GPP 3rd Generation Partnership Project
  • TR45.820V200 Technical Report TR45.820V200
  • NB-LTE Narrow Bang-Long Term Evolution
  • the system bandwidth of the system is 200 kHz, which is the same as the channel bandwidth of the Global System for Mobile Communication (GSM) GSM system.
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • the transmission bandwidth and downlink subcarrier spacing of NB-LTE are 180 kHz and 15 kHz, respectively, which are the same as the bandwidth and subcarrier spacing of one PRB of the LTE system, respectively.
  • the uplink of NB-LTE has two working modes: single-tone and multi-tone. Single-tone refers to occupying one subcarrier to transmit uplink, and multi-tone refers to occupying multiple subcarriers for uplink transmission.
  • the UE needs to indicate to the eNB that it supports single-tone and/or multi-tone.
  • the subcarrier width can be configured to be 3.75KHz or 15KHz.
  • the uplink subcarrier width is 3.75KHz, the uplink transmission symbols need to be redesigned to ensure compatibility with the 15KHz system. There is currently no effective solution.
  • embodiments of the present invention provide a method, an apparatus, and a computer storage medium for transmitting information.
  • a method for transmitting information includes:
  • the subcarrier width ⁇ f corresponding to the symbols is 1/N ⁇ 15 KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ , and the subframe is long-term
  • the subframe of the evolved LTE system, the symbol is determined by a preset method.
  • Each of the subframes includes n symbols
  • x subframes include n symbols, where n is a preset positive integer, and 2 ⁇ x is a positive integer greater than or equal to 1.
  • the subframe is a physical subframe, or the subframe is a available subframe.
  • the symbol is determined by a preset method, including:
  • the x subframes contain n symbols and a guard interval, where n and x are preset positive integers, the subframe is a physical subframe, or the subframe is a usable subframe.
  • the guard interval is located at the end of x subframes.
  • each N/2 of the subframes includes 7 symbols or 6 symbols;
  • each of the N subframes includes 14 symbols or 12 symbols, wherein the subframe is a physical subframe, or The sub-frame is a usable subframe. Indicates rounding up.
  • Each of the subframes includes n symbols, wherein a cyclic prefix CP length of one of the n symbols is Sample points, the length of the CP of the other symbols excluding the one symbol is Sample points
  • each x subframe includes n symbols, wherein a CP length of one of the n symbols is Sample points, the length of the CP of the other symbols excluding the one symbol is a sampling point, the data portion of the symbol has a length of f s / ⁇ f sampling points, f s is a sampling frequency, and f s is in units of Hz; Indicates rounding down, mod means modulo operation.
  • each of the subframes includes 3 symbols, and the CP length of each of the symbols is 128 sample points;
  • every 2 subframes includes 7 symbols, wherein a CP of one of the 7 symbols has a length of 40 samples.
  • the length of the CP of the other symbols excluding the one symbol has 36 CP points;
  • every 3 subframes includes 10 symbols, and the CP length of each symbol is 64 sampling points;
  • every 3 subframes includes 11 symbols, wherein a CP of one of the 11 symbols has a length of 18 samples.
  • the length of the CP of the other symbols except the one symbol is 11 sampling points;
  • every 4 subframes includes 14 symbols, wherein the CP length of two of the 14 symbols is 40 sampling points.
  • the 14 symbols remove the CP length of the other symbols of the two symbols by 36 samples, wherein the sampling frequency f s is 1.92 MHz.
  • each of the subframes includes 3 symbols, and the CP length of each of the symbols is 16 sample points;
  • every 2 subframes includes 7 symbols, wherein a CP of one of the 7 symbols has a length of 8 sampling points.
  • the length of the CP of the other symbols excluding the one symbol is 4 sample points;
  • every 3 subframes includes 10 symbols, and the CP length of each symbol is 8 sampling points;
  • every 3 subframes includes 11 symbols, wherein a CP of one of the 11 symbols has a length of 6 sampling points.
  • the length of the CP of the other symbols excluding the one symbol is 1 sampling point;
  • every 4 subframes includes 14 symbols, wherein two of the 14 symbols have a CP length of 8 sampling points.
  • the length of the CP of the 14 symbols except the other symbols of the two symbols is 4 sampling points, wherein the sampling frequency f s is 240 KHz.
  • the symbol used for uplink transmission is a symbol included in an area composed of an uplink pilot time slot (UpPTS) and an uplink subframe, or is included in an uplink subframe. a symbol within the frame area;
  • UpPTS uplink pilot time slot
  • the symbol used for downlink transmission is a symbol included in an area composed of a downlink pilot time slot (DwPTS) and a downlink subframe, or a symbol included in a downlink subframe area.
  • DwPTS downlink pilot time slot
  • the symbol is determined by the number of consecutive uplink subframes in the conversion period.
  • the preset subframe is the first uplink subframe or the first downlink subframe in the conversion period, and x is equal to the continuous uplink subframe number or continuous.
  • the number of downlink subframes which are physical subframes or available subframes.
  • the subframe in the case that the subcarrier width ⁇ f is 3.75 kHz, in the TDD system, if the number of consecutive uplink subframes is one in one conversion period, the subframe includes three symbols, each The CP length of the symbol is 128 sample points;
  • each of the 2 uplink subframes includes 3 symbols, and the CP length of each of the symbols is 128 sample points; or
  • the 2 uplink subframes include 7 symbols, wherein a CP length of one of the 7 symbols is 40 sample points, and the 7 symbols remove the CP length of other symbols of the one symbol. 36 sample points;
  • each of the 3 uplink subframes includes 3 symbols, and the CP length of each of the symbols is 128 sample points; or
  • the three uplink subframes include 10 symbols, and the CP length of each of the symbols is 64 sample points, or the 3 uplink subframes include 11 symbols, wherein one of the 10 symbols
  • the length of the CP is 18 sampling points, and the length of the CP of the other symbols excluding the one symbol is 11 sampling points, wherein the sampling frequency f s is 1.92 MHz.
  • the uplink subframe in one conversion period, the uplink subframe includes 3 symbols, and the CP length of each symbol is 16 sampling points;
  • each of the 2 uplink subframes includes 3 symbols, and the CP length of each of the symbols is 16 sample points; or
  • the two uplink subframes include seven symbols, wherein one of the seven symbols has a CP length of 8 sample points, and the seven symbols remove the CP length of the other symbols of the one symbol by four. Sampling point;
  • each of the 3 uplink subframes includes 3 symbols, and the CP length of each of the symbols is 16 sample points; or
  • the three uplink subframes include 10 symbols, and the CP length of each symbol is 8 sample points, or the 3 subframes include 11 symbols, wherein the CP length of one of the 11 symbols is 6 sampling points, the 11 symbols except the other symbols of the one symbol have a CP length of 1 sampling point, wherein the sampling frequency f s is 240 KHz.
  • the UpPTS is part of the CP of the first symbol of the uplink subframe of the UpPTS.
  • an area composed of one or more uplink subframes immediately adjacent to the UpPTS and the UpPTS includes one or more of the symbols.
  • the time domain scheduling granularity G of the information is determined by at least one of the following:
  • TBS Transport Block Size
  • MCS Modulation and Coding Scheme
  • RAR random access response
  • CCE Control Channel Element, abbreviated as CCE
  • PRACH Physical Random Access Channel
  • a resource that transmits the information A resource that transmits the information.
  • the time domain scheduling granularity G of the information is one of the following:
  • N ⁇ 10k subframes where k is a positive integer, and the subframe is a physical subframe or a usable subframe.
  • the time domain scheduling granularity G is determined by a duplex mode of the LTE system, and the duplex mode includes frequency division duplexing (FDD) and TDD.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the starting subframe of the information satisfies one of the following:
  • t 10n f + n sf , or, t is an available subframe index, c is a constant, n f is a radio frame number, n sf is a subframe number, and G is a time domain scheduling granularity.
  • the manner of processing the symbol includes one of the following:
  • the portion of the symbol that overlaps with the cell-specific SRS subframe is not transmitted.
  • the transmitted subcarrier spacing is determined according to the device type and/or the transmission mode, where the transmission mode is a transmission mode configured by the base station, or the transmission mode is a transmission mode selected by the network device.
  • the preset subframe is composed of the symbol, and the length of the preset subframe is one of the following lengths: N/2 ⁇ k subframes, and the preset subframe is N ⁇ k subframes,
  • N/2 ⁇ k subframes the number of consecutive uplink subframes in the downlink to uplink conversion period, or the number of consecutive downlink subframes; in the TDD system, it is an integer multiple of the downlink to uplink conversion period; 5k subframes; 10k subframes a frame; where k is a positive integer, and the subframe is a physical subframe or a usable subframe.
  • the subcarrier corresponding to the message 3 is determined by the resource indication information in the PRACH resource and/or the scheduling information.
  • the symbol is not used for uplink or downlink transmission.
  • the time domain scheduling granularity of the information is an integer multiple of the time domain resource corresponding to the PRACH, or the time domain resource corresponding to the PRACH is an integer multiple of the time domain scheduling granularity of the information.
  • the time domain scheduling granularity of the information is an integer multiple of the time domain resource corresponding to the PRACH, or the time domain resource corresponding to the PRACH is an integer multiple of the time domain scheduling granularity of the information.
  • an information transmission apparatus including:
  • a transmission module configured to transmit information on a symbol in one or more subframes, and a subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ ,
  • the subframe is a subframe of a Long Term Evolution (LTE) system, and the symbol is determined by a preset method.
  • LTE Long Term Evolution
  • a computer storage medium includes a set of instructions that, when executed, cause at least one processor to perform the method of transmitting the information described above.
  • information is transmitted on symbols in one or more subframes, and the subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ , so that One or more complete characters in an integer multiple of the sub-frames solves the problem that the transmission symbol design of the NB-LTE system is unreasonable, and improves the stability of the NB-LTE system.
  • FIG. 1 is a flow chart of a method for transmitting information according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an information transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a frame structure when a subcarrier width is 3.75 KHz according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of another seed frame when a subcarrier width is 3.75 KHz according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first subframe when TDD uplink and downlink configuration #1 is performed according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a first subframe when TDD uplink and downlink configuration #2 is performed according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a first subframe when TDD uplink and downlink configuration #0 is performed according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another first subframe when TDD uplink and downlink configuration #0 is performed according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for transmitting information according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 determining a symbol according to a preset method
  • Step S104 transmitting information on the symbol in one or more subframes, the subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ , the subframe A subframe that is a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ , so that the integer multiple One or more complete characters in the sub-frames solve the problem that the transmission symbol design of the NB-LTE system is unreasonable, and the stability of the NB-LTE system is improved.
  • the symbol is determined by a preset one of the following:
  • Each of the sub-frames includes n symbols
  • x subframes include n symbols, where n is a preset positive integer, and 2 ⁇ x is a positive integer greater than or equal to 1, the sub- The frame is a physical subframe, or the subframe is a usable subframe.
  • the symbol is determined by a preset method, including:
  • the x subframes contain n symbols and a guard interval, where n and x are preset positive integers, the subframe is a physical subframe, or the subframe is a usable subframe.
  • no data is transmitted over the guard interval.
  • the guard interval is located at the end of x subframes.
  • the symbol is determined by a preset one of the following:
  • the frame contains 7 symbols or 6 symbols;
  • each N subframes includes 14 symbols or 12 symbols, wherein the subframe is a physical subframe, or the subframe is available.
  • Subframe Indicates rounding up.
  • the symbol is determined by a preset one of the following:
  • Each of the subframes includes n symbols, wherein a cyclic prefix CP length of one of the n symbols is Sample points, the length of the CP of the other symbols except the one symbol is Sample points
  • each x subframe includes n symbols, wherein a CP length of one of the n symbols is Sample points, the length of the CP of the other symbols except the one symbol is The sampling point, the data portion of the symbol has a length of f s / ⁇ f sampling points, f s is the sampling frequency, and the unit of f s is Hz, wherein Indicates rounding down, mod means modulo operation.
  • the symbol is determined by a preset one of the following:
  • each of the subframes includes 3 symbols, and the cyclic prefix (CP) length of each symbol is 128 sample points;
  • every 2 subframes includes 7 symbols, wherein a CP of one of the 7 symbols has a length of 40 sampling points, and the 7 The length of the CP of the symbol excluding the other symbol of the one symbol is 36 sample points;
  • every 3 subframes includes 10 symbols, and the CP length of each symbol is 64 sampling points;
  • every 3 subframes includes 11 symbols, wherein a CP of one of the 11 symbols has a length of 18 samples, and the 11 The length of the CP of the symbol except the other symbol of the one symbol is 11 sample points;
  • every 4 subframes includes 14 symbols, wherein two of the 14 symbols have a CP length of 40 sampling points, and the 14 The symbol length of the other symbols excluding the two symbols is 36 samples, wherein the sampling frequency f s is 1.92 MHz.
  • the symbol is determined by a preset one of the following:
  • each of the subframes includes 3 symbols, and the CP length of each symbol is 16 sample points;
  • every 2 subframes includes 7 symbols, wherein a CP of one of the 7 symbols has a length of 8 sampling points, and the 7 The length of the CP of the symbol except the other symbol of the one symbol is 4 sampling points;
  • every 3 subframes includes 10 symbols, and the CP length of each symbol is 8 sampling points;
  • every 3 subframes includes 11 symbols, wherein a CP of one of the 11 symbols has a length of 6 sampling points, and the 11 The length of the CP of the symbol except the other symbol of the one symbol is 1 sample point;
  • every 4 subframes includes 14 symbols, wherein two of the 14 symbols have a CP length of 8 sampling points, and the 14 The length of the CP of the other symbols excluding the two symbols is 4 samples, wherein the sampling frequency f s is 240 KHz.
  • the symbol used for uplink transmission is a symbol included in an area composed of an UpPTS and an uplink subframe, or a symbol included in an uplink subframe area;
  • the symbol used for downlink transmission is a symbol included in an area composed of a DwPTS and a downlink subframe, or a symbol included in a downlink subframe area.
  • the symbol is determined by the number of consecutive uplink subframes within the conversion period.
  • the preset subframe is the first uplink subframe or the first downlink subframe in the conversion period, and x is equal to the number of consecutive uplink subframes or The number of consecutive downlink subframes, which are physical subframes or available subframes.
  • the subframe packet Containing 3 symbols, each of which has a CP length of 128 sample points;
  • each of the 2 uplink subframes includes 3 symbols, and the CP length of each symbol is 128 sample points; or, the two The uplink subframe includes 7 symbols, wherein a CP of one of the 7 symbols has a length of 40 samples, and the length of the CP of the other symbols except the one symbol is 36 samples;
  • each of the 3 uplink subframes includes 3 symbols, and the CP length of each symbol is 128 sample points; or, the 3 The uplink subframe includes 10 symbols, each of which has a CP length of 64 samples, or the 3 uplink subframes includes 11 symbols, wherein one of the 10 symbols has a CP length of 18 The sampling point, the 10 symbols except the other symbol of the one symbol has a CP length of 11 sampling points, wherein the sampling frequency f s is 1.92 MHz.
  • the uplink subframe in a TDD system, if the number of consecutive uplink subframes is 1 in one conversion period, the uplink subframe includes 3 symbols, and the CP length of each symbol is 16 sampling points. ;
  • each of the 2 uplink subframes includes 3 symbols, and the CP length of each symbol is 16 sample points; or, the 2 The uplink subframe includes 7 symbols, wherein a CP length of one of the 7 symbols is 8 sampling points, and the CP symbols of the other symbols except the one symbol have a CP length of 4 sampling points;
  • each of the 3 uplink subframes includes 3 symbols, and the CP length of each symbol is 16 sample points; or, the 3 The uplink subframe includes 10 symbols, and the CP length of each symbol is 8 sampling points, or the 3 subframes include 11 symbols, wherein one of the 11 symbols has a CP length of 6 sampling points.
  • the 11 symbols except the other symbols of the one symbol have a CP length of 1 sample point, wherein the sampling frequency f s is 240 kHz.
  • the UpPTS is part of the CP of the first symbol of the uplink subframe immediately adjacent to the UpPTS.
  • the UpPTS and the UpPTS are in close proximity to one One or more of the symbols are included in an area composed of one or more uplink subframes.
  • the time domain scheduling granularity G of the information is determined by at least one of the following:
  • the time domain scheduling granularity G of the information is one of the following:
  • N ⁇ 10k subframes where k is a positive integer, and the subframe is a physical subframe or a usable subframe.
  • the time domain scheduling granularity G is determined by a duplex mode of the LTE system, the duplex mode including FDD and TDD.
  • the starting subframe of the information satisfies one of the following:
  • t 10n f + n sf , or, t is an available subframe index, c is a constant, n f is a radio frame number, n sf is a subframe number, and G is a time domain scheduling granularity.
  • the processing is performed.
  • the way the symbol includes one of the following:
  • the portion of the symbol that overlaps with the cell-specific SRS subframe is not transmitted.
  • the network device determines a subcarrier spacing to be transmitted according to the device type and/or the transmission mode, where the transmission mode is a transmission mode configured by the base station, or the transmission mode is a transmission mode selected by the network device.
  • the preset subframe is composed of the symbol, and the length of the preset subframe is one of the following lengths: N/2 ⁇ k subframes; the preset subframe is N ⁇ k subframes.
  • the number of consecutive uplink subframes in the downlink to uplink conversion period or the number of consecutive downlink subframes; in the TDD system, an integer multiple of the downlink to uplink conversion period; 5k subframes; 10k subframes; where k is a positive integer, and the subframe is a physical subframe or a usable subframe.
  • the subcarrier corresponding to the message 3 is determined by the resource indication information in the PRACH resource and/or the scheduling information.
  • the symbol is not used for uplink or downlink transmission.
  • the time domain scheduling granularity of the information is an integer multiple of the time domain resource corresponding to the PRACH, or the time domain resource corresponding to the PRACH is an integer multiple of the time domain scheduling granularity of the information.
  • an information transmission device is further provided, and the device is configured to implement the foregoing embodiments, and details have been omitted for description.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes:
  • the determining module 22 is configured to determine a symbol according to a preset method
  • the transmission module 24 is connected to the determining module 22 and configured to transmit information on symbols in one or more subframes.
  • the subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ , the subframe is a subframe of a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the determining module 22 determines the symbol according to a preset method, and the transmitting module 24 is connected to the determining module 22, configured to transmit information on the symbols in one or more subframes, and the subcarrier width ⁇ f corresponding to the symbol is 1 /N ⁇ 15KHz, N ⁇ 2,3,4,5,6 ⁇ solves the problem that the transmission symbol design of the NB-LTE system is unreasonable, and improves the stability of the NB-LTE system.
  • the subcarrier width of LTE is 15 kHz
  • each subframe is 1 ms
  • 14 Orthogonal Frequency Division Multiplexing OFDM symbols or 14 SC-FDMA symbols.
  • the capabilities of NB-LTE UEs include support for single-tone and/or multi-tone.
  • the width of the subcarrier may be less than 15KHz, for example, 3.75KHz.
  • integer multiples of subframes should correspond to one or more complete symbols. This way, the 3.75KHz transmission and the 15KHz transmission are subframe-aligned in time. Avoid scheduling waste. For example, if a symbol with a subcarrier width of 3.75 Hz occupies part of the time of 1 ms, then the rest of the time cannot be used for the legacy UE transmission.
  • a method of transmitting symbols is provided, which can be used for both uplink and downlink.
  • the eNB or the UE transmits information on symbols in one or more subframes, the subcarrier width ⁇ f corresponding to the symbol being 1/N ⁇ 15 KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ .
  • the symbols are determined in the following manner.
  • Each subframe contains n symbols, and the CP length of one symbol is Sample points, the CP length of other symbols is Sample points.
  • f s is the sampling frequency and the unit is Hz.
  • n is the default positive integer.
  • each x (x>1) subframes includes n symbols, and each x subframes includes n symbols, wherein the CP length of one symbol is Sample points, the CP length of other symbols is Sample points.
  • n is a preset positive integer.
  • x subframes include n symbols, and x may be a fixed value or a variable value, such as subframe #0 from radio frame #0. Initially, 2 subframes contain n1 symbols, then 4 subframes contain n2 symbols, then 2 subframes contain n1 symbols, then 4 subframes contain n2 symbols, and so on.
  • the CP length of the symbol is calculated as in the second method.
  • each subframe may contain Symbols.
  • each N/2 subframes includes 7 symbols or 6 symbols.
  • each N subframes includes 14 symbols or 12 symbols.
  • the above subframe may be a physical subframe or may be a usable subframe.
  • the available subframes are configured by the eNB or are preset. For example, for a TDD system, for uplink, the available subframes can be all uplink subframes.
  • the subframe index is 0-9, except for subframe #1, all subframes are available subframes, then when a part of a symbol is defined in Subframe #0, another part defined in subframe #2, the symbol is not available, ie not used to transmit information.
  • the lengths of the data part and the CP part are given by the sampling rate of 1.92 MHz and 240 KHz.
  • the actual sampling rate can be other values, and the data part of the symbol and the number of sampling points corresponding to the CP part are proportionally changed according to the sampling rate. , but the corresponding actual duration is the same as the following analysis.
  • the sampling frequency is 240KHz
  • the data part of one symbol has 64 samples
  • 1ms or 1 subframe contains 3 complete symbols
  • each symbol contains data part and CP
  • the CP length of each symbol is 16 sampling points.
  • the sampling frequency is 1.92MHz
  • 2ms or 2 subframes contain 7 complete symbols, one of which has a CP length of 40 samples, and the other symbols have a CP length of 36 samples.
  • the CP length of the first symbol is 40 sample points.
  • the CP length of other symbols is 36 sample points.
  • the sampling frequency is 240KHz
  • 2ms or 2 subframes contain 7 complete symbols, one of which has a CP length of 8 sampling points, and the other symbols have a CP length of 4 sampling points.
  • the CP length of the first symbol is 8 sample points.
  • the CP length of other symbols is 4 sample points.
  • each of the two subframes includes 7 symbols.
  • the symbol is determined according to the starting position of the PUSCH/PDSCH scheduled by the eNB. For example, if the eNB schedules the start subframe of the PUSCH to be the subframe 3 of the radio frame 4, then from the subframe 3 of the radio frame 4, every two subframes contain 7 symbols.
  • 3 ms or 3 subframes contain 10 symbols, and the CP length of each symbol is 64 sampling points.
  • 3 ms or 3 subframes contain 11 symbols, wherein one symbol has a CP length of 18 sampling points, and other symbols have a CP length of 11 sampling points.
  • the CP of the first symbol has a length of 18 samples.
  • the CP length of other symbols is 11 sample points.
  • sampling frequency 240 KHz
  • 3 ms or 3 subframes contain 10 symbols
  • the CP length of each symbol is 8 sampling points.
  • 3 ms or 3 subframes contain 11 symbols, wherein one symbol has a CP length of 6 sampling points, and other symbols have a CP length of 1 sampling point.
  • the CP length of the first symbol is 6 sample points.
  • the CP length of other symbols is 1 sample point.
  • every three subframes contain 11 symbols. For example, starting from radio frame #0, every three sub-frames are divided into 11 symbols.
  • the symbol is determined according to the starting position of the PUSCH/PDSCH scheduled by the eNB. For example, if the eNB schedules the start subframe of the PUSCH to be the subframe 3 of the radio frame 4, then from the subframe 3 of the radio frame 4, every 3 subframes contain 11 symbols.
  • sampling frequency is 1.92MHz
  • 4ms or 4 subframes contain 14 symbols, wherein the CP length of two symbols is 40 sampling points, and the CP length of other symbols is 36 sampling points.
  • the CP length of the first and eighth symbols is 40 sample points.
  • the CP length of other symbols is 36 sample points.
  • 2 ms or 2 subframes contain 7 complete symbols, one of which has a CP length of 8 sampling points, and the other symbols have a CP length of 4 sampling points.
  • the CP length of the first symbol is 8 sample points.
  • the CP length of other symbols is 4 sample points.
  • every 4 subframes contain 7 symbols.
  • every 4 subframes contain 7 symbols.
  • the symbol is determined according to the starting position of the PUSCH/PDSCH scheduled by the eNB. For example, if the starting subframe of the eNB scheduling PUSCH is the subframe 3 of the radio frame 4, then the sub-frame of the radio frame 4 Frame 3 begins with 14 symbols per 4 subframes.
  • the length of the data portion corresponding to the symbol is 768 sampling points.
  • 1 ms or 1 subframe contains 2 complete symbols, each symbol contains a data portion and a CP, and the CP length of each symbol is 192 sample points.
  • the sampling frequency is 240 kHz
  • the data portion of one symbol has 96 samples
  • 1 ms or 1 subframe contains 2 complete symbols
  • each symbol contains a data portion and a CP
  • the CP length of each symbol is 24 sampling points.
  • the sampling frequency is 1.92MHz
  • 3ms or 3 subframes contain 7 symbols, one of which has a CP length of 60 samples, and the other symbols have a CP length of 54 samples.
  • the CP of the first symbol has a length of 60 samples.
  • the CP length of other symbols is 54 sample points.
  • 3 ms or 3 subframes contain 6 symbols, and the CP length of each symbol is 192 sample points.
  • the sampling frequency is 240KHz
  • 3ms or 3 subframes contain 7 symbols, one of which has a CP length of 12 sampling points, and the other symbols have a CP length of 6 sampling points.
  • the CP length of the first symbol is 12 sample points.
  • the CP length of other symbols is 6 sample points.
  • 3 ms or 3 subframes contain 6 symbols, and the CP length of each symbol is 24 sample points.
  • 6ms or 6 subframes contain 14 symbols, wherein the CP length of two symbols is 60 sampling points, and the CP length of other symbols is 54 sampling points.
  • the CP length of the first and eighth symbols is 60 sample points.
  • the CP length of other symbols is 54 sample points.
  • 6ms or 6 subframes contain 12 symbols, and the CP length of each symbol is 192. Sample points.
  • 6ms or 6 subframes contain 14 symbols, one of which has a CP length of 12 sampling points, and the other symbols have a CP length of 6 sampling points.
  • the CP length of the first symbol is 12 sample points.
  • the CP length of other symbols is 6 sample points.
  • 6 ms or 6 subframes contain 12 symbols, and the CP length of each symbol is 24 sample points.
  • the length of the data portion corresponding to the symbol is 640 sample points.
  • 1 ms or 1 subframe contains 2 complete symbols, each symbol contains a data portion and a CP, and the CP length of each symbol is 320 samples.
  • the sampling frequency is 240KHz
  • the data part of one symbol has 80 samples
  • 1ms or 1 subframe contains 2 complete symbols
  • each symbol contains data part and CP
  • the CP length of each symbol is 40 sampling points.
  • the sampling frequency is 1.92MHz
  • 2.5ms or 2.5 subframes contain 7 symbols, where 2.5 subframes refer to 2 subframes and one slot, ie 2.5ms, where the CP length of one symbol is 50 sampling points, other symbols
  • the CP length is 45 sample points.
  • the CP of the first symbol has a length of 50 samples.
  • the CP length of other symbols is 45 sample points.
  • 2 ms or 2.5 subframes contain 6 symbols, and the CP length of each symbol is 160 samples.
  • the CP of the first symbol has a length of 10 samples.
  • the CP length of other symbols is 5 sample points.
  • 2 ms or 2.5 subframes contain 6 symbols, and the CP length of each symbol is 20 sample points.
  • the sampling frequency is 1.92MHz
  • 5ms or 5 subframes contain 14 symbols, wherein the CP length of two symbols is 50 sampling points, and the CP length of other symbols is 45 sampling points.
  • the CP length of the first symbol and the eighth symbol is 50 sample points.
  • the CP length of other symbols is 45 sample points.
  • 5 ms or 5 subframes contain 12 symbols, and the CP length of each symbol is 160 sample points.
  • the sampling frequency 240KHz, 5ms or 5 subframes contains 14 symbols, wherein the CP length of two symbols is 10 sampling points, and the CP length of other symbols is 5 sampling points.
  • the CP length of the first symbol and the eighth symbol is 10 sample points.
  • the CP length of other symbols is 5 sample points.
  • 5 ms or 5 subframes contain 12 symbols, and the CP length of each symbol is 20 sample points.
  • the length of the data portion corresponding to the symbol is 384 sampling points.
  • 1 ms or 1 subframe contains 4 complete symbols, each symbol containing a data portion and a CP, and each symbol has a CP length of 96 samples.
  • the sampling frequency is 240 kHz
  • the data portion of one symbol has 48 samples
  • 1 ms or 1 subframe contains 4 complete symbols, each symbol containing a data portion and a CP
  • the CP length of each symbol is 12 sampling points.
  • the sampling frequency is 1.92MHz
  • 1.5ms or 1.5 subframes contain 7 symbols, where 1.5 subframes refer to 1 subframe and one slot, where the CP length of one symbol is 30 sampling points, and the CP length of other symbols is 27 sampling points.
  • the CP of the first symbol has a length of 30 samples.
  • the CP length of other symbols is 27 sample points.
  • 1.5ms or 1.5 subframes contain 6 symbols, and the CP length of each symbol is 96. Sample points.
  • the sampling frequency 240KHz
  • 1.5ms or 1.5 subframes contain 7 symbols, wherein the CP length of one symbol is 6 sampling points, and the CP length of other symbols is 3 sampling points.
  • the CP length of the first symbol is 6 sample points.
  • the CP length of other symbols is 3 sampling points.
  • 1.5 ms or 1.5 subframes contain 6 symbols, and the CP length of each symbol is 12 sample points.
  • the sampling frequency is 1.92MHz
  • 3ms or 3 subframes contain 14 symbols, wherein the CP length of two symbols is 30 sampling points, and the CP length of other symbols is 27 sampling points.
  • the CP length of the first symbol and the eighth symbol is 30 sample points.
  • the CP length of other symbols is 27 sample points.
  • 3 ms or 3 subframes contain 12 symbols, and the CP length of each symbol is 96 samples.
  • 3 ms or 3 subframes contain 14 symbols, wherein the CP length of two symbols is 6 sampling points, and the CP length of other symbols is 3 sampling points.
  • the CP length of the first symbol and the eighth symbol is 6 sample points.
  • the CP length of other symbols is 3 sampling points.
  • 3 ms or 3 subframes contain 12 symbols, and the CP length of each symbol is 12 sample points.
  • the length of the data portion corresponding to the symbol is 256 sample points.
  • 1ms or 1 subframe contains 7 complete symbols, each symbol contains a data part and a CP, wherein one symbol has a CP length of 20 sample points, and other symbols have a CP length of 18 sample points.
  • the CP length of the first symbol is 20 sample points.
  • the CP length of other symbols is 18 sample points.
  • the sampling frequency is 240KHz
  • the data portion of one symbol has 32 samples.
  • 1ms Or 1 subframe includes 7 complete symbols, each symbol includes a data portion and a CP, wherein one symbol has a CP length of 4 sampling points, and other symbols have a CP length of 2 sampling points.
  • the CP length of the first symbol is 4 sample points.
  • the CP length of other symbols is 2 sampling points.
  • the length of the data portion corresponding to the symbol is 256 sample points.
  • 2ms or 2 subframes contain 14 complete symbols, each symbol contains a data part and a CP, wherein the CP length of two symbols is 20 sampling points, and the CP length of other symbols is 18 sampling points.
  • the CP length of the first symbol and the eighth symbol is 20 sampling points, and the CP length of other symbols is 18 sampling points.
  • the sampling frequency is 240KHz
  • the data portion of one symbol has 32 samples, and 2ms or 2 subframes contain 14 complete symbols.
  • Each symbol contains a data portion and a CP, and the CP length of two symbols is 4 sampling points.
  • the CP length of other symbols is 2 sampling points.
  • the CP length of the first symbol and the eighth symbol is 4 sampling points, and the CP length of other symbols is 2 sampling points.
  • the physical subframe may be determined in the manner described above, or the available subframe may be determined in the manner described above.
  • the latter is exemplified here, for example, starting from the first uplink subframe of radio frame #0, each x uplink subframe contains several complete symbols.
  • x may be equal to the number of consecutive subframes in the conversion period, for example, for TDD uplink and downlink configuration #2, that is, "DSUDD DSUDD", where "D" represents downlink, "S” represents a special subframe, and "U” represents an uplink. .
  • each uplink subframe contains 3 symbols.
  • a method for determining a symbol is to start from a preset subframe or a starting subframe for transmitting the information, and each x (x>1) subframes includes n symbols.
  • x can be a fixed value or a variable value.
  • x can be changed according to the ratio.
  • uplink and downlink configuration #6 that is, "DSUUUDSUUD”
  • three consecutive uplink subframes contain 10 symbols, and then 2
  • the consecutive uplink subframes contain 7 symbols
  • the 3 consecutive uplink subframes contain 10 symbols
  • the 2 consecutive uplink subframes contain 7 symbols, and so on.
  • x can also be configured according to Changes occur. For example, when the system is configured for uplink and downlink #0, every 3 subframes contain 10 symbols. When the system changes to uplink and downlink configuration #1, every 2 subframes contain 7 symbols.
  • This particular embodiment considers a TDD scenario.
  • the TDD system has different uplink and downlink subframe configurations. Regardless of which configuration, the symbols can be determined in the manner of Embodiment 1.
  • the complete 3 symbols can be accommodated within 1 ms, which is not affected by the different configurations of the TDD.
  • Table 1 below shows the uplink and downlink configurations in TDD.
  • the symbol used for uplink transmission has only 3 symbols in the "U" subframe, the length of each symbol data portion is 512 sample points, and the CP length of the first symbol is 40 sample points, other symbols The CP length is 36 sample points.
  • the second "U" is handled in a similar manner.
  • symbols can also be transmitted in a similar manner.
  • consecutive uplink/downlink subframes in TDD contain one or more complete symbols.
  • the uplink subframe includes three symbols, and the CP length of the symbol is the first one in the first embodiment.
  • each of the two uplink subframes includes three symbols, and the CP length of the symbol is the first one in the first embodiment.
  • the two uplink subframes include seven symbols, and the CP length of the symbol is the second mode in the first embodiment.
  • each of the three uplink subframes includes three symbols, and the CP length of the symbol is the first one in the first embodiment.
  • the three uplink subframes include 10 or 11 symbols, and the CP length of the symbol is the third mode in the first embodiment.
  • symbols can also be transmitted in a similar manner.
  • This embodiment considers a TDD scenario.
  • the UpPTS contains one or more complete symbols in one or more consecutive uplink subframes immediately after.
  • the DwPTS and the immediately preceding one or more consecutive downlink subframes include one One or more complete symbols.
  • the UpPTS includes one symbol or two symbols, the symbol is a symbol with a subcarrier width of 15 kHz, and the number of sampling points corresponding to the data portion is 128.
  • the number of sampling points of the UpPTS under the two CPs is as follows, where each symbol includes a data portion and a CP.
  • UpPTS contains a symbol UpPTS contains two symbols Normal CP 137 274 Extended CP 160 320
  • the UpPTS and one or more consecutive uplink subframes immediately after it contain one or more complete symbols.
  • the number of available symbols is increased in some scenarios. Even if you do not increase the number of symbols, the length of the CP is increased. It is good for transmission. Especially in the case where the uplink timing advance (TA) is not accurate.
  • TA uplink timing advance
  • Table 3 below shows how to transfer symbols. Assume that the sampling rate is 1.92 MHz.
  • the UpPTS and one or more consecutive uplink subframes that are immediately adjacent to each other include one or more complete symbols, and the number of consecutive consecutive uplink subframes is the "uplink subframe number" in the first column. The number of the above-mentioned sub-frames is 1 as an example.
  • the UpPTS is a symbol
  • the symbol at this time is a symbol with a sub-carrier width of 15 kHz defined in the existing LTE.
  • the CP is a normal CP, the total number of sampling points is 1920+137.
  • the UpPTS and the subsequent uplink subframe contain a total of 3 complete symbols, one of which has a CP length of 175 and the other symbols have a CP length of 173.
  • the CP length of the first symbol is 175, and the CP length of other symbols is 173.
  • the symbols can be transmitted according to the number of uplink subframes in Table 3.
  • the symbol may be transmitted according to the number of uplink subframes in Table 3, and the second uplink subframe is transmitted according to the mode 1 in Embodiment 1. symbol.
  • the symbols can be transmitted according to the number of uplink subframes in Table 3 being 3.
  • the symbol may be transmitted according to the number of uplink subframes in Table 3, and the second and third uplink subframes are in the manner of Embodiment 1.
  • One or two ways to transmit symbols Or, for The special subframe and the two consecutive uplink subframes that are immediately adjacent to each other may be transmitted according to the manner that the number of uplink subframes in Table 3 is 2.
  • the third uplink subframe transmits the symbols according to the manner 1 in Embodiment 1.
  • symbols can also be transmitted in a similar manner.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment considers a TDD scenario.
  • the UpPTS is part of the CP of the first symbol of the immediately adjacent uplink subframe.
  • the symbols of several uplink subframes immediately adjacent to the UpPTS are as in Embodiment 2 or 3.
  • the number of samples in the UpPTS part is 137
  • the subcarrier width is 3.75 kHz.
  • the next uplink subframe includes 3 symbols.
  • the DwPTS area includes one or more complete symbols.
  • the transmission symbols of other downlink subframes are as in Embodiment 2 or 3.
  • the time domain scheduling granularity refers to the minimum unit of each scheduling, and the time domain scheduling granularity may be determined by N. It is assumed that the subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15 KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ .
  • the time domain scheduling granularity may be k ⁇ N/2, or k ⁇ N, or may be N ⁇ 12k subframes; and N ⁇ 10k subframes, where k is a positive integer, and the subframe is a physical sub-frame. Frame or available subframe.
  • the time domain scheduling granularity may be a continuous subframe or a discontinuous subframe.
  • the time domain scheduling granularity should be 2k subframes, where k is a positive integer. If 3 subframes contain 10 or 11 symbols, the time domain scheduling granularity should be 3k subframes, where k is a positive integer. If 4 subframes contain 14 symbols, the time domain scheduling granularity should be 4k subframes, where k is Positive integer.
  • the time domain scheduling granularity may be a physical subframe or a symbol, for example, the time domain scheduling granularity is 40 physical subframe subframes or 120 symbols, and it is assumed that the method in the first embodiment is used to transmit symbols. Not affected by the uplink and downlink configuration, if the eNB schedules the UE One scheduling granular PUSCH, then the UE transmits in the symbols of the UL subframes in 40 consecutive physical subframes. Alternatively, the scheduling granularity may also be an available subframe or symbol, such as 40 subframes or 120 symbols. It is assumed that the transmission symbol is used in the manner of Embodiment 1, if the eNB schedules a scheduling granularity PUSCH for the UE. Then the UE transmits in 120 symbols of 40 UL subframes.
  • the time domain scheduling granularity of the information is an integer multiple of the time domain resource corresponding to the PRACH, or the time domain resource corresponding to the PRACH is an integer multiple of the time domain scheduling granularity of the information.
  • the time domain scheduling granularity is a multiple of 40 subframes, for example, 80 or 120.
  • the PRACH is transmitted on 80 subframes, and the time domain scheduling granularity is 20 subframes or 40 subframes.
  • the time domain scheduling granularity may also be determined by the TBS of the information. For example, when the TBS is greater than a threshold, the time domain scheduling granularity is a, otherwise it is b.
  • the time domain scheduling granularity may also be determined by the MCS of the information. For example, when the MCS is greater than a threshold, the time domain scheduling granularity is a, otherwise it is b.
  • the time domain scheduling granularity may also be determined by scheduling a time domain and/or a frequency domain location of the downlink control information/RAR of the information, or a PRACH resource at the time of random access, or a CCE corresponding to scheduling the downlink control information.
  • the time domain scheduling granularity is a, otherwise it is b.
  • the time domain scheduling granularity of message 3 is determined by the time-frequency resource location of the RAR or by the PRACH resource.
  • the time domain scheduling granularity may also be determined by the number of repetitions of the information. For example, when the number of repetitions is greater than one threshold, the time domain scheduling granularity is a, otherwise it is b.
  • the time domain scheduling granularity may also be determined by the time domain and/or frequency domain resources of the information transmission. For example, when the eNB schedules transmission on the UE subcarriers 0 to 3, the time domain scheduling granularity is a; when the eNB schedules transmission on the UE subcarriers 4 to 7, the time domain scheduling granularity is b.
  • the time domain scheduling granularity may be different for FDD and TDD, for example, 48 for FDD and 60 for TDD.
  • the time domain scheduling granularity may be preset or RRC signaling indication, and different granularities may be adopted for different CPs.
  • the eNB or the UE transmits information on symbols in one or more subframes, the subcarrier width ⁇ f corresponding to the symbol being 1/N ⁇ 15 KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ .
  • the starting subframe of the information transmitted by the eNB or the UE satisfies one of the following:
  • t 10n f +n sf
  • n f is the radio frame number
  • n sf is the subframe number.
  • t can also be an available sub-frame index
  • n is a subframe in which the UE receives the PDSCH or receives the last subframe of the PDSCH, the UE starts to send an ACK/NACK in the n+k subframe, or the UE after the n+k subframe (including the n+k subframe)
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Resource allocation should include at least the following:
  • the numbered index may be in the order of increasing or decreasing frequency, or in order from the two sides to the center.
  • the subcarriers and the 15 kHz subcarriers in the system should have guard bands, such as one or two 3.75 kHz subcarriers.
  • Another configuration mode is that the eNB can configure several 15 kHz subcarriers for the UE. Since the system can include 12 subcarriers in total, it can be represented by 4 bits.
  • the UE transmits each 15 kHz area as four sub-carriers of 3.75 kHz according to the configured sub-carrier position of 15 kHz, and understands several sub-carriers of the configured edge position as a guard band, and the resources transmitted by the UE are implicit. When mapping, it should be mapped on subcarriers outside the guard band.
  • the eNB allocates 15KHz subcarriers #0 and #1 to the UE as the 3.75KHz transmission range of the UE, corresponding to 8 3.75.
  • KHz subcarriers in which two 3.75KHz subcarriers adjacent to 15KHz subcarrier #2 are used as guard bands, and the other six 3.75KHz subcarriers are used for transmission.
  • the total transmission The number of subcarriers of 3.75KHz is six, and the mapping formula should be substituted into 6 for calculation.
  • the transmission range of the 3.75 KHz configured by the eNB to the UE should be concentrated on the side of the bandwidth as much as possible, thus reducing the frequency band occupied by the guard band.
  • the eNB allocates two 15KHz subcarriers with the lowest frequency as the transmission range of the 3.75KHz of the UE.
  • the two highest frequency three 3.75KHz subcarriers are guard bands.
  • the time domain resource includes the number of time domain scheduling granularity and the time domain scheduling granularity of the time domain allocation.
  • the time domain scheduling granularity may be preset.
  • the time domain scheduling granularity is 48 subframes, or may be notified by the eNB.
  • the eNB selects one notification from a set to the UE, and may use RRC signaling or SIB or DCI notification.
  • the set is notified by the eNB, such as by RRC signaling or SIB notification, or preset.
  • the number of time domain scheduling granularity of the time domain allocation may be preset, such as 8, or may be notified by the eNB, and may be notified by RRC signaling or SIB or DCI.
  • the time domain resource may also be obtained by using a preset manner, for example, given a code rate, or corresponding to a code rate according to the coverage level and/or the working scenario, and the time domain resource is calculated according to the TBS size, and the code rate may be preset. , for example, 1/3, or configured for the eNB.
  • the foregoing information may have a preset correspondence, thereby reducing the number of bits indicated.
  • the MCS and the time domain resource granularity have a preset correspondence.
  • the larger the MCS is the larger the time domain resource granularity is.
  • the TBS and the time domain resource granularity have a preset correspondence relationship.
  • the larger the TBS is the larger the time domain resource granularity is.
  • the time domain resource granularity is 48 subframes, otherwise, 96 subframes. In this way, the same number of bits can be used to indicate different time domain resources.
  • different subcarrier locations correspond to different time domain scheduling granularity/repetition times.
  • the subcarriers of 3.75 kHz are numbered from 0 at the lowest frequency
  • the number of repetitions of subcarriers 0 to 3 is 4
  • the number of repetitions of subcarriers 4 to 7 is 8.
  • the specific subcarrier index can be indicated in the DCI.
  • the DCI in the scheduling grant sent by the eNB to the UE indicates one of the subcarriers 0 to 3.
  • the subframe/CCE in which the downlink control information of the PUSCH/PDSCH is scheduled has a preset correspondence relationship with the sub-carriers allocated to the UE. For example, when the last subframe in which the downlink control information is located is an even number, the corresponding Subcarriers 0 to 3, otherwise corresponding subcarriers 4 to 7.
  • the specific subcarrier index may be indicated in the DCI.
  • the PRACH resource and the subcarrier where the Msg3 is located have a preset correspondence.
  • the corresponding subcarrier is 0 to 3, otherwise the corresponding subcarrier is 4-7.
  • the index can be indicated in the upstream grant in the RAR.
  • the subcarrier in which the Msg3 is located may also correspond to the subframe in which the PRACH is located.
  • the action of the UE includes one of the following:
  • the symbol continues to be transmitted, because the single tone scene is usually used in the coverage enhancement mode, and the signal is weak, so the transmission continues to have little effect on the legacy UE's SRS.
  • the symbol that overlaps with the cell-specific SRS subframe is cancelled, for example, if a symbol has a portion and the SRS subframe overlaps, the symbol is discarded.
  • the portion of the symbol that overlaps with the SRS subframe is discarded, and the remaining portion is still transmitted.
  • the network device determines the transmitted subcarrier spacing based on the device type and/or transmission mode, which is configured by the eNB.
  • Device types include support for multione and/or single-tone.
  • the transmission mode may also include multione and/or single-tone.
  • the eNB configures the UE to adopt a single tone mode, that is, to transmit using 3.75 KHz, or the transmission mode is also selected by the network device.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the downlink subcarrier width is 15 kHz
  • the uplink subcarrier width is 1/N ⁇ 15 kHz.
  • the UE uses the last period of the downlink subframe immediately before the uplink subframe as a guard period. During the guard interval, the UE does not receive the downlink signal. . For example, the UE receives the PDSCH in the subframe #n, and needs to transmit the PUSCH in the subframe #n+1, then the UE does not receive the signal in the last period of the subframe #n. Alternatively, the UE uses the first period of the uplink subframe immediately after the downlink subframe as the guard interval.
  • the UE receives the PDSCH in the subframe #n, and needs to transmit the PUSCH in the subframe #n+1, and the UE does not transmit the signal in the first period of the subframe #n+1.
  • the starting position of the UE transmitting the PUSCH may be the first subframe after the subframe #n+1, or the subframe satisfying N/2 ⁇ m or N ⁇ m, where m is a positive integer.
  • the UE uses the first period of the downlink subframe immediately after the uplink subframe as a guard period. During the guard interval, the UE does not receive the downlink signal. For example, the UE transmits the PUSCH in the subframe #n, and the subframe #n+1 needs to receive the PDSCH, and the UE does not receive the signal in the first period of the subframe #n+1.
  • the UE uses the last period of the uplink subframe immediately before the downlink subframe as the guard interval. For example, the UE transmits the PUSCH in the subframe #n, and the subframe #n+1 needs to receive the PDSCH, and the UE does not transmit the signal in the last period of the subframe #n.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the subframe definition can be re-performed when the subcarrier width is 1/N ⁇ 15 KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ .
  • the redefined subframe is referred to as a first subframe in this embodiment.
  • the first subframe is composed of the symbol, and the length of the first subframe may be one of the following:
  • the N/2 ⁇ k subframes may be continuous or discontinuous, and the following discussion is similar.
  • a continuous uplink subframe in a downlink to uplink conversion period or a consecutive downlink subframe.
  • one downlink to uplink conversion period has three consecutive uplink subframes, and the first subframe is the three subframes.
  • the symbol used for uplink transmission in the first subframe may be 5 subframes in a downlink to uplink conversion period.
  • the symbols remaining outside the uplink subframe are discarded.
  • the symbol used for uplink transmission in the first subframe is a symbol determined by the method in the foregoing embodiment by using the uplink subframe in the downlink to uplink conversion period.
  • the symbol used for uplink transmission in the first subframe may be a symbol determined by the manner of the foregoing embodiment in the manner of the foregoing embodiment. The remaining symbols outside the uplink subframe.
  • the symbol used for uplink transmission in the first subframe is a symbol determined by the method of the foregoing embodiment by using the uplink subframe in the five subframes.
  • the subframe is a physical subframe or a available subframe.
  • the first subframe definition may be the same as the prior art, that is, 1 ms, and each first subframe may include Or the first subframe may be (N/2) ms, each first subframe may include 6 or 7 symbols, or the first subframe is (N) ms, and each first subframe includes 12 or 14 symbols.
  • the length of the symbol is as shown in the above embodiment.
  • FIG. 3 is a schematic diagram of a frame structure when a subcarrier width is 3.75 kHz according to a preferred embodiment of the present invention. As shown in FIG. 3, the first subframe has a length of 1 ms, and each subframe includes 3 symbols.
  • the frame may be defined on the basis of the first subframe, for example, 10 ms.
  • FIG. 4 is a structural diagram of another seed frame when a subcarrier width is 3.75 kHz according to a preferred embodiment of the present invention.
  • the length of the first subframe is 4 ms, and the frame may be in the first subframe. Based on the definition, for example 40ms or 48ms.
  • first subframe under TDD, one 1 ms subframe may still be used as the first subframe, or two or four uplink subframes may be combined into the first subframe.
  • FIG. 5 is a schematic structural diagram of a first subframe when TDD uplink and downlink configuration #1 is performed according to a preferred embodiment of the present invention. As shown in FIG. 5, four uplink subframes within 10 ms are used as the first subframe.
  • every two subframes contain 7 symbols. It is also possible to include three symbols per subframe, such that the first subframe corresponds to 12 symbols.
  • FIG. 6 is a schematic structural diagram of a first subframe when TDD uplink and downlink configuration #2 is performed according to a preferred embodiment of the present invention. As shown in FIG. 6, four uplink subframes within 20 ms are used as the first subframe. Each subframe contains 3 symbols.
  • FIG. 7 is a schematic structural diagram of a first subframe when TDD uplink and downlink configuration #0 is performed according to a preferred embodiment of the present invention. As shown in FIG. 7, three uplink subframes within 10 ms are used as the first subframe. The first subframe contains 10 symbols. Or the first subframe may also contain 9 symbols, and each subframe corresponds to 3 symbols.
  • FIG. 8 is a schematic structural diagram of another first subframe when the TDD uplink and downlink configuration #0 is used according to a preferred embodiment of the present invention. As shown in FIG. 8, four uplink subframes are used as the first subframe. The first subframe contains 12 symbols. The following uplink subframes, every 4 as a first subframe, and so on.
  • the definition of the first subframe of other configurations can also be similarly given.
  • the definition of the first subframe is not limited to the above examples.
  • the format of the symbols in the subframe is one of the ways in the previous embodiment.
  • x subframes include n symbols, and x is preset or notified by the eNB. Assuming that the length of the symbol is T, the T includes the CP and the data portion. If there are more than the length of the n symbols in the x subframes, the remaining part can be used as a special subframe, such as at the beginning or the end of the x subframes, and can be used to send some special signals, such as for legacy UE to send SRS. Wait. Or the rest can be at the end of the sub-frame as a protection Interval, do not use its transmission signal. Alternatively, the remaining portion is used as a part CP of a symbol, or as a part CP of a plurality of symbols, for example, equally divided into the first few symbols.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a computer storage medium.
  • the above computer storage medium may be arranged to store program code for performing the method steps of the above-described embodiments. That is, the computer storage medium provided by the embodiment of the present invention includes a set of instructions that, when executed, cause at least one processor to perform the method steps as in the above embodiments.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • the solution provided by the embodiment of the present invention transmits information on symbols in one or more subframes, and the subcarrier width ⁇ f corresponding to the symbol is 1/N ⁇ 15KHz, N ⁇ 2, 3, 4, 5, 6 ⁇ Therefore, one or more complete characters in an integer multiple of the subframes improve the stability of the NB-LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息的传输方法、装置及计算机存储介质,其中,该方法包括:在一个或者多个子帧中的符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},该子帧为长期演进LTE系统的子帧,该符号通过预设的方法确定。

Description

信息的传输方法、装置及计算机存储介质 技术领域
本发明涉及通信领域,具体而言,涉及一种信息的传输方法、装置及计算机存储介质。
背景技术
机器类型通信(Machine Type Communication,简称为MTC)用户终端(User Equipment,简称为UE),又称机器到机器(Machine to Machine,简称为M2M)用户通信设备,是目前物联网的主要应用形式。在第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)技术报告TR45.820V200中公开了几种适用于蜂窝级物联网(Comb-Internet Of Things,简称为C-IOT)的技术,其中,窄带长期演进(Narrow Bang-Long Term Evolution,简称为NB-LTE)技术最为引人注目。该系统的系统带宽为200kHz,与全球移动通信(Global system for Mobile Communication,简称为GSM)GSM系统的信道带宽相同,这为NB-LTE系统重用GSM频谱并降低邻近与GSM信道的相互干扰带来了极大便利。NB-LTE有三种工作场景,分别是独立运营“standalone”、在保护带上传输“guard band”以及在LTE中的一个物理资源块(PRB)上传输“inband”。
NB-LTE的发射带宽与下行链路子载波间隔分别为180kHz和15kHz,分别与LTE系统一个PRB的带宽和子载波间隔相同。NB-LTE的上行有两种工作模式:单子载波(single-tone)和多子载波(multi-tone)。Single-tone是指占用一个子载波传输上行,multi-tone是指占用多个子载波传输上行。UE需要给eNB指示支持single-tone和/或multi-tone。在single-tone模式下,可以配置子载波宽度为3.75KHz或者15KHz。当上行子载波宽度为3.75KHz时,需要对上行传输符号进行重新设计,以保证和15KHz的系统兼容。目前还没有有效的解决方案。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种信息的传输方法、装置及计算机存储介质。
根据本发明实施例的一个方面,提供了一种信息的传输方法,包括:
在一个或者多个子帧中的符号上传输信息,与所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},所述子帧为长期演进LTE系统的子帧,所述符号通过预设的方法确定。
上述方案中,所述符号通过预设的以下之一的方式确定:
每个所述子帧包含n个符号;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,x个子帧包含n个符号,其中,n为预设的正整数,2·x为大于等于1的正整数,所述子帧为物理子帧,或者所述子帧为可用子帧。
上述方案中,所述符号通过预设的方法确定,包括:
x个子帧包含n个符号和一个保护间隔,其中,n和x均为预设的正整数,所述子帧为物理子帧,或者所述子帧为可用子帧。
上述方案中,在所述保护间隔上不传输数据。
上述方案中,所述保护间隔位于x个子帧的末尾。
上述方案中,所述符号通过预设的以下之一的方式确定:
每个所述子帧包含
Figure PCTCN2016110023-appb-000001
个符号;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每N/2个所述子帧包含7个符号或者6个符号;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每N个所述子帧包含14个符号或者12个符号,其中,所述子帧为物理子帧,或者所述子帧为可用子帧,
Figure PCTCN2016110023-appb-000002
表示向上取整。
上述方案中,所述符号通过预设的以下之一的方式确定:
每个所述子帧包含n个符号,其中,所述n个符号中的一个符号的循环前缀CP长度为
Figure PCTCN2016110023-appb-000003
个采样点,所 述n个符号除去所述一个符号的其他符号的CP长度为
Figure PCTCN2016110023-appb-000004
个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每x个子帧包含n个符号,其中,所述n个符号中的一个符号的CP长度为
Figure PCTCN2016110023-appb-000005
个采样点,所述n个符号除去所述一个符号的其他符号的CP长度为
Figure PCTCN2016110023-appb-000006
个采样点,所述符号的数据部分的长度为fs/Δf个采样点,fs为采样频率,fs的单位为Hz;其中,
Figure PCTCN2016110023-appb-000007
表示向下取整,mod表示取模运算。
上述方案中,所述符号通过预设的以下之一的方式确定:
在所述子载波宽度Δf为3.75KHz的情况下,每个所述子帧包含3个符号,每个所述符号的CP长度为128个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每2个子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为40个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为36个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含10个符号,每个符号的CP长度为64个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含11个符号,其中,所述11个符号中的一个符号的CP长度为18个采样点,所述11个符号除去所述一个符号的其他符号的CP长度为11个采样点;
从一个预设的子帧或者传输所述信息的起始子帧开始,每4个子帧包含14个符号,其中,所述14个符号中的两个符号的CP长度为40个采样点,所述14个符号除去所述两个符号的其他符号的CP长度为36个采样点,其中,所述采样频率fs为1.92MHz。
上述方案中,所述符号通过预设的以下之一的方式确定:
在所述子载波宽度Δf为3.75KHz的情况下,每个所述子帧包含3个符号,每个所述符号的CP长度为16个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每2个子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为8个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为4个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含10个符号,每个符号的CP长度为8个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含11个符号,其中,所述11个符号中的一个符号的CP长度为6个采样点,所述11个符号除去所述一个符号的其他符号的CP长度为1个采样点;
从一个预设的所述子帧或者传输所述信息的起始子帧开始,每4个子帧包含14个符号,其中,所述14个符号中的两个符号的CP长度为8个采样点,所述14个符号除去所述两个符号的其他符号的CP长度为4个采样点,其中,所述采样频率fs为240KHz。
上述方案中,在时分双工(TDD)系统中,用于上行传输的所述符号为包含在上行导频时隙(UpPTS)和上行子帧组成的区域内的符号,或者为包含在上行子帧区域内的符号;
用于下行传输的所述符号为包含在下行导频时隙(DwPTS)和下行子帧组成的区域内的符号,或者为包含在下行子帧区域内的符号。
上述方案中,在TDD系统中,所述符号由转换周期内的连续上行子帧数确定。
上述方案中,在TDD系统中,从所述预设的所述子帧为转换周期内的第一个上行子帧或者第一个下行子帧开始,x等于连续的上行子帧数或者连续的下行子帧数,所述子帧为物理子帧或者可用子帧。
上述方案中,在所述子载波宽度Δf为3.75KHz的情况下,在TDD系统中,在一个转换周期内,如果连续上行子帧数为1,则所述子帧包含3个符号,每个所述符号的CP长度为128个采样点;
在一个转换周期内,如果连续上行子帧数为2,则所述2个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为128个采样点;或 者,所述2个上行子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为40个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为36个采样点;
在一个转换周期内,如果连续上行子帧数为3,则所述3个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为128个采样点;或者,所述3个上行子帧包含10个符号,每个所述符号的CP长度为64个采样点,或者,所述3个上行子帧包含11个符号,其中,所述10个符号中的一个符号的CP长度为18个采样点,所述10个符号除去所述一个符号的其他符号的CP长度为11个采样点,其中,所述采样频率fs为1.92MHz。
上述方案中,在TDD系统中,在一个转换周期内,如果连续上行子帧数为1,则所述上行子帧包含3个符号,每个所述符号的CP长度为16个采样点;
在一个转换周期内,如果连续上行子帧数为2,则所述2个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为16个采样点;或者,所述2个上行子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为8个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为4个采样点;
在一个转换周期内,如果连续上行子帧数为3,则所述3个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为16个采样点;或者,所述3个上行子帧包含10个符号,每个符号的CP长度为8个采样点,或者,所述3个子帧包含11个符号,其中,所述11个符号中的一个符号的CP长度为6个采样点,所述11个符号除去所述一个符号的其他符号的CP长度为1个采样点,其中,所述采样频率fs为240KHz。
上述方案中,在TDD系统中,UpPTS作为紧邻所述UpPTS的一个上行子帧的第一个所述符号的CP的一部分。
上述方案中,在TDD系统中,UpPTS和所述UpPTS紧邻的一个或者多个上行子帧组成的区域内包含一个或者多个所述符号。
上述方案中,所述信息的时域调度粒度G由以下至少之一确定:
N;
所述信息的传输块大小(Transport Block Size,简称为TBS);
所述信息的调制编码方式(Modulation and Coding Scheme,简称为MCS);
调度所述信息的下行控制信道/随机接入时的随机接入响应(Random Access Response,简称为RAR)的时域和/或频域位置或者调度所述信息的下行控制信道对应的控制信道单元(Control Channel Element,,简称为CCE)或者随机接入时的物理随机接入信道(Physical Random Access Channel,简称为PRACH)资源;
所述信息的重复次数;
传输所述信息的资源。
上述方案中,所述信息的时域调度粒度G为以下之一:
N/2×k个子帧;
N×k个子帧;
N×12k个子帧;
以及N×10k个子帧,其中,k为正整数,所述子帧为物理子帧或者可用子帧。
上述方案中,所述时域调度粒度G由所述LTE系统的双工模式确定,所述双工模式包括频分双工(FDD)和TDD。
上述方案中,所述信息的起始子帧满足以下之一:
t mod(N/2)=c;
t mod N=c;
t mod G=c;
其中,t=10nf+nsf,或者,t为可用的子帧索引,c为常数,nf为无线帧号,nsf为子帧号,G为时域调度粒度。
上述方案中,在所述子帧为小区专有探测参考信号(SRS)子帧的情况下,处理所述符号的方式包括以下之一:
传输所述符号;
不传输和所述小区专有SRS子帧重叠的符号;
对于和所述小区专有SRS子帧重叠的符号,不传输所述符号中和所述小区专有SRS子帧重叠的部分。
上述方案中,根据设备类型和/或传输模式确定传输的子载波间隔,所述传输模式是基站配置的传输模式,或者,所述传输模式是网络设备选择的传输模式。
上述方案中,预设子帧由所述符号组成,所述预设子帧的长度为以下之一长度:N/2×k个子帧,所述预设子帧为N×k个子帧,在TDD系统中,为下行到上行的转换周期内的连续上行子帧数,或者连续下行子帧数;在TDD系统中,为下行到上行的转换周期的整数倍;为5k个子帧;为10k个子帧;其中,k为正整数,所述子帧为物理子帧或为可用子帧。
上述方案中,当所述信息为随机接入中的消息三时,消息三对应的所述子载波由PRACH资源和/或调度信息中的资源指示信息确定。
上述方案中,如果所述符号所在的子帧为两个不连续的子帧,则所述符号不用于上行或者下行传输。
上述方案中,所述信息的时域调度粒度为PRACH对应的时域资源的整数倍,或者PRACH对应的时域资源为所述信息的时域调度粒度的整数倍。
上述方案中,所述信息的时域调度粒度为PRACH对应的时域资源的整数倍,或者PRACH对应的时域资源为所述信息的时域调度粒度的整数倍。
根据本发明实施例的另一个方面,还提供了一种信息的传输装置,包括:
传输模块,配置为在一个或者多个子帧中的符号上传输信息,与所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},所述子帧为长期演进LTE系统的子帧,所述符号通过预设的方法确定。
根据本发明实施例的再一个方面,还提供了一种计算机存储介质,所 述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的信息的传输方法。
通过本发明实施例,在一个或者多个子帧中的符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},使得整数倍个子帧中有一个或多个完整了字符,解决了NB-LTE系统的传输符号设计不合理的问题,提高了NB-LTE系统的稳定性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种信息的传输方法的流程图;
图2是根据本发明实施例的一种信息的传输装置的结构框图;
图3是根据本发明具体实施例的一个子载波宽度是3.75KHz时的帧结构示意图;
图4是根据本发明具体实施例的一个子载波宽度是3.75KHz时的另一种子帧结构图;
图5是根据本发明具体实施例的TDD上下行配置#1时的第一子帧的结构示意图;
图6是根据本发明具体实施例的TDD上下行配置#2时的第一子帧的结构示意图;
图7是根据本发明具体实施例的TDD上下行配置#0时的第一子帧的结构示意图;
图8是根据本发明具体实施例的TDD上下行配置#0时的另一种第一子帧的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是, 在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信息的传输方法,图1是根据本发明实施例的一种信息的传输方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,按照预设的方法确定符号;
步骤S104,在一个或者多个子帧中的该符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},该子帧为长期演进(LTE)系统的子帧。
通过上述步骤,在一个或者多个子帧中的符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},使得整数倍个子帧中有一个或多个完整了字符,解决了NB-LTE系统的传输符号设计不合理的问题,提高了NB-LTE系统的稳定性。
在本发明的实施例中,该符号通过预设的以下之一的方式确定:
每个该子帧包含n个符号;
从一个预设的该子帧或者传输该信息的起始子帧开始,x个子帧包含n个符号,其中,n为预设的正整数,2·x为大于等于1的正整数,该子帧为物理子帧,或者该子帧为可用子帧。
在本发明的实施例中,所述符号通过预设的方法确定,包括:
x个子帧包含n个符号和一个保护间隔,其中,n和x均为预设的正整数,所述子帧为物理子帧,或者所述子帧为可用子帧。
在本发明的实施例中,在所述保护间隔上不传输数据。
在本发明的实施例中,所述保护间隔位于x个子帧的末尾。
在本发明的实施例中,该符号通过预设的以下之一的方式确定:
每个该子帧包含
Figure PCTCN2016110023-appb-000008
个符号;
从一个预设的该子帧或者传输该信息的起始子帧开始,每N/2个该子 帧包含7个符号或者6个符号;
从一个预设的该子帧或者传输该信息的起始子帧开始,每N个该子帧包含14个符号或者12个符号,其中,该子帧为物理子帧,或者该子帧为可用子帧,
Figure PCTCN2016110023-appb-000009
表示向上取整。
在本发明的实施例中,该符号通过预设的以下之一的方式确定:
每个该子帧包含n个符号,其中,该n个符号中的一个符号的循环前缀CP长度为
Figure PCTCN2016110023-appb-000010
个采样点,该n个符号除去该一个符号的其他符号的CP长度为
Figure PCTCN2016110023-appb-000011
个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每x个子帧包含n个符号,其中,该n个符号中的一个符号的CP长度为
Figure PCTCN2016110023-appb-000012
个采样点,该n个符号除去该一个符号的其他符号的CP长度为
Figure PCTCN2016110023-appb-000013
个采样点,该符号的数据部分的长度为fs/Δf个采样点,fs为采样频率,fs的单位为Hz,其中,
Figure PCTCN2016110023-appb-000014
表示向下取整,mod表示取模运算。
在本发明的实施例中,该符号通过预设的以下之一的方式确定:
在该子载波宽度Δf为3.75KHz的情况下,每个该子帧包含3个符号,每个该符号的循环前缀(CP)长度为128个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每2个子帧包含7个符号,其中,该7个符号中的一个符号的CP长度为40个采样点,该7个符号除去该一个符号的其他符号的CP长度为36个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每3个子帧包含10个符号,每个符号的CP长度为64个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每3个子帧包含11个符号,其中,该11个符号中的一个符号的CP长度为18个采样点,该11个符号除去该一个符号的其他符号的CP长度为11个采样点;
从一个预设的子帧或者传输该信息的起始子帧开始,每4个子帧包含14个符号,其中,该14个符号中的两个符号的CP长度为40个采样点,该14个符号除去该两个符号的其他符号的CP长度为36个采样点,其中, 该采样频率fs为1.92MHz。
在本发明的实施例中,该符号通过预设的以下之一的方式确定:
在该子载波宽度Δf为3.75KHz的情况下,每个该子帧包含3个符号,每个该符号的CP长度为16个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每2个子帧包含7个符号,其中,该7个符号中的一个符号的CP长度为8个采样点,该7个符号除去该一个符号的其他符号的CP长度为4个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每3个子帧包含10个符号,每个符号的CP长度为8个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每3个子帧包含11个符号,其中,该11个符号中的一个符号的CP长度为6个采样点,该11个符号除去该一个符号的其他符号的CP长度为1个采样点;
从一个预设的该子帧或者传输该信息的起始子帧开始,每4个子帧包含14个符号,其中,该14个符号中的两个符号的CP长度为8个采样点,该14个符号除去该两个符号的其他符号的CP长度为4个采样点,其中,该采样频率fs为240KHz。
在本发明的实施例中,在TDD系统中,用于上行传输的该符号为包含在UpPTS和上行子帧组成的区域内的符号,或者为包含在上行子帧区域内的符号;
用于下行传输的该符号为包含在DwPTS和下行子帧组成的区域内的符号,或者为包含在下行子帧区域内的符号。
在本发明的实施例中,在TDD系统中,该符号由转换周期内的连续上行子帧数确定。
在本发明的实施例中,在TDD系统中,从该预设的该子帧为转换周期内的第一个上行子帧或者第一个下行子帧开始,x等于连续的上行子帧数或者连续的下行子帧数,该子帧为物理子帧或者可用子帧。
在本发明的实施例中,在该子载波宽度Δf为3.75KHz的情况下,在TDD系统中,在一个转换周期内,如果连续上行子帧数为1,则该子帧包 含3个符号,每个该符号的CP长度为128个采样点;
在一个转换周期内,如果连续上行子帧数为2,则该2个上行子帧中的每个子帧包含3个符号,每个该符号的CP长度为128个采样点;或者,该2个上行子帧包含7个符号,其中,该7个符号中的一个符号的CP长度为40个采样点,该7个符号除去该一个符号的其他符号的CP长度为36个采样点;
在一个转换周期内,如果连续上行子帧数为3,则该3个上行子帧中的每个子帧包含3个符号,每个该符号的CP长度为128个采样点;或者,该3个上行子帧包含10个符号,每个该符号的CP长度为64个采样点,或者,该3个上行子帧包含11个符号,其中,该10个符号中的一个符号的CP长度为18个采样点,该10个符号除去该一个符号的其他符号的CP长度为11个采样点,其中,该采样频率fs为1.92MHz。
在本发明的实施例中,在TDD系统中,在一个转换周期内,如果连续上行子帧数为1,则该上行子帧包含3个符号,每个该符号的CP长度为16个采样点;
在一个转换周期内,如果连续上行子帧数为2,则该2个上行子帧中的每个子帧包含3个符号,每个该符号的CP长度为16个采样点;或者,该2个上行子帧包含7个符号,其中,该7个符号中的一个符号的CP长度为8个采样点,该7个符号除去该一个符号的其他符号的CP长度为4个采样点;
在一个转换周期内,如果连续上行子帧数为3,则该3个上行子帧中的每个子帧包含3个符号,每个该符号的CP长度为16个采样点;或者,该3个上行子帧包含10个符号,每个符号的CP长度为8个采样点,或者,该3个子帧包含11个符号,其中,该11个符号中的一个符号的CP长度为6个采样点,该11个符号除去该一个符号的其他符号的CP长度为1个采样点,其中,该采样频率fs为240KHz。
在本发明的实施例中,在TDD系统中,UpPTS作为紧邻该UpPTS的一个上行子帧的第一个该符号的CP的一部分。
在本发明的实施例中,在TDD系统中,UpPTS和该UpPTS紧邻的一 个或者多个上行子帧组成的区域内包含一个或者多个该符号。
在本发明的实施例中,该信息的时域调度粒度G由以下至少之一确定:
N;
该信息的TBS;
该信息的MCS;
调度该信息的下行控制信道/随机接入时的RAR的时域和/或频域位置或者调度该信息的下行控制信道对应的CCE或者随机接入时的PRACH资源;
该信息的重复次数;
传输该信息的资源。
在本发明的实施例中,该信息的时域调度粒度G为以下之一:
N/2×k个子帧;
N×k个子帧;
N×12k个子帧;
以及N×10k个子帧,其中,k为正整数,该子帧为物理子帧或者可用子帧。
在本发明的实施例中,该时域调度粒度G由该LTE系统的双工模式确定,该双工模式包括FDD和TDD。
在本发明的实施例中,该信息的起始子帧满足以下之一:
t mod(N/2)=c;
t mod N=c;
t mod G=c;
其中,t=10nf+nsf,或者,t为可用的子帧索引,c为常数,nf为无线帧号,nsf为子帧号,G为时域调度粒度。
在本发明的实施例中,在该子帧为小区专有SRS子帧的情况下,处理 该符号的方式包括以下之一:
传输该符号;
不传输和该小区专有SRS子帧重叠的符号;
对于和该小区专有SRS子帧重叠的符号,不传输该符号中和该小区专有SRS子帧重叠的部分。
在本发明的实施例中,该网络设备根据设备类型和/或传输模式确定传输的子载波间隔,该传输模式是基站配置的传输模式,或者,该传输模式是该网络设备选择的传输模式。
在本发明的实施例中,预设子帧由该符号组成,该预设子帧的长度为以下之一的长度:N/2×k个子帧;该预设子帧为N×k个子帧,在TDD系统中,为下行到上行的转换周期内的连续上行子帧数,或者连续下行子帧数;在TDD系统中,为下行到上行的转换周期的整数倍;为5k个子帧;为10k个子帧;其中,k为正整数,该子帧为物理子帧或为可用子帧。
在本发明的实施例中,当该信息为随机接入中的消息三时,消息三对应的该子载波由PRACH资源和/或调度信息中的资源指示信息确定。
在本发明的实施例中,如果该符号所在的子帧为两个不连续的子帧,则该符号不用于上行或者下行传输。
在本发明的实施例中,所述信息的时域调度粒度为PRACH对应的时域资源的整数倍,或者PRACH对应的时域资源为所述信息的时域调度粒度的整数倍。
在本实施例中还提供了一种信息的传输装置,该装置配置为实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的一种信息的传输装置的结构框图,如图2所示,该装置包括:
确定模块22,配置为按照预设的方法确定符号;
传输模块24,与确定模块22连接,配置为在一个或者多个子帧中的符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},该子帧为长期演进LTE系统的子帧。
通过上述装置,确定模块22按照预设的方法确定符号,传输模块24与确定模块22连接,配置为在一个或者多个子帧中的符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},解决了NB-LTE系统的传输符号设计不合理的问题,提高了NB-LTE系统的稳定性。
下面结合优选实施例和实施方式对本发明进行详细说明。
具体实施例一:
在相关技术中,LTE的子载波宽度是15KHz,每个子帧为1ms,对于正常CP,对应14个正交频分复用OFDM符号,或者14个SC-FDMA符号。NB-LTE UE的能力包括支持single-tone和/或multi-tone。其中,当UE采用single-tone进行传输时,子载波的宽度可以小于15KHz,比如为3.75KHz。对于工作在带内in-band的NB-LTE,整数倍个子帧中应对应一个或者多个完整的符号,这样的方式会使得3.75KHz的传输和15KHz的传输在时间上是子帧对齐的,避免调度浪费。比如,如果一个子载波宽度为3.75Hz的符号占用了1ms的部分时间,那么剩余部分的时间也不能用于legacy UE的传输。
本发明的具体实施例中给出一种传输符号的方法,所述方法可用于上行,也可用于下行。
eNB或者UE在一个或者多个子帧中的符号上传输信息,所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6}。所述符号以下的方式确定。
方式一:
每个子帧包含n个符号,其中一个符号的CP长度为
Figure PCTCN2016110023-appb-000015
个采样点,其他符号的CP长度为
Figure PCTCN2016110023-appb-000016
个采样点。其中,fs为采样频率,单位为Hz。其 中,n为预设的正整数。
方式二:
从一个预设的子帧或者传输所述信息的起始子帧开始,每x(x>1)个子帧包含n个符号,每x个子帧包含n个符号,其中一个符号的CP长度为
Figure PCTCN2016110023-appb-000017
个采样点,其他符号的CP长度为
Figure PCTCN2016110023-appb-000018
个采样点。其中,n为预设的正整数。
方式三:
从一个预设的子帧或者传输所述信息的起始子帧开始,x个子帧包含n个符号,x可以是定值,也可以是变值,比如从无线帧#0的子帧#0开始,2个子帧包含n1个符号,之后4个子帧包含n2个符号,之后又2个子帧包含n1个符号,之后又4个子帧包含n2个符号,依次类推。符号的CP长度如方式二中的方式计算。
进一步地,每个子帧可以包含
Figure PCTCN2016110023-appb-000019
个符号。
或者,从一个预设的子帧或者传输所述信息的起始子帧开始,每N/2个子帧包含7个符号或者6个符号。
或者,从一个预设的子帧或者传输所述信息的起始子帧开始,每N个子帧包含14个符号或者12个符号。
上述的子帧可以为物理子帧,或者也可以为可用子帧。所述可用子帧是eNB配置的或者是预设的。比如对于TDD系统,对于上行,可用子帧可以为所有的上行子帧。对于可用子帧不是连续的场景,比如在一个无线帧中,子帧索引分别为0~9,除了子帧#1之外,其余子帧都是可用子帧,那么当一个符号的一部分定义在子帧#0,另一部分定义在子帧#2时,所述符号不可用,即不用于传输信息。
下面具体给出几种子载波间隔情况下的符号的确定方式。以下方式以1.92MHz和240KHz的采样率为例给出了数据部分和CP部分的长度,实际中的采样率可以为其他值,符号的数据部分和CP部分对应的采样点数按照采样率成比例变化,但其对应的实际时长和以下分析相同。
下面给出当N=4,子载波宽度为3.75KHz时的几种符号的形式。
方式一:
假设采样频率=1.92MHz,采样间隔T为
Figure PCTCN2016110023-appb-000020
1ms(毫秒)有1920个样点,如果子载波间隔为3.75kHz,则一个符号的数据部分有512个样点。如果采用其他的采样频率,以下符号和CP对应的采样点数按比例进行增加或者减少,所述符号和CP的实际长度是不变的。1ms或者1个子帧包含3个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为128个采样点,即128T,对应的时长为
Figure PCTCN2016110023-appb-000021
即66.67μs(微秒)。如果实际采样率为3.84MHz,那么所述符号的数据部分有512×2=1024个采样点,CP部分有128×2=256个采样点,但对应的时长仍是66.67μs.
如果采样频率为240KHz,则一个符号的数据部分有64个样点,1ms或者1个子帧包含3个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为16个采样点.
方式二:
假设采样频率=1.92MHz,2ms或者2个子帧包含7个完整符号,其中一个符号的CP长度为40个采样点,其他符号的CP长度为36个采样点。优选地,第一个符号的CP长度为40个采样点。其他符号的CP长度为36个采样点。
假设采样频率=240KHz,2ms或者2个子帧包含7个完整符号,其中一个符号的CP长度为8个采样点,其他符号的CP长度为4个采样点。优选地,第一个符号的CP长度为8个采样点。其他符号的CP长度为4个采样点。
在实际应用中,对于任意一个无线帧,包含10个子帧,按照时间顺序索引分别为0、1、……9,从该无线帧的子帧#0开始,每两个子帧包含7个符号。
或者,根据eNB调度的PUSCH/PDSCH的起始位置,来确定符号。比如eNB调度PUSCH的起始子帧为无线帧4的子帧3,那么从无线帧4的子帧3开始,每两个子帧包含7个符号。
方式三:
假设采样频率=1.92MHz,3ms或者3个子帧包含10个符号,每个符号的CP长度为64个采样点。
或者,3ms或者3个子帧包含11个符号,其中一个符号的CP长度为18个采样点,其他符号的CP长度为11个采样点。优选地,第一个符号的CP长度为18个采样点。其他符号的CP长度为11个采样点。
假设采样频率=240KHz,3ms或者3个子帧包含10个符号,每个符号的CP长度为8个采样点。
或者,3ms或者3个子帧包含11个符号,其中一个符号的CP长度为6个采样点,其他符号的CP长度为1个采样点。优选地,第一个符号的CP长度为6个采样点。其他符号的CP长度为1个采样点。
在实际应用中,可以从某一个无线帧开始,每三个子帧包含11个符号。比如,可以从无线帧#0开始,每三个子帧划分为11个符号。
或者,根据eNB调度的PUSCH/PDSCH的起始位置,来确定符号。比如eNB调度PUSCH的起始子帧为无线帧4的子帧3,那么从无线帧4的子帧3开始,每3个子帧包含11个符号。
方式四:
假设采样频率=1.92MHz,4ms或者4个子帧包含14个符号,其中两个符号的CP长度为40个采样点,其他符号的CP长度为36个采样点。优选地,第一个和第八个符号的CP长度为40个采样点。其他符号的CP长度为36个采样点。
假设采样频率=240Hz,2ms或者2个子帧包含7个完整符号,其中一个符号的CP长度为8个采样点,其他符号的CP长度为4个采样点。优选地,第一个符号的CP长度为8个采样点。其他符号的CP长度为4个采样点。
在实际应用中,从一个无线帧的子帧#0开始,每4个子帧包含7个符号。比如从无线帧#0的子帧#0开始,每4个子帧包含7个符号。
或者,根据eNB调度的PUSCH/PDSCH的起始位置,来确定符号。比如eNB调度PUSCH的起始子帧为无线帧4的子帧3,那么从无线帧4的子 帧3开始,每4个子帧包含14个符号。
下面类似给出其他子载波宽度时的符号的确定方式。
下面给出当N=6,子载波宽度为2.5KHz时的几种符号的形式。
方式一:
假设采样频率=1.92MHz,所述符号对应的数据部分的长度为768个采样点。1ms或者1个子帧包含2个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为192个采样点。
如果采样频率为240KHz,则一个符号的数据部分有96个样点,1ms或者1个子帧包含2个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为24个采样点。
方式二:
假设采样频率=1.92MHz,3ms或者3个子帧包含7个符号,其中一个符号的CP长度为60个采样点,其他符号的CP长度为54个采样点。优选地,第一个符号的CP长度为60个采样点。其他符号的CP长度为54个采样点。
或者,3ms或者3个子帧包含6个符号,每个符号的CP长度为192个采样点。
假设采样频率=240KHz,3ms或者3个子帧包含7个符号,其中一个符号的CP长度为12个采样点,其他符号的CP长度为6个采样点。优选地,第一个符号的CP长度为12个采样点。其他符号的CP长度为6个采样点。
或者,3ms或者3个子帧包含6个符号,每个符号的CP长度为24个采样点。
方式三:
假设采样频率=1.92MHz,6ms或者6个子帧包含14个符号,其中两个符号的CP长度为60个采样点,其他符号的CP长度为54个采样点。优选地,第一个和第八个符号的CP长度为60个采样点。其他符号的CP长度为54个采样点。
或者,6ms或者6个子帧包含12个符号,每个符号的CP长度为192 个采样点。
假设采样频率=240KHz,6ms或者6个子帧包含14个符号,其中一个符号的CP长度为12个采样点,其他符号的CP长度为6个采样点。优选地,第一个符号的CP长度为12个采样点。其他符号的CP长度为6个采样点。
或者,6ms或者6个子帧包含12个符号,每个符号的CP长度为24个采样点。
下面给出当N=5,子载波宽度为3KHz时的几种符号的形式。
方式一:
假设采样频率=1.92MHz,所述符号对应的数据部分的长度为640个采样点。1ms或者1个子帧包含2个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为320个采样点。
如果采样频率为240KHz,则一个符号的数据部分有80个样点,1ms或者1个子帧包含2个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为40个采样点.
方式二:
假设采样频率=1.92MHz,2.5ms或者2.5个子帧包含7个符号,这里2.5个子帧是指2个子帧和一个时隙,即2.5ms,其中一个符号的CP长度为50个采样点,其他符号的CP长度为45个采样点。优选地,第一个符号的CP长度为50个采样点。其他符号的CP长度为45个采样点。
或者,2ms或者2.5个子帧包含6个符号,每个符号的CP长度为160个采样点。
假设采样频率=240KHz,2.5ms或者2.5个子帧包含7个符号,这里2.5个子帧是指2个子帧和一个时隙,其中一个符号的CP长度为10个采样点,其他符号的CP长度为5个采样点。优选地,第一个符号的CP长度为10个采样点。其他符号的CP长度为5个采样点。
或者,2ms或者2.5个子帧包含6个符号,每个符号的CP长度为20个采样点。
方式三:
假设采样频率=1.92MHz,5ms或者5个子帧包含14个符号,其中两个符号的CP长度为50个采样点,其他符号的CP长度为45个采样点。优选地,第一个符号和第八个符号的CP长度为50个采样点。其他符号的CP长度为45个采样点。
或者,5ms或者5个子帧包含12个符号,每个符号的CP长度为160个采样点。
假设采样频率=240KHz,5ms或者5个子帧包含14个符号,其中两个符号的CP长度为10个采样点,其他符号的CP长度为5个采样点。优选地,第一个符号和第八个符号的CP长度为10个采样点。其他符号的CP长度为5个采样点。
或者,5ms或者5个子帧包含12个符号,每个符号的CP长度为20个采样点。
下面给出当N=3,子载波宽度为5KHz时的几种符号的形式。
方式一:
假设采样频率=1.92MHz,所述符号对应的数据部分的长度为384个采样点。1ms或者1个子帧包含4个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为96个采样点。
如果采样频率为240KHz,则一个符号的数据部分有48个样点,1ms或者1个子帧包含4个完整符号,每个符号包含数据部分和CP,每个符号的CP长度为12个采样点。
方式二:
假设采样频率=1.92MHz,1.5ms或者1.5个子帧包含7个符号,这里1.5个子帧是指1个子帧和一个时隙,其中一个符号的CP长度为30个采样点,其他符号的CP长度为27个采样点。优选地,第一个符号的CP长度为30个采样点。其他符号的CP长度为27个采样点。
或者,1.5ms或者1.5个子帧包含6个符号,每个符号的CP长度为96 个采样点。
假设采样频率=240KHz,1.5ms或者1.5个子帧包含7个符号,其中一个符号的CP长度为6个采样点,其他符号的CP长度为3个采样点。优选地,第一个符号的CP长度为6个采样点。其他符号的CP长度为3个采样点。
或者,1.5ms或者1.5个子帧包含6个符号,每个符号的CP长度为12个采样点。
方式三:
假设采样频率=1.92MHz,3ms或者3个子帧包含14个符号,其中两个符号的CP长度为30个采样点,其他符号的CP长度为27个采样点。优选地,第一个符号和第八个符号的CP长度为30个采样点。其他符号的CP长度为27个采样点。
或者,3ms或者3个子帧包含12个符号,每个符号的CP长度为96个采样点。
假设采样频率=240KHz,3ms或者3个子帧包含14个符号,其中两个符号的CP长度为6个采样点,其他符号的CP长度为3个采样点。优选地,第一个符号和第八个符号的CP长度为6个采样点。其他符号的CP长度为3个采样点。
或者,3ms或者3个子帧包含12个符号,每个符号的CP长度为12个采样点。
下面给出当N=2,子载波宽度为7.5KHz时的几种符号的形式。
方式一:
假设采样频率=1.92MHz,所述符号对应的数据部分的长度为256个采样点。1ms或者1个子帧包含7个完整符号,每个符号包含数据部分和CP,其中一个符号的CP长度为20个采样点,其他符号的CP长度为18个采样点。优选地,第一个符号的CP长度为20个采样点。其他符号的CP长度为18个采样点。
如果采样频率为240KHz,则一个符号的数据部分有32个样点。1ms 或者1个子帧包含7个完整符号,每个符号包含数据部分和CP,其中一个符号的CP长度为4个采样点,其他符号的CP长度为2个采样点。优选地,第一个符号的CP长度为4个采样点。其他符号的CP长度为2个采样点。
方式二:
假设采样频率=1.92MHz,所述符号对应的数据部分的长度为256个采样点。2ms或者2个子帧包含14个完整符号,每个符号包含数据部分和CP,其中两个符号的CP长度为20个采样点,其他符号的CP长度为18个采样点。优选地,第一个符号和第八个符号的CP长度为20个采样点,其他符号的CP长度为18个采样点。
如果采样频率为240KHz,则一个符号的数据部分有32个样点,2ms或者2个子帧包含14个完整符号,每个符号包含数据部分和CP,其中两个符号的CP长度为4个采样点,其他符号的CP长度为2个采样点。优选地,第一个符号和第八个符号的CP长度为4个采样点,其他符号的CP长度为2个采样点。
可选地,对于TDD系统,可以将物理子帧按照上述的方式确定符号,或者将可用子帧按照上述的方式确定符号。这里对后者进行举例,比如,从无线帧#0的第一个上行子帧开始,每x个上行子帧包含若干个完整符号。优选地,x可以等于转换周期内的连续子帧数,比如对于TDD上下行配置#2,即“DSUDD DSUDD”,其中“D”代表下行,“S”代表特殊子帧,“U”代表上行。一个转换周期内只有一个连续的上行子帧,那么按照上述的确定方式,对于子载波宽度为3.75KHz,每一个上行子帧包含3个符号。可选地,由上述,一种确定符号的方法为从一个预设的子帧或者传输所述信息的起始子帧开始,每x(x>1)个子帧包含n个符号。这里,x可以是定值,也可以是变值。对于TDD系统,x可以根据配比变化,比如对于上下行配置#6,即“DSUUUDSUUD”,可以从无线帧#0的子帧#0开始,3个连续上行子帧包含10个符号,之后2个连续上行子帧包含7个符号,之后3个连续上行子帧包含10个符号,之后2个连续上行子帧包含7个符号,依次类推。另外,当TDD上下行配置变化时,x也可以根据配置 发生变化,比如,当系统为上下行配置#0时,每3个子帧包含10个符号,当系统变化为上下行配置#1时,每2个子帧包含7个符号。
具体实施例二:
本具体实施例考虑TDD场景。TDD系统存在不同的上下行子帧配置,不管对于哪种配置,都可以按照实施例一中的方式确定符号。对于上述方式一,1ms内可以容纳完整的3个符号,不受TDD的不同配置的影响。
下面的表1给出了TDD中的上下行配置。
Figure PCTCN2016110023-appb-000022
表1
以子载波宽度为3.75KHz为例,对于2ms包含7个符号、3ms包含10或11个符号、4ms包含14个符号的情况,对于上行,如果某些符号只有部分落在上行子帧区域,将这些符号打掉;或者,如果某些符号只有部分落在上行子帧和UpPTS组成的区域,将这些符号打掉。即只有全部落在上行子帧区域或者上行子帧和UpPTS组成的区域的符号用于上行传输。对于下行,如果某些符号只有部分落在下行子帧区域,或者只有部分落在下行子帧和DwPTS组成的区域,将这些符号打掉,即只有全部落在下行子帧区域或者下行子帧和DwPTS组成的区域的符号用于下行传输。
下面举例说明用于上行传输的符号的例子。对于TDD上下行配置#2,即“DSUDD DSUDD”,其中“D”代表下行,“S”代表特殊子帧,“U”代表上行。对于配置中的第一个“U”,其为第三个子帧,按照实施例一中的方式二,其和后面的一个子帧一共包含7个符号,但是后面的一个子帧是下行子帧,因此,部分或者全部落在第四个子帧的符号被打 掉,那么用于上行传输的符号只有“U”子帧中的3个符号,每个符号数据部分的长度为512个采样点,第一个符号的CP长度为40个采样点,其他符号哦CP长度为36个采样点。对于第二个“U”采用类似的方式处理。
对于下行子帧,也可以采用类似的方式传输符号。
具体实施例三:
本实施例考虑TDD场景。在本实施例中,TDD中的连续上行/下行子帧包含一个或者多个完整的符号。
对于上下行配置2、5,只有1个上行子帧,假设子载波宽度为3.75KHz,只能按照实施例一中的方式一来传输符号。即所述上行子帧包含3个符号,符号的CP长度如实施例一中的方式一。
对于上下行配置1、4、6中,有2个连续的上行子帧,假设子载波宽度为3.75KHz,可以按照实施例一中的方式一或者方式二来传输符号。即所述2个上行子帧中的每个子帧包含3个符号,符号的CP长度如实施例一中的方式一。或者所述2个上行子帧包含7个符号,符号的CP长度如实施例一中的方式二。
对于上下行配置0、3、6,有3个连续上行子帧,假设子载波宽度为3.75KHz,可以按照实施例一中的方式一或者方式三来传输符号。即所述3个上行子帧中的每个子帧包含3个符号,符号的CP长度如实施例一中的方式一。或者所述3个上行子帧包含10个或者11个符号,符号的CP长度如实施例一中的方式三。
对于其他的子载波宽度,也采用类似的方法。
对于下行子帧,也可以采用类似的方式传输符号。
具体实施例四:
本实施例考虑TDD场景。
对于上行,UpPTS与之后紧邻的一个或者多个连续上行子帧中包含一个或者多个完整的符号。
对于下行,DwPTS和之前紧邻的一个或者多个连续下行子帧中包含一 个或者多个完整的符号。
下面以上行为例来说明。假设子载波宽度为3.75KHz。
现有技术中UpPTS包含一个符号或者两个符号,所述符号为子载波宽度为15KHz的符号,数据部分对应的采样点数为128。
两种CP下UpPTS的采样点数如下,其中每个符号包括数据部分和CP。
下表2中式两种CP下的UpPTS的长度
  UpPTS包含一个符号 UpPTS包含两个符号
正常CP 137 274
扩展CP 160 320
表2
UpPTS与之后紧邻的一个或者多个连续上行子帧包含一个或者多个完整的符号,与实施例三相比,在某些场景下会增加可用的符号数。即使不增加符号数,也会增加CP的长度。对于传输是有好处的。尤其在上行时间提前量(TA)估计不准的情况下。
下面表3给出如何传输符号。假设采样率为1.92MHz。在表3中,UpPTS与之后紧邻的一个或者多个连续上行子帧包含一个或者多个完整的符号,所述紧邻的连续上行子帧数目为第一列中的“上行子帧数”。以上行子帧数为1为例,当UpPTS为一个符号时,此时的符号为现有LTE中定义的子载波宽度为15KHz的符号,当CP为正常CP时,采样点总数为1920+137,UpPTS和之后的一个上行子帧一共包含3个完整符号,其中一个符号的CP长度为175,其他符号的CP长度为173。优选地,第一个符号的CP长度为175,其他符号的CP长度为173。
Figure PCTCN2016110023-appb-000023
Figure PCTCN2016110023-appb-000024
表3
优选地,表3中的最后一列“CP对应的采样点数”中,“其中一个符号”为第一个符号。
对于上下行配置2、5,只有1个上行子帧,按照表3中上行子帧数为1的方式来传输符号。
对于上下行配置1、4、6中,有2个连续的上行子帧,可按照表3中上行子帧数为2的方式来传输符号。或者,对于特殊子帧和之后紧邻的第一个上行子帧,可以按照表3中上行子帧数为1的方式来传输符号,第二个上行子帧按照实施例一中的方式一来传输符号。
对于上下行配置0、3、6,有3个连续上行子帧,可按照表3中上行子帧数为3的方式来传输符号。或者,对于特殊子帧和之后紧邻的第一个上行子帧,可以按照表3中上行子帧数为1的方式来传输符号,第二和第三个上行子帧按照实施例一中的方式一或者方式二来传输符号。或者,对于 特殊子帧和之后紧邻的两个连续上行子帧,可以按照表3中上行子帧数为2的方式来传输符号,第三个上行子帧按照实施例一中的方式一来传输符号。
对于下行子帧,也可以采用类似的方式传输符号。
具体实施例五:
本实施例考虑TDD场景。
对于上行,UpPTS作为紧邻的上行子帧的第一个符号的CP的一部分。UpPTS紧邻的几个上行子帧的符号如实施例二或三。比如UpPTS部分的样点数为137,假设子载波宽度为3.75KHz,之后的一个上行子帧包含3个符号,按照实施例一中方式一,每个符号的CP的采样点数是128,那么第一个符号的CP为137+128=265.
对于下行,DwPTS区域包括一个或者多个完整的符号。其他下行子帧的传输符号如实施例二或三。
具体实施例六:
时域调度粒度是指每次调度的最小单位,时域调度粒度可以由N确定。假设所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6}。时域调度粒度可以为k×N/2,或者为k×N,或者,也可以为N×12k个子帧;以及N×10k个子帧,其中,k为正整数,所述子帧为物理子帧或者可用子帧。所述时域调度粒度可以为连续的子帧,也可以为不连续的子帧。
对于上述实施例中的子载波宽度为3.75KHz的符号,如果2个子帧包含7个符号,时域调度粒度应为2k个子帧,其中k为正整数。如果3个子帧包含10个或者11个符号,时域调度粒度应为3k个子帧,其中k为正整数.如果4个子帧包含14个符号,时域调度粒度应为4k个子帧,其中k为正整数.
对于TDD,所述时域调度粒度可以是物理的子帧或者符号,比如所述时域调度粒度为40个物理子帧子帧或者120个符号,这里假设采用实施例一中的方式一传输符号,不受上下行配置的影响,如果eNB给UE调度了 一个调度粒度的PUSCH,那么UE在40个连续物理子帧中的UL子帧的符号中发送。或者,所述调度粒度也可以是可用的子帧或者符号,比如为40个子帧或者120个符号,这里假设采用实施例一中的方式一传输符号,如果eNB给UE调度了一个调度粒度的PUSCH,那么UE在40个UL子帧的120个符号中发送。
可选地,所述信息的时域调度粒度为PRACH对应的时域资源的整数倍,或者PRACH对应的时域资源为所述信息的时域调度粒度的整数倍。比如,PRACH在40个子帧上发送,那么时域调度粒度为40个子帧的倍数,比如为80或者120。又例如,PRACH在80个子帧上发送,时域调度粒度为20个子帧或者40个子帧。
可选地,时域调度粒度也可由所述信息的TBS确定。比如TBS大于一个门限时,时域调度粒度为a,否则为b。
可选地,时域调度粒度也可由所述信息的MCS确定。比如MCS大于一个门限时,时域调度粒度为a,否则为b。
可选地,时域调度粒度也可由调度所述信息的下行控制信息/RAR的时域和/或频域位置或者随机接入时的PRACH资源或者调度所述下行控制信息对应的CCE确定。比如当调度所述信息的下行控制信息的时域起始位置为偶数时,则时域调度粒度为a,否则为b。又例如,消息三的时域调度粒度由RAR的时频资源位置确定,或者由PRACH资源确定。
可选地,时域调度粒度也可由所述信息的重复次数确定,比如重复次数大于一个门限时,时域调度粒度为a,否则为b。
可选地,时域调度粒度也可由所述信息传输的时域和/或频域资源确定。比如当eNB调度UE子载波0~3上传输时,时域调度粒度为a;当eNB调度UE子载波4~7上传输时,时域调度粒度为b。时域调度粒度对于FDD和TDD可以不同,比如对于FDD,可以为48,对于TDD,可以为60。
时域调度粒度可以是预设或者RRC信令指示,对于不同的CP可以采用不同的粒度。优选实施例七:
eNB或者UE在一个或者多个子帧中的符号上传输信息,所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6}。eNB或者UE发送信息的起始子帧满足以下之一:
t mod/(N/2)=c;
t mod/N=c;
t mod G=c;
其中,c为常数,t=10nf+nsf,nf为无线帧号,nsf为子帧号。或者t也可以为可用的子帧索引,
下面以子载波宽度为3.75KHz为例来说明。如果子帧n为eNB发送的上行授权的子帧或者eNB发送的上行授权的最后一个子帧,UE在n+k子帧开始发送PUSCH,或者UE在n+k子帧之后(包括n+k子帧)的第一个满足(10nf+nsf)mod 2=c、或者(10nf+nsf)mod 4=c、或者(10nf+nsf)mod G=c的子帧上发送,其中G为时域调度粒度,“mod”表示取模运算,c为常数,比如为0。k为预设值,比如对于FDD,k=4.
如果n为UE接收PDSCH的子帧或者接收PDSCH的最后一个子帧,那么UE在n+k子帧开始发送ACK/NACK,或者UE在n+k子帧之后(包括n+k子帧)的第一个第一个满足(10nf+nsf)mod 2=c、或者(10nf+nsf)mod 4=c、或者(10nf+nsf)mod G=c的子帧上发送ACK/NACK,其中G为时域调度粒度。k为预设值,比如对于FDD,k=4.
具体实施例八:
本实施例给出资源分配的方法。资源分配应至少包含以下的内容:
1)频域资源:
比如single tone下支持PUSCH传输的子载波,假设子载波宽度为3.75KHz,频域上一共有12×4=48个子载波,需要6bit指示.可以在DCI指示。为了降低资源分配的开销,可以采用高层信令配置可用于传输信息的子载波总数,比如在将带宽两侧的8个3.75KHz的子载波配置给UE,那么可以用3bit指示给UE分配的子载波。编号索引可以按照频率增加或者降低的顺序,或者按照从两侧依次向中心的顺序。为了减少浪费,3.75KHz 的子载波和系统中的15KHz的子载波应该有保护带,比如保护带为1个或者2个3.75KHz的子载波。另一种配置方式是eNB可以给UE配置几个15KHz的子载波,由于系统中一共可包含12个子载波,因此可以用4bit表示。UE根据配置的15KHz的子载波位置,将每个15KHz的区域作为4个3.75KHz的子载波进行传输,并将配置的边缘位置的几个子载波理解为保护带,当UE传输的资源是隐含映射时,应映射在保护带之外的子载波上。比如假设上行的所有子载波从频率最低到最高依次编号为0、1、……11,eNB给UE分配15KHz的子载波#0和#1作为UE的3.75KHz的传输范围,一共对应8个3.75KHz的子载波,其中和15KHz的子载波#2相邻的两个3.75KHz的子载波用作保护带,其他6个3.75KHz的子载波用于传输,对于隐含映射的情况,传输的总的3.75KHz的子载波数为6个,映射公式应将6代入进行计算。优选地,eNB给UE配置的3.75KHz的传输范围应尽量集中在带宽一侧,这样减少保护带占用的频带。比如eNB给UE分配频率最低的两个15KHz的子载波作为UE的3.75KHz的传输范围。频率最高的两个3.75KHz的子载波为保护带。
2)时域资源:
时域资源包括时域调度粒度和时域分配的时域调度粒度的数目。时域调度粒度可以是预设的,比如时域调度粒度为48个子帧,也可以是eNB通知的,比如eNB从一个集合中选择一个通知给UE,可以用RRC信令或者SIB或者DCI通知,所述集合是eNB通知的,比如通过RRC信令或者SIB通知的,或者是预设的。时域分配的时域调度粒度的数目可以是预设的,比如为8,或者可以是eNB通知的,可以用RRC信令或者SIB或者DCI通知。
时域资源也可以是采用预设的方式得到,比如给定一个码率,或者根据覆盖等级和/或工作场景对应一个码率,根据TBS大小计算得到时域资源,码率可以是预设的,比如为1/3,或者为eNB配置的。
3)重复次数:
可以通过DCI或者RRC指示,或者根据覆盖等级和/或工作场景隐含 得到。
也可以对上述需要配置的信息进行联合编码,减少资源分配的bit数。
或者,上述信息可以有预设的对应关系,进而可以减少指示的bit数。比如,MCS和时域资源粒度有预设的对应关系,比如MCS越大,时域资源粒度越大。或者TBS和时域资源粒度有预设的对应关系,TBS越大,时域资源粒度越大,比如TBS小于一个门限时,时域资源粒度为48个子帧,否则为96个子帧。这样,可以采用相同的bit数来指示不同时域资源。
可选地,不同的子载波位置对应不同的时域调度粒度/重复次数。比如假设3.75KHz的子载波从频率最低开始从0编号,子载波0~3对应重复次数为4,子载波4~7对应重复次数8.具体的子载波索引可以在DCI中指示。当eNB分配给UE的重复次数为4时,则eNB给UE发送的调度授权中的DCI指示的是子载波0~3中的一个子载波。
可选地,调度PUSCH/PDSCH的下行控制信息所在的子帧/CCE和分配给UE的子载波有预设的对应关系,比如,当下行控制信息所在的最后一个子帧为偶数时,则对应子载波0~3,否则对应子载波4~7.具体的子载波索引可以在DCI中指示。
可选地,PRACH资源和Msg3所在的子载波有预设的对应关系,比如PRACH所在的子载波为奇数子载波,则对应子载波0~3,否则对应子载波4~7.具体的子载波索引可以在RAR中的上行授权中指示。进一步地,所述Msg3所在的子载波还可以和PRACH所在的子帧有对应关系。
优选实施例九:
在小区专有SRS子帧上,UE的动作包括以下之一:
继续发送所述符号,因为single tone场景通常用于覆盖增强模式下,信号比较弱,因此继续发送对legacy UE的SRS的影响不大。
或者,打掉和所述小区专有SRS子帧重叠的符号,比如一个符号有部分和SRS子帧有重叠,则放弃发送该符号。
或者,对于和所述小区专有SRS子帧重叠的符号,打掉符号中和SRS子帧重叠的部分,其余部分仍然发送。
具体实施例十:
网络设备根据设备类型和/或传输模式确定传输的子载波间隔,所述传输模式是eNB配置的。设备类型包括支持multione和/或single-tone。传输模式也可以包括multione和/或single-tone,比如eNB配置UE采用single tone模式,即采用3.75KHz发送,或者传输模式也是所述网络设备选择的。
具体实施例十一:
本实施例中假设下行子载波宽度是15KHz,上行子载波宽度是1/N×15KHz。
对于半双工FDD系统,当UE需要从接收转换成发送时,UE将上行子帧之前紧邻的下行子帧的最后一段时间作为保护间隔(guard period),在保护间隔内,UE不接收下行信号。比如UE在子帧#n接收PDSCH,在子帧#n+1需要发送PUSCH,那么UE在子帧#n的最后一段时间不接收信号。或者,UE将下行子帧之后紧邻的上行子帧的最开始的一段时间作为保护间隔。比如UE在子帧#n接收PDSCH,在子帧#n+1需要发送PUSCH,那么UE在子帧#n+1上的最开始的一段时间不发送信号。进一步地,UE发送PUSCH的起始位置可以为子帧#n+1之后的第一个子帧,或者为满足N/2×m或者N×m的子帧,其中m为正整数。
当UE需要从发送转换成接收时,UE将上行子帧之后紧邻的下行子帧的最开始的一段时间作为保护间隔(guard period),在保护间隔内,UE不接收下行信号。比如UE在子帧#n发送PUSCH,在子帧#n+1需要接收PDSCH,那么UE在子帧#n+1的最开始的一段时间不接收信号。或者,UE将下行子帧之前紧邻的上行子帧的最后一段时间作为保护间隔。比如UE在子帧#n发送PUSCH,在子帧#n+1需要接收PDSCH,那么UE在子帧#n上的最后一段时间不发送信号。
具体实施例十二:
根据上述实施例中的符号划分,可以对子载波宽度是1/N×15KHz,N∈{2,3,4,5,6}时重新进行子帧定义。本实施例中将所述重新定义的子帧称为第一子帧。
第一子帧由所述符号组成,所述第一子帧的长度可以为以下之一:
为现有子帧,即1ms的子帧。
或者,为N/2×k个子帧,所述N/2×k个子帧可以是连续的,也可以是不连续的,下面的讨论也类似。
或者,为N×k个子帧,
或者,在TDD系统中,为下行到上行的转换周期内的连续的上行子帧,或者连续发的下行子帧。比如一个对于上下行配比#0,一个下行到上行的转换周期有连续的3个上行子帧,则第一子帧为这三个子帧。
或者,在TDD系统中,为下行到上行的转换周期的整数倍。如果下行到上行的转换周期为5个子帧,所述第一子帧是指物理子帧,那么第一子帧中用于上行传输的符号可以是将一个下行到上行的转换周期中5个子帧按照前述实施例的方式确定的符号中,打掉上行子帧之外剩余的符号。或者,第一子帧中用于上行传输的符号是将下行到上行的转换周期中的上行子帧按照前述实施例的方法确定的符号。
或者,为5k个子帧。如果所述第一子帧是指物理子帧,比如为5个子帧,那么第一子帧中用于上行传输的符号可以是将5个子帧按照前述实施例的方式确定的符号中,打掉上行子帧之外剩余的符号。或者,第一子帧中用于上行传输的符号是将这5个子帧中的上行子帧按照前述实施例的方法确定的符号。
或者,为10k个子帧。
其中,k为正整数,所述子帧为物理子帧或为可用子帧。下面举例说明。比如,第一子帧定义可以和现有技术相同,即为1ms,每个第一子帧可以包含
Figure PCTCN2016110023-appb-000025
个符号.或者,第一子帧可以为(N/2)ms,每个第一子帧可以包含6或者7个符号,或者第一子帧为(N)ms,每个第一子帧包含12或者14个符号。符号的长度如上述实施例所示。图3是根据本发明优选实施例的一个子载波宽度是3.75KHz时的帧结构示意图,如图3所示,第一子帧长度为1ms,每个子帧包含3个符号。帧可以在所述第一子帧的基础上定义,比如为10ms。
图4是根据本发明优选实施例的一个子载波宽度是3.75KHz时的另一种子帧结构图,如图4所示,第一子帧的长度为4ms,帧可以在所述第一子帧的基础上定义,比如为40ms或者48ms。
下面再给出TDD下的第一子帧的定义。在TDD下,可以仍然将1个1ms子帧作为第一子帧,或者可以将2个或者4个上行子帧拼成第一子帧。
图5是根据本发明优选实施例的TDD上下行配置#1时的第一子帧的结构示意图,如图5所示,将10ms内的4个上行子帧作为第一子帧。
在图5中,每两个子帧包含7个符号。也可以按照每个子帧包含3个符号的方式,这样第一子帧对应12个符号。
图6是根据本发明优选实施例的TDD上下行配置#2时的第一子帧的结构示意图,如图6所示,将20ms内的4个上行子帧作为第一子帧。每个子帧包含3个符号。
图7是根据本发明优选实施例的TDD上下行配置#0时的第一子帧的结构示意图,如图7所示,将10ms内的3个上行子帧作为第一子帧。第一子帧包含10个符号。或者第一子帧也可以包含9个符号,每个子帧对应3个符号。
图8是根据本发明优选实施例的TDD上下行配置#0时的另一种第一子帧的结构示意图,如图8所示,将4个上行子帧作为第一子帧。第一子帧包含12个符号。后面的上行子帧,每4个作为一个第一子帧,以此类推。
其他配置的第一子帧的定义也可以类似给出。实际应用中,第一子帧的定义不限于上述举例。但是子帧中的符号的格式为之前的实施例中的方式之一。
具体实施例十三:
在本实施例中,x个子帧中包含n个符号,x是预设的或者是eNB通知的。假设符号的长度为T,所述T包括CP和数据部分。如果x个子帧中除了n个符号的长度还有剩余,那么剩余部分可以作为一个特殊子帧,比如位于x个子帧的起始或者末尾,可用于发送一些特殊信号,比如用于legacy UE发送SRS等。或者剩余部分可以位于子帧的末尾,作为一个保护 间隔,不使用其传输信号。或者,剩余部分作为一个符号的部分CP,或者作为多个符号的部分CP,比如均分给前几个符号。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种计算机存储介质。可选地,在本实施例中,上述计算机存储介质可以被设置为存储用于执行上述实施例的方法步骤的程序代码。也就是说,本发明实施例提供的计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如上述实施例的方法步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执 行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的方案,在一个或者多个子帧中的符号上传输信息,与该符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},使得整数倍个子帧中有一个或多个完整了字符,提高了NB-LTE系统的稳定性。

Claims (28)

  1. 一种信息的传输方法,包括:
    在一个或者多个子帧中的符号上传输信息,与所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},所述子帧为长期演进LTE系统的子帧,所述符号通过预设的方法确定。
  2. 根据权利要求1所述的方法,其中,所述符号通过预设的以下之一的方式确定:
    每个所述子帧包含n个符号;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,x个子帧包含n个符号,其中,n为预设的正整数,2·x为大于等于1的正整数,所述子帧为物理子帧,或者所述子帧为可用子帧。
  3. 根据权利要求1所述的方法,其特征在于,所述符号通过预设的方法确定,包括:
    x个子帧包含n个符号和一个保护间隔,其中,n和x均为预设的正整数,所述子帧为物理子帧,或者所述子帧为可用子帧。
  4. 根据权利要求3所述的方法,其中,
    在所述保护间隔上不传输数据。
  5. 根据权利要求3所述的方法,其中,
    所述保护间隔位于x个子帧的末尾。
  6. 根据权利要求1所述的方法,其中,所述符号通过预设的以下之一的方式确定:
    每个所述子帧包含
    Figure PCTCN2016110023-appb-100001
    个符号;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每N/2个所述子帧包含7个符号或者6个符号;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每N个所述子帧包含14个符号或者12个符号,其中,所述子帧为物理子帧,或者所述子帧为可用子帧,
    Figure PCTCN2016110023-appb-100002
    表示向上取整。
  7. 根据权利要求2所述的方法,其中,所述符号通过预设的以下之一的方式确定:
    每个所述子帧包含n个符号,其中,所述n个符号中的一个符号的循环前缀CP长度为
    Figure PCTCN2016110023-appb-100003
    个采样点,所述n个符号除去所述一个符号的其他符号的CP长度为
    Figure PCTCN2016110023-appb-100004
    个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每x个子帧包含n个符号,其中,所述n个符号中的一个符号的CP长度为
    Figure PCTCN2016110023-appb-100005
    个采样点,所述n个符号除去所述一个符号的其他符号的CP长度为个采样点,所述符号的数据部分的长度为fs/Δf个采样点,fs为采样频率,fs的单位为Hz;其中,
    Figure PCTCN2016110023-appb-100007
    表示向下取整,mod表示取模运算。
  8. 根据权利要求1至7任一项所述的方法,其中,所述符号通过预设的以下之一的方式确定:
    在所述子载波宽度Δf为3.75KHz的情况下,每个所述子帧包含3个符号,每个所述符号的CP长度为128个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每2个子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为40个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为36个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含10个符号,每个符号的CP长度为64个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含11个符号,其中,所述11个符号中的一个符号的CP长度为18个采样点,所述11个符号除去所述一个符号的其他符号的CP长度为11个采样点;
    从一个预设的子帧或者传输所述信息的起始子帧开始,每4个子帧包含14个符号,其中,所述14个符号中的两个符号的CP长度为40个采样 点,所述14个符号除去所述两个符号的其他符号的CP长度为36个采样点,其中,所述采样频率fs为1.92MHz。
  9. 根据权利要求1至7任一项所述的方法,其中,所述符号通过预设的以下之一的方式确定:
    在所述子载波宽度Δf为3.75KHz的情况下,每个所述子帧包含3个符号,每个所述符号的CP长度为16个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每2个子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为8个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为4个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含10个符号,每个符号的CP长度为8个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每3个子帧包含11个符号,其中,所述11个符号中的一个符号的CP长度为6个采样点,所述11个符号除去所述一个符号的其他符号的CP长度为1个采样点;
    从一个预设的所述子帧或者传输所述信息的起始子帧开始,每4个子帧包含14个符号,其中,所述14个符号中的两个符号的CP长度为8个采样点,所述14个符号除去所述两个符号的其他符号的CP长度为4个采样点,其中,所述采样频率fs为240KHz。
  10. 根据权利要求9所述的方法,其中,
    在时分双工TDD系统中,用于上行传输的所述符号为包含在上行导频时隙UpPTS和上行子帧组成的区域内的符号,或者为包含在上行子帧区域内的符号;
    用于下行传输的所述符号为包含在下行导频时隙DwPTS和下行子帧组成的区域内的符号,或者为包含在下行子帧区域内的符号。
  11. 根据权利要求1所述的方法,其中,
    在TDD系统中,所述符号由转换周期内的连续上行子帧数确定。
  12. 根据权利要求2所述的方法,其中,
    在TDD系统中,从所述预设的所述子帧为转换周期内的第一个上行子帧或者第一个下行子帧开始,x等于连续的上行子帧数或者连续的下行子帧数,所述子帧为物理子帧或者可用子帧。
  13. 根据权利要求1或12所述的方法,其中,
    在所述子载波宽度Δf为3.75KHz的情况下,在TDD系统中,在一个转换周期内,如果连续上行子帧数为1,则所述子帧包含3个符号,每个所述符号的CP长度为128个采样点;
    在一个转换周期内,如果连续上行子帧数为2,则所述2个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为128个采样点;或者,所述2个上行子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为40个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为36个采样点;
    在一个转换周期内,如果连续上行子帧数为3,则所述3个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为128个采样点;或者,所述3个上行子帧包含10个符号,每个所述符号的CP长度为64个采样点,或者,所述3个上行子帧包含11个符号,其中,所述10个符号中的一个符号的CP长度为18个采样点,所述10个符号除去所述一个符号的其他符号的CP长度为11个采样点,其中,所述采样频率fs为1.92MHz。
  14. 根据权利要求1或13所述的方法,其中,
    在TDD系统中,在一个转换周期内,如果连续上行子帧数为1,则所述上行子帧包含3个符号,每个所述符号的CP长度为16个采样点;
    在一个转换周期内,如果连续上行子帧数为2,则所述2个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为16个采样点;或者,所述2个上行子帧包含7个符号,其中,所述7个符号中的一个符号的CP长度为8个采样点,所述7个符号除去所述一个符号的其他符号的CP长度为4个采样点;
    在一个转换周期内,如果连续上行子帧数为3,则所述3个上行子帧中的每个子帧包含3个符号,每个所述符号的CP长度为16个采样点;或者, 所述3个上行子帧包含10个符号,每个符号的CP长度为8个采样点,或者,所述3个子帧包含11个符号,其中,所述11个符号中的一个符号的CP长度为6个采样点,所述11个符号除去所述一个符号的其他符号的CP长度为1个采样点,其中,所述采样频率fs为240KHz。
  15. 根据权利要求1所述的方法,其中,
    在TDD系统中,UpPTS作为紧邻所述UpPTS的一个上行子帧的第一个所述符号的CP的一部分。
  16. 根据权利要求1所述的方法,其中,
    在TDD系统中,UpPTS和所述UpPTS紧邻的一个或者多个上行子帧组成的区域内包含一个或者多个所述符号。
  17. 根据权利要求1所述的方法,其中,所述信息的时域调度粒度G由以下至少之一确定:
    N;
    所述信息的传输块大小TBS;
    所述信息的调制编码方式MCS;
    调度所述信息的下行控制信道/随机接入时的随机接入响应RAR的时域和/或频域位置或者调度所述信息的下行控制信道对应的控制信道单元CCE或者随机接入时的物理随机接入信道PRACH资源;
    所述信息的重复次数;
    传输所述信息的资源。
  18. 根据权利要求17所述的方法,其中,
    所述信息的时域调度粒度G为以下之一:
    N/2×k个子帧;
    N×k个子帧;
    N×12k个子帧;
    以及N×10k个子帧,其中,k为正整数,所述子帧为物理子帧或者可用子帧。
  19. 根据权利要求17所述的方法,其中,
    所述时域调度粒度G由所述LTE系统的双工模式确定,所述双工模式包括频分双工FDD和TDD。
  20. 根据权利要求1所述的方法,其中,
    所述信息的起始子帧满足以下之一:
    t mod(N/2)=c;
    t mod N=c;
    t mod G=c;
    其中,t=10nf+nsf,或者,t为可用子帧索引,c为常数,nf为无线帧号,nsf为子帧号,G为时域调度粒度。
  21. 根据权利要求1所述的方法,其中,
    在所述子帧为小区专有探测参考信号SRS子帧的情况下,处理所述符号的方式包括以下之一:
    传输所述符号;
    不传输和所述小区专有SRS子帧重叠的符号;
    对于和所述小区专有SRS子帧重叠的符号,不传输所述符号中和所述SRS子帧重叠的部分。
  22. 根据权利要求1所述的方法,其中,
    根据设备类型和/或传输模式确定传输的子载波间隔,所述传输模式是基站配置的传输模式,或者,所述传输模式是网络设备选择的传输模式。
  23. 根据权利要求1至6任一项所述的方法,其中,
    预设子帧由所述符号组成,所述预设子帧的长度为以下之一的长度:
    N/2×k个子帧;
    为N×k个子帧;
    在TDD系统中,为下行到上行的转换周期内的连续上行子帧数,或者连续下行子帧数;
    在TDD系统中,为下行到上行的转换周期的整数倍;
    为5k个子帧;
    为10k个子帧;
    其中,k为正整数,所述子帧为物理子帧或为可用子帧。
  24. 根据权利要求1所述的方法,其中,
    当所述信息为随机接入中的消息三时,所述消息三对应的所述子载波由PRACH资源和/或调度信息中的资源指示信息确定。
  25. 根据权利要求1所述的方法,其中,
    如果所述符号所在的子帧为两个不连续的子帧,则所述符号不用于上行或者下行传输。
  26. 根据权利要求1所述的方法,其中
    所述信息的时域调度粒度为PRACH对应的时域资源的整数倍,或者PRACH对应的时域资源为所述信息的时域调度粒度的整数倍。
  27. 一种信息的传输装置,包括:
    传输模块,配置为在一个或者多个子帧中的符号上传输信息,与所述符号对应的子载波宽度Δf为1/N×15KHz,N∈{2,3,4,5,6},所述子帧为长期演进LTE系统的子帧,所述符号通过预设的方法确定。
  28. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如权利要求1至26任一项所述的信息的传输方法。
PCT/CN2016/110023 2015-12-15 2016-12-15 信息的传输方法、装置及计算机存储介质 WO2017101799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510938303.2A CN106888077B (zh) 2015-12-15 2015-12-15 信息的传输方法及装置
CN201510938303.2 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017101799A1 true WO2017101799A1 (zh) 2017-06-22

Family

ID=59055725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110023 WO2017101799A1 (zh) 2015-12-15 2016-12-15 信息的传输方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN106888077B (zh)
WO (1) WO2017101799A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519031A (zh) * 2017-11-17 2019-11-29 华为技术有限公司 信息传输方法及设备
CN111148251A (zh) * 2019-12-25 2020-05-12 京信通信系统(中国)有限公司 数据传输方法、装置、计算机设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028744A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 资源分配方法、网络设备及终端设备
WO2019090720A1 (zh) 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 传输数据的方法和设备
CN108809614B9 (zh) * 2017-11-17 2019-09-06 华为技术有限公司 信息传输方法及设备
CN109802788B (zh) * 2017-11-17 2022-02-25 中兴通讯股份有限公司 一种信号的生成与发送方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151818A (zh) * 2005-03-30 2008-03-26 摩托罗拉公司 用于降低通信系统内的往返延迟和开销的方法和装置
CN101478516A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 传输消息的方法及系统
CN102244631A (zh) * 2010-05-11 2011-11-16 华为技术有限公司 一种中心子载波的配置方法和设备
US8406185B2 (en) * 2009-01-06 2013-03-26 Lg Electronics Inc. Method and apparatus for transmitting pilot in a wireless communication system
CN104094549A (zh) * 2012-01-30 2014-10-08 高通股份有限公司 具有高发射功率的演进多媒体广播多播服务中的循环前缀
CN104145519A (zh) * 2013-01-25 2014-11-12 华为技术有限公司 一种载波聚合传输的方法及实现载波聚合传输的装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425888A (zh) * 2007-11-02 2009-05-06 北京三星通信技术研究有限公司 传输同步信号的设备和方法
CN101465830B (zh) * 2007-12-19 2012-10-17 华为技术有限公司 发送、接收同步信息的方法与系统、装置
US10004067B2 (en) * 2012-11-13 2018-06-19 Telefonaktiebolaget Lm Ericsson (Publ) Transmission and reception of reference signals in wireless networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151818A (zh) * 2005-03-30 2008-03-26 摩托罗拉公司 用于降低通信系统内的往返延迟和开销的方法和装置
CN101478516A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 传输消息的方法及系统
US8406185B2 (en) * 2009-01-06 2013-03-26 Lg Electronics Inc. Method and apparatus for transmitting pilot in a wireless communication system
CN102244631A (zh) * 2010-05-11 2011-11-16 华为技术有限公司 一种中心子载波的配置方法和设备
CN104094549A (zh) * 2012-01-30 2014-10-08 高通股份有限公司 具有高发射功率的演进多媒体广播多播服务中的循环前缀
CN104145519A (zh) * 2013-01-25 2014-11-12 华为技术有限公司 一种载波聚合传输的方法及实现载波聚合传输的装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519031A (zh) * 2017-11-17 2019-11-29 华为技术有限公司 信息传输方法及设备
US11239938B2 (en) 2017-11-17 2022-02-01 Huawei Technologies Co., Ltd. Information transmission method and device
CN111148251A (zh) * 2019-12-25 2020-05-12 京信通信系统(中国)有限公司 数据传输方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN106888077B (zh) 2020-08-11
CN106888077A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
US11240085B2 (en) Methods for ENB, UE uplink transmission and reception
US10856317B2 (en) System and method for uplink communications
CN110476385B (zh) 用于接收下行链路数据传输的方法和装置
KR102168141B1 (ko) 비면허 스펙트럼에서의 다수의 서브프레임들의 스케줄링
US10834763B2 (en) Method and apparatus for handling overlap of different channels in wireless communication system
CN111587605B (zh) 用于保持针对非许可无线频谱的信道占用率的上行链路信道调度
CN109156018B (zh) 传输数据的方法、终端设备和网络设备
CN113574948B (zh) 用于复用uci的方法和装备
US10554367B2 (en) Narrowband uplink resource configuration
WO2017101799A1 (zh) 信息的传输方法、装置及计算机存储介质
JP6795507B2 (ja) 無線通信ネットワークにおける制御データの通信
CN107294897B9 (zh) 下行信息发送、接收方法及装置
CN109479303B (zh) 传输数据的方法和终端设备
US11652596B2 (en) Method executed by user equipment, and user equipment
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
CN102694637B (zh) 时分双工系统下测量参考信号的发送方法及装置
KR20170052473A (ko) 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법
CN111869294A (zh) 终端装置、基站装置以及通信方法
US11025382B2 (en) Payload transmission in a subframe
US10270563B2 (en) Method and network node for allocating resources of an uplink subframe
EP3448102A1 (en) Terminal device, base station device, communication method, and integrated cricuit
EP2830255B1 (en) Method of blind decoding of control channel for a wireless communication system
WO2019095322A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874856

Country of ref document: EP

Kind code of ref document: A1