WO2019128765A1 - 一种信道侦听类型的指示方法及装置 - Google Patents

一种信道侦听类型的指示方法及装置 Download PDF

Info

Publication number
WO2019128765A1
WO2019128765A1 PCT/CN2018/121594 CN2018121594W WO2019128765A1 WO 2019128765 A1 WO2019128765 A1 WO 2019128765A1 CN 2018121594 W CN2018121594 W CN 2018121594W WO 2019128765 A1 WO2019128765 A1 WO 2019128765A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
sub
band
channel
network device
Prior art date
Application number
PCT/CN2018/121594
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18894218.9A priority Critical patent/EP3716709B1/en
Priority to EP22189368.8A priority patent/EP4156839A1/en
Publication of WO2019128765A1 publication Critical patent/WO2019128765A1/zh
Priority to US16/911,440 priority patent/US11553521B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for indicating a channel interception type.
  • the long-term evolution of the long term evolution (LTE) version 13 introduces the license-assisted access using long term evolution (LAA- LTE) technology
  • Release 14 introduces enhanced LAA (eLAA) technology.
  • the principle of the LAA technology and the eLAA technology is mainly: the carrier aggregation technology is used to extend the available spectrum to the unlicensed frequency band, and the downlink and uplink information are transmitted on the unlicensed spectrum through the assistance of the licensed spectrum.
  • the Multefire standard also proposes a standalone unlicensed LTE technology.
  • the so-called standalone unlicensed LTE technology refers to the uplink and downlink transmission of the LTE system, which is completely implemented in the unlicensed spectrum. Depends on the assistance of the licensed spectrum.
  • LBT listen before talk
  • WB wideband
  • one carrier includes multiple sub-bands (SBDs), for example, in a wideband NR system.
  • the bandwidth of one carrier is extended from 20 MHz in the LTE system to 40 MHz, and one carrier can include two sub-bands, each of which occupies 20 MHz.
  • how the network device indicates the channel listening type used by the terminal device for channel sensing for the subband has no related solution.
  • the present application provides a method and apparatus for indicating a channel interception type to provide an indication scheme of a channel listening type in a scenario of a broadband transmission technology.
  • the first aspect provides a method for indicating a channel interception type, including: determining, by the network device, a channel interception performed by the terminal device on the first subband set according to a relationship between the first subband set and the second subband set Corresponding channel listening type, the first subband set includes the network device scheduling at least one subband occupied by the terminal device to send uplink information, and the second subband set includes the network device sending downlink information At least one sub-band that is occupied, the channel listening type includes a long listening type or a short listening type; the network device sends first indication information to the terminal device, where the first indication information is used to indicate The channel listening type.
  • the network device determines, according to a relationship between the first subband set and the second subband set, a channel interception type corresponding to performing channel interception by the terminal device on the first subband set.
  • the method includes: when each of the first subband sets is included in the second subband set, the network device determines that the channel listening type is the short listening type.
  • the network device determines, according to a relationship between the first subband set and the second subband set, a channel interception type corresponding to performing channel interception by the terminal device on the first subband set.
  • the method includes: when each of the first subband sets is included in the second subband set, and an uplink burst of the first subband set is located in the first subband set.
  • the network device determines that the channel listening type is the short listening type, wherein the uplink burst of the first sub-band set schedules the terminal device for the network device At least one time unit consecutively occupied by the first subband set, the uplink burst of the first subband set includes a time unit occupied by the network device scheduling the terminal device to send the uplink information ;
  • the maximum channel occupation duration corresponding to the first sub-band set is a maximum channel occupation duration corresponding to channel interception performed by the network device for the first sub-band set before transmitting the downlink information; or
  • the maximum channel occupation duration corresponding to the first subband set is determined according to the maximum channel occupation duration corresponding to each subband in the first subband set, and any subband of the first subband set is determined.
  • the corresponding maximum channel occupation duration is the maximum channel occupation duration corresponding to the channel interception of the any subband before the network device sends the downlink information.
  • the network device determines, according to a relationship between the first subband set and the second subband set, a channel interception type corresponding to performing channel interception by the terminal device on the first subband set.
  • the method includes: each subband in the first subband set is included in the second subband set, and an uplink burst of each subband in the first subband set is located in the corresponding subband
  • the network device determines that the channel listening type is a short listening type; wherein, for the i-th sub-band in the first sub-band set, the i-th sub-band is uplinked
  • the burst is located in the maximum channel occupation duration of the corresponding sub-band, and includes: the ith uplink burst of the i-th sub-band is located within a maximum channel occupation duration of the i-th sub-band;
  • the ith uplink burst is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the i-th sub-band, where the i-th uplink burst includes the network device scheduling a time unit occupied by the terminal device by sending the uplink information;
  • the maximum channel occupation duration of the i-th sub-band is a maximum channel occupation duration corresponding to channel interception performed by the network device for the i-th sub-band before transmitting the downlink information, where the i is greater than zero
  • the network device determines, according to a relationship between the first subband set and the second subband set, a channel interception type corresponding to performing channel interception by the terminal device on the first subband set.
  • the method includes: when at least one of the first subband sets is not included in the second subband set, the network device determines that the channel listening type is the long listening type.
  • the network device determines that the channel listening type is the long listening type.
  • the network device determines, according to a relationship between the first subband set and the second subband set, a channel interception type corresponding to performing channel interception by the terminal device on the first subband set.
  • the method includes: when each of the first subband sets is included in the second subband set, and an uplink burst of the first subband set is not located in the first subband set When the corresponding maximum channel occupation time is within, the network device determines that the channel listening type is a long listening type;
  • the uplink burst of the first sub-band set is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first sub-band set, where the first sub-band set is
  • the uplink burst includes a time unit in which the network device schedules the terminal device to send the uplink information
  • the maximum channel occupation duration corresponding to the first sub-band set is the maximum channel occupation duration corresponding to the channel sensing performed by the network device for the first sub-band set before sending the downlink information; or
  • the maximum channel occupation duration corresponding to the first subband set is determined according to the maximum channel occupation duration corresponding to each subband in the first subband set, and any subband in the first subband set is determined.
  • the corresponding maximum channel occupation duration is the maximum channel occupation duration corresponding to the channel interception of the any subband before the network device sends the downlink information.
  • the network device determines, according to a relationship between the first subband set and the second subband set, a channel interception type corresponding to performing channel interception by the terminal device on the first subband set.
  • the method includes: each subband in the first subband set is included in the second subband set, and an i th upstream burst of the i th subband in the first subband set is not located
  • the network device determines that the channel listening type is the long listening type; wherein the ith uplink burst is the network device scheduling the terminal At least one time unit that is consecutive to the device in the time occupied by the ith sub-band, where the ith uplink burst includes a time unit that the network device schedules, by the terminal device, to send the uplink information;
  • the maximum channel occupation duration of the i-th sub-band is a maximum channel occupation duration corresponding to channel interception performed by the network device for the i-th sub-band before transmitting the downlink information, where the i is greater than zero
  • the network device sends the first indication information to the terminal device, where the network device sends the scheduling signaling to the terminal device, where the scheduling signaling carries the first Instructing information, the scheduling signaling is used to schedule the terminal device to occupy the first sub-band set and the first time unit to send the uplink information.
  • the first subband set includes at least two subbands.
  • the long listening type is a random back-off idle channel evaluation
  • the short listening type is a single-slot idle channel evaluation
  • the present application provides a method for indicating a channel interception type, including: receiving, by a terminal device, first indication information that is sent by a network device, where the first indication information is used to indicate that the terminal device is configured to a first subband.
  • the channel listening type being determined by a relationship between the first subband set and a second subband set, where the first subband set includes the network device scheduling
  • the terminal device sends at least one subband occupied by the uplink information, where the second subband set includes at least one subband occupied by the network device to send downlink information, where the channel listening type includes a long listening type or a short listening type; the terminal device performs channel sensing on the first subband set according to the channel listening type.
  • the channel listening type is the short listening type.
  • the channel listening type is the short listening type
  • the uplink burst of the first sub-band set is the network device scheduling the terminal. At least one time unit consecutively occupied by the device in the time occupied by the first sub-band set, where the uplink burst of the first sub-band set includes a time that the network device schedules the terminal device to send the uplink information
  • the maximum channel occupation duration corresponding to the first sub-band set is the maximum channel occupation duration corresponding to the channel sensing performed by the network device for the first sub-band set before transmitting the downlink information;
  • the maximum channel occupation duration corresponding to the first subband set is determined according to a maximum channel occupation duration corresponding to each subband in the first subband set, and any one of the first subband sets.
  • the maximum channel occupation duration corresponding to the subband is the maximum channel occupation duration corresponding to the channel interception of the any subband before the network device sends the downlink information.
  • the channel listening type is a short listening type
  • the i-th sub-band is for the i-th sub-band in the first sub-band set
  • the time is within the maximum channel occupation time of the corresponding sub-band.
  • the uplink burst is located in the maximum channel occupation duration of the corresponding subband
  • the ith uplink burst of the i th subband is located in the maximum channel occupation duration of the i th subband;
  • the ith uplink burst is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the i-th sub-band, where the i-th uplink burst includes the network device scheduling a time unit occupied by the terminal device by sending the uplink information;
  • the maximum channel occupation duration of the i-th sub-band is a maximum channel occupation duration corresponding to channel interception performed by the network device for the i-th sub-band before transmitting the downlink information, where the i is greater than zero
  • the channel listening type is the long listening type.
  • the channel snooping type is a long snooping type; wherein the uplink burst of the first subband set is the network device scheduling the terminal device At least one time unit consecutively occupied by the first subband set, the uplink burst of the first subband set includes a time unit in which the network device schedules the terminal device to send the uplink information ;
  • the maximum channel occupation duration corresponding to the first subband set is a maximum channel occupation duration corresponding to channel interception performed by the network device for the first subband set before transmitting the downlink information;
  • the maximum channel occupation duration corresponding to the first subband set is determined according to a maximum channel occupation duration corresponding to each subband in the first subband set, and any one of the first subband sets.
  • the maximum channel occupation duration corresponding to the subband is the maximum channel occupation duration corresponding to the channel interception of the any subband before the network device sends the downlink information.
  • each subband in the first subband set is included in the second subband set, and the i th of the i th subband in the first subband set
  • the channel listening type is the long-listening type
  • the ith uplink burst is the network device scheduling At least one time unit in which the terminal device is consecutively occupied by the ith sub-band, the ith uplink burst includes a time unit in which the network device schedules the terminal device to send the uplink information
  • the maximum channel occupation duration of the i-th sub-band is a maximum channel occupation duration corresponding to channel interception performed by the network device for the i-th sub-band before transmitting the downlink information, where the i is greater than zero
  • the terminal device receives the first indication information sent by the network device, including:
  • the terminal device receives the scheduling signaling sent by the network device, where the scheduling signaling carries the first indication information, where the scheduling signaling is used to schedule the terminal device to occupy the first sub-band set. And transmitting the uplink information with the first time unit.
  • the first subband set includes at least two subbands.
  • the long listening type is a random back-off idle channel evaluation
  • the short listening type is a single-slot idle channel evaluation
  • a third aspect provides a method for indicating a channel interception type, including: generating, by a network device, first indication information, where the first indication information is used to indicate a second subband set occupied by the network device to send downlink information; The network device sends the first indication information to the terminal device.
  • the first indication information is further used to indicate an uplink time domain resource of the second subband set, where the uplink time domain resource of the second subband set and the downlink information are The sum of the time domain resources occupied by the second subband set does not exceed the maximum channel occupation time of the second subband set, and the uplink time domain resource of the second subband set is the terminal device The time domain resource corresponding to the channel sensing of the short listening type is performed on at least one of the second subband sets.
  • the first indication information is further used to indicate an uplink time domain resource of the second subband set, where the uplink time domain resource of the second subband set and the downlink information are The sum of the time domain resources occupied by any one of the second subband sets does not exceed the maximum channel occupation time of the any one of the subbands, and the uplink time domain resource of the second subband set is the The terminal device performs time domain resources corresponding to channel interception of the short listening type on at least one of the second subband sets.
  • the first indication information is further used to indicate an uplink time domain resource of each of the second subband sets; wherein any one of the second subband sets
  • the uplink time domain resource is determined according to the maximum channel occupation duration of any one of the subbands, and the uplink time domain resource of any one of the subbands performs short listening on the any subband of the terminal device.
  • the time domain resource corresponding to the type of channel interception.
  • the sum of the uplink time domain resource of the any subband and the time domain resource of the downlink information in any one of the subbands does not exceed the maximum of any one of the subbands.
  • the first indication information is further used to indicate the first subband set.
  • the uplink time domain resource wherein, the sum of the uplink time domain resource of the first subband set and the time domain resource occupied by the downlink information in the first subband set does not exceed the first subband a maximum channel occupancy duration of the set, the first sub-band set includes at least one sub-band occupied by the network device for scheduling the terminal device to send uplink information, where the uplink time domain resource of the first sub-band set is The terminal device performs time domain resources corresponding to channel interception of a short listening type on at least one of the first subband sets.
  • the first indication information is further used to indicate the first subband set.
  • the sum of the uplink time domain resource of the first subband set and the time domain resource occupied by the downlink information in any one of the first subband sets does not exceed any of the subbands.
  • the first sub-band set includes at least one sub-band occupied by the network device for scheduling the terminal device to send uplink information, where the uplink time-domain resource of the first sub-band set is the terminal device Performing a time domain resource corresponding to channel interception of a short listening type on at least one of the first subband sets.
  • the first indication information is further used to indicate the first subband set.
  • the uplink time domain resource of any one of the first subbands is determined according to the maximum channel occupation time of any one of the subbands, and the uplink time domain resource of the any subband is the The terminal device performs the time domain resource corresponding to the short-listening type channel interception on the any sub-band, where the first sub-band set includes at least the network device scheduling the terminal device to send the uplink information.
  • a sub-band includes at least the network device scheduling the terminal device to send the uplink information.
  • the sum of the uplink time domain resource of the any subband and the time domain resource of the downlink information in any one of the subbands does not exceed the maximum of any one of the subbands.
  • the second set of subbands includes at least two subbands.
  • the first subband set includes at least two subbands.
  • a fourth aspect provides a method for indicating a channel listening type, comprising: receiving, by a terminal device, first indication information sent by a network device, where the first indication information is used to indicate that the network device uses the second information occupied by the downlink information. a sub-band set; the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, where the first sub-band schedules, by the network device, the terminal device to send an uplink a subband occupied by the information; the terminal device performs channel sensing on the first subband according to the channel listening type.
  • the first indication information is further used to indicate an uplink time domain resource of the second subband set, where the uplink time domain resource of the second subband set and the downlink information are The sum of the time domain resources occupied by the second subband set does not exceed the maximum channel occupation time of the second subband set, and the uplink time domain resource of the second subband set is the terminal device Performing time domain resources corresponding to channel interception of a short listening type on at least one of the second subband sets;
  • the terminal device Determining, by the terminal device, a channel listening type for performing channel sensing on the first sub-band according to the first indication information, including: when the first sub-band is included in the second sub-band set, and When the uplink burst of the first sub-band is located in the uplink time domain resource of the second sub-band set, the terminal device determines that the channel listening type is a short channel listening type; the first sub-band The uplink burst is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling the terminal The time unit occupied by the device sending the uplink information.
  • the first indication information is further used to indicate an uplink time domain resource of the second subband set
  • the sum of the uplink time domain resource of the second subband set and the time domain resource occupied by the downlink information in any one of the second subband sets does not exceed any of the subbands.
  • the terminal device Determining, by the terminal device, a channel listening type for performing channel sensing on the first sub-band according to the first indication information, including: when the first sub-band is included in the second sub-band set, and When the uplink burst of the first sub-band is located in the uplink time domain resource of the second sub-band set, the terminal device determines that the channel listening type is a short channel listening type; the first sub-band The uplink burst is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling the terminal The time unit occupied by the device sending the uplink information.
  • the first indication information is further used to indicate an uplink time domain resource of each subband in the second subband set;
  • the uplink time domain resource of any one of the second subbands is determined according to the maximum channel occupation duration of any one of the subbands, and the uplink time domain resource of the any subband is the
  • the terminal device performs a time domain resource corresponding to the channel listening type of the short listening type on the any subband; the terminal device determines, according to the first indication information, a channel that performs channel sensing on the first subband.
  • the interception type includes: when the first subband is included in the second subband set, and an uplink burst of the first subband is located in an uplink time domain resource of the first subband, Determining, by the terminal device, that the channel listening type is a short channel listening type; the uplink burst of the first subband is that the network device schedules that the terminal device is consecutive in time occupied by the first subband.
  • the at least one time unit, the uplink burst of the first sub-band includes a time unit that the network device schedules, by the terminal device, to send the uplink information.
  • the sum of the uplink time domain resource of the any subband and the time domain resource of the downlink information in any one of the subbands does not exceed the maximum of any one of the subbands.
  • the first indication information is further used to indicate the first subband set.
  • the sum of the uplink time domain resource of the first subband set and the time domain resource occupied by the downlink information in the first subband set does not exceed the maximum channel occupation time of the first subband set.
  • the first sub-band set includes the network device scheduling at least one sub-band occupied by the terminal device to send uplink information, where the uplink time domain resource of the first sub-band set is the terminal device Performing time domain resources corresponding to channel interception of a short listening type on at least one of the subband sets;
  • the terminal device Determining, by the terminal device, a channel listening type for performing channel sensing on the first sub-band according to the first indication information, including: when the first sub-band is included in the first sub-band set, and When the uplink burst of the first sub-band is located in the uplink time domain resource of the first sub-band set, the terminal device determines that the channel listening type is a short channel listening type; the first sub-band The uplink burst is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling the terminal The time unit occupied by the device sending the uplink information.
  • the first indication information is further used to indicate the first subband set.
  • the sum of the uplink time domain resource of the first subband set and the time domain resource occupied by the downlink information in any one of the first subband sets does not exceed any of the subbands.
  • the first sub-band set includes at least one sub-band occupied by the network device for scheduling the terminal device to send uplink information, where the uplink time-domain resource of the first sub-band set is the terminal device Performing time domain resources corresponding to channel interception of a short listening type on at least one of the first subband sets;
  • a channel listening type for performing channel sensing on the first sub-band including: when the first sub-band is included in the first sub-band set, and When the uplink burst of the first subband is located in the uplink time domain resource of the first subband set, the terminal device determines that the channel listening type is a short channel listening type; the first subband
  • the uplink burst is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling The time unit occupied by the terminal device to send the uplink information.
  • the first indication information is further used to indicate the first subband set.
  • the uplink time domain resource of any one of the first subbands is determined according to the maximum channel occupation time of any one of the subbands, and the uplink time domain resource of the any subband is the The terminal device performs the time domain resource corresponding to the short-listening type channel interception on the any sub-band, where the first sub-band set includes at least the network device scheduling the terminal device to send the uplink information.
  • the terminal device Determining, by the terminal device, a channel listening type for performing channel sensing on the first sub-band according to the first indication information, including: when the first sub-band is included in the first sub-band set, and When the uplink burst of the first sub-band is located in the uplink time domain resource of the first sub-band, the terminal device determines that the channel listening type is a short channel listening type; and the uplink of the first sub-band Disabling, for the network device, scheduling, by the network device, at least one time unit that is consecutive in time occupied by the first sub-band, where the uplink burst of the first sub-band includes the network device scheduling the terminal device The time unit in which the uplink information is sent.
  • the sum of the uplink time domain resource of the any subband and the time domain resource of the downlink information in any one of the subbands does not exceed the maximum of any one of the subbands.
  • the second set of subbands includes at least two subbands.
  • the first subband set includes at least two subbands.
  • a fifth aspect provides a method for indicating a channel listening type, including:
  • the terminal device generates first indication information, where the first indication information is used to indicate that the terminal device sends the first subband set occupied by the uplink information, and the terminal device sends the first indication information to the network device.
  • the first indication information is further used to indicate a downlink time domain resource of the first subband set, where the downlink time domain resource of the first subband set and the uplink information are The sum of the time domain resources occupied by the first subband set does not exceed the maximum channel occupation time of the first subband set, and the downlink time domain resource of the first subband set is the network device The time domain resource corresponding to the channel sensing of the short listening type is performed on at least one of the first subband sets.
  • the first indication information is further used to indicate a downlink time domain resource of the first subband set, where the downlink time domain resource of the first subband set and the uplink information are The sum of the time domain resources occupied by any one of the first subband sets does not exceed the maximum channel occupation time of the any subband, and the downlink time domain resource of the first subband set is the The network device performs time domain resources corresponding to channel interception of the short listening type on at least one of the first subband sets.
  • the first indication information is further used to indicate a downlink time domain resource of each subband in the first subband set; wherein any one of the first subband sets
  • the downlink time domain resource is determined according to the maximum channel occupation duration of any one of the subbands, and the downlink time domain resource of any one of the subbands performs short listening on the any subband of the network device.
  • the time domain resource corresponding to the type of channel interception.
  • the sum of the uplink time domain resource of any one of the subbands and the time domain resource occupied by the uplink information in the any subband does not exceed the maximum of any one of the subbands.
  • the first subband set includes at least two subbands.
  • a method for indicating a channel interception type includes: receiving, by a network device, first indication information that is sent by a terminal device, where the first indication information is used to indicate that the terminal device is configured to send uplink information. a sub-band set; the network device determines, according to the first indication information, a channel listening type that performs channel sensing on the second sub-band, where the second sub-band is used by the network device to send downlink information. The network device performs channel sensing on the second sub-band according to the channel listening type.
  • the first indication information is further used to indicate a downlink time domain resource of the first subband set, where the downlink time domain resource of the first subband set and the uplink information are The sum of the time domain resources occupied by the first subband set does not exceed the maximum channel occupation time of the first subband set, and the uplink time domain resource of the first subband set is the network device Performing time domain resources corresponding to channel interception of a short listening type on at least one of the first subband sets;
  • a channel listening type for performing channel sensing on the second sub-band including: when the second sub-band is included in the first sub-band set, and When the uplink burst of the second sub-band is located in the downlink time domain resource of the first sub-band set, the network device determines that the channel listening type is a short channel listening type; the second sub-band The downlink burst is at least one time unit that is consecutive by the terminal device in the time occupied by the second sub-band, and the downlink burst of the second sub-band includes a time that the network device sends the downlink information unit.
  • the first indication information is further used to indicate a downlink time domain resource of the first subband set
  • the sum of the downlink time domain resource of the first subband set and the time domain resource occupied by the uplink information in any one of the first subband sets does not exceed any of the subbands. a maximum channel occupancy duration, where the downlink time domain resource of the first subband set is when the terminal device performs channel interception of a short snoop type on at least one subband of the first subband set Domain resource
  • a channel listening type for performing channel sensing on the second sub-band including: when the second sub-band is included in the first sub-band set, and The network device determines that the channel listening type is a short channel listening type, and the second sub-band
  • the downlink burst is at least one time unit in which the network device is consecutive in time occupied by the second subband, and the downlink burst in the second subband includes time occupied by the network device to send the downlink information unit.
  • the first indication information is further used to indicate a downlink time domain resource of each subband in the first subband set
  • the downlink time domain resource of any one of the first subbands is determined according to a maximum channel occupation duration of any one of the subbands, and the downlink time domain resource of the any subband is the
  • the network device performs a time domain resource corresponding to the channel sensing of the short listening type on the any subband; the network device determines, according to the first indication information, a channel that performs channel sensing on the first subband.
  • the listening type includes: when the second sub-band is included in the first sub-band set, and the downlink burst of the second sub-band is located in a downlink time domain resource of the second sub-band, Determining, by the network device, that the channel listening type is a short channel listening type; the downlink burst of the second sub-band is at least one time unit that is consecutive by the network device in time occupied by the second sub-band The downlink burst of the second sub-band includes a time unit occupied by the network device to send the downlink information.
  • the sum of the downlink time domain resource of any one of the subbands and the time domain resource occupied by the uplink information in the any subband does not exceed the maximum of any one of the subbands.
  • the first subband set includes at least two subbands.
  • a channel listening type indicating device for a network device, comprising means or means for performing the steps of the first aspect, the third aspect or the fifth aspect above.
  • a channel listening type indicating means for a terminal device, comprising means or means for performing the steps of the second aspect, the fourth aspect or the sixth aspect above.
  • the application provides a communication device including a processor and a memory; the memory is configured to store a computer execution instruction; the processor is configured to execute a computer execution instruction stored in the memory, to enable the communication device
  • a communication device including a processor and a memory; the memory is configured to store a computer execution instruction; the processor is configured to execute a computer execution instruction stored in the memory, to enable the communication device
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the first to sixth aspects Methods.
  • the present application provides a chip, the chip being connected to a memory, for reading and executing a software program stored in the memory, to implement the method of any one of the first aspect to the sixth aspect .
  • the present application provides a communication system, comprising the network device according to the seventh aspect and the terminal device of the eighth aspect.
  • the network device may determine, according to the relationship between the first subband set and the second subband set, a channel interception type corresponding to the channel interception performed by the terminal device on the first subband set, and then the network The device may send first indication information to the terminal device, where the first indication information may indicate the channel listening type. It can be seen that, by using the method and apparatus provided by the embodiments of the present application, the network device can indicate the channel listening type used by the terminal device for channel sensing for the sub-band.
  • FIG. 1 is a communication system provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a method for indicating a channel interception type according to an embodiment of the present application
  • 3a and 3b are schematic diagrams of channel listening types provided by an embodiment of the present application.
  • FIGS. 4a and 4b are schematic diagrams of channel listening types provided by an embodiment of the present application.
  • 5a, 5b, and 5c are schematic diagrams of channel listening types provided by an embodiment of the present application.
  • 6a, 6b, 6c, and 6d are schematic diagrams of channel listening types provided by embodiments of the present application.
  • FIG. 7a, 7b, and 7c are schematic diagrams of channel listening types provided by embodiments of the present application.
  • FIG. 8 is a flowchart of a method for indicating a channel interception type according to an embodiment of the present disclosure
  • 9a, 9b, 9c, and 9d are schematic diagrams of channel listening types provided by the embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 12, FIG. 13, FIG. 14 and FIG. 15 are schematic diagrams showing a structure of a channel listening type indicating apparatus according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the present application provides a method and an apparatus for indicating a channel listening type, which are used to provide an indication scheme for a channel listening type in a scenario of a broadband transmission technology.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 1 shows a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the network device 101 is responsible for providing the terminal device 102 with wireless access related services, implementing wireless physical layer functions, resource scheduling and radio resource management, quality of service (QoS) management, and radio access control. Mobility management capabilities.
  • the terminal device 102 is a device that accesses the network through the network device 101.
  • the network device 101 and the terminal device 102 are connected through a Uu interface, thereby implementing communication between the terminal device 102 and the network device 101.
  • the communication system 100 can support a wide band (WB) transmission technology to expand the bandwidth occupied by one carrier.
  • WB wide band
  • the bandwidth of one carrier is extended from 20 MHz in the LTE system to 40 MHz, and one carrier may include two sub-bands, each of which occupies 20 MHz.
  • the network device 101 may occupy the sub-band set including the at least one sub-band to send downlink information
  • the terminal device may occupy the sub-band set including the at least one sub-band to send the uplink information.
  • the following set of subbands occupied by the uplink information is referred to as a first subband set
  • the set of subbands occupied by the downlink information is referred to as a second subband set.
  • the network device 101 and the terminal device 102 can work on an unlicensed spectrum, and the network device 101 and the terminal device 102 use a listen before talk (LBT) channel access. mechanism.
  • LBT listen before talk
  • the so-called LBT is also called channel listening.
  • the transmitting node needs to listen to the channel before performing data transmission, and then perform data transmission after the channel is successfully detected. For example, before the network device 101 occupies the second sub-band set to send downlink information, it needs to listen to whether the second sub-band set (or each sub-band in the second sub-band set) is idle, and the second sub-band set After the interception is successful, the second sub-band set is used to send the downlink information.
  • the first sub-band set (or the first sub-band set) Whether each sub-band is idle for listening. After the first sub-band set is successfully detected, the first sub-band set is used to send uplink information.
  • the communication system 100 may be various radio access technology (RAT) systems, such as, for example, code division multiple access (CDMA), time division multiple access (time division). Multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA) ) and other systems.
  • RAT radio access technology
  • CDMA code division multiple access
  • time division time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • An OFDMA system can implement such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash.
  • Wireless technology such as OFDMA.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • the various versions of 3GPP in long term evolution (LTE) and LTE-based evolution are new versions of UMTS that use E-UTRA.
  • the communication system can also be applied to the future-oriented communication technology, and the technical solution provided by the embodiment of the present application is applicable to the communication system including the new communication technology, including the establishment of the bearer.
  • the network device 101 is a device deployed in a radio access network to provide a wireless communication function for the UE 102.
  • the network device 101 may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In the 3rd generation (3G) system, it is called Node B.
  • eNB evolved Node B
  • 3G 3rd generation
  • gNB In the NR system, it is called gNB.
  • devices that provide wireless communication functions for the terminal device 102 are collectively referred to as base stations.
  • the terminal device 102 may include various handheld devices, wireless devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the terminal device may also be referred to as a mobile station (MS), a terminal, a user equipment (UE), and may also include a subscriber unit, a cellular phone, and a smart device.
  • Smart phone wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld, laptop computer, cordless phone ( Cordless phone) or wireless local loop (WLL) station, machine type communication (MTC) terminal, etc.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL wireless local loop
  • MTC machine type communication
  • the communication system 100 may further include more terminal devices 102 that communicate with the network device 101, which are not described in the drawings for the sake of brevity.
  • the communication system 100 shown in FIG. 1 although the network device 101 and the terminal device 102 are shown, the communication system 100 may not be limited to including only the network device 101 and the terminal device 102, for example, Core network devices and the like may be included, which will be apparent to those skilled in the art and will not be described herein.
  • the first subband set includes at least one subband, where the at least one subband is a subband occupied by the network device scheduling terminal device to send uplink information, where the uplink information may be uplink data information, and further, the uplink The information can be an upstream packet. Further, the first set of subbands includes at least two subbands.
  • the second subband set includes at least one subband, where the at least one subband is a subband occupied by the network device to send downlink information, where the downlink information may include downlink data information, downlink control information, downlink broadcast information, and downlink. At least one of synchronization information and a downlink reference signal. Further, the second set of subbands includes at least two subbands.
  • Channel snooping of long-listening type usually refers to channel interception that is longer when channel interception starts to channel listening to power consumption.
  • the channel listening of the long listening type needs to listen to at least one listening time slot. If the channel is idle in the at least one listening time slot, the listening is successful, and the sending node may The occupied channel transmits information; further, the number of the at least one listening slot is not fixed.
  • the channel listening of the long listening type may be a clear channel assessment (CCA), or a type 1 channel access.
  • CCA clear channel assessment
  • the principle is that the sending node randomly generates a back-off counter N between 0 and the contention window (CW), and performs channel sounding with the granularity of the listening time slot (for example, the duration is 9 us). If the channel idle is detected in the listening slot, the backoff counter is decremented by one. Conversely, if the channel is detected to be busy in the listening time slot, the backoff counter is suspended, that is, the backoff counter N is kept during the channel busy time. The change is not repeated until the channel is detected to be idle. When the backoff counter is reset to zero, the channel is considered to be successful, and the transmitting node can immediately occupy the channel to transmit information.
  • CW contention window
  • the sending node may wait for a period of time after the back-off counter is zero, without immediately transmitting the information, and wait for the end, and then listen for an additional time slot before the time when the information needs to be sent, if the additional If the channel is detected to be idle in the time slot, the channel is considered to be successful, and the information can be sent immediately. If the backoff counter is zeroed before the start time of the message, or if the additional listening time slot is busy, the channel listening is said to have failed.
  • the sending node includes a terminal device or a network device.
  • the transmitting node (which may be a network device or a terminal device) can immediately occupy the channel transmission information after performing the long-listening type channel listening success, and the sending node can continuously occupy the maximum duration of the channel, which is called the maximum channel.
  • Maximum channel occupancy time MCOT
  • the sending node does not occupy the MCOT, the remaining MCOTs may be shared with another sending node, and if the information sent by another sending node is in the remaining MCOT, the long listening type channel Detector does not need to be performed. Listening, but transmitting information on the channel listening access channel of the short listening type.
  • Channel snooping of short snooping type usually refers to short channel snooping from the beginning of channel interception to channel snooping into power consumption.
  • the channel listening of the short listening type needs to listen to a listening time slot. If the channel is idle in the listening time slot, the listening is successful, and the sending node can occupy the channel. information.
  • the channel listening of the short listening type needs to listen to a predetermined number of listening time slots. If the channel is idle in the predetermined number of listening time slots, it is called listening. Successfully, the sending node can occupy the channel to send information.
  • the channel listening of the short listening type may be a single-slot CCA or a one-shot CCA or a 25us CCA, or a type 2 channel access.
  • the principle of the single-slot idle channel evaluation is that the transmitting node performs a single-slot channel listening of a preset length of time (for example, a preset time length of 25 us), if the transmitting node detects the channel in the single slot. If the channel is idle, the channel is considered to be successful, and the sending node can immediately access the channel to send information. If the channel is detected to be busy, the sending node abandons sending information, indicating that the channel is listening.
  • the channel listening mode of the short-listening type may be other channel interception capable of quickly detecting the carrier, which is not limited herein.
  • the listening duration of the channel listening is not limited to 25 us, and may be more or less; the number of channel listening is not limited to one, but may be two, three or more. This is not specifically limited.
  • the sending node includes a terminal device or a network device.
  • the channel state includes two types: the channel is idle, and the channel is busy.
  • the criterion for determining the channel state is that the wireless communication device compares the energy or power on the received channel in the listening time slot with the CCA-energy detection (CCA-ED). If the threshold is higher than the threshold, the state is the channel. Busy, if below the threshold, the state is that the channel is idle.
  • CCA-ED CCA-energy detection
  • a subband may be a frequency domain resource for carrying downlink information or uplink information.
  • the one sub-band may be a sub-band (eg, an i-th sub-band) included in the first sub-band set, or a sub-band included in the second sub-band set.
  • the one subband may include at least one subcarrier, or the one subband may include at least one physical resource block (PRB), or the one subband may be a frequency domain resource corresponding to a bandwidth of 5 MHz, 10 MHz, 15 MHz, or 20 MHz, for example, the frequency band may correspond to a frequency domain resource occupied by one carrier in the LTE system, or the one subband may be a carrier, or the A subband can also be called a bandwidth part (BWP).
  • the one subband is a frequency domain unit that performs channel interception for the network device or the terminal device, for example, the network device or the terminal device performs a long listening type or a short listening type for the one subband.
  • Channel listening process (performing another independent channel listening process for another different subband), or maintaining a contention widow (CW) length for that one subband (maintaining another independent for another subband) CW), or the network device or the terminal device independently performs a channel listening process of a long listening type or a short listening type for different subbands, or independently maintains a contention window length for different subbands.
  • the network device or the terminal device performs the channel sensing, using the detected energy or power in the listening time slot on the one subband and the listening threshold CCA-ED corresponding to the one subband.
  • the comparison is to determine whether the channel is busy or idle (determining the busy or idle state independently for another sub-band); for example, if the network device or the terminal device performs the LBT successfully for the one sub-band, the sub-band transmission information is occupied. (Just judge the other sub-band independently whether LBT is successful). It should be understood that the definition of the one subband described above is also applicable to the description of any subband included in the first subband set or the second subband set, and also applies to the first subband, the second subband, and the i th sub Description of the band, the jth subband, where i and j are positive integers.
  • the type of the terminal device listening for the first sub-band set may include a short-detection type and a long-listening type
  • the network device may indicate the listening type of the first sub-band set by the terminal device. If the design in LTE is used, the network device needs to indicate the listening type for each subband in the first subband set, so that the notification signaling overhead is large.
  • the network device may send only one indication information for the first sub-band set of the terminal device, and is used to indicate the channel listening type of the terminal device for the first sub-band set, compared to the LTE legacy. In the design, the network device does not need to indicate the channel listening type for each subband in the first subband set, which can save signaling overhead.
  • the present application provides a method for indicating a channel listening type.
  • the network device in FIG. 2 may be specifically the network device 101 in FIG. 1 , and the terminal device may be specific.
  • the method includes:
  • Step S201 The network device determines, according to the relationship between the first subband set and the second subband set, a channel listening type corresponding to the channel interception performed by the terminal device on the first subband set, where the channel interception type includes Long listening type or short listening type.
  • the terminal device In order to improve the opportunity for the terminal device to access the channel, after the network device performs the channel listening of the long-listening type successfully, and the downlink information is sent by a certain sub-band, if the terminal device is scheduled to send the uplink information in the sub-band set, The terminal device can no longer perform channel interception of a long listening type, but uses channel interception of a short listening type to quickly access the channel.
  • the first subband set includes at least one subband occupied by the network device for scheduling the terminal device to send uplink information.
  • the network device may schedule the terminal device to occupy all the sub-bands in the first sub-band set to send the uplink information. That is, each sub-band in the first sub-band set is a sub-band that the network device schedules the terminal device to occupy and send the uplink information, where each sub-band carries a part of the uplink information.
  • the uplink information may include data information, may also include control information, and may also include pilot information.
  • the uplink information may include one data packet, and may also include at least two data packets, and may also include a part of a data packet, which is not limited herein.
  • the uplink information may occupy all frequency domain resources (eg, all PRBs) corresponding to the any one of the sub-bands, and A part of the frequency domain resources (for example, a partial PRB) corresponding to the any one of the sub-bands may be occupied, and the uplink information is referred to as occupying any one of the sub-bands.
  • the second sub-band set includes at least one sub-band occupied by the network device to send downlink information.
  • the network device occupies the second sub-band set to send the downlink information, and the network device occupies all the sub-bands in the second sub-band set to send the downlink information. That is, each sub-band in the second sub-band set is a sub-band occupied by the network device to send downlink information, where each sub-band carries a part of the downlink information.
  • the network device may occupy all frequency domain resources (for example, all PRBs) corresponding to the any one of the sub-bands, and may occupy any one of the sub-bands.
  • the partial frequency domain resources (for example, partial PRBs) corresponding to the subbands are all referred to as occupying any one of the subbands.
  • the downlink information may include data information, such as data information in a physical downlink shared channel (PDSCH), and may also include uplink control information, and may also include pilot information; may be user-specific information. It can also be broadcast information or multicast information.
  • the downlink information may include one data packet, and may include at least two data packets, and may also include a part of a data packet, which is not limited herein.
  • any one of the at least two data packets may be carried on all the sub-bands in the second sub-band set, or may be carried in the second sub-band set. Part of the sub-band, not limited here.
  • the second subband set includes at least two subbands, for any subband included in the second subband set for carrying a part of information (referred to as first part information) in the downlink information, And another sub-band for carrying another part of the information in the downlink information (referred to as the second part information), where the network device sends the time domain resource corresponding to the first part information on the any one of the sub-bands
  • the time domain resources corresponding to the network device transmitting the second partial information on the other sub-band may be the same or different.
  • the network device may transmit the first partial information by occupying subframes #1 to #4 on the subband #n, and occupy the second partial information by occupying the subframes #1 to #3 on the subband #k.
  • the length of the MCOT corresponding to the first partial information sent by the network device on the any one of the sub-bands may be the same as the length of the MCOT corresponding to the network device transmitting the second partial information on the other any sub-band. It can also be different.
  • the MCOT corresponding to the first partial information sent by the network device on the subband #n may be 8 ms
  • the MCOT corresponding to the second partial information sent on the subband #k may be 4 ms.
  • Step S202 The network device sends first indication information to the terminal device, where the first indication information is used to indicate the channel listening type.
  • the first indication information is carried in one control signaling.
  • the first indication information may be carried in a physical layer downlink control signaling, and the physical layer downlink control signaling may be a downlink control information (DCI), for example, the DCI may be an uplink grant UL grant.
  • the first indication information is at least one field in the UL grant.
  • the first indication information may be carried in a control signaling, and is used to indicate a channel listening type corresponding to the first sub-band set.
  • each of the control signaling is used to indicate a listening type for the terminal device to perform channel sensing for one of the first subband sets.
  • the first indication information used to indicate the channel interception type is for the first sub-band set, and not for a specific sub-band, in the embodiment of the present application. Only one first indication information needs to be sent for the first sub-band set, and the channel listening type is not required to be separately indicated for each sub-band, thereby saving signaling overhead.
  • the network device sends a control signaling (for example, a UL grant), and indicates, by using the first indication information in the control signaling, a channel listening type of the first subband set including at least two subbands.
  • the network device may send scheduling signaling to the terminal device, where the scheduling signaling carries the first indication information, where the scheduling signaling is used to schedule the terminal.
  • the device occupies the first subband set and the first time unit sends the uplink information.
  • the scheduling signaling may be one scheduling signaling, and the specific scheduling signaling may be an uplink grant signaling (UL grant). That is, the network device sends the uplink information on the first time unit by using the UL grant scheduling terminal device to occupy the first sub-band set, and indicates the type of channel interception performed by the terminal device for the uplink information.
  • the UL grant may include the channel listening type, and include a frequency domain resource occupied by the uplink information, a modulation and coding scheme (MCS), and a physical channel corresponding to the uplink information.
  • MCS modulation and coding scheme
  • DMRS demodulation reference signal
  • control signaling that carries the first indication information may be transmitted on one of the subbands included in the first subband set or the second subband set.
  • Step S203 The terminal device performs channel sensing on the first sub-band set according to the channel listening type.
  • the terminal device may perform channel interception on the first sub-band set according to the channel listening type, and after the channel listening is successful, occupy the first sub-band set to send the uplink information; or Performing channel interception on at least one of the first subband sets, and after the channel is successfully detected, occupying at least one subband in the first subband set to send the uplink information.
  • the channel listening type indicated by the first indication information may be for a first subband set, and the terminal device performs channel sensing on the first subband set according to the channel listening type. At this time, the terminal device performs channel sounding on the first sub-band set using the interception method 1.
  • the listening methods 1 and 2 are specifically explained below.
  • the terminal device performs wideband listening on the first subband set according to the channel listening type, or performs joint sensing on the first subband set.
  • the terminal device determines, when the channel state (the channel is idle or the channel is busy), the power or energy detected on all the subbands in the first subband set in the listening time slot and the first subband set.
  • the CCA-ED compares the determined channel idle or busy state for all subbands in the first subband set. For example, when the channel listening type is a single-slot CCA, the terminal device jointly performs broadband single-slot CCA sensing for all the sub-bands of the first sub-band set, and occupies the first part after detecting that the channel is idle. All subbands of a subband set send the uplink information.
  • the terminal device When the channel listening type is a random back-off CCA, the terminal device jointly performs broadband random back-off CCA sensing for all the sub-bands of the first sub-band set, and the suspending or reducing operation of the back-off counter is for the The first subband is set, and when the backoff counter corresponding to the first subband set is reduced to zero, the terminal device occupies all the subbands of the first subband set to send the uplink information.
  • the channel listening type indicated by the first indication information may be for any one of the first subband sets or for each of the first subband sets.
  • Listening method 2 the terminal device independently listens to each subband in the first subband set according to the channel listening type, or independently detects each subband in at least one subband in the first subband set. listen.
  • the terminal device independently listens to each sub-band in the first sub-band set according to the channel listening type, and includes, by the terminal device, a listening type that listens to each sub-band in the first sub-band set.
  • the channel listening type indicated by the first indication information.
  • the terminal device independently listening to each of the at least one subband in the first subband set according to the channel listening type, wherein the terminal device pairs each of the at least one subband in the first subband set
  • the listening type in which the sub-bands are listening is the channel listening type indicated by the first indication information.
  • the terminal device determines the channel status (channel When the idle or channel is busy, the power or energy received in the sub-band #x in the listening time slot is compared with the CCA-ED corresponding to the sub-band #x, and the idle or busy state of the sub-band #x is determined. That is to say, each sub-band in the first sub-band set corresponds to an independent idle or busy state. For example, when the terminal device detects that a certain sub-band is idle on a certain listening time slot, it may be that the other sub-band may be busy. When the terminal device successfully detects a certain sub-band channel, the channel may fail to listen to another sub-band.
  • the channel status channel
  • the terminal device determines the channel status (channel When the idle or channel is busy, the power or energy received in the sub-band #x in the listening time slot is compared with the CCA-ED corresponding to the sub-band #x, and the idle or busy state of the sub-band #x is determined. That is to say, each sub-band in the first sub-
  • the terminal device For the intercepting method 2, after the terminal device performs channel sensing successfully for each of the at least one subband in the first subband set, the terminal device occupies the at least one subband to send the uplink. Data information. Specifically, when the terminal device detects that all the sub-bands in the first sub-band set are successful for the LBT, all the sub-bands are occupied to send the uplink information.
  • the terminal device When the terminal device only detects that a part of the sub-bands in the first sub-band set is successful for the LBT, and the LBT of the other part of the sub-band is unsuccessful, only the part of the sub-bands that successfully occupy the interception sends the uplink information or the A part of the uplink information does not occupy the other partial subband of the interception failure, wherein a part of the uplink information is information that the uplink information is carried on the part of the subband that is successfully detected.
  • the uplink information that is scheduled by the network device occupies the first sub-band set, because the terminal device does not occupy the first
  • the subband is set, so only a part of the uplink information, that is, part of the information carried on the part of the subband, is transmitted.
  • the terminal device may perform short-listening type channel sensing on each of the first sub-band sets.
  • the terminal device may perform channel interception on the first sub-band set according to the channel listening type, and after the channel is successfully detected, occupy the first sub-band set to send the uplink information, specifically, the terminal device is only in the first When all the sub-bands in a sub-band set are successfully detected, all the sub-bands in the first sub-band set are used to send the uplink information (that is, if any sub-band listening is unsuccessful, the sub-band set is not occupied.
  • the uplink information is used by the terminal device to occupy the uplink information (or a part of the uplink information) in the first sub-band set, that is, if the first sub-band set is part of the first sub-band set, When the sub-band is successfully detected, and the other part of the sub-band fails to listen, the terminal device only occupies a part of the sub-bands in the first sub-band set whose channel is successfully intercepted, and sends the uplink information or sends the uplink information to the channel. Listen for part of the information on a successful sub-band.
  • the terminal device may use the listening method 2-1 or 2-2 for the first sub-band.
  • the set performs channel listening. The following describes the listening methods 2-1 and 2-2 in detail.
  • the terminal device can perform channel interception of a long listening type for each of the first subband sets. At this time, the channel listening type is for each subband in the first subband set.
  • the terminal listens to use the channel listening of the long-listening type, or the terminal device in the first sub-band set
  • the channel listening of the long listening type is used when each of the at least one subband performs channel sounding.
  • the channel listening type is a channel listening type corresponding to the listening, by the terminal device, for each subband in the first subband set.
  • the channel listening type is a channel listening type used by the terminal device for channel sensing for any one of the first subband sets.
  • Listening method 2-2 The terminal device performs multi-subband listening on the first subband set. At this time, the channel listening type is for the first subband set.
  • the terminal device performs multiple sub-band snooping on one of the first sub-band sets, and the remaining sub-bands independently perform long-listening type channel snooping.
  • the terminal device performs multiple sub-band snooping on at least one of the first sub-band sets, and the remaining sub-bands independently perform long-listening type channel snooping.
  • the terminal device performs long-listening type channel sensing for one of the sub-band sets, and performs short-listening type channel sensing on the remaining sub-bands of the sub-band set. .
  • the sub-band For a sub-band of a channel listening of a long-listening type, if the channel on the sub-band is successfully detected, the sub-band may be occupied, otherwise it may not be occupied; for a sub-band of a short-listening type channel interception, if If the channel listening on the sub-band of the short-listening type is successful and the channel listening of the sub-band of the long-listening type is successful, the sub-band of the short-listening type may be occupied, otherwise it may not be occupied.
  • the terminal device may perform multi-subband channel sensing for a subset of the first subband set (which may be a true subset of the first subband set, or a first subband set). More specifically, the terminal device may perform a random backoff CCA for one subband in the subset (referred to as a first level subband), and execute a single order for the remaining subbands (referred to as secondary subbands) in the subset. Time slot CCA. For the first-level sub-band, the CCA that performs the random back-off can access the channel to send information.
  • the terminal device can send information on the access channel on the secondary subband. That is, when the terminal device uses the interception method 2-2, and the channel listening type is a random back-off CCA, not every sub-band in the first sub-band set performs a random back-off CCA, but At least one of the first subband sets performs a random backoff CCA, also referred to as performing a random backoff CCA for the first set of subbands.
  • the first subband set includes subband 1 and subband 2, and the channel interception type indicated by the first indication information is a random backoff CCA.
  • the terminal device independently performs a random backoff CCA for subband 1 and subband 2, respectively.
  • the terminal device performs multi-subband channel sensing for the first subband set, where a random backoff CCA is performed for subband 1, and a single slot CCA is performed for subband 2.
  • the LBT type corresponding to each sub-band of the first sub-band set is also a random back-off CCA, or the LBT type corresponding to the sub-band 2 is a random back-off CCA.
  • the relationship between the first sub-band set and the second sub-band set specifically refers to the inclusion relationship of the first sub-band set and the second sub-band set, that is, whether the second sub-band set includes the first sub-band set.
  • the network device determines, according to the inclusion relationship of the frequency domain range occupied by the first subband set and the frequency domain range occupied by the second subband set, that the terminal device performs channel interception on the first subband set.
  • the corresponding channel listening type The relationship between the first subband set and the second subband set may specifically include the following four cases.
  • the first sub-band set is a subset of the second sub-band set, or all sub-bands in the first sub-band set are included in the second sub-band set.
  • the second sub-band set may be equal to the first sub-band set, that is, the second sub-band set occupies the same frequency domain range as the first sub-band set;
  • a subband set is a true subset of the second subband set, and the second subband set occupies a frequency domain range that is larger than a frequency domain range occupied by the first subband set. For example, as shown in FIG.
  • the second subband set includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇
  • the first subband set includes ⁇ subband 1, subband 2, subband 3 , subband 4 ⁇ , equal to the second subband set.
  • the second subband set includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇
  • the first subband set includes ⁇ subband 1, subband 2 ⁇ , The true subset of the second subband set.
  • Case 2 (partially included): the second subband set is a true subset of the first subband set, or all subbands in the second subband set are included in the first subband set, and
  • the first subband set includes at least one subband not included in the second subband set. That is, the frequency domain range occupied by the first subband set includes and is greater than the frequency domain range occupied by the second subband set.
  • the second set of subbands includes ⁇ subband 1, subband 2 ⁇
  • the first set of subbands includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇ .
  • Case 3 (partially included): the first subband set includes at least one subband, the at least one subband is also included in the second subband set; and the first subband set further includes at least one other sub a further at least one subband of the first subband set is not included in the second subband set; and the second subband set also includes another at least one subband, the second subband set The other at least one subband is not included in the first subband set.
  • the first subband set and the second subband set partially overlap in the frequency domain.
  • the second subband set includes ⁇ subband 1, subband 2 ⁇
  • the first subband set includes ⁇ subband 2, subband 3, subband 4 ⁇ .
  • Case 4 (not included at all): any one of the sub-bands included in the second sub-band set does not belong to the first sub-band set, and any one of the sub-bands included in the first sub-band set does not belong to the second sub-band With a collection.
  • the frequency domain range occupied by the second sub-band set does not overlap with the frequency domain range occupied by the first sub-band set.
  • the second set of subbands includes ⁇ subband 1, subband 2 ⁇
  • the first set of subbands includes ⁇ subband 3, subband 4 ⁇ .
  • the method further includes: all sub-bands included in the second sub-band set and all sub-inclusions included in the first sub-band set Bands belong to the same carrier or the same BWP. That is to say, when the second sub-band set occupied by the downlink information sent by the network device and the first sub-band set occupied by the scheduling terminal device to transmit the uplink information belong to the same carrier, the terminal device cannot be directly indicated as in the prior art.
  • the channel listening type of the short listening type is used, but the channel listening type of the terminal device is determined according to the inclusion relationship between the first subband set and the second subband set.
  • the network device determines, according to the relationship between the first sub-band set and the second sub-band set, the channel listening type corresponding to the channel sensing performed by the terminal device on the first sub-band set, and may include the following manners. 1, mode 2, mode 3).
  • Method 1 determining a listening type according to an inclusion relationship of the first subband set and the second subband set.
  • the network device may determine to perform a channel on the first subband set.
  • the type of listening is short listening type.
  • the type of channel interception performed by the network device determined by the network device for the first subband set is Short listening type.
  • the channel snooping type is a short snooping type.
  • the sub-band (or sub-band set) occupied by the network device may share the MCOT corresponding to the downlink information on the sub-band (or the sub-band set) to the terminal device to send the uplink information, so when the sub-band occupied by the network device can
  • the terminal device may be allowed to use the short-listening type for the first sub-band set to listen.
  • the channel listening type performed by the terminal device can be indicated as a single-slot CCA.
  • the network device determines that the channel listening type is the long The type of listening. For example, in FIG. 5a, FIG. 5b and FIG. 5c, the channel listening type performed by the terminal device is indicated as a random back-off CCA.
  • the terminal device determined by the network device performs for the first subband set.
  • the type of channel listening is a long listening type.
  • the channel listening type is a long listening type.
  • the network device Since the network device only sends a first indication information to the first subband set for indicating a certain channel interception type, when any one of the first subband sets is not included in the second In the subband set, since the terminal device can no longer use the short listening type listening channel on the subband, it is limited to the channel listening type of the subband, indicating the channel Detecting to the first subband set.
  • the listening type is the long listening type. For example, as shown in FIG. 5a, FIG. 5b or FIG. 5c, since the first subband set is not included in the second subband set, the channel listening type is indicated as a random backoff CCA.
  • the at least one subband of the first subband set is not included in the second subband set, and specifically, at least one subband of the first subband set is included in the second The subband set is, and the other at least one subband of the first subband set is not included in the second subband set.
  • the first subband set includes at least one subband not included in the second subband set, and the first subband set further includes at least one subamble included in the second subband set.
  • the channel listening type determined by the network device at this time is the long listening type.
  • the network device sends a time domain inclusion relationship of the uplink information sent by the MCOT to the network device scheduling terminal device corresponding to the downlink information.
  • the maximum length of the occupied channel can be MCOT, for example, the MCOT is 2ms, 3ms, 4ms, 6ms, 8ms, or 10ms; If the time length of the information sent by the network device does not occupy the MCOT, the terminal device may perform a short listening type channel listening access channel and occupy the channel on the sub-band after the network device occupies the sub-band. The information is sent, and the length of the information does not exceed the remaining length of the MCOT. This method is called a network device sharing the MCOT to the terminal device.
  • the network device can share the MCOT corresponding to the sub-band set to the terminal device, so that the terminal device performs short on the sub-band set. Listening type channel listening to access the channel.
  • a network device or a terminal device performing channel interception of a long listening type on a certain subband or a certain subband set may correspond to one MCOT.
  • the MCOT corresponding to the random back-off CCA may be determined according to the downlink information to be sent or the priority class of the uplink information, and the access priority may include four types, and each access priority corresponds to one set.
  • Channel listening parameters, and the access priority is related to the type of service carried in the downlink information or the uplink information.
  • the channel listening parameters include a contention window set, a maximum channel occupation time, and the like.
  • the maximum channel occupation time of access priority 1 is 2 ms
  • the maximum channel occupation time of access priority 2 is 4 ms
  • the maximum channel occupation time of access priority 3 and access priority 4 is 6 ms or 10 ms.
  • the terminal device performs channel interception of the short listening type and cannot obtain the corresponding MCOT.
  • the network device may also use one of the following three interception methods before the second subband set transmits downlink information.
  • the interception method 3-1 the network device independently performs channel interception of a long-listening type for each sub-band in the second downlink sub-band before transmitting the downlink information. Similar to the listening method 2-1 of the terminal device.
  • the MCOT corresponding to the subband can be shared with the terminal device.
  • the uplink information is sent on the subband.
  • the network device performs multiple sub-band snooping on the second sub-band set. That is, the network device performs long-listening type channel sensing only for at least one of the second sub-bands (the at least one sub-band is a true subset of the second sub-band set), and the second sub- The other subbands with the set perform short snoop type channel snooping. Specifically, the network device may perform multi-subband channel sensing for a subset of the second subband set (which may be a true subset of the second subband set, or may be a corpus), and the remaining subbands independently perform long listening. Type channel listening.
  • the network device may perform long-listening type channel sensing for one sub-band (first-level sub-band) in the subset, and the remaining sub-bands of the subset (secondary sub-band Performing short-listening type channel interception; for the first-level sub-band, after performing long-listening type channel interception, the access channel can transmit information; for any second-level sub-band, when the sub-band is short-listen If the type channel is successfully detected, and the channel listening on the first sub-band is successful, the network device can send information on the access channel on the second sub-band.
  • the network device determines the channel status (the channel is idle or the channel is busy) When the power or energy received in the subband #x in the listening time slot is compared with the CCA-ED corresponding to the subband #x, the idle or busy state of the subband #x is determined.
  • the sub-band #i may be referred to as MCOT #i (i-th MCOT).
  • the MCOT#i since the network device independently performs channel sensing of the long listening type for each of the second subband set or the first subband set, the MCOT#i corresponding to the subband #i The MCOT corresponding to the channel listening of the long-listening type performed on the sub-band #i before transmitting the downlink information to the network device.
  • the MCOT#i is a network device that performs channel interception corresponding MCOT on the first level subband before transmitting the downlink information. If the subband #i is a secondary subband, although the secondary subband does not perform channel interception of a long listening type, the subband set for performing multi-subband channel sensing includes the executive.
  • the MCOT corresponding to the subband #i is a network device performing channel interception corresponding to the first subband #j before transmitting the downlink information.
  • MCOT#j is a network device performing channel interception corresponding to the first subband #j before transmitting the downlink information.
  • the MCOT #i is the MCOT corresponding to the first-level sub-band #j of the second sub-band set performing the random back-off CCA, and the multi-subband is performed together with the first-level sub-band in the second sub-band set.
  • Other secondary subbands of channel listening it can also be said that these secondary subbands correspond to MCOT#j.
  • the MCOT corresponding to the sub-band #i in the first sub-band set is that the network device performs long-listening type channel sensing or short-listening type channel sensing for the sub-band #i before transmitting the downlink information.
  • the MCOT may be, for example, a network device performing a long listening type channel listening corresponding to the MCOT for the subband #i, or the network device performing for the other subband #j different from the subband #i in the first subband set.
  • the MCOT corresponding to the long-listening type channel interception for example, when the network device performs short-listening type channel sensing for the sub-band #i).
  • the MCOT corresponding to a certain subband set is the MCOT corresponding to the network device performing channel interception on the subband set before transmitting the downlink information, or One of the subband sets performs MCOT corresponding to channel sounding.
  • the channel interception performed by the network device on the subband is a channel listening of a long listening type.
  • Listening method 4 The network device listens for the second sub-band set, or the network device performs joint listening (ie, wideband channel listening) for all sub-bands in the second sub-band set.
  • the listening mode is similar to the listening method 1 used by the terminal device.
  • the network device determines the channel state (the channel is idle or the channel is busy)
  • the network device detects the detected sub-bands in all the sub-bands in the second sub-band set.
  • the power or energy is compared to the CCA-ED corresponding to the second set of subbands, and the determined channel idle or busy state is for all subbands in the second set of subbands.
  • the downlink information (which is part of the downlink information or the downlink information) carried on the first sub-band set corresponds to a common MCOT.
  • the MCOT may be referred to as the MCOT corresponding to the downlink information, and may also be referred to as the MCOT corresponding to the first sub-band set, and may also be referred to as channel interception performed by the network device before transmitting the downlink information.
  • the corresponding MCOT when the second subband set includes all the subbands in the first subband set (case 1), it may also be referred to as the MCOT corresponding to the second subband set.
  • the mode 2 determines the listening type according to the inclusion relationship of the first sub-band set and the second sub-band set, and the MCOT corresponding to the first sub-band set.
  • the network device may determine that the type of performing channel interception on the first subband set is a short listening type.
  • the uplink burst of the first subband set is configured by the network device to schedule at least one time unit in which the terminal device is consecutive in time occupied by the first subband set.
  • the uplink burst of the first sub-band set includes a time unit that the network device schedules, by the terminal device, to send the uplink information.
  • the uplink burst of the first sub-band set is a time unit used by the network device to schedule the terminal device to send the uplink information.
  • the network device first determines a maximum channel occupancy time (MCOT) of the first subband set.
  • MCOT maximum channel occupancy time
  • the MCOT corresponding to the first sub-band set may also be referred to as: the downlink information sent by the network device on the first sub-band set (ie, the part of the downlink information carried on the first sub-band set).
  • the MCOT, or the downlink channel that the network device performs for the first subband set before the downlink information is sent, is corresponding to the MCOT.
  • the downlink channel interception is a long-listening type channel interception.
  • the first sub-band set corresponds to a common MCOT
  • the MCOT corresponding to the first sub-band set is the common MCOT.
  • the MCOT corresponding to the first subband set is the MCOT corresponding to the second subband set or one subband (subband #j) included in the first subband set, or the network device sends the downlink information before the subroutine
  • the channel listening of the long listening type is performed on the subband #j in the second subband set, and the remaining subbands perform the channel interception of the short listening type
  • the MCOT corresponding to a subband set is the MCOT corresponding to the channel listening of the long listening type on the subband #j; wherein #j may be included in the first subband set or not included in the second subband In the collection.
  • the maximum channel occupation duration corresponding to the first subband set is determined according to a maximum channel occupation duration corresponding to each subband in the first subband set, where the first subband set is in the first subband set.
  • the maximum channel occupation duration corresponding to any subband is the maximum channel occupation duration corresponding to the channel interception of the any subband before the network device sends the downlink information.
  • the MCOT corresponding to the first subband set is the earliest MCOT or the shortest MCOT in the MCOT corresponding to each subband in the first subband set.
  • the MCOT corresponding to the first sub-band set is an MCOT corresponding to a sub-band or any sub-band in the first sub-band set; further, the certain sub-band or the any sub-band A subband that performs long listening type channel listening before the network device transmits downlink information.
  • the terminal device can be indicated only when the uplink burst of the first sub-band set is in the MCOT.
  • the short listening type is used for channel listening to send the uplink information on the access channel. Otherwise, the channel listening type needs to be indicated as a long listening type.
  • the MCOT corresponding to the first sub-band set is the MCOT corresponding to the downlink information sent by the network device occupying a certain sub-band in the first sub-band set, for example, in the listening mode 3-2, if the network device If the sub-band performs the random back-off CCA, the MCOT is the MCOT corresponding to the random back-off CCA performed by the network device in the sub-band; if the network device occupies the sub-band to perform the single-slot CCA, the MCOT is the second The MCOT corresponding to the random back-off CCA performed by the sub-band performing the random back-off CCA in the set of sub-bands.
  • the MCOT corresponding to the first sub-band set may also be referred to as the MCOT corresponding to the second sub-band set. Considering that when each subband in the first subband set is included in the second subband set, the MCOT corresponding to the first subband set is also the MCOT corresponding to the second subband set.
  • the second sub-band set corresponds to a common MCOT, and if each sub-band in the first sub-band set is included in the second sub-
  • the MCOT corresponding to the first set of subbands is also the MCOT corresponding to the second set of subbands, that is, the common MCOT.
  • the MCOT corresponding to the second sub-band set may also be referred to as: the MCOT corresponding to the downlink information sent by the network device on the second sub-band set, or the network device performs before the second sub-band set sends the downlink information.
  • the downlink channel listens to the corresponding MCOT.
  • the downlink channel interception is a long-listening type channel interception.
  • the network device determines that the channel listening type is a long listening type. In addition, as described above, when at least one of the first subband sets is not included in the second subband set, the network device determines that the channel listening type is the long detect Listening type.
  • the network device determines channel interception.
  • the type is also a long listening type.
  • the second sub-band set is ⁇ sub-band 1, sub-band 2, sub-band 3, sub-band 4 ⁇
  • the first sub-band set is ⁇ sub-band 1 Sub-band 2 ⁇
  • the sub-band 1 uses a random back-off CCA, and the remaining sub-bands use a single-slot CCA, so the MCOT corresponding to the first sub-band set is a network device pair.
  • Subband 1 performs the MCOT corresponding to the random backoff CCA, and the length of the MCOT is 4 ms.
  • the end time of the MCOT is the subframe #n+4 (n+4th subframe), and the uplink burst #1 (the first uplink information) is located in the uplink burst #1 (the first one)
  • the uplink burst is the subframe #n+4, and the subframe #n+4 is in the MCOT, so the LBT type of the uplink information #1 of the subframe #n+4 is a single-slot CCA, as shown in FIG.
  • the uplink burst #2 (the second uplink burst) where the uplink information #2 (the second uplink information) is located is subframe #n+6 (the n+6th subframe), and the subframe #n+6 is not in the subframe #n+6 Within the MCOT, therefore, the LBT type of the uplink information #2 of the subframe #n+6 is a random backoff CCA, as shown in FIG. 6b.
  • the LBT type of the uplink information #2 of the subframe #n+6 is a random backoff CCA, as shown in FIG. 6b.
  • the end time of the MCOT is subframe #n+5 (n+5th subframe), and the uplink burst #3 (the third uplink burst) where the uplink information #3 (the third uplink information) is located (the third uplink burst) Include a sub-frame ⁇ #n+4, #n+5 ⁇ (#n+5 represents the n+5th subframe), and the uplink burst #3 is located in the MCOT, so the LBT type is a single-slot CCA; 6d, the end time of the MCOT is subframe #n+4, and the uplink burst #4 (the fourth uplink burst) where the uplink information #4 (the fourth uplink information) is located includes the subframe ⁇ #n+4, #n+5 ⁇ , the uplink burst #4 is not located in the MCOT, so the LBT type is a random backoff CCA.
  • the uplink burst of the first subband set is located in a maximum channel occupation duration corresponding to the first subband set, where the uplink burst of the first subband set and the network device are in the first
  • the sum of the time domain resources occupied by the downlink information sent on a subband set (or the second subband set) does not exceed the maximum channel occupation duration corresponding to the first subband set.
  • the time domain resource occupied by the downlink information includes a subframe ⁇ #n, #n+1, #n+2 ⁇
  • the uplink burst of the first subband set includes a subframe ⁇ #n+4 ⁇
  • the two add up to no more than the MCOT (length 4ms) corresponding to the first subband set.
  • the uplink burst of the first subband set is further located in the maximum channel occupation duration corresponding to the first subband set, and the uplink burst of the first subband set, and the network device is at the first The time domain resource occupied by the downlink information sent on the subband set (or the second subband set) and the sum of the gaps between the two do not exceed the maximum channel occupation duration corresponding to the first subband set.
  • the gap mentioned above may be an idle time when the network device and the terminal device do not send any information on the channel.
  • the gap may be an idle time that does not exceed a predefined length of time.
  • the predefined length of time is 25us.
  • the uplink burst of the first subband set is located in the maximum channel occupation duration corresponding to the first subband set, where the uplink burst of the first subband set, the network device is in the first
  • the sum of the time domain resources occupied by the downlink information sent on a subband set (or the second subband set) and the time domain resources occupied by other uplink transmissions and/or downlink transmissions between the two does not exceed The maximum channel occupation duration corresponding to the first subband set.
  • the network device may schedule other uplink bursts or uplink transmissions between the uplink burst and the downlink information
  • the other uplink bursts may also share the MCOT corresponding to the first subband set to perform the short interception type. Channel listening, so other uplink transmissions and/or downlink transmissions between the two are also counted in the MCOT corresponding to the first subband set.
  • the uplink burst of the first subband set is further located in the maximum channel occupation duration corresponding to the first subband set, and the uplink burst of the first subband set, and the network device is at the first Time domain resources occupied by the downlink information sent on the subband set (or the second subband set), time domain resources occupied by other uplink transmissions and/or downlink transmissions between the two, and between The sum of the gaps does not exceed the maximum channel occupation duration corresponding to the first set of subbands.
  • the above-mentioned voids are as described above and will not be described again.
  • the time domain resource occupied by the downlink information is the downlink information.
  • the time domain resource occupied by the downlink information is the earliest starting time to a time domain resource between the latest end time, wherein the downlink information occupies a corresponding time domain resource on each subband of the second subband set (or the first subband set), wherein the earliest start time The start time of the earliest time domain resource at the start time in the respective time domain resources corresponding to all the sub-bands of the second sub-band set (or the first sub-band set), and the latest end time is the end time at the latest The end time of the time domain resource.
  • the downlink information occupies the K segment time domain resource correspondingly, and the earliest starting time is the starting time of the K segment time domain resource.
  • the start time corresponding to the earliest time domain resource, and the latest end time is the end time corresponding to the latest time domain resource at the end time of the K-segment time domain resource.
  • K is a positive integer.
  • the time domain resource occupied by the uplink burst is the uplink burst in the first subband set. Any time zone resource occupied by any subband.
  • the time domain resource occupied by the uplink burst is the earliest starting time to the latest end time.
  • the time domain resource wherein the earliest starting time is the starting time of the earliest subband of the time domain resource occupied by the uplink burst in each subband of the first subband set, the latest The end time is the end time of the latest sub-band ending in the time domain resource occupied by the uplink burst in each sub-band of the first sub-band set.
  • Manner 3 Determine a listening type according to an inclusion relationship of the first subband set and the second subband set, and an MCOT corresponding to each subband in the first subband set.
  • each subband in the first subband set is included in the second subband set, and an uplink burst of each subband in the first subband set is
  • the network device determines that the channel listening type is a short listening type
  • the uplink burst of the i-th sub-band is located in the MCOT of the corresponding sub-band, and includes: an i-th uplink burst of the i-th sub-band, for the i-th sub-band in the first sub-band set. Located within the MCOT of the i-th sub-band.
  • the ith uplink burst is configured by the network device to schedule at least one time unit in which the terminal device is consecutive in time occupied by the i-th sub-band.
  • the ith uplink burst includes a time unit that the network device schedules, by the terminal device, to send the uplink information.
  • the ith uplink burst is a time unit for the network device to schedule the terminal device to send the uplink information, or the ith uplink burst is used by the network device to schedule the terminal device to send The time unit occupied by the uplink information on the i-th sub-band.
  • the MCOT of the i-th sub-band is an MCOT corresponding to channel interception performed by the network device for the i-th sub-band before transmitting the downlink information, where the i is an integer greater than zero and less than or equal to N.
  • the N is the number of subbands included in the first subband set, and the N is a positive integer.
  • the downlink information is information that is sent after the network device performs the channel listening success. Further, the channel is listening for channel interception of a long listening type.
  • the MCOT of the i-th sub-band is the maximum channel occupation duration corresponding to the ith downlink information sent by the network device on the i-th sub-band, where the i-th downlink information is that the downlink information is carried in the The part on the i-th sub-band.
  • the MCOT of the i-th sub-band is the maximum channel occupation duration corresponding to the channel interception of the i-th sub-band before the network device sends the i-th downlink information on the i-th sub-band, where The i-th downlink information is a part of the downlink information carried on the i-th sub-band.
  • the ith downlink information is information sent by the network device after the channel is successfully detected. Further, the channel is listening for channel interception of a long listening type.
  • the network device determines that the channel listening type is short listening. Types of.
  • each subband in the first subband set is included in the second subband set, and an i th uplink of an i th subband in the first subband set
  • the network device determines that the channel listening type is the long listening type.
  • the network device determines that the channel listening type is the long detect Listening type.
  • the network device determines that the channel listening type is a long listening type.
  • the i th upstream burst of the i th subband is not located in the MCOT corresponding to the i th subband, the i th
  • the sum of the uplink burst and the time domain length of the downlink information on the i-th sub-band exceeds the MCOT corresponding to the i-th sub-band. Therefore, the i-th uplink burst cannot share the MCOT corresponding to the i-th sub-band and is short-used.
  • the channel of the listening type listens to the access channel.
  • the network device Since the first indication information is for the first subband set, if any one of the first subband sets cannot share the MCOT of the subband, even if there are other subbands (subbands) on the first subband set #j)
  • the MCOT corresponding to the subband #j can be shared, and the channel listening type indicating the first subband set is also required to be a long listening type.
  • the network device when at least one of the first subband sets is not included in the second subband set, the network device also determines channel Detect The listening type is also a long listening type.
  • the second subband set for each subband in the first subband set, uplink information on the subband Carrying on the first time unit, belonging to a part of the first data packet, if the first time unit on each sub-band, or the uplink burst where the uplink information (or the first time unit) on each sub-band is located, includes
  • the network device occupies the MCOT corresponding to the downlink information (or a part of the downlink information) sent by the subband (or the MCOT corresponding to the channel interception performed by the network device before the downlink information of the subband), the The channel listening type of a subband set is a single slot CCA.
  • the first sub-band set includes any one of the i-th sub-bands, for the uplink information on the i-th sub-band (bearing on the i-th time unit), if the i-th time unit, or the i-th sub-band
  • the i-th uplink burst where the uplink information (or the ith time unit) is located is not included in the MCOT corresponding to the downlink information sent by the i-th sub-band, and the channel of the first sub-band set
  • the listening type is a random back-off CCA.
  • the first sub The channel listening type of the set is a single-slot CCA.
  • the channel snooping type of the first subband set is a single slot.
  • each sub-band in the second sub-band set corresponds to one MCOT
  • the end time of the MCOT corresponding to each sub-band may be different, according to the principle of MCOT sharing
  • the terminal device can use the single slot CCA on the subband.
  • the network device sends only the first indication information to the first subband set, and therefore only the MCOT corresponding to the downlink information carried by the first time unit in each subband of the first subband set.
  • the channel listening type of the first subband set is a single Time slot CCA. Otherwise, when the first time unit is not included in the MCOT corresponding to any one of the first sub-band sets, the channel listening type of the first sub-band set is a random back-off CCA, thereby ensuring that The MCOT sharing principle is satisfied on any subband.
  • the uplink burst of the i-th sub-band is located within a maximum channel occupation duration corresponding to the i-th sub-band, and the uplink burst of the i-th sub-band and the network device are in the i-th sub-band
  • the sum of the time domain resources occupied by the uplink information is not more than the maximum channel occupation time corresponding to the i-th sub-band.
  • the time domain resources occupied by the downlink information include subframes ⁇ #n, #n+1, #n+2 ⁇ , and the uplink bursts on the subband 2 include subframes ⁇ #n +4 ⁇ , the two add up to 4ms, no more than 4ms of sub-band 1 MCOT length.
  • the time domain resources occupied by the downlink information include subframes ⁇ #n, #n+1 ⁇
  • the uplink bursts on subband 1 include subframes ⁇ #n+4, #n+5,# n+6 ⁇ , the sum of the two is 5ms, which exceeds the MCOT length of subband 1 by 4ms.
  • the uplink burst of the ith sub-band is located in the maximum channel occupation duration corresponding to the ith sub-band, and the uplink burst of the ith sub-band and the network device are on the ith sub-band
  • the time domain resource occupied by the downlink information and the gap between the two are not more than the maximum channel occupation time corresponding to the i-th sub-band.
  • the gap mentioned above may be an idle time when the network device and the terminal device do not send any information on the i-th sub-band.
  • the gap may be an idle time that does not exceed a predefined length of time.
  • the predefined length of time is 25us.
  • the uplink burst of the i-th sub-band is located in a maximum channel occupation duration corresponding to the i-th sub-band, and the uplink burst of the i-th sub-band, the network device is in the i-th sub-band
  • the sum of the time domain resources occupied by the downlink information sent by the uplink information and the time domain resources occupied by other uplink transmissions and/or downlink transmissions between the two does not exceed the maximum channel occupation duration corresponding to the ith subband .
  • the network device may schedule other uplink bursts or uplink transmissions between the uplink burst and the downlink information
  • the other uplink bursts may also share the MCOT of the i-th sub-band to perform single-slot CCA, and thus two Other uplink transmissions and/or downlink transmissions between the parties are also counted in the MCOT of the i-th sub-band.
  • the uplink burst of the ith sub-band is further located in the maximum channel occupation duration corresponding to the ith sub-band, and the uplink burst of the ith sub-band is located in the ith sub-band.
  • the maximum channel occupancy duration includes the uplink burst of the i-th sub-band, the time domain resource occupied by the downlink information sent by the network device on the i-th sub-band, and other uplink transmissions between the two and/or The time domain resource occupied by the downlink transmission and the sum of the gaps between the two do not exceed the maximum channel occupation duration corresponding to the i-th sub-band.
  • the above-mentioned voids are as described above and will not be described again.
  • the second sub-band set is ⁇ sub-band 1, sub-band 2, sub-band 3, sub-band 4 ⁇
  • the first sub-band set is ⁇ sub-band 1, sub-band 2 ⁇
  • the network device accesses the second sub-band set, separate sub-band 1 to sub-band 4 respectively use independent random back-off CCA.
  • the MCOT lengths of the sub-band 1, the sub-band 2, the sub-band 3, and the sub-band 4 are all 4 ms.
  • the MCOT end time of subband 1 is #n+6 (n+6th subframe)
  • the MCOT end time of subband 2 is #n+4 (n+4th subframe).
  • the uplink information #1 (the first uplink information) is carried on the subband 1 and the subband 2, and the occupied time unit is the subframe #n+4, and the uplink information #2 (the second uplink information) is carried in the subband 1 and the sub With the band 2, the occupied time unit is the subframe #n+6.
  • Upstream burst #1 (1st uplink burst) on subband 1 is the time unit occupied by uplink information #1, that is, subframe #n+4, uplink burst #2 on subband 2 (2nd The uplink burst is the time unit occupied by the uplink information #1, that is, the subframe #n+4, and the uplink burst #3 (the third uplink burst) on the subband 1 is the time unit occupied by the uplink information #2. That is, subframe #n+6, the uplink burst #4 (the fourth uplink burst) on the subband 2 is the time unit occupied by the uplink information #2, that is, the subframe #n+6.
  • the uplink burst #1 of the subband 1 is within the MCOT of the subband 1, and the uplink burst #2 of the subband 2 is within the MCOT of the subband 2, so the LBT type of the uplink information #1 is a single slot CCA;
  • the uplink burst #3 with band 1 is within the MCOT of subband 1, but the uplink burst #4 of subband 2 is not within the MCOT of subband 2, so the LBT type of uplink information #2 is a random backoff CCA.
  • the MCOT end time of subband 1 is #n+5
  • the MCOT end time of subband 2 is #n+4.
  • the uplink burst ⁇ #n+4, #n+5 ⁇ where the uplink information on the subband 1 is located is included in the MCOT of the subband 1
  • the uplink burst where the uplink information on the subband 2 is located ⁇ #n+ 4 ⁇ is included in the MCOT of subband 2
  • the LBT type of the first subband set is a single slot CCA.
  • the MCOT end time of the subband 1 is #n+5 (n+5th subframe)
  • the MCOT end time of the subband 2 is #n+4.
  • the uplink burst ⁇ #n+4, #n+5, #n+6 ⁇ where the uplink information on the subband 1 is located is not included in the MCOT of the subband 1, and the uplink information on the subband 2 is on the uplink.
  • the burst ⁇ #n+4 ⁇ is included in the MCOT of the subband 2, so the LBT type of the first subband set is a random backoff CCA.
  • an uplink burst may include at least one temporally consecutive time unit occupied by the network device to schedule transmission of the information by the terminal device.
  • the continuation may refer to that the channel occupation is continuous, that is, the network device schedules the terminal device to continuously occupy the at least two time units to send information. It may also mean that the sequence of time units (for example, TTI or subframe or slot slot) is consecutive. That is to say, in at least two time units consecutive in time, there may be no gap between any two adjacent time units, and there may be a gap.
  • the network device scheduling terminal device continuously occupies the two adjacent time units to send uplink information, or the network device scheduling terminal device does not occupy the time domain resource sending information at the end position of the previous time unit, and reserves the time domain resource.
  • the time domain resource is reserved as a gap, etc., which is not limited in this embodiment of the present application. That is, any one of the plurality of time units may be a complete time unit or a part of a time unit.
  • the uplink burst is not continuous with other adjacent time units of the network device scheduling terminal device to send information, or the uplink burst and other information for the terminal device not included in the uplink burst are sent.
  • the time unit is not continuous in time. That is, there is a gap before and after the uplink burst.
  • the uplink information sent by the network device scheduling terminal device on the ith subband in the first subband set or the first subband set occupies subframe #2 (the second subframe), and the network device scheduling terminal device is in the first sub
  • the device schedules the time unit for transmitting information, and after subframe #4 (the fourth subframe), there is no other time unit that is scheduled to transmit information by the network device.
  • the uplink burst is the subframe sequence ⁇ #1, #2, #3, #4 ⁇ , and the uplink burst includes the time unit in which the uplink information is located, that is, subframe #2.
  • the uplink burst is an uplink burst on the first subband set.
  • the network device may schedule the terminal device to occupy the same time domain resource on different subbands on the first subband set.
  • the time domain resource is referred to as an uplink burst on the first subband set.
  • the first subband set includes subband #1 (1st subband) and subband #2 (2nd subband), and the uplink transmission of subband #1 corresponds to subframe ⁇ #1, #2, #3, #4 ⁇ , the uplink transmission of subband #1 corresponds to the subframe ⁇ #1, #2, #3, #4 ⁇ , and the uplink burst corresponding subframe on the first subband set ⁇ #1, #2, #3, #4 ⁇ .
  • the uplink burst is an uplink burst on a certain subband of the first subband set (eg, an i th uplink burst of the i th subband).
  • the network device may schedule the terminal device to transmit uplink bursts of different lengths on different subbands on the first subband set.
  • the uplink bursts on different subbands of the first subband set may have different time domain ranges.
  • the first subband set includes subband #1 and subband #2, the uplink burst corresponding to subband #1 corresponds to subframe ⁇ #1, #2 ⁇ , and the uplink burst corresponding subband of subband #1 corresponds to subframe ⁇ #1, #2,#3,#4 ⁇ .
  • a time unit refers to at least one transmission time interval (TTI) or at least one time domain symbol (symbol) that is temporally consecutive.
  • the one time unit is a time unit included in the uplink burst, or the one time unit is a time unit corresponding to the uplink information sent by the network device scheduling terminal device.
  • the uplink burst may be an uplink burst of the first subband set, or may be an uplink burst on one subband of the first subband set, for example, an i th uplink burst of the i th subband.
  • Each TTI included in the time unit may be a complete TTI (ie, occupying all time domain resource transmission information corresponding to the TTI), or may be part of the TTI (ie, occupying part of the time domain resource transmission information corresponding to the TTI, and In addition, some of the time domain resources are reserved as idle.
  • the time unit can be a TTI.
  • the TTI may be a 1 ms TTI, or a subframe, and has a length of 1 ms. It may also be a short transmission time interval (short TTI, sTTI) shorter than 1 ms or a mini-slot or a non-slot.
  • the time domain resource occupied by the sTTI is shorter than the 1 ms TTI, that is, the sTTI is a TTI occupying the time domain resource length shorter than 1 ms.
  • the TTI is the time domain granularity of uplink resource allocation or uplink transmission, or TTI is the minimum time domain unit for the terminal device to perform uplink transmission.
  • the optional length that the sTTI may support includes a structure of 7 uplink symbols, 1 uplink symbol, 2 uplink symbols, 3 uplink symbols, or 4 uplink symbols, where the uplink symbol may be a single carrier frequency division multiple access symbol (
  • the single carrier frequency division multiplexing access symbol (SC-FDMA symbol) may be an orthogonal frequency division multiplexing access symbol (OFDMA symbol).
  • SC-FDMA symbol single carrier frequency division multiplexing access symbol
  • OFDMA symbol orthogonal frequency division multiplexing access symbol
  • the TTI is the time domain granularity of downlink resource allocation or downlink transmission, or TTI is the minimum time domain unit for network equipment to perform downlink transmission.
  • the optional length that the sTTI may support includes a structure of 7 downlink symbols, 1 downlink symbol, 2 downlink symbols, 3 downlink symbols, or 4 downlink symbols, where the downlink symbol may be an OFDMA symbol.
  • sTTI also supports other TTI lengths shorter than 1ms.
  • the one time unit may also be at least two TTIs that are consecutive in time, for example, on an unlicensed spectrum, where the time unit may be a burst composed of multiple TTIs in time, for example,
  • the time unit may be an upstream burst of the first set of subbands, or, for example, an i th upstream burst.
  • At least two sub-bands may be included in the first sub-band set.
  • the terminal device is notified to perform the type of the LBT on the carrier.
  • the network device transmitting the downlink information on the carrier includes the subband occupied by the terminal device when the terminal device is scheduled to send the uplink information
  • the network device instructs the terminal device to access the carrier by using the single slot CCA. If the subband occupied by the downlink information does not include the subband occupied by the scheduled uplink information in the frequency domain, the network device instructs the terminal device to use the random backoff CCA.
  • the present application provides a method for indicating a channel listening type.
  • the network device in FIG. 8 may be specifically the network device 101 in FIG. 1 , and the terminal device may be specific.
  • the method includes:
  • Step S81 The network device generates first indication information.
  • the first indication information is used to indicate a second sub-band set occupied by the network device to send downlink information, or the first indication information is used to indicate a first sub-band set, where the The set of subbands includes at least one subband occupied by the network device for scheduling the terminal device to send uplink information.
  • the first set of subbands may include one subband or include at least two subbands, and the second set of subbands may include one subband or include at least two subbands.
  • the first indication information may be cell common control information, or the first indication information may be group control information for at least one terminal device including the terminal device.
  • the network device In order for the terminal device to determine which sub-bands are occupied by the network device, and can share the MCOT to the terminal device to send uplink information on the single-slot CCA access channel, the network device needs to send the first indication information, and the second sub-band is aggregated or The occupancy of the second sub-band set is notified to the terminal device.
  • the first indication information may display the second sub-band set, or may implicitly indicate the second sub-band set.
  • the display indication may be: a bit field in the first indication information to indicate that the network device uses the first sub-band set.
  • the first indication information may explicitly indicate the sequence number of the subband included in the second subband set, and may also indicate, in the form of a bitmap, whether each subband in the second subband set is occupied. For example, '0' means unoccupied and '1' means occupied.
  • the implicit indication may be that the terminal device determines by blind detection of the first indication information. For example, if the first indication information is detected on a certain sub-band, it is determined that the network device occupies the sub-band.
  • the first indication information is used to indicate a first sub-band set, where the first sub-band set includes the network device scheduling at least one sub-band occupied by the terminal device to send uplink information.
  • the first indication information may explicitly indicate the sequence number of the subband included in the first subband set, or may indicate, in the form of a bitmap, whether each subband in the first subband set is Occupied, for example, '0' stands for unoccupied and '1' stands for occupied.
  • the first indication information may also implicitly indicate the first subband set, and the implicit indication may be: the terminal device determines by blind detection of the first indication information. For example, if the first indication information is detected on a certain sub-band, it is determined that the network device occupies the sub-band.
  • the network device may not be limited to the above two modes, but the usage of the second sub-band set is notified in other manners.
  • Step S82 The network device sends the first indication information to the terminal device.
  • the first indication information may be carried in one control signaling.
  • the first indication information may be carried in one physical layer downlink control signaling.
  • the physical layer downlink control signaling may be a DCI.
  • the DCI may be control information in a common physical downlink control channel (CPDCCH).
  • CPDCCH common physical downlink control channel
  • the physical layer downlink control signaling may be at least one field in a DCI.
  • the first indication information is carried in one control signaling, instead of at least two control signalings, where each control signaling is used to indicate a second subband set or a first subband set.
  • the physical layer downlink control signaling carried by the first indication information is on one of the subbands included in the second subband set or the first subband set.
  • Step S83 The terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, where the first sub-band is used by the network device to schedule the terminal device to send uplink information. Sub-band.
  • Step S84 The terminal device performs channel sensing on the first sub-band according to the channel listening type.
  • the terminal device when the terminal device is successfully listening to the first sub-band, the terminal device may occupy the first sub-band to send uplink information.
  • the terminal device may use a channel listening of a long listening type for the first subband, or may perform channel sensing of a short listening type.
  • the terminal device can perform channel interception of the long-listening type independently for the first sub-band, for example, adopting a listening method. 3-1.
  • the short-listening type channel interception may also be performed, and according to whether another long-listening type sub-band is successful and whether the short-listening type of the first sub-band is successfully determined whether to occupy the sub-band to send uplink information, for example, using a listening method.
  • the first sub-band may be a first-level sub-band or a second-order sub-band.
  • the network device may occupy the subband to send downlink information, and at this time, the terminal device may share the subband, or the subband where the subband is located.
  • the MCOT corresponding to the set (the second sub-band set or the third sub-band set) uses a single-slot CCA for channel sensing to access the channel.
  • the network device may not occupy the downlink information sent by the sub-band, or the network device may occupy the sub-band, but the uplink burst of the uplink information to be sent by the terminal device exceeds the MCOT, and the terminal device cannot share the MCOT. .
  • the network device needs an indication. It can be used for uplink time domain resources of a single-slot CCA access channel.
  • the first indication information is further used to indicate an uplink time domain resource of the second subband set, where the uplink time domain resource of the second subband set and the downlink information are in the The sum of the time domain resources occupied by the second subband set does not exceed the MCOT of the second subband set, and the uplink time domain resource of the second subband set is the terminal device in the second sub
  • the time domain resource corresponding to the channel sensing of the short listening type is performed on at least one of the band sets.
  • the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, including: when the first sub-band is included in the second sub-band set And when the uplink burst of the first subband is located in an uplink time domain resource of the second subband set, the terminal device determines that the channel snooping type is a short channel snooping type.
  • the uplink burst of the first sub-band is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first sub-band, where the uplink burst of the first sub-band includes The network device schedules a time unit occupied by the terminal device to send the uplink information.
  • the network device may indicate at least two of a start time (or start time unit), an end time (or an end time unit), and a duration of the uplink time domain resource of the second subband set, or may specifically indicate
  • the uplink time domain resource of the second subband set is specifically a TTI or a subframe or a time slot. Other indication methods may also be used, which are not limited herein.
  • the start time (or start time unit) of the uplink information may be a time offset (or a time interval) of the uplink time domain resource compared to the end time of the downlink information.
  • the uplink burst of the first sub-band is an uplink burst that is carried on the first sub-band, and the definition of the uplink burst is as described above and will not be described again. Further, the uplink burst of the first subband is discontinuous in time with other adjacent time units in which the network device schedules the terminal device to transmit information.
  • the uplink burst of the first subband is located in the uplink time domain resource of the second subband set, and the end time of the uplink burst of the first subband is not later than the second The end time of the uplink time domain resource of the subband set.
  • the uplink burst of the first subband is located in the uplink time domain resource of the second subband set, and the start time of the uplink burst of the first subband is not earlier than the first The start time of the uplink time domain resource of the second subband set, and the end time of the uplink burst of the first subband is not later than the end time of the uplink time domain resource of the second subband set.
  • the terminal device determines that the channel snooping type is a long snooping type.
  • the time domain resource occupied by the downlink information is the same in the time domain resources occupied by each subband of a certain subband set (for example, the second subband set or the first subband set), the time domain resource occupied by the downlink information is The downlink information is a time domain resource occupied by any one of the subbands of the subband set.
  • the time domain resource occupied by the downlink information in each subband of the subband set are not completely the same, the time domain resource occupied by the downlink information is between the earliest start time and the latest end time.
  • the downlink information occupies a corresponding time domain resource on each subband of the subband set, where the earliest starting time is the corresponding time domain resource corresponding to all subbands of the subband set,
  • the start time of the earliest time domain resource at the start time, and the latest end time is the end time of the latest time domain resource at the end time.
  • the downlink information in the K subbands included in the subband set correspondingly occupy the K segment time domain resource
  • the earliest starting time is the start of the time domain resource with the earliest starting time in the K segment time domain resource.
  • the latest end time is the end time corresponding to the latest time domain resource at the end time of the K-zone time domain resource.
  • K is a positive integer.
  • the MCOT of the second sub-band set is an MCOT corresponding to channel interception performed by the network device for the second sub-band set before transmitting the downlink information.
  • the channel interception performed by the network device before transmitting the downlink information is a channel interception of a long listening type.
  • the network device performs channel sensing on the second sub-band set before transmitting the downlink information, as described in the listening method 3-1 or the listening method 3-2 or the listening method 4, Let me repeat.
  • the first indication information is further used to indicate an uplink time domain resource of the second subband set, where the uplink time domain resource of the second subband set and the downlink information are in the The sum of the time domain resources occupied by any one of the second subband sets does not exceed the MCOT of the any subband, and the uplink time domain resource of the second subband set is the terminal device
  • the time domain resource corresponding to the channel sensing of the short listening type is performed on at least one of the second subband sets.
  • the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, including: when the first sub-band is included in the second sub-band set And when the uplink burst of the first subband is located in an uplink time domain resource of the second subband set, the terminal device determines that the channel snooping type is a short channel snooping type.
  • the uplink burst of the first sub-band is at least one time unit in which the network device schedules the terminal device to be consecutive in time occupied by the first sub-band, and the uplink of the first sub-band And sending, by the network device, a time unit occupied by the terminal device to send the uplink information.
  • the terminal device determines that the channel snooping type is a long snooping type.
  • the MCOT of any one of the second subband sets is an MCOT corresponding to channel interception performed by the network device for the any one of the subbands before the downlink information is sent.
  • the description of the MCOT corresponding to the sub-band #i is as described above, and will not be described again.
  • any subband is subband #i
  • the uplink time domain resource of subband #i and the time domain resource corresponding to the network device transmitting downlink information on subband #i do not exceed the maximum of subband #i.
  • the length of time the channel is occupied.
  • the channel interception performed by the network device before transmitting the downlink information is a channel interception of a long listening type.
  • the network device notifies the terminal device that the second subband set occupied by transmitting the downlink information includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇ , and because of subframe #4 (the fourth sub The sum of the time domain length of the downlink information of the frame and any one of the second subband sets does not exceed the MCOT of the arbitrary subband, and therefore the uplink time domain resource of the second subband set is notified to be subframe #4.
  • the terminal device may perform single-slot CCA on the uplink burst ⁇ subframe #4 ⁇ on the subband 1, subband 2, subband 3, and subband 4, and although in subband 1, subband 2, subband 4 Subframe #6 (6th subframe) is also within the MCOT of the corresponding subband, but is limited by the network device only notifying the uplink time domain resource corresponding to a common second subband set, ie, subframe #4, so the terminal The device performs a random backoff CCA in the uplink burst ⁇ subframe #6 ⁇ of the four subbands.
  • the first indication information is further used to indicate an uplink time domain resource of each of the second subband sets; wherein any one of the second subband sets
  • the uplink time domain resource is determined according to the MCOT of any one of the sub-bands, and the uplink time domain resource of any one of the sub-bands performs channel interception of the short-listening type on the any sub-band of the terminal device. Listen to the corresponding time domain resources.
  • the uplink time domain resource of any one of the second subband sets is determined according to the MCOT of the any subband, and the uplink time domain resource of the any subband and the downlink are included.
  • the sum of the time domain resources occupied by the information in any of the subbands does not exceed the maximum channel occupation time of any one of the subbands.
  • the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, including: when the first sub-band is included in the second sub-band set And when the uplink burst of the first subband is located in the uplink time domain resource of the first subband, the terminal device determines that the channel listening type is a short channel listening type; the first sub The uplink burst of the band is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling office The time unit occupied by the terminal device to send the uplink information.
  • the network device may indicate at least two of a start time (or start time unit), an end time (or an end time unit), and a duration of an uplink time domain resource of each subband in the second subband set,
  • a start time or start time unit
  • an end time or an end time unit
  • a duration of an uplink time domain resource of each subband in the second subband set For example, the T2 or the sub-frame or the time slot of the uplink time domain resource of each sub-band in the second sub-band set may be specifically used, and other indication methods may also be used, which are not limited herein.
  • the start time (or start time unit) of the uplink information may be a time offset (or a time interval) of the uplink time domain resource compared to the end time of the downlink information.
  • the terminal device determines that the channel listening type is a long channel listening type.
  • the uplink burst of the first subband is located in the uplink time domain resource of the first subband, and the end time of the uplink burst of the first subband is not later than the first sub The end time of the upstream time domain resource with the band.
  • the uplink burst of the first subband is located in the uplink time domain resource of the first subband, and the start time of the uplink burst of the first subband is not earlier than the first The start time of the uplink time domain resource of the subband, and the end time of the uplink burst of the first subband is not later than the end time of the uplink time domain resource of the first subband.
  • the MCOT of any one of the second subband sets is an MCOT corresponding to channel interception performed by the network device for the any one of the subbands before the downlink information is sent.
  • the description of the MCOT corresponding to the sub-band #i is as described above, and will not be described again.
  • any subband is subband #i
  • the uplink time domain resource of subband #i and the time domain resource corresponding to the network device transmitting downlink information on subband #i do not exceed the maximum of subband #i. The length of time the channel is occupied.
  • the network device may occupy only part of the subbands as the second subband set.
  • Send downlink information the network device notifies the terminal device that the second subband set occupied by the downlink information includes ⁇ subband 1, subband 2 ⁇ , and the uplink time domain resource of each subband: the uplink time domain of subband 1.
  • the resource is subframe #4 to subframe #6, and the uplink time domain resource of the subband 2 is subframe #4 to subframe #6, and the terminal device can be on the subband 1 and the subband 2 for the uplink burst ⁇ subframe #4, subframe #5, subframe #6 ⁇ performs single-slot CCA, and for sub-band 3 and sub-band 4 that are not occupied by the network device, the terminal device performs a random back-off CCA.
  • the network device notifies the terminal device that the second subband set occupied by the downlink information includes ⁇ subband 1, subband 2 ⁇ , and uplink time domain resources of subband 1 and uplink time domain resources of subband 2.
  • the terminal device can perform single-slot CCA for uplink burst ⁇ subframe #4 ⁇ on sub-band 1 and sub-band 2, respectively; for uplink burst ⁇ subframe #6 ⁇ , The sub-band 1 and sub-band 2 uplink time domain resources are exceeded, so a random back-off CCA is performed respectively; for the sub-band 3 and sub-band 4 that are not occupied by the network device, the terminal device performs a random back-off CCA.
  • the network device notifies the terminal device that the second subband set occupied by transmitting the downlink information includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇ , and uplink time domain resources of each subband:
  • the uplink time domain resources of subband 1, subband 2, and subband 4 are subframe #4 to subframe #6, and the uplink time domain resource of subband 3 is ⁇ subframe #4 ⁇ , and the terminal device may be in the subband. 1.
  • Sub-band 2 and sub-band 4 perform single-slot CCA for uplink burst ⁇ subframe #4 ⁇ and uplink burst ⁇ subframe #6 ⁇ , and for sub-band 3 for uplink burst ⁇ subframe #4 ⁇ A single-slot CCA is performed, and a random back-off CCA is performed for the uplink burst ⁇ subframe #6 ⁇ .
  • the first indication information is further used to indicate the first subband set.
  • An uplink time domain resource where the sum of the uplink time domain resource of the first subband set and the time domain resource occupied by the downlink information in the first subband set does not exceed the first subband set.
  • the first subband set includes the network device scheduling at least one subband occupied by the terminal device to send uplink information, where the uplink time domain resource of the first subband set is the terminal device
  • the time domain resource corresponding to the channel sensing of the short listening type is performed on at least one of the first subband sets.
  • the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, including: when the first sub-band is included in the first sub-band set When the uplink burst of the first subband is located in the uplink time domain resource of the first subband set, the terminal device determines that the channel listening type is a short channel listening type;
  • the uplink burst of the subband is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling
  • the terminal device sends a time unit occupied by the uplink information.
  • the network device may indicate at least two of a start time (or start time unit), an end time (or an end time unit), and a duration of the uplink time domain resource of the first subband set, or may specifically indicate
  • the uplink time domain resource of the first subband set is specifically a TTI or a subframe or a time slot. Other indication methods may also be used, which are not limited herein.
  • the start time (or start time unit) of the uplink time domain resource may be a time offset (or a time interval) of the uplink time domain resource compared to the end time of the downlink information.
  • the terminal device determines that the channel snooping type is a long channel snooping type.
  • the uplink burst of the first subband is located in the uplink time domain resource of the first subband set, and the end time of the uplink burst of the first subband is not later than the first The end time of the uplink time domain resource of the subband set.
  • the uplink burst of the first subband is located in the uplink time domain resource of the first subband set, and the start time of the uplink burst of the first subband is not earlier than the first The start time of the uplink time domain resource of the first subband, and the end time of the uplink burst of the first subband is not later than the end time of the uplink time domain resource of the first subband set.
  • the MCOT of the first subband set is an MCOT corresponding to channel interception performed by the network device for the first subband set before transmitting the downlink information.
  • the channel interception performed by the network device before transmitting the downlink information is a channel interception of a long listening type.
  • the network device performs channel sensing on the first sub-band set before the downlink information is sent, as described in the listening method 3-1 or the listening method 3-2 or the listening method 4, Let me repeat.
  • the first indication information is further used to indicate the first subband set.
  • An uplink time domain resource where the sum of the uplink time domain resource of the first subband set and the time domain resource occupied by the downlink information in any one of the first subband sets does not exceed the The MCOT of any subband, the first subband set includes the network device scheduling at least one subband occupied by the terminal device to send uplink information, where the uplink time domain resource of the first subband set is the The terminal device performs time domain resources corresponding to channel interception of a short listening type on at least one of the first subband sets.
  • the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, including: when the first sub-band is included in the first sub-band set When the uplink burst of the first subband is located in the uplink time domain resource of the first subband set, the terminal device determines that the channel listening type is a short channel listening type;
  • the uplink burst of the subband is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling
  • the terminal device sends a time unit occupied by the uplink information.
  • the terminal device determines that the channel snooping type is a long channel snooping type.
  • the MCOT of any one of the first subband sets is an MCOT corresponding to channel interception performed by the network device for the any one of the subbands before the downlink information is sent.
  • the description of the MCOT corresponding to the sub-band #i is as described above, and will not be described again.
  • any subband is subband #i
  • the uplink time domain resource of subband #i and the time domain resource corresponding to the network device transmitting downlink information on subband #i do not exceed the maximum of subband #i. The length of time the channel is occupied.
  • the network device notifies the terminal device that the second subband set occupied by transmitting the downlink information includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇ , and because subframe #4 and the first sub
  • the sum of the time domain lengths of the downlink information of any subband with the set does not exceed the MCOT of the arbitrary subband, so the uplink time domain resource of the first subband set is notified to be subframe #4.
  • the terminal device may perform single-slot CCA on the uplink burst ⁇ subframe #4 ⁇ on the subband 1, subband 2, subband 3, and subband 4, and although in subband 1, subband 2, subband 4 Subframe #6 is also in the MCOT of the corresponding subband, but is limited by the network device only notifying the uplink time domain resource corresponding to a common first subband set, that is, subframe #4, so the terminal device is in the four subbands.
  • the uplink burst ⁇ subframe #6 ⁇ performs a random backoff CCA.
  • the first indication information is further used to indicate the first subband set.
  • the time domain resource is a time domain resource corresponding to the short channel listening type channel interception performed by the terminal device on the any subband, where the first subband set includes the network device scheduling the terminal device to send At least one subband occupied by the uplink information.
  • the uplink time domain resource of any one of the first subband sets is determined according to the MCOT of the any subband, and the uplink time domain resource of the any subband and the downlink are included.
  • the sum of the time domain resources occupied by the information in any of the subbands does not exceed the maximum channel occupation time of any one of the subbands.
  • the terminal device determines, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, including: when the first sub-band is included in the first sub-band set And when the uplink burst of the first subband is located in the uplink time domain resource of the first subband, the terminal device determines that the channel listening type is a short channel listening type; the first sub The uplink burst of the band is configured by the network device to schedule at least one time unit that is consecutive by the terminal device in the time occupied by the first subband, where the uplink burst of the first subband includes the network device scheduling office The time unit occupied by the terminal device to send the uplink information.
  • the network device may indicate at least two of a start time (or start time unit), an end time (or an end time unit), and a duration of an uplink time domain resource of each subband in the first subband set,
  • a start time or start time unit
  • an end time or an end time unit
  • a duration of an uplink time domain resource of each subband in the first subband set For example, the T1 or the sub-frame or the time slot of the uplink time domain resource of each sub-band in the first sub-band set may be specifically used, and other indication methods may also be used, which are not limited herein.
  • the start time (or start time unit) of the uplink time domain resource may be a time offset (or a time interval) of the uplink time domain resource compared to the end time of the downlink information.
  • the terminal device determines that the channel listening type is a long channel listening type.
  • the sum of the uplink time domain resource of any one of the subbands and the time domain resource occupied by the downlink information in the any subband does not exceed the MCOT of any one of the subbands.
  • the network device notifies the terminal device that the second subband set occupied by transmitting the downlink information includes ⁇ subband 1, subband 2, subband 3, subband 4 ⁇ , and indicates each sub of the first subband set.
  • the terminal device may perform single-slot CCA on the uplink burst ⁇ subframe #4 ⁇ and the uplink burst ⁇ subframe #6 ⁇ on the sub-band 1, the sub-band 2, and the sub-band 4, and on the sub-band 3 for the uplink.
  • the transmission ⁇ subframe #4 ⁇ performs a single-slot CCA, and performs a random back-off CCA for the uplink burst ⁇ subframe #6 ⁇ .
  • the notification can be used for the terminal device to perform the uplink time domain resource of the single-slot CCA.
  • the network device sends the downlink information on the carrier, the subband occupied by the subband includes the subband occupied by the terminal device, and the uplink time domain resource of the subband does not exceed the MCOT of the subband.
  • the terminal device accesses the carrier using a single-slot CCA, otherwise the terminal device uses a random back-off CCA.
  • the friendly coexistence with surrounding competing nodes can be achieved while efficiently accessing the channel, and the signaling overhead is saved.
  • the second sub-band set occupied by transmitting the downlink information may be notified to the terminal device to enable the terminal device to access the channel through the short-listening type, and the terminal device performs channel interception of the long-listening type.
  • the first sub-band set that is sent by the uplink information is notified to the network device, so that the network device accesses the channel through the short-listening type, that is, the MCOT is shared with the network device.
  • the terminal device generates first indication information, where the first indication information is used to indicate that the terminal device sends the first sub-band set occupied by the uplink information, and the terminal device sends the first sub-band to the network device.
  • the first indication information is described.
  • the network device determines, according to the first indication information, a channel listening type that performs channel sensing on the second sub-band, where the second sub-band is a sub-band occupied by the network device to send uplink information.
  • the network device performs channel sensing on the second sub-band according to the channel listening type.
  • the terminal device occupies the first sub-band set to send the uplink information, and the terminal device occupies all the sub-bands in the first sub-band set to send the uplink information. That is, each sub-band in the first sub-band set is a sub-band that is used by the terminal device to send uplink information, where each sub-band carries a part of the uplink information. It should be understood that, for any one of the first sub-bands occupied by the terminal device, the terminal device may occupy all frequency domain resources (for example, all PRBs) corresponding to the any one of the sub-bands, and may occupy any one of the sub-bands. The partial frequency domain resources (for example, partial PRBs) corresponding to the subbands are all referred to as occupying any one of the subbands.
  • the first indication information may be carried in one control signaling.
  • the control signaling may be carried in an uplink traffic channel or in an uplink control channel.
  • the control signaling is carried in an uplink transmission, for example, in the uplink information.
  • the first indication information is further used to indicate a downlink time domain resource of the first subband set, where the downlink time domain resource of the first subband set and the uplink information are in the The sum of the time domain resources occupied by the first subband set does not exceed the maximum channel occupation duration of the first subband set, and the downlink time domain resource of the first subband set is the network device in the The time domain resource corresponding to the channel sensing of the short listening type is performed on at least one of the first subband sets. Similar to the network device, the second sub-band set downlink time domain resource is indicated to the terminal device by using the first indication information, and details are not described herein again.
  • the network device determines, according to the first indication information, a channel listening type that performs channel sensing on the second sub-band, including: when the second sub-band is included in the first sub-band set And when the downlink burst of the second sub-band is located in the downlink time domain resource of the first sub-band set, the network device determines that the channel listening type is a short channel listening type.
  • the downlink burst of the second subband is at least one time unit in which the network device is consecutive in time occupied by the second subband.
  • the terminal device may indicate at least two of a start time (or start time unit), an end time (or an end time unit), and a duration of the downlink time domain resource of the first subband set, or may specifically indicate
  • the downlink time domain resource of the first subband set is specifically a TTI or a subframe or a time slot. Other indication methods may also be used, which are not limited herein.
  • the start time (or start time unit) of the downlink time domain resource may be a time offset (or a time interval) of the downlink time domain resource compared to the end time of the uplink information.
  • the downlink burst of the second sub-band is a downlink burst carried on the second sub-band, and the definition of the downlink burst is as described above and will not be described again. Further, the downlink burst of the second subband is not continuous with other adjacent time units of the network device transmitting information.
  • the downlink burst of the second subband is located in the downlink time domain resource of the first subband set, and the end time of the downlink burst of the second subband is not later than the first The end time of the downlink time domain resource of the subband set.
  • the downlink burst of the second subband is located in the downlink time domain resource of the first subband set, and the start time of the downlink burst of the second subband is not earlier than the foregoing
  • the start time of the downlink time domain resource of the set of the subband, and the end time of the downlink burst of the second subband is not later than the end time of the downlink time domain resource of the first subband set.
  • the network device determines that the channel snooping type is a long snooping type.
  • the channel device performs the channel sensing for the first sub-band set, such as the listening method 1 or the listening method 2-1 or the listening method 2-2, before transmitting the uplink information, Let me repeat. Further, the channel is listening for channel interception of a long listening type.
  • the first indication information is further used to indicate a downlink time domain resource of the first subband set, where the downlink time domain resource of the first subband set and the uplink information are in the The sum of the time domain resources occupied by any one of the first subband sets does not exceed the maximum channel occupation time of any one of the subbands, and the downlink time domain resource of the first subband set is the network
  • the device performs time domain resources corresponding to channel interception of the short listening type on at least one of the first subband sets. Similar to the network device, the second sub-band set downlink time domain resource is indicated to the terminal device by using the first indication information, and details are not described herein again.
  • the network device determines, according to the first indication information, a channel listening type that performs channel sensing on the second sub-band, including: when the second sub-band is included in the first sub-band set And when the downlink burst of the second sub-band is located in the downlink time domain resource of the first sub-band set, the network device determines that the channel listening type is a short channel listening type.
  • the network device determines that the channel snooping type is a long snooping type.
  • the MCOT of any one of the first subband sets is an MCOT corresponding to channel interception performed by the terminal device for the any one of the subbands before transmitting the uplink information.
  • any subband is subband #i
  • the downlink time domain resource of subband #i and the time domain resource corresponding to the terminal device transmitting uplink information on subband #i do not exceed the maximum of subband #i.
  • the channel interception performed by the terminal device before transmitting the uplink information is channel interception of a long listening type.
  • the first indication information is further used to indicate a downlink time domain resource of each subband in the first subband set; wherein any one of the first subband sets
  • the downlink time domain resource is determined according to the maximum channel occupation duration of any one of the subbands, and the downlink time domain resource of the any subband is configured to perform the short interception type on the any subband of the network device.
  • the time domain resource corresponding to the channel interception.
  • the network device uses the first indication information to indicate the downlink time domain resource of each sub-band in the second sub-band set to the terminal device, and details are not described herein.
  • the downlink time domain resource of any one of the first subbands is determined according to the MCOT of the any subband, and the downlink time domain resource of the any subband and the uplink are included.
  • the sum of the time domain resources occupied by the information in any of the subbands does not exceed the maximum channel occupation time of any one of the subbands.
  • the network device determines, according to the first indication information, a channel listening type that performs channel sensing on the second sub-band, including: when the second sub-band is included in the first sub-band set And when the downlink burst of the second sub-band is located in the downlink time domain resource of the second sub-band, the network device determines that the channel listening type is a short channel listening type.
  • the terminal device may indicate at least two of a start time (or start time unit), an end time (or an end time unit), and a duration of the downlink time domain resource of each subband in the first subband set,
  • the T1 or the sub-frame or the time slot of the downlink time domain resource of each sub-band in the first sub-band set may be specifically indicated, and other indication methods may also be used, which are not limited herein.
  • the start time (or start time unit) of the downlink time domain resource may be a time offset (or a time interval) of the downlink time domain resource compared to the end time of the uplink information.
  • the network device determines that the channel listening type is a long channel listening type.
  • the downlink burst of the second subband is located in the downlink time domain resource of the second subband, and the end time of the downlink burst of the second subband is not later than the second sub The end time of the downlink time domain resource with the band.
  • the downlink burst of the second subband is located in the downlink time domain resource of the second subband, and the start time of the downlink burst of the second subband is not earlier than the second The start time of the downlink time domain resource of the subband, and the end time of the downlink burst of the second subband is not later than the end time of the downlink time domain resource of the second subband.
  • a downlink burst may include at least one temporally consecutive time unit occupied by the network device transmitting information. Further, the downlink burst and other adjacent time units that the network device sends the information are not consecutive in time, or the downlink burst and other time units not included in the downlink burst for transmitting information by the network device are The time is not continuous. That is, there is a gap before and after the downlink burst. Similar to the expression of the uplink burst, it will not be described again.
  • FIG. 10 is a schematic diagram showing a possible structure of a base station involved in the above embodiment.
  • the base station 1000 may be the network device 101 as shown in FIG. 1, or the base station may be the network device in FIG. 2 or 8.
  • the base station shown includes a transceiver 1001, a controller/processor 1002.
  • the transceiver 1001 can be used to support the base station to send and receive information with the UE in the foregoing embodiment, and to support radio communication between the UE and other UEs.
  • the controller/processor 1002 can be configured to perform various functions for communicating with a UE or other network device.
  • On the uplink the uplink signal from the UE is received via the antenna, coordinated by the transceiver 1001, and further processed by the controller/processor 1002 to recover the traffic data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by controller/processor 1002 and mediated by transceiver 1001 to generate downlink signals for transmission to the UE via the antenna.
  • the controller/processor 1002 is further configured to perform, according to the relationship between the first subband set and the second subband set, determine a channel interception type corresponding to the channel device performing channel interception on the first subband set,
  • the transceiver 1001 is further configured to send first indication information to the UE.
  • the controller/processor 1002 may also be configured to perform the processes related to the base station of FIG. 2 or FIG. 8 and/or other processes for the techniques described herein, such as generating first indication information, the An indication information is used to indicate a second sub-band set and the like occupied by the network device to send downlink information.
  • the base station may also include a memory 1003 that may be used to store program codes and data of the base station.
  • the base station may further include a communication unit 1004 for supporting the base station to communicate with other network entities. For example, it is used to support communication between a base station and other communication network entities shown in FIG. 1, such as a UE or the like.
  • Figure 10 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • FIG. 11 is a simplified schematic diagram showing a possible design structure of a UE involved in the foregoing embodiment.
  • the UE 1100 may be a UE as shown in FIG. 1 and may be the terminal device shown in FIG. 2 or 8.
  • the UE includes a transceiver 1101, a controller/processor 1102, and may also include a memory 1103 and a modem processor 1104.
  • Transceiver 1101 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Transceiver 1101 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 11041 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 11042 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 11044 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 11043 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 11041, modulator 11042, demodulator 11044, and decoder 11043 may be implemented by a composite modem processor 1104. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1102 performs control management on the action of the UE, and is used to perform processing performed by the UE in the foregoing embodiment, for example, listening to the channel according to the first indication information.
  • the controller/processor 802 is configured to support the UE in performing the content related to the UE in FIG. 2 or 8.
  • the memory 1103 is for storing program codes and data for the UE.
  • the present application further provides a channel listening type indicating device 120, where the device includes:
  • the processing unit 121 is configured to determine, according to the relationship between the first subband set and the second subband set, a channel listening type corresponding to performing channel interception by the terminal device on the first subband set, where the first subband
  • the set includes a processing unit 121 that schedules at least one subband occupied by the terminal device to send uplink information, where the second subband set includes at least one subband occupied by the sending unit 122 to send downlink information, where the channel interception type includes Long listening type or short listening type;
  • the sending unit 122 is configured to send first indication information to the terminal device, where the first indication information is used to indicate the channel listening type.
  • the present application further provides a channel listening type indicating device 130, including:
  • the transceiver unit 131 is configured to receive first indication information that is sent by the network device, where the first indication information is used to indicate, by the processing unit 132, a channel interception type corresponding to performing channel interception on the first subband set, where the channel is detected.
  • the listening type is determined by the relationship between the first sub-band set and the second sub-band set, where the first sub-band set includes at least one sub-band occupied by the network device scheduling the transceiver unit 132 to send uplink information.
  • the second sub-band set includes at least one sub-band occupied by the network device to send downlink information, where the channel listening type includes a long listening type or a short listening type;
  • the processing unit 132 is configured to perform channel sensing on the first sub-band set according to the channel listening type.
  • the present application further provides a channel listening type indicating device 140, where the device includes:
  • the processing unit 141 is configured to generate first indication information, where the first indication information is used to instruct the sending unit 142 to send the second sub-band set occupied by the downlink information;
  • the sending unit 142 is configured to send the first indication information to the terminal device.
  • the present application further provides a channel listening type indicating device 150, including:
  • the receiving unit 151 is configured to receive first indication information that is sent by the network device, where the first indication information is used to indicate a second sub-band set occupied by the network device to send downlink information.
  • the processing unit 152 is configured to determine, according to the first indication information, a channel listening type that performs channel sensing on the first sub-band, and perform channel sensing on the first sub-band according to the channel listening type.
  • the first sub-band is a sub-band occupied by the network device scheduling the receiving unit 151 to send uplink information.
  • the present application also provides a communication device including a processor and a memory; the memory is configured to store a computer to execute an instruction; the processor is configured to execute a computer-executed instruction stored in the memory, to cause the communication device to perform the foregoing A channel listening type indication method.
  • the present application also provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform an indication method of any of the above-described channel listening types.
  • the present application also provides a chip connected to a memory for reading and executing a software program stored in the memory to implement any of the above-mentioned channel interception type indication methods.
  • the present application further provides a communication system 160, which includes a network device 161 and a terminal device 162.
  • the working process of the network device 161 can be specifically referred to the description of the foregoing method and device embodiment.
  • the terminal device 162 reference may be made to the description of the foregoing method and device embodiment, and details are not described herein again.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道侦听类型的指示方法及装置,其中,该方法包括:网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述信道侦听类型。采用本申请公开的方法及装置,可在宽带传输技术的场景下,实现网络设备对终端设备信道侦听类型的指示。

Description

一种信道侦听类型的指示方法及装置
本申请要求在2017年12月29日提交中国专利局、申请号为201711486366.4、发明名称为“一种信道侦听类型的指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信道侦听类型的指示方法及装置。
背景技术
为了解决授权频谱中可用频域资源较少的问题,长期演进(long term evolution,LTE)的版本13(Release13)中引入授权辅助接入的长期演进(licensed-assisted access using long term evolution,LAA-LTE)技术,版本14(Release14)中引入增强授权辅助接入(enhanced LAA,eLAA)技术。其中,LAA技术以及eLAA技术的原理主要为:通过载波聚合技术,将可用的频谱扩展到非授权频段,通过授权频谱的辅助,在非授权频谱上传输下行和上行信息。进一步的,Multefire标准在LAA和eLAA的基础上,还提出了免许可频段(standalone unlicensed)LTE技术,所谓standalone unlicensed LTE技术是指LTE系统的上下行传输,完全在非授权频谱中实现,而不依赖于授权频谱的辅助。
在实际应用中,非授权频谱上存在不同运营商的网络设备、用户设备和无线保真(wireless-fidelity,Wi-Fi)等异系统的无线节点。在LAA、eLAA以及Multefire技术中,为了保证不同系统节点的友好共存,提出了先听后发(listen before talk,LBT)的信道接入机制。所谓LBT具体是指,发送节点在进行数据传输之前,需要先对信道进行侦听,而在信道侦听成功后,再进行数据传输。
同时,在5G NR系统中,支持宽带(wide band,WB)传输技术,将一个载波所占用的带宽进行扩展,一个载波包括多个子带(sub-band,SBD),比如,在宽带NR系统中,将一个载波的带宽从LTE系统中的20MHz,扩展为40MHz,而一个载波可包括两个子带,每个子带占用20MHz。而在5G NR系统的场景下,网络设备如何指示终端设备针对子带进行信道侦听所采用的信道侦听类型,并没有相关解决方案。
发明内容
本申请提供一种信道侦听类型的指示方法及装置,以在宽带传输技术的场景下,提供信道侦听类型的指示方案。
第一方面,提供一种信道侦听类型的指示方法,包括:网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述信道侦听类型。
在一种可能的实现方式中,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述短侦听类型。
在一种可能的实现方式中,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为所述短侦听类型;其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;
所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
在一种可能的实现方式中,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为短侦听类型;其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的最大信道占用时长内,包括:所述第i子带的第i上行突发位于所述第i子带的最大信道占用时长内;
所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;
所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
在一种可能的实现方式中,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述长侦听类型。
或者说,当所述第一子带集合中的至少一个子带包含在所述第二子带集合中,且所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述长侦听类型。
在一种可能的实现方式中,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发 未位于所述第一子带集合所对应的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为长侦听类型;
其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
在一种可能的实现方式中,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为所述长侦听类型;其中,所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
在一种可能的实现方式中,所述网络设备向终端设备发送第一指示信息,包括:所述网络设备向所述终端设备发送调度信令,所述调度信令中携带有所述第一指示信息,所述调度信令用于调度所述终端设备占用所述第一子带集合和第一时间单元发送所述上行信息。
在一种可能的实现方式中,所述第一子带集合包括至少两个子带。
在一种可能的实现方式中,所述长侦听类型为随机回退的空闲信道评测,所述短侦听类型为单时隙空闲信道评测。
第二方面,本申请提供一种信道侦听类型的指示方法,包括:终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备对第一子带集合执行信道侦听所对应的信道侦听类型,所述信道侦听类型由所述第一子带集合与第二子带集合的关系所确定,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;所述终端设备根据所述信道侦听类型,对所述第一子带集合执行信道侦听。
在一种可能的实现方式中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,所述信道侦听类型为所述短侦听类型。
在一种可能的实现方式中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内时,所述信道侦听类型为所述短侦听类型;其中,所述第一子带集合的上行突发为所 述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
在一种可能的实现方式中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的最大信道占用时长内时,所述信道侦听类型为短侦听类型;其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的最大信道占用时长内,包括:所述第i子带的第i上行突发位于所述第i子带的最大信道占用时长内;
所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;
所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
在一种可能的实现方式中,当所述第一子带集合中的至少一子带未包含在所述第二子带集合中时,所述信道侦听类型为所述长侦听类型。
在一种可能的实现方式中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发未位于所述第一子带集合所对应的最大信道占用时长内时,所述信道侦听类型为长侦听类型;其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
在一种可能的实现方式中,在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的最大信道占用时长内时,所述信道侦听类型为所述长侦听类型;其中,所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数, 所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
在一种可能的实现方式中,所述终端设备接收网络设备发送的第一指示信息,包括:
所述终端设备接收所述网络设备发送的调度信令,所述调度信令中携带有所述第一指示信息,所述调度信令用于调度所述终端设备占用所述第一子带集合和第一时间单元发送所述上行信息。
在一种可能的实现方式中,所述第一子带集合包括至少两个子带。
在一种可能的实现方式中,所述长侦听类型为随机回退的空闲信道评测,所述短侦听类型为单时隙空闲信道评测。
第三方面,提供一种信道侦听类型的指示方法,包括:网络设备生成第一指示信息,所述第一指示信息用于指示所述网络设备发送下行信息所占用的第二子带集合;所述网络设备向终端设备发送所述第一指示信息。
在一种可能的实现方式中,所述第一指示信息还用于指示第二子带集合的上行时域资源;其中,所述第二子带集合的上行时域资源与所述下行信息在所述第二子带集合中所占的时域资源之和不超过所述第二子带集合的最大信道占用时长,所述第二子带集合的上行时域资源为所述终端设备在所述第二子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,所述第一指示信息还用于指示第二子带集合的上行时域资源;其中,所述第二子带集合的上行时域资源与所述下行信息在所述第二子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第二子带集合的上行时域资源为所述终端设备在所述第二子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,所述第一指示信息还用于指示所述第二子带集合中每个子带的上行时域资源;其中,所述第二子带集合中任一子带的上行时域资源为根据所述任一子带的最大信道占用时长所确定的,所述任一子带的上行时域资源为所述终端设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
在一种可能的实现方式中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合的上行时域资源;其中,所述第一子带集合的上行时域资源与所述下行信息在所述第一子带集合中所占的时域资源之和不超过所述第一子带集合的最大信道占用时长,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带,所述第一子带集合的上行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合的上行时域资源;
其中,所述第一子带集合的上行时域资源与所述下行信息在所述第一子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带,所述第一子带集合的上行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听 类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合中每个子带的上行时域资源;
其中,所述第一子带集合中任一子带的上行时域资源为根据所述任一子带的最大信道占用时长所确定的,所述任一子带的上行时域资源为所述终端设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带。
在一种可能的实现方式中,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
在一种可能的实现方式中,所述第二子带集合包括至少两个子带。
在一种可能的实现方式中,所述第一子带集合包括至少两个子带。
第四方面,提供一种信道侦听类型的指示方法,包括:终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备发送下行信息所占用的第二子带集合;所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,所述第一子带为所述网络设备调度所述终端设备发送上行信息所占用的子带;所述终端设备根据所述信道侦听类型,对所述第一子带执行信道侦听。
在一种可能的实现方式中,所述第一指示信息还用于指示第二子带集合的上行时域资源;其中,所述第二子带集合的上行时域资源与所述下行信息在所述第二子带集合中所占的时域资源之和不超过所述第二子带集合的最大信道占用时长,所述第二子带集合的上行时域资源为所述终端设备在所述第二子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源;
所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发位于所述第二子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在一种可能的实现方式中,所述第一指示信息还用于指示第二子带集合的上行时域资源;
其中,所述第二子带集合的上行时域资源与所述下行信息在所述第二子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第二子带集合的上行时域资源为所述终端设备在所述第二子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源;
所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发位于所述第二子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在一种可能的实现方式中,所述第一指示信息还用于指示所述第二子带集合中每个子 带的上行时域资源;
其中,所述第二子带集合中任一子带的上行时域资源为根据所述任一子带的最大信道占用时长所确定的,所述任一子带的上行时域资源为所述终端设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源;所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发位于所述第一子带的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在一种可能的实现方式中,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
在一种可能的实现方式中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合的上行时域资源;
其中,所述第一子带集合的上行时域资源与所述下行信息在所述第一子带集合中所占的时域资源之和不超过所述第一子带集合的最大信道占用时长,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带,所述第一子带集合的上行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源;
所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发位于所述第一子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在一种可能的实现方式中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合的上行时域资源;
其中,所述第一子带集合的上行时域资源与所述下行信息在所述第一子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带,所述第一子带集合的上行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源;
所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,,包括:当所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发位于所述第一子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在一种可能的实现方式中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合中每个子带的上行时域资源;
其中,所述第一子带集合中任一子带的上行时域资源为根据所述任一子带的最大信道 占用时长所确定的,所述任一子带的上行时域资源为所述终端设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带;
所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发位于所述第一子带的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在一种可能的实现方式中,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
在一种可能的实现方式中,所述第二子带集合包括至少两个子带。
在一种可能的实现方式中,所述第一子带集合包括至少两个子带。
第五方面,提供一种信道侦听类型的指示方法,包括:
终端设备生成第一指示信息,所述第一指示信息用于指示所述终端设备发送上行信息所占用的第一子带集合;所述终端设备向网络设备发送所述第一指示信息。
在一种可能的实现方式中,所述第一指示信息还用于指示第一子带集合的下行时域资源;其中,所述第一子带集合的下行时域资源与所述上行信息在所述第一子带集合中所占的时域资源之和不超过所述第一子带集合的最大信道占用时长,所述第一子带集合的下行时域资源为所述网络设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,所述第一指示信息还用于指示第一子带集合的下行时域资源;其中,所述第一子带集合的下行时域资源与所述上行信息在所述第一子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第一子带集合的下行时域资源为所述网络设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,所述第一指示信息还用于指示所述第一子带集合中每个子带的下行时域资源;其中,所述第一子带集合中任一子带的下行时域资源为根据所述任一子带的最大信道占用时长所确定的,所述任一子带的下行时域资源为所述网络设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源。
在一种可能的实现方式中,所述任一子带的上行时域资源与所述上行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
在一种可能的实现方式中,所述第一子带集合包括至少两个子带。
第六方面,提供一种信道侦听类型的指示方法,包括:网络设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备发送上行信息所占用的第一子带集合;所述网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,所述第二子带为所述网络设备发送下行信息所占用的子带;所述网络设备根据所述信道侦听类型,对所述第二子带执行信道侦听。
在一种可能的实现方式中,所述第一指示信息还用于指示第一子带集合的下行时域资源;其中,所述第一子带集合的下行时域资源与所述上行信息在所述第一子带集合中所占 的时域资源之和不超过所述第一子带集合的最大信道占用时长,所述第一子带集合的上行时域资源为所述网络设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源;
所述网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,包括:当所述第二子带包含在所述第一子带集合中,且所述第二子带的上行突发位于所述第一子带集合的下行时域资源内时,所述网络设备确定所述信道侦听类型为短信道侦听类型;所述第二子带的下行突发为所述终端设备在所述第二子带占用的时间上连续的至少一个时间单元,所述第二子带的下行突发包括所述网络设备发送所述下行信息所占的时间单元。
在一种可能的实现方式中,所述第一指示信息还用于指示第一子带集合的下行时域资源;
其中,所述第一子带集合的下行时域资源与所述上行信息在所述第一子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第一子带集合的下行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源;
所述网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,包括:当所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发位于所述第一子带集合的下行时域资源内时,所述网络设备确定所述信道侦听类型为短信道侦听类型;所述第二子带的下行突发为所述网络设备在所述第二子带占用的时间上连续的至少一个时间单元,所述第二子带的下行突发包括所述网络设备发送所述下行信息所占的时间单元。
在一种可能的实现方式中,所述第一指示信息还用于指示所述第一子带集合中每个子带的下行时域资源;
其中,所述第一子带集合中任一子带的下行时域资源为根据所述任一子带的最大信道占用时长所确定的,所述任一子带的下行时域资源为所述网络设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源;所述网络设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发位于所述第二子带的下行时域资源内时,所述网络设备确定所述信道侦听类型为短信道侦听类型;所述第二子带的下行突发为所述网络设备在所述第二子带占用的时间上连续的至少一个时间单元,所述第二子带的下行突发包括所述网络设备发送所述下行信息所占的时间单元。
在一种可能的实现方式中,所述任一子带的下行时域资源与所述上行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
在一种可能的实现方式中,所述第一子带集合包括至少两个子带。
第七方面,提供一种信道侦听类型的指示装置,用于网络设备,包括用于执行以上第一方面、第三方面或第五方面各个步骤的单元或手段(means)。
第八方面,一种信道侦听类型的指示装置,用于终端设备,包括用于执行以上第二方面、第四方面或第六方面各个步骤的单元或手段(means)。
第九方面,本申请提供一种通信装置,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信 装置执行第一方面至第六方面任一方面所述的方法。
第十方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面至第六方面任一方面所述的方法。
第十一方面,本申请提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第一方面至第六方面任一方面所述的方法。
第十二方面,本申请提供一种通信系统,所述通信系统包括上述第七方面所述的网络设备和第八方面的终端设备。
在本申请实施例中,网络设备可根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,然后网络设备可向终端设备发送第一指示信息,所述第一指示信息可指示所述信道侦听类型。可见,采用本申请实施例所提供的方法及装置,网络设备可指示终端设备针对子带进行信道侦听所采用的信道侦听类型。
附图说明
图1为本申请实施例所提供的一种通信系统;
图2为本申请实施例所提供的信道侦听类型的指示方法的一流程图;
图3a和图3b为本申请实施例提供的信道侦听类型的一示意图;
图4a和图4b为本申请实施例提供的信道侦听类型的一示意图;
图5a、图5b以及图5c为本申请实施例提供的信道侦听类型的一示意图;
图6a、图6b、图6c以及图6d为本申请实施例提供的信道侦听类型的一示意图;
图7a、图7b以及图7c为本申请实施例提供的信道侦听类型的一示意图;
图8为本申请实施例提供的信道侦听类型的指示方法的一流程图;
图9a、图9b、图9c以及图9d为本申请实施例提供的信道侦听类型的一示意图;
图10为本申请实施例提供的基站的结构示意图;
图11为本申请实施例提供的UE的结构示意图;
图12、图13、图14以及图15为本申请实施例提供的信道侦听类型的指示装置的一结构示意图;
图16为本申请实施例提供的通信系统的一结构示意图。
具体实施方式
本申请提供一种信道侦听类型的指示方法及装置,用以解决在宽带传输技术的场景下,提供信道侦听类型的指示方案。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。
图1示出了本申请实施例提供的一种通信系统100,该通信系统100包括网络设备101以及终端设备102。
其中,网络设备101,负责为所述终端设备102提供无线接入有关的服务,实现无线物理层功能、资源调度和无线资源管理、服务质量(quality of service,QoS)管理、无线 接入控制以及移动性管理功能。
终端设备102,为通过所述网络设备101接入网络的设备。
其中,所述网络设备101和所述终端设备102之间通过Uu接口连接,从而实现所述终端设备102和所述网络设备101之间的通信。
进一步的,在本申请实施例中,通信系统100可支持宽带(wide band,WB)传输技术,将一个载波所占的带宽进行扩展。比如,在通信系统100中,将一个载波的带宽从LTE系统中的20MHz,扩展为40MHz,而一个载波可包括两个子带,每个子带占用20MHz。在本申请实施例中,网络设备101可占用包括至少一个子带的子带集合发送下行信息,终端设备可占用包括至少一个子带的子带集合发送上行信息。为了方便描述,以下将发送上行信息所占用的子带集合称为第一子带集合,将发送下行信息所占用的子带集合称为第二子带集合。
在本申请实施例中,所述网络设备101与所述终端设备102可工作在非授权频谱上,且网络设备101与终端设备102采用先听后发(listen before talk,LBT)的信道接入机制。所谓LBT也称之为信道侦听,具体是指,发送节点在进行数据传输之前,需要先对信道进行侦听,而在信道侦听成功后,再进行数据传输。比如,网络设备101在占用第二子带集合发送下行信息前,需对第二子带集合(或者第二子带集合中的每个子带)是否空闲进行侦听,在对第二子带集合侦听成功后,再占用第二子带集合发送下行信息;再如,终端设备102在占用第一子带集合发送上行信息前,需对第一子带集合(或者第一子带集合中的每个子带)是否空闲进行侦听,在对第一子带集合侦听成功后,再占用第一子带集合发送上行信息。
在本申请实施例中,所述通信系统100可以为各种无线接入技术(radio access technology,RAT)系统,譬如例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。此外,所述通信系统还可以适用于面向未来的通信技术,只要采用新通信技术的通信系统包括承载的建立,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请实施例中,所述网络设备101,是一种部署在无线接入网中用以为UE102提 供无线通信功能的装置。所述网络设备101可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B),在NR系统中,称为gNB等。为方便描述,本申请所有实施例中,将为终端设备102提供无线通信功能的装置统称为基站。
在本申请实施例中,所述终端设备102,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端设备也可以称为移动台(mobile station,简称MS),终端(terminal),用户设备(user equipment,UE),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端设备。
需要说明的是,图1所示的通信系统100中所包含终端设备的数据和类型仅仅是一种举例,本申请实施例也并不限制于此。譬如,所述通信系统100还可以包括更多与网络设备101进行通信的终端设备102,为了简明描述,不在附图中一一描述。此外,在图1所示的通信系统100中,尽管示出了网络设备101和终端设备102,但所述通信系统100还可以并不限于仅包括所述网络设备101和终端设备102,譬如还可以包括核心网设备等,这些对于本领域技术人员而言是显而易见的,在此不再赘述。
为了方便本领域技术人员的理解,以下是对本申请的部分用语进行解释说明:
1)第一子带集合:包括至少一个子带,该至少一个子带为网络设备调度终端设备发送上行信息所占用的子带,所述上行信息可为上行数据信息,进一步的,所述上行信息可为一个上行数据包。进一步的,第一子带集合包括至少两个子带。
2)第二子带集合:包括至少一个子带,该至少一个子带为网络设备发送下行信息所占用的子带,所述下行信息可包括下行数据信息、下行控制信息、下行广播信息、下行同步信息、下行参考信号中的至少一种。进一步的,第二子带集合包括至少两个子带。
3)长侦听类型的信道侦听:通常是指从开始进行信道侦听至信道侦听成功耗时较长的信道侦听。在一示例中,长侦听类型的信道侦听需要侦听至少一个侦听时隙,若在该至少一个侦听时隙中都侦听到信道空闲,则称为侦听成功,发送节点可以占用信道发送信息;进一步的,该至少一个侦听时隙的个数是不固定的。在另一示例中,长侦听类型的信道侦听可为随机回退空闲信道评测(clear channel assessment,CCA),或者称为第一类信道侦听(type 1channel access)。其原理为:发送节点在0~初始竞争窗口(contention window,CW)之间均匀随机生成一个回退计数器N,并且以侦听时隙(例如时长为9us)为粒度进行信道侦听,如果侦听时隙内检测到信道空闲,则将回退计数器减一,反之,如果侦听时隙内检测到信道忙碌,则将回退计数器挂起,即,回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲时,才重新对回退计数器进行计数。当回退计数器归零时,则认为信道侦听成功,发送节点可以立即占用该信道发送信息。另外,发送节点也可以在回退计数器归零后,不立即发送信息而自行等待一段时间,等待结束后,在需要发送信息的时刻之 前再在一个额外的时隙侦听一次,若该额外的时隙内侦听到信道空闲则认为信道侦听成功,可以立即发送信息。若在该信息的起始时刻之前未完成回退计数器归零,或者该额外的侦听时隙为忙碌,则称信道侦听失败。发送节点包括终端设备或网络设备。
发送节点(可以为网络设备,也可以为终端设备)在执行长侦听类型信道侦听成功后,可立即占用上述信道发送信息,而发送节点可以持续占用信道的最大时长,称之为最大信道占用时长(maximum channel occupancy time,MCOT)。另外,如果该发送节点不占满该MCOT,则可以将剩余的MCOT共享给另一发送节点,若另一发送节点发送的信息在该剩余的MCOT内,则不需要执行长侦听类型信道侦听,而是以短侦听类型的信道侦听接入信道发送信息。
4)短侦听类型的信道侦听:通常是指从开始进行信道侦听至信道侦听成功耗时较短的信道侦听。在一示例中,短侦听类型的信道侦听需要侦听一个侦听时隙,若在该一个侦听时隙中侦听到信道空闲,则称为侦听成功,发送节点可以占用信道发送信息。在另一示例中,短侦听类型的信道侦听需要侦听预定个数的侦听时隙,若在该预定个数的侦听时隙中都侦听到信道空闲,则称为侦听成功,发送节点可以占用信道发送信息。在另一示例中,短侦听类型的信道侦听可以是单时隙CCA或者称之为单次(one shot)CCA或者25us CCA,或者称为第二类信道侦听(type 2 channel access)。单时隙空闲信道评测的原理为:发送节点执行一次长度为预设时间长度(例如预设时间长度为25us)的单时隙的信道侦听,如果发送节点在该单时隙内检测到信道空闲,则认为信道侦听成功,发送节点可以立即接入信道发送信息;如果检测到信道忙碌,发送节点放弃发送信息,称信道侦听失败。可以理解的是,不限于上述空闲信道评测方式,短侦听类型的信道侦听还可以是其他能够快速对载波进行侦听的信道侦听,这里不做限制。并且,信道侦听的侦听时长也不限于为25us,也可以是更多或者更少的时长;信道侦听的次数也不限于为1次,也可以是2次,3次或者更多,此处不作具体限定。发送节点包括终端设备或网络设备。
应理解,对于长侦听类型的信道侦听或短侦听类型的信道侦听,信道状态包括两种:信道空闲、信道忙碌。信道状态的判断准则为:无线通信设备将侦听时隙内的接收到信道上的能量或功率与能量检测门限(CCA-energy detection,CCA-ED)比较,如果高于门限,则状态为信道忙碌,如果低于门限,则状态为信道空闲。
5)多个:是指两个或两个以上,其它量词与之类似。
6)子带:一个子带可为用于承载下行信息或上行信息的频域资源。所述一个子带可以是所述第一子带集合中包含的子带(例如第i子带),或者所述第二子带集合中包含的子带。可选的,所述一个子带可包括至少一个子载波(subcarrier),或者,所述一个子带可包括至少一个物理资源块(physical resource block,PRB),或者,所述一个子带可为对应5MHz、10MHz、15MHz或20MHz带宽的频域资源,比如,该段频带可对应LTE系统中的一个载波所占的频域资源,或者,所述一个子带也可为一个载波,或者所述一个子带也可以称之为带宽切片(bandwidth part,BWP)。可选的,该一个子带为该网络设备或该终端设备执行信道侦听的频域单元,例如,该网络设备或该终端设备针对该一个子带执行长侦听类型或短侦听类型的信道侦听流程(针对另一个不同的子带执行另一独立的信道侦听流程),或针对该一个子带维护竞争窗(contention widow,CW)长度(对另一个子带维护另一独立的CW),或者说该网络设备或该终端设备针对不同的子带独立地执行长侦听类型或短侦听类型的信道侦听流程,或者针对不同的子带独立地维护竞争窗长度。再例如,该 网络设备或该终端设备在执行信道侦听时,使用该一个子带上的侦听时隙内检测到的能量或功率与该一个子带所对应的侦听门限CCA-ED进行对比以判断信道为忙碌或空闲(对另一个子带独立地判断忙碌或空闲状态);再例如,该网络设备或该终端设备针对该一个子带执行LBT成功后才能占用该一个子带发送信息(对另一个子带独立地判断是否LBT成功)。应理解,上述该一个子带的定义同样适用于第一子带集合或第二子带集合中包含的任意一个子带的说明,也适用于第一子带、第二子带、第i子带、第j子带的说明,其中i、j为正整数。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
由于在现有技术中,终端设备侦听第一子带集合的类型可包括短侦类型和长侦听类型,网络设备可指示终端设备对第一子带集合的侦听类型。如果沿用LTE中的设计,网络设备需要针对第一子带集合中的每个子带分别指示侦听类型,从而使得通知信令开销较大。
在本发明实施例所提供的方案中,网络设备可针对终端设备的第一子带集合仅发送一个指示信息,用于指示终端设备针对第一子带集合的信道侦听类型,相对于沿用LTE中的设计,网络设备无需要针对第一子带集合中的每个子带分别指示信道侦听类型,可节省信令开销。
基于图1所示的通信系统100,如图2所示,本申请提供一种信道侦听类型的指示方法,图2中的网络设备可具体为图1中的网络设备101,终端设备可具体为图1中的终端设备102,所述方法包括:
步骤S201:网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述信道侦听类型包括长侦听类型或短侦听类型。
为了提高终端设备接入信道的机会,网络设备在执行长侦听类型的信道侦听成功之后,占用某个子带发送下行信息的情况下,若调度该终端设备在该子带集合发送上行信息,该终端设备可以不再执行长侦听类型的信道侦听,而使用短侦听类型的信道侦听,以快速接入信道。
应理解,第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带。
具体的,在本申请实施例中,网络设备可调度该终端设备占用该第一子带集合中的所有子带发送该上行信息。也就是说,该第一子带集合中的每个子带都是该网络设备调度该终端设备占用并发送该上行信息的子带,其中该每个子带上承载该上行信息的一部分。应理解,该上行信息可以包括数据信息,也可以包括控制信息,也可以包括导频信息。该上行信息可以包括一个数据包,也可以包括至少两个数据包,也可以包括一个数据包的一部分,此处不做限定。
应理解,对于该网络设备调度该终端设备占用的所述第一子带集合中的任意一个子带,该上行信息可以占用该任意一个子带对应的全部频域资源(例如全部PRB),也可以占用该任意一个子带对应的部分频域资源(例如部分PRB),都称之为该上行信息占用该任意一个子带。
应理解,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带。
具体的,在本申请实施例中,所述网络设备占用所述第二子带集合发送该下行信息包括:所述网络设备占用该第二子带集合中的所有子带发送该下行信息。也就是说,该第二子带集合中的每个子带都是被该网络设备占用发送下行信息的子带,其中该每个子带上承载该下行信息的一部分。应理解,对于该网络设备占用的该第二子带集合中的任意一个子带,该网络设备可以占用该任意一个子带对应的全部频域资源(例如全部PRB),也可以占用该任意一个子带对应的部分频域资源(例如部分PRB),以上均称之为占用该任意一个子带。
应理解,该下行信息可以包括数据信息,例如物理下行共享信道(physical downlink shared channel,PDSCH)中的数据信息,也可以包括上行控制信息,也可以包括导频信息;可以是用户特定的信息,也可以是广播信息或组播信息。而当该下行信息包括数据信息时,该下行信息可以包括一个数据包,也可以包括至少两个数据包,也可以包括一个数据包的一部分,此处不做限定。当该下行信息包括至少两个数据包时,该至少两个数据包中的任意一个数据包可以承载在该第二子带集合中的所有子带上,也可以承载在该第二子带集合中的部分子带上,此处不做限定。
应理解,当该第二子带集合包含至少两个子带时,对于该第二子带集合中包含的用于承载该下行信息中的一部分信息(称为第一部分信息)的任意一个子带,以及用于承载该下行信息中的另一部分信息(称为第二部分信息)的另外任意一个子带,该网络设备在该任意一个子带上发送该第一部分信息所对应的时域资源与该网络设备在该另外任意一个子带上发送该第二部分信息所对应的时域资源可以相同,也可以不同。例如该网络设备可在子带#n上占用子帧#1~#4发送该第一部分信息,在子带#k上占用子帧#1~#3发送该第二部分信息。另外,该网络设备在该任意一个子带上发送该第一部分信息所对应的MCOT的长度与该网络设备在该另外任意一个子带上发送该第二部分信息所对应的MCOT的长度可以相同,也可以不同。例如该网络设备在子带#n上发送该第一部分信息所对应的MCOT可为8ms,在子带#k上发送该第二部分信息所对应的MCOT可为4ms。
步骤S202:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述信道侦听类型。
需要说明的是,所述第一指示信息承载在一个控制信令中。比如,第一指示信息可承载在一个物理层下行控制信令中,该物理层下行控制信令可为一个下行控制信息(down control information,DCI)例如该DCI可为上行授权UL grant。再例如,所述第一指示信息为UL grant中的至少一个字段。
应理解,为节省开销,该第一指示信息可承载在一个控制信令中,用于指示第一子带集合对应的信道侦听类型。而不是至少两个控制信令中,其中每个控制信令用于指示终端设备针对第一子带集合中一个子带进行信道侦听的侦听类型。
也就是说,在本申请实施例中,用于指示信道侦听类型的该第一指示信息是针对该第一子带集合的,而不是针对某一个特定的子带的,本申请实施例中针对该第一子带集合只需要发送一个第一指示信息,而不需要针对每个子带分别指示信道侦听类型,从而节省了信令开销。进一步的,网络设备发送一个控制信令(例如UL grant),并通过该控制信令中的该第一指示信息指示包含至少两个子带的该第一子带集合的信道侦听类型。
在本申请的另一示例中,所述网络设备可向所述终端设备发送调度信令,所述调度信令中携带有所述第一指示信息,所述调度信令用于调度所述终端设备占用所述第一子带集 合和第一时间单元发送所述上行信息。应理解,所述调度信令可为一个调度信令,具体的所述调度信令可为一个上行授权信令(UL grant)。也就是说,网络设备通过UL grant调度终端设备占用第一子带集合在第一时间单元上发送所述上行信息,并指示终端设备针对所述上行信息执行的信道侦听的类型。具体的,该UL grant中可包含所述信道侦听类型,并包括所述上行信息所占的频域资源、调制编码方式(modulation and coding scheme,MCS)、承载所述上行信息的物理信道对应的解调参考信号(demodulation reference signal,DMRS)序列信息等调度信息中的至少一种。
进一步的,承载该第一指示信息的控制信令可在第一子带集合或第二子带集合中所包含的其中一个子带上进行传输。
步骤S203:所述终端设备根据所述信道侦听类型,对所述第一子带集合执行信道侦听。
在本申请实施例中,终端设备可根据所述信道侦听类型,对第一子带集合进行信道侦听,且在信道侦听成功后,占用第一子带集合发送所述上行信息;或者,对第一子带集合中的至少一个子带进行信道侦听,且在信道侦听成功后,占用第一子带集合中的至少一个子带发送所述上行信息。
在本申请的一示例中,所述第一指示信息所指示的信道侦听类型可针对第一子带集合,而终端设备根据该信道侦听类型对第一子带集合执行信道侦听。此时,终端设备使用侦听方法1对第一子带集合进行信道侦听。以下具体阐述侦听方法1和2。
侦听方法1:终端设备根据该信道侦听类型对第一子带集合执行宽带侦听,或者说对第一子带集合执行联合侦听。
具体的,该终端设备在判断信道状态(信道空闲或信道忙碌)时,将侦听时隙内在该第一子带集合中所有子带上检测到的功率或能量与该第一子带集合对应的CCA-ED比较,判断的信道空闲或忙碌状态针对该第一子带集合中的所有子带。例如,当该信道侦听类型为单时隙CCA时,该终端设备针对该第一子带集合的所有子带联合进行宽带单时隙CCA侦听,并在侦听到信道空闲后占用该第一子带集合的所有子带发送该上行信息。当该信道侦听类型为随机回退CCA时,该终端设备针对该第一子带集合的所有子带联合进行宽带随机回退CCA侦听,回退计数器的挂起或减小操作是针对该第一子带集合的,当该第一子带集合所对应的回退计数器减为零后,该终端设备占用该第一子带集合的所有子带发送该上行信息。
在本申请的另一示例中,第一指示信息所指示的信道侦听类型可针对第一子带集合中的任意一个子带或者针对第一子带集合中的每一个子带。
侦听方法2:终端设备根据该信道侦听类型对第一子带集合中的每个子带独立进行侦听,或者对第一子带集合中的至少一个子带中的每个子带独立进行侦听。
应理解,终端设备根据该信道侦听类型对第一子带集合中的每个子带独立进行侦听包括,终端设备对所述第一子带集合中的每个子带进行侦听的侦听类型为所述第一指示信息所指示的信道侦听类型。终端设备根据该信道侦听类型对第一子带集合中的至少一个子带中的每个子带独立进行侦听包括,终端设备对所述第一子带集合中的至少一个子带中的每个子带进行侦听的侦听类型为所述第一指示信息所指示的信道侦听类型。
具体的,对于该第一子带集合中的任意一个子带(比如,子带#x,其中子带#x表示第 x个子带,x为正整数),该终端设备在判断信道状态(信道空闲或信道忙碌)时,将侦听时隙内在该子带#x上接收到的功率或能量与该子带#x对应的CCA-ED比较,判断该子带#x的空闲或忙碌状态。也就是说,该第一子带集合中每个子带对应独立的空闲或忙碌状态。例如,该终端设备在某个侦听时隙上侦听到某一个子带为空闲时,侦听到另一个子带可能为忙碌。该终端设备对某一个子带信道侦听成功时,可能针对另一个子带的信道侦听失败。
可选的,对于侦听方法2,所述终端设备针对该第一子带集合中的至少一个子带中的每个子带执行信道侦听成功后,该终端设备占用该至少一个子带发送上行数据信息。具体的,当该终端设备侦听到第一子带集合中的所有子带都为LBT成功时,占用该所有子带发送该上行信息。当该终端设备只侦听到该第一子带集合中的一部分子带为LBT成功,而另一部分子带的LBT未成功,则只占用侦听成功的该一部分子带发送该上行信息或该上行信息的一部分,而不占用侦听失败的该另一部分子带,其中,该上行信息的一部分为所述上行信息承载在侦听成功的该一部分子带上的信息。例如,当该终端设备只针对该一部分子带信道侦听成功并只占用该一部分子带时,由于网络设备调度的该上行信息占用的是第一子带集合,由于终端设备未占满第一子带集合,因此仅发送该上行信息的一部分,即承载在该一部分子带上的部分信息。
若第一指示信息指示短侦听类型,那么终端设备可对第一子带集合中的每个子带均执行短侦听类型的信道侦听。终端设备可根据所述信道侦听类型,对第一子带集合进行信道侦听,且在信道侦听成功后,占用第一子带集合发送所述上行信息,具体包括,终端设备仅在第一子带集合中所有的子带都侦听成功时,占用该第一子带集合中的所有子带发送所述上行信息(即,任意子带侦听不成功则不占用该子带集合发送所述上行信息);或者,终端设备占用该第一子带集合中信道侦听成功的子带发送所述上行信息(或所述上行信息的一部分),即,若第一子带集合中一部分子带侦听成功,而另外一部分子带侦听失败时,终端设备只占用该第一子带集合中信道侦听成功的一部分子带,发送所述上行信息或者发送所述上行信息承载在信道侦听成功的一部分子带上的部分信息。
若第一指示信息指示长侦听类型,侦听方法2又包括侦听方法2-1或侦听方法2-2,终端设备可以使用侦听方法2-1或2-2对第一子带集合进行信道侦听。以下具体阐述侦听方法2-1和2-2。
侦听方法2-1:终端设备可对第一子带集合中的每个子带均执行长侦听类型的信道侦听。此时,该信道侦听类型是针对该第一子带集合中的每个子带的。
具体的,该终端设备对该第一子带集合中的每个子带进行信道侦听时,都使用该长侦听类型的信道侦听,或者,该终端设备对该第一子带集合中的至少一个子带中的每个子带进行信道侦听时,都使用该长侦听类型的信道侦听。此时,该信道侦听类型为该终端设备针对该第一子带集合中每个子带进行侦听所对应的信道侦听类型。或者说,该信道侦听类型为该终端设备针对该第一子带集合中的任意一个子带进行信道侦听所使用的信道侦听类型。
侦听方法2-2:终端设备对第一子带集合执行多子带侦听。此时,该信道侦听类型是针对该第一子带集合的。
可选的,终端设备对第一子带集合中的一个子带执行多子带侦听,其余子带独立执行长侦听类型信道侦听。
可选的,终端设备对第一子带集合中的至少一个子带执行多子带侦听,其余子带独立 执行长侦听类型信道侦听。
其中,在多子带侦听中,终端设备针对一个子带集合的其中一个子带执行长侦听类型信道侦听,对该子带集合的中其余子带执行短侦听类型的信道侦听。对于长侦听类型的信道侦听的子带,若该子带上的信道侦听成功,则可以占用该子带,否则不能占用;对于短侦听类型的信道侦听的子带,若该短侦听类型的子带上的信道侦听成功且长侦听类型的子带的信道侦听也成功,则可以占用该短侦听类型的子带,否则不能占用。
具体的,终端设备可以针对第一子带集合中的一个子集(可以是第一子带集合的真子集,也可以是第一子带集合)执行多子带信道侦听。更具体的,该终端设备可以针对该子集中的一个子带(称之为一级子带)执行随机回退CCA,对该子集中的其余子带(称之为二级子带)执行单时隙CCA。对于一级子带,执行随机回退的CCA成功后可以接入信道发送信息;对于任意一个二级子带,当该子带的单时隙CCA侦听成功,并且一级子带上基于随机回退的CCA侦听成功的情况下,终端设备才能在该二级子带上接入信道发送信息。也就是说,当该终端设备使用侦听方法2-2,且该信道侦听类型为随机回退CCA时,并不是第一子带集合中的每个子带都执行随机回退CCA,而是第一子带集合中至少一个子带执行随机回退CCA,也称之为针对第一子带集合执行随机回退CCA。
如图3a和3b所示,第一子带集合包括子带1和子带2,第一指示信息指示的信道侦听类型为随机回退CCA。在图3a中,终端设备针对子带1和子带2分别独立地执行随机回退CCA。在图3b中,终端设备针对第一子带集合执行多子带信道侦听,其中针对子带1执行随机回退CCA,对子带2执行单时隙CCA。在图3b中,也可以称第一子带集合的每个子带对应的LBT类型都是随机回退CCA,或者说子带2所对应的LBT类型为随机回退CCA。
应理解,第一子带集合与第二子带集合的关系具体指第一子带集合与第二子带集合的包含关系,即,第二子带集合是否包含第一子带集合。换句话说,网络设备根据第一子带集合所占的频域范围与第二子带集合所占的频域范围的包含关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型。第一子带集合与第二子带集合的关系可以具体包括以下4种情况。
情况1(完全包含):该第一子带集合是该第二子带集合的子集,或者说,该第一子带集合中的所有子带都包含在该第二子带集合中。其中,该第二子带集合可以等于该第一子带集合,也就是说,该第二子带集合所占的频域范围与该第一子带集合所占的频域范围相同;该第一子带集合是该第二子带集合的真子集,该第二子带集合所占的频域范围包含且大于该第一子带集合所占的频域范围。例如图4a所示,该第二子带集合包括{子带1,子带2,子带3,子带4},该第一子带集合包括{子带1,子带2,子带3,子带4},等于该第二子带集合。再例如图4b所示,该第二子带集合包括{子带1,子带2,子带3,子带4},该第一子带集合包括{子带1,子带2},为该第二子带集合的真子集。
情况2(部分包含):该第二子带集合是该第一子带集合的真子集,或者说,该第二子带集合中的所有子带都包含在该第一子带集合中,且该第一子带集合中包含至少一个该第二子带集合所不包含的子带。也就是说,该第一子带集合所占的频域范围包含且大于该第二子带集合所占的频域范围。例如图5a,该第二子带集合包括{子带1,子带2},该第一子带集合包括{子带1,子带2,子带3,子带4}。
情况3(部分包含):该第一子带集合中包含至少一个子带,该至少一个子带也包含在 该第二子带集合中;且该第一子带集合中还包括另外至少一个子带,该第一子带集合中的另外至少一个子带并不包含在该第二子带集合中;且该第二子带集合中也包括另外至少一个子带,该第二子带集合中的另外至少一个子带并不包含在该第一子带集合中。或者,该第一子带集合和该第二子带集合在频域上部分重叠。例如图5b,该第二子带集合包括{子带1,子带2},该第一子带集合包括{子带2,子带3,子带4}。
情况4(完全不包含):该第二子带集合中包含的任意一个子带不属于该第一子带集合,且该第一子带集合中包含的任意一个子带不属于该第二子带集合。或者说,该第二子带集合所占的频域范围和该第一子带集合所占的频域范围不重叠。例如图5c,该第二子带集合包括{子带1,子带2},该第一子带集合包括{子带3,子带4}。
进一步的,在本申请实施例中,对于情况1、情况2、情况3、情况4,还包括,该第二子带集合中包含的所有子带和该第一子带集合中包含的所有子带属于同一载波或者同一BWP。也就是说,当网络设备发送的下行信息占用的第二子带集合与调度终端设备发送上行信息所占用的第一子带集合都属于同一载波时,也不能像现有技术那样直接指示终端设备使用短侦听类型的信道侦听,而是要根据第一子带集合与第二子带集合之间的包含关系确定终端设备的信道侦听类型。
应理解,网络设备根据第一子带集合与第二子带集合的关系确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,可以包括以下几种方式(方式1、方式2、方式3)。
方式1、根据第一子带集合和第二子带集合的包含关系确定侦听类型。
在本申请的一示例中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,所述网络设备可确定对所述第一子带集合执行信道侦听的类型为短侦听类型。
应理解,对于情况1,当该第一子带集合中的每个子带都包含在该第二子带集合中时,网络设备确定的终端设备针对第一子带集合执行信道侦听的类型为短侦听类型。换句话说,当该第二子带集合的频域范围覆盖了该第一子带集合的频域范围,或者说,当该第一子带集合属于该第二子带集合,或者说当该第一子带集合为该第二子带集合的子集时,该信道侦听类型为短侦听类型。
网络设备占用的子带(或子带集合)可以将该子带(或子带集合)上的下行信息所对应的MCOT共享给终端设备发送上行信息,因此当该网络设备所占的子带能全部包含调度该终端设备占用的子带时,可以允许该终端设备针对该第一子带集合使用短侦听类型进行侦听。例如在图4a和图4b中可以指示终端设备执行的信道侦听类型为单时隙CCA。
在本申请的一示例中,当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述长侦听类型。例如在图5a、图5b和图5c中指示终端设备执行的信道侦听类型为随机回退CCA。
应理解,对于情况2、情况3和情况4,当该第一子带集合包含至少一个该第二子带集合所未包含的子带时,网络设备确定的终端设备针对第一子带集合执行信道侦听的类型为长侦听类型。换句话说,当该第一子带集合的频域范围未覆盖该第二子带集合的频域范围,或者说,当该第一子带集合中有至少一个子带不属于该第二子带集合,或者说当该第一子带集合不是该第二子带集合的子集时,该信道侦听类型为长侦听类型。
由于该网络设备仅向该第一子带集合发送一个第一指示信息用于指示某种信道侦听类型,因此,当该第一子带集合中有任意一个子带未被包含在该第二子带集合中时,由于 该终端设备不能再该子带上使用短侦听类型侦听信道,因此受限于该子带的信道侦听类型,指示给该第一子带集合的该信道侦听类型就是长侦听类型。例如图5a、图5b或图5c所示,由于该第一子带集合未包含在该第二子带集合中,因此指示该信道侦听类型为随机回退CCA。
进一步的,所述第一子带集合中的至少一个子带未包含在所述第二子带集合中具体是指,所述第一子带集合中的至少一个子带包含在所述第二子带集合中,且所述第一子带集合中的另外至少一个子带未包含在所述第二子带集合中。例如情况2和情况3,该第一子带集合包含至少一个该第二子带集合所未包含的子带,且该第一子带集合还包含至少一个该第二子带集合所包含的子带,此时网络设备确定的所述信道侦听类型为所述长侦听类型。
需要说明的是,对于情况1,若想要使终端设备执行短侦听类型的信道侦听,除了需要满足第二子带集合对第一子带集合的频域包含关系,还需要满足第一子带集合或第一子带集合的每个子带上,网络设备发送下行信息对应的MCOT对网络设备调度终端设备发送的上行信息的时域包含关系。考虑到网络设备在一个子带上使用长侦听类型的信道侦听接入信道之后,可以占用信道的最大长度为MCOT,例如该MCOT为2ms,3ms,4ms,6ms,8ms,或者10ms;如果网络设备发送的信息的时间长度未占满该MCOT,则终端设备可以在网络设备占用该子带结束后,通过执行短侦听类型的信道侦听接入信道,并在该子带上占用信道发送信息,且该信息长度不超过MCOT剩余的时间长度,这种方式称之为网络设备将MCOT共享给终端设备。如果终端设备需要发送的信息的时间长度超过了该MCOT剩余的时间长度,则必须执行长侦听类型的信道侦听以接入信道。类似的,网络设备在一个子带集合上使用长侦听类型的信道侦听接入信道之后,可以将该子带集合对应的MCOT共享给终端设备,使终端设备在该子带集合上执行短侦听类型的信道侦听以接入信道。
应理解,网络设备或终端设备对某个子带或某个子带集合执行长侦听类型的信道侦听可以对应一个MCOT。具体的,随机回退CCA对应的MCOT可以根据需要发送的下行信息或上行信息的接入优先级(priority class)确定,接入优先级可以包括4种,每一种接入优先级对应一套信道侦听参数,且接入优先级与下行信息或上行信息中承载的业务类型相关。其中,信道侦听参数包括竞争窗口集合、最大信道占用时间等。示例性的,接入优先级1的最大信道占用时间为2ms,接入优先级2最大信道占用时间为4ms,接入优先级3和接入优先级4的最大信道占用时间为6ms或10ms。终端设备执行短侦听类型的信道侦听无法得到对应的MCOT。
应理解,类似于前面所述的上行侦听方法2-1和侦听方法2-2,该网络设备在第二子带集合发送下行信息之前,也可以使用以下三种侦听方法中的一种进行信道侦听。
侦听方法3-1:网络设备在发送所述下行信息之前,针对该第二下行子带中的每个子带独立执行长侦听类型的信道侦听。类似于终端设备的侦听方法2-1。
对于侦听方法3-1,对于该第一子带集合中的任意一个子带,若该子带也属于该第二子带集合,则该子带所对应的MCOT可以共享给终端设备在该子带上发送上行信息。
侦听方法3-2:网络设备对第二子带集合执行多子带侦听。也就是说,网络设备只针对该第二子带中的至少一个子带(该至少一个子带为第二子带集合的真子集)执行长侦听类型信道侦听,而对该第二子带集合的其他子带执行短侦听类型信道侦听。具体的,网络设备可以针对第二子带集合中的一个子集(可以是第二子带集合的真子集,也可以是全集) 执行多子带信道侦听,其余子带独立执行长侦听类型信道侦听。
其中,在多子带信道侦听中,该网络设备可以针对该子集中的一个子带(一级子带)执行长侦听类型信道侦听,对该子集中的其余子带(二级子带)执行短侦听类型信道侦听;对于一级子带,执行长侦听类型信道侦听成功后可以接入信道发送信息;对于任意一个二级子带,当该子带的短侦听类型信道侦听成功,并且一级子带上长侦听类型信道侦听成功的情况下,网络设备才能在该二级子带上接入信道发送信息。
对于侦听方法3-1和侦听方法3-2,对于该第二子带集合中的任意一个子带(比如,子带#x),该网络设备在判断信道状态(信道空闲或信道忙碌)时,将侦听时隙内在该子带#x上接收到的功率或能量与该子带#x对应的CCA-ED比较,判断该子带#x的空闲或忙碌状态。
应理解,对于第一子带集合中的任意一个子带(称之为第i子带或者子带#i),可以称该子带#i对应该MCOT#i(第i个MCOT)。对于侦听方法3-1,由于网络设备对第二子带集合或第一子带集合中的每个子带独立执行长侦听类型的信道侦听,因此该子带#i对应的MCOT#i为网络设备发送下行信息之前在该子带#i上执行的长侦听类型的信道侦听所对应的MCOT。对于侦听方法3-2,若子带#i为一级子带,该MCOT#i为网络设备在发送下行信息之前在该一级子带上执行信道侦听对应的MCOT。若子带#i为二级子带,虽然该二级子带并不执行长侦听类型的信道侦听,但是其所在的用于执行多子带信道侦听的子带集合中包括了执行长侦听类型信道侦听的一级子带(称之为第j子带或子带#j),因此也可以称子带#i对应的MCOT为子带#j对应的MCOT#j,或者说MCOT#i为MCOT#j,或者说子带#i对应的MCOT为MCOT#j,其中该MCOT#j为网络设备在发送下行信息之前在该一级子带#j上执行信道侦听对应的MCOT。其中,i不等于j。例如,该MCOT#i为第二子带集合中另一个执行随机回退CCA的一级子带#j所对应的MCOT,对于第二子带集合中与该一级子带共同执行多子带信道侦听的其他二级子带,也可以说这些二级子带对应该MCOT#j。
换句话说,第一子带集合中的子带#i所对应的MCOT是网络设备在发送下行信息之前针对子带#i执行长侦听类型信道侦听或短侦听类型信道侦听对应的MCOT,例如可以是网络设备针对子带#i执行长侦听类型信道侦听对应的MCOT,也可以是网络设备针对第一子带集合中不同于子带#i的另一个子带#j执行长侦听类型信道侦听对应的MCOT(例如网络设备针对子带#i执行短侦听类型信道侦听时)。
应理解,某个子带集合(例如第一子带集合或第二子带集合)所对应的MCOT是网络设备在发送下行信息之前针对该子带集合执行信道侦听所对应的MCOT,或者针对该子带集合中的其中一个子带执行信道侦听所对应的MCOT。进一步的,网络设备对该子带所执行的信道侦听为长侦听类型的信道侦听。
侦听方法4:该网络设备针对第二子带集合进行侦听,或者说,该网络设备针对第二子带集合中的所有子带进行联合侦听(即宽带信道侦听)。侦听方式类似于终端设备使用的侦听方法1,该网络设备在判断信道状态(信道空闲或信道忙碌)时,将侦听时隙内在该第二子带集合中所有子带上检测到的功率或能量与该第二子带集合对应的CCA-ED比较,判断的信道空闲或忙碌状态针对该第二子带集合中的所有子带。
对于侦听方法3-2和侦听方法4,该第一子带集合上承载的下行信息(为该下行信息或该下行信息的一部分)对应一个公共的MCOT。该MCOT可以称之为该下行信息所对 应的MCOT,也可以称之为该第一子带集合所对应的MCOT,也可以称之为该网络设备在发送该下行信息之前所执行的信道侦听所对应的MCOT。进一步的,当第二子带集合包括第一子带集合中的所有子带(情况1)时,也可以称之为该第二子带集合所对应的MCOT。
方式2、根据第一子带集合和第二子带集合的包含关系,以及第一子带集合对应的MCOT确定侦听类型。
在本申请中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的MCOT内时,所述网络设备可确定对所述第一子带集合执行信道侦听的类型为短侦听类型。
其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元。可选的,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。进一步的,所述第一子带集合的上行突发为所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元。
在本申请的一示例中,网络设备首先确定第一子带集合的最大信道占用时长(maximum channel occupancy time,MCOT)。应当理解,第一子带集合所对应的MCOT也可以称:网络设备在第一子带集合上发送的所述下行信息(即所述下行信息承载在第一子带集合上的部分)对应的MCOT,或者,网络设备在发送所述下行信息之前针对第一子带集合执行的下行信道侦听对应的MCOT。进一步的,该下行信道侦听为长侦听类型信道侦听。例如,当网络设备使用侦听方法3-2或侦听方法4进行信道侦听时,第一子带集合对应一个公共的MCOT,第一子带集合所对应的MCOT为该公共MCOT。或者,第一子带集合所对应的MCOT为第二子带集合或者第一子带集合中所包含的一个子带(子带#j)所对应的MCOT,或者网络设备发送下行信息之前在子带#j执行的信道侦听所对应的MCOT,其中子带#j为网络设备在发送所述下行信息之前执行长侦听类型信道侦听的子带。例如网络设备使用侦听方法3-2时,在第二子带集合中的子带#j上执行长侦听类型的信道侦听,其余子带执行短侦听类型的信道侦听,则第一子带集合对应的MCOT为子带#j上的该长侦听类型的信道侦听所对应的MCOT;其中#j可以包含在第一子带集合中,也可以不包含在第二子带集合中。
可选的,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。可选的,所述第一子带集合所对应的MCOT为所述第一子带集合中每个子带所对应的MCOT中结束时刻最早的MCOT或者说时间长度最短的MCOT。可选的,所述第一子带集合所对应的MCOT为所述第一子带集合中某一子带或任意子带所对应的MCOT;进一步的,该某一子带或该任意子带为网络设备在发送下行信息之前执行长侦听类型信道侦听的子带。
应理解,当该第一子带集合上的下行信息对应一个公共的MCOT时,根据MCOT共享的原则,只有当该第一子带集合的上行突发在该MCOT内时,才能指示该终端设备使用短侦听类型进行信道侦听以接入信道发送该上行信息,否则需要指示该信道侦听类型为长侦听类型。具体的,该第一子带集合所对应的MCOT是该网络设备占用该第一子带集合中的某个子带发送下行信息所对应的MCOT,例如侦听方式3-2中,若该网络设备占用该子 带执行随机回退CCA,则该MCOT为网络设备在该子带执行的随机回退CCA对应的MCOT;若该网络设备占用该子带执行单时隙CCA,则该MCOT为第二子带集合中另一个执行随机回退CCA的子带所执行的随机回退CCA对应的MCOT。
应理解,所述第一子带集合所对应的MCOT也可以称为第二子带集合所对应的MCOT。考虑到当第一子带集合中的每个子带都包含在第二子带集合中时,第一子带集合对应的MCOT也为第二子带集合对应的MCOT。例如当网络设备使用侦听方法3-2或侦听方法4进行信道侦听时,第二子带集合对应一个公共的MCOT,若第一子带集合中的每个子带均包含在第二子带集合中时,第一子带集合所对应的MCOT也是第二子带集合对应的MCOT,即该公共MCOT。第二子带集合所对应的MCOT也可以称:网络设备在第二子带集合上发送的所述下行信息对应的MCOT,或者,网络设备在第二子带集合发送所述下行信息之前执行的下行信道侦听对应的MCOT。进一步的,该下行信道侦听为长侦听类型信道侦听。
在本申请的一示例中,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发未位于所述第一子带集合所对应的MCOT内时,所述网络设备确定所述信道侦听类型为长侦听类型。另外,如前所述,当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述长侦听类型。
考虑到当第一子带集合的上行突发未位于第一子带集合对应的MCOT内时,该上行突发与第一子带集合上的下行信息的时域长度之和超过了MCOT,因此,上行突发不能共享该第一子带集合对应的MCOT而使用短侦听类型的信道侦听接入信道。另外如前所述,对于情况2、情况3和情况4,当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,网络设备也确定信道侦听类型也为长侦听类型。
例如,图6a、图6b、图6c或图6d所示,第二子带集合为{子带1,子带2,子带3,子带4},第一子带集合为{子带1,子带2},该网络设备接入第二子带集合时,对子带1使用随机回退CCA,其余子带使用单时隙CCA,因此第一子带集合对应的MCOT为网络设备对子带1执行随机回退CCA所对应的MCOT,该MCOT的长度为4ms。对于图6a、图6b,该MCOT的结束时刻为子帧#n+4(第n+4个子帧),上行信息#1(第1个上行信息)所在的上行突发#1(第1个上行突发)为子帧#n+4,子帧#n+4在该MCOT内,因此子帧#n+4的上行信息#1的LBT类型为单时隙CCA,如图6a所示;上行信息#2(第2个上行信息)所在的上行突发#2(第2个上行突发)为子帧#n+6(第n+6个子帧),子帧#n+6未在该MCOT内,因此子帧#n+6的上行信息#2的LBT类型为随机回退CCA,如图6b所示。对于图6c,该MCOT的结束时刻为子帧#n+5(第n+5个子帧),上行信息#3(第3个上行信息)所在的上行突发#3(第3个上行突发)包括子帧{#n+4,#n+5}(#n+5代表第n+5个子帧),上行突发#3位于该MCOT内,因此LBT类型为单时隙CCA;对于图6d,该MCOT的结束时刻为子帧#n+4,上行信息#4(第4个上行信息)所在的上行突发#4(第4个上行突发)包括子帧{#n+4,#n+5},上行突发#4未位于该MCOT内,因此LBT类型为随机回退CCA。
可选的,所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内是指,该第一子带集合的上行突发和网络设备在该第一子带集合(或第二子带集合)上发送的该下行信息所占的时域资源之和不超过所述第一子带集合所对应的最大信道占 用时长。例如图6a,该下行信息所占的时域资源包括子帧{#n,#n+1,#n+2},第一子带集合的上行突发包括子帧{#n+4},两者加起来不超过第一子带集合所对应的MCOT(长度4ms)。
进一步的,所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内还包括,该第一子带集合的上行突发、网络设备在该第一子带集合(或第二子带集合)上发送的该下行信息所占的时域资源、以及两者之间的空隙之和不超过所述第一子带集合所对应的最大信道占用时长。其中,上述所说的空隙可以为网络设备和终端设备在信道上都未发送任何信息的空闲时间。具体实现时,该空隙可以为不超过预定义时间长度的空闲时间。例如,该预定义时间长度为25us。
可选的,所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内是指,该第一子带集合的上行突发、网络设备在该第一子带集合(或第二子带集合)上发送的该下行信息所占的时域资源、以及两者之间的其他上行传输和/或下行传输所占的时域资源之和不超过所述第一子带集合所对应的最大信道占用时长。考虑到网络设备在该上行突发和该下行信息之间可能调度了其他上行突发或上行传输,该其他上行突发也可以共享该第一子带集合所对应的MCOT以执行短侦听类型信道侦听,因此两者之间的其他上行传输和/或下行传输也要计入该第一子带集合所对应的MCOT中。
进一步的,所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内还包括,该第一子带集合的上行突发、网络设备在该第一子带集合(或第二子带集合)上发送的该下行信息所占的时域资源、两者之间的其他上行传输和/或下行传输所占的时域资源、以及两者之间的空隙之和不超过所述第一子带集合所对应的最大信道占用时长。其中,上述所说的空隙如前所述,不再赘述。
应理解,当所述下行信息在第二子带集合(或第一子带集合)的每个子带占用的时域资源相同时,所述下行信息所占的时域资源为所述下行信息在第二子带集合(或第一子带集合)的任意一个子带占用的时域资源。当所述下行信息在第二子带集合(或第一子带集合)的每个子带占用的时域资源不完全相同时,所述下行信息所占的时域资源为最早的起始时刻到最晚的结束时刻之间的时域资源,其中,对下行信息在第二子带集合(或第一子带集合)的每个子带上都占用对应的时域资源,其中最早的起始时刻为第二子带集合(或第一子带集合)的所有子带对应的各自的时域资源中,起始时刻最早的时域资源的起始时刻,最晚的结束时刻为结束时刻最晚的时域资源的结束时刻。例如下行信息在第二子带集合(或第一子带集合)中包含的K个子带中,对应地占用K段时域资源,最早的起始时刻为这K段时域资源中起始时刻最早的时域资源对应的起始时刻,最晚的结束时刻为这K段时域资源中结束时刻最晚的时域资源对应的结束时刻。K为正整数。
类似的,当所述上行突发在第一子带集合的每个子带占用的时域资源相同时,所述上行突发所占的时域资源为所述上行突发在第一子带集合的任意一个子带占用的时域资源。当所述上行突发在第一子带集合的每个子带占用的时域资源不完全相同时,所述上行突发所占的时域资源为最早的起始时刻到最晚的结束时刻之间的时域资源,其中最早的起始时刻为所述上行突发在第一子带集合的每个子带中占用的时域资源中起始时刻最早的子带的起始时刻,最晚的结束时刻为所述上行突发在第一子带集合的每个子带中占用的时域资源中结束时刻最晚的子带的结束时刻。
方式3、根据第一子带集合和第二子带集合的包含关系,以及第一子带集合中每个子 带对应的MCOT确定侦听类型。
在本申请的一示例中,在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的MCOT内时,所述网络设备确定所述信道侦听类型为短侦听类型;
其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的MCOT内,包括:所述第i子带的第i上行突发位于所述第i子带的MCOT内。
其中,所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元。可选的,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。进一步的,所述第i上行突发为所述网络设备调度所述终端设备发送所述上行信息所占的时间单元,或者所述第i上行突发为所述网络设备调度所述终端设备发送的所述上行信息在第i子带上所占的时间单元。
所述第i子带的MCOT为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的MCOT,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。该下行信息为网络设备执行该信道侦听成功后发送的信息。进一步的,该信道侦听为长侦听类型的信道侦听。
也可以说,所述第i子带的MCOT为网络设备在所述第i子带上发送的第i下行信息所对应的最大信道占用时长,其中第i下行信息为所述下行信息承载在所述第i子带上的部分。
也可以说,所述第i子带的MCOT为网络设备在所述第i子带上发送第i下行信息之前,针对所述第i子带的信道侦听所对应的最大信道占用时长,其中第i下行信息为所述下行信息承载在所述第i子带上的部分。该第i下行信息为网络设备执行该信道侦听成功后发送的信息。进一步的,该信道侦听为长侦听类型的信道侦听。
换句话说,如果对于在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中任意一个子带#i=1,…,N的上行突发#i(第i个上行突发)均位于子带#i(第i个子带)所对应的MCOT内时,所述网络设备确定所述信道侦听类型为短侦听类型。
在本申请的一示例中,在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的MCOT内时,所述网络设备确定所述信道侦听类型为所述长侦听类型。另外,如前所述,当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述长侦听类型。
换句话说,如果对于在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中存在任意一个子带#i=1,…,N的上行突发#i未位于子带#i所对应的MCOT内时,所述网络设备确定所述信道侦听类型为长侦听类型。
考虑到当第一子带集合中存在任意一个子带(称为第i子带),该第i子带的第i上行突发未位于该第i子带对应的MCOT内时,该第i上行突发与该第i子带上的下行信息的时域长度之和超过了该第i子带对应的MCOT,因此,第i上行突发不能共享该第i子带对应的MCOT而使用短侦听类型的信道侦听接入信道。由于第一指示信息是针对第一子带集合的,第一子带集合中有任意一个子带不能共享该子带的MCOT的情况下,即使第一子带 集合上存在其他子带(子带#j)能共享该子带#j对应的MCOT,也需要指示该第一子带集合的信道侦听类型为长侦听类型。另外,如前所述,对于情况2、情况3和情况4,当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,网络设备也确定信道侦听类型也为长侦听类型。
可选的,当第一子带集合中每个子带都包含在该第二子带集合中(即情况1)时,对于第一子带集合中的每个子带,该子带上的上行信息承载在第一时间单元上,属于第一数据包的一部分,若该每个子带上的第一时间单元,或者每个子带上的上行信息(或第一时间单元)所在的上行突发,包含在网络设备占用该子带发送的下行信息(或下行信息的一部分)所对应的MCOT(或者说网络设备在该子带的该下行信息之前执行的信道侦听对应的MCOT)内时,该第一子带集合的信道侦听类型为单时隙CCA。否则,若该第一子带集合中包含任意一个第i子带,对于该第i子带上的上行信息(承载在第i时间单元上),若该第i时间单元,或者第i子带上的上行信息(或该第i时间单元)所在的第i上行突发,未包含在网络设备占用该第i子带发送的下行信息所对应的MCOT内时,该第一子带集合的信道侦听类型为随机回退CCA。
可选的,当该第一时间单元,或者该第一时间单元所在的上行突发,包含在该网络设备占用该第一子带集合发送的下行信息所对应的MCOT内时,该第一子带集合的信道侦听类型为单时隙CCA。或者说,当该第一时间单元包含在该第一子带集合中的每个子带所对应的MCOT中结束时刻最早的MCOT内时,该第一子带集合的信道侦听类型为单时隙CCA。应理解,当该第二子带集合中的每个子带都分别对应一个MCOT时,而每个子带所对应的MCOT的结束时刻可能不同,因此根据MCOT共享的原则,当该第一时间单元在某个子带承载的下行信息对应的MCOT内时,该终端设备可以在该子带上使用单时隙CCA。但是考虑到该网络设备对该第一子带集合只发送一个该第一指示信息,因此只有当该第一时间单元在该第一子带集合中每个子带上承载的下行信息所对应的MCOT内,或者说当该第一时间单元包含在该第一子带集合中的每个子带所对应的MCOT中结束时刻最早的MCOT内时,该第一子带集合的信道侦听类型才为单时隙CCA。否则,当该第一时间单元未包含在该第一子带集合中的任意一个子带所对应的MCOT内时,该第一子带集合的信道侦听类型为随机回退CCA,从而保证在任意一个子带上都满足MCOT共享原则。
可选的,所述第i子带的上行突发位于所述第i子带所对应的最大信道占用时长内是指,该第i子带的上行突发和网络设备在该第i子带上发送该下行信息所占的时域资源之和不超过所述第i子带所对应的最大信道占用时长。例如图7c,子带2上,该下行信息所占的时域资源包括子帧{#n,#n+1,#n+2},子带2上的上行突发包括子帧{#n+4},两者加起来为4ms,不超过子带1的MCOT长度4ms。子带1上,该下行信息所占的时域资源包括子帧{#n,#n+1},子带1上的上行突发包括子帧{#n+4,#n+5,#n+6},两者加起来为5ms,超过了子带1的MCOT长度4ms。
进一步的,所述第i子带的上行突发位于所述第i子带所对应的最大信道占用时长内还包括,该第i子带的上行突发、网络设备在该第i子带上发送的该下行信息所占的时域资源、以及两者之间的空隙之和不超过所述第i子带所对应的最大信道占用时长。其中,上述所说的空隙可以为网络设备和终端设备在第i子带上都未发送任何信息的空闲时间。具体实现时,该空隙可以为不超过预定义时间长度的空闲时间。例如,该预定义时间长度为25us。
可选的,所述第i子带的上行突发位于所述第i子带所对应的最大信道占用时长内是指,该第i子带的上行突发、网络设备在该第i子带上发送的该下行信息所占的时域资源、以及两者之间的其他上行传输和/或下行传输所占的时域资源之和不超过所述第i子带所对应的最大信道占用时长。考虑到网络设备在该上行突发和该下行信息之间可能调度了其他上行突发或上行传输,该其他上行突发也可以共享该第i子带的MCOT以执行单时隙CCA,因此两者之间的其他上行传输和/或下行传输也要计入第i子带的MCOT中。
进一步的,所述第i子带的上行突发位于所述第i子带所对应的最大信道占用时长内还包括,所述第i子带的上行突发位于所述第i子带所对应的最大信道占用时长内还包括,该第i子带的上行突发、网络设备在该第i子带上发送的该下行信息所占的时域资源、两者之间的其他上行传输和/或下行传输所占的时域资源、以及两者之间的空隙之和不超过所述第i子带所对应的最大信道占用时长。其中,上述所说的空隙如前所述,不再赘述。
例如,图7a、图7b或图7c所示,第二子带集合为{子带1,子带2,子带3,子带4},第一子带集合为{子带1,子带2},该网络设备接入第二子带集合时,对子带1~子带4分别使用独立的随机回退CCA。子带1、子带2、子带3、子带4的MCOT长度都是4ms。在图7a中,子带1的MCOT结束时刻是#n+6(第n+6个子帧),子带2的MCOT结束时刻是#n+4(第n+4个子帧)。上行信息#1(第1个上行信息)承载在子带1和子带2上,占用的时间单元为子帧#n+4,上行信息#2(第2个上行信息)承载在子带1和子带2上,占用的时间单元为子帧#n+6。子带1上的上行突发#1(第1个上行突发)为上行信息#1占用的时间单元,即子帧#n+4,子带2上的上行突发#2(第2个上行突发)为上行信息#1占用的时间单元,即子帧#n+4,子带1上的上行突发#3(第3个上行突发)为上行信息#2占用的时间单元,即子帧#n+6,子带2上的上行突发#4(第4个上行突发)为上行信息#2占用的时间单元,即子帧#n+6。子带1的上行突发#1在子带1的MCOT内,且子带2的上行突发#2在子带2的MCOT内,因此上行信息#1的LBT类型为单时隙CCA;子带1的上行突发#3在子带1的MCOT内,但子带2的上行突发#4不在子带2的MCOT内,因此上行信息#2的LBT类型为随机回退CCA。在图7b中,子带1的MCOT结束时刻是#n+5,子带2的MCOT结束时刻为#n+4。因此,子带1上的上行信息所在的上行突发{#n+4,#n+5}包含在子带1的MCOT内,子带2上的上行信息所在的上行突发{#n+4}包含在子带2的MCOT内,因此第一子带集合的LBT类型为单时隙CCA。在图7c中,子带1的MCOT结束时刻为#n+5(第n+5个子帧),子带2的MCOT结束时刻为#n+4。因此,子带1上的上行信息所在的上行突发{#n+4,#n+5,#n+6}未包含在子带1的MCOT内,子带2上的上行信息所在的上行突发{#n+4}包含在子带2的MCOT内,因此第一子带集合的LBT类型为随机回退CCA。
应理解,上行突发(burst)可以包括网络设备调度该终端设备发送信息所占用的至少一个时间上连续的时间单元。当上行突发可以包括至少两个时间上连续的时间单元时,这里所说的连续可以是指信道占用是连续的,即该网络设备调度该终端设备持续地占用该至少两个时间单元发送信息,也可以是指时间单元的(例如,TTI或子帧或时隙slot)序号连续。也就是说,时间上连续的至少两个时间单元中,任意两个相邻的时间单元之间可以没有空隙,也可以有空隙。例如,网络设备调度终端设备连续地占用这两个相邻的时间单元发送上行信息,或者,网络设备调度终端设备不占用前一时间单元结尾位置的时域资源 发送信息,将该时域资源保留为空隙,或者,网络设备调度终端设备不占用后一时间单元起始位置的时域资源发送信息,将该时域资源保留为空隙等,本申请实施例对此不进行限定。即,该多个时间单元中的任意一个时间单元可以是一个完整的时间单元,也可以是一个时间单元的一部分。进一步的,上行突发与网络设备调度终端设备发送信息的其他相邻的时间单元在时间上不连续,或者,上行突发与未包含在该上行突发内的其他用于终端设备发送信息的时间单元在时间上不连续。即,上行突发之前和之后存在空隙。例如网络设备调度终端设备在第一子带集合或第一子带集合中的第i子带上发送的上行信息占用子帧#2(第2个子帧),网络设备调度终端设备在第一子带集合或第一子带集合中的第i子带上发送的子帧序列{#1,#2,#3,#4},且子帧#1(第1个子帧)之前没有其他被网络设备调度发送信息的时间单元,子帧#4(第4个子帧)之后没有其他被网络设备调度发送信息的时间单元。则上行突发为该子帧序列{#1,#2,#3,#4},且上行突发包括上行信息所在的时间单元,即子帧#2。
可选的,上行突发为第一子带集合上的上行突发。网络设备可以调度终端设备在第一子带集合上的不同子带上占用相同的时域资源,此时称这段时域资源为第一子带集合上的上行突发。例如第一子带集合包括子带#1(第1个子带)和子带#2(第2个子带),子带#1的上行传输对应子帧{#1,#2,#3,#4},子带#1的上行传输对应子帧{#1,#2,#3,#4},则第一子带集合上的上行突发对应子帧{#1,#2,#3,#4}。
可选的,上行突发为第一子带集合中某个子带上的上行突发(例如第i子带的第i上行突发)。网络设备可以调度终端设备在第一子带集合上的不同子带上发送长度不同的上行突发。例如,第一子带集合的不同的子带上的上行突发对应的时域范围可能不同。例如第一子带集合包括子带#1和子带#2,子带#1的上行突发对应子帧{#1,#2},子带#1的上行突发对应子帧{#1,#2,#3,#4}。
在本申请实施例中,一个时间单元是指时间上连续的至少一个传输时间隔(transmission time interval,TTI)或者至少一个时域符号(symbol)。具体的,该一个时间单元为上行突发中包括的时间单元,或者该一个时间单元为网络设备调度终端设备发送上行信息对应的时间单元。其中,上行突发可以是第一子带集合的上行突发,也可以是第一子带集合中的一个子带上的上行突发,例如第i子带的第i上行突发。其中,该时间单元中包括的每个TTI可以是完整TTI(即占用该TTI对应的全部时域资源发送信息),也可以是部分TTI(即占用该TTI对应的部分时域资源发送信息,而另外部分时域资源保留为空闲)。可选的,该时间单元可以是一个TTI。TTI可以是1ms TTI,或者称为子帧,长度为1ms;也可以是短于1ms的短传输时间间隔(short TTI,sTTI)或者称为迷你时隙(mini-slot)或者称为非时隙(non-slot),sTTI所占用的时域资源长度短于1ms TTI,也就是说,sTTI为占用时域资源长度短于1ms的TTI。对于上行传输而言,TTI是上行资源分配或上行传输的时域粒度,或者说TTI是终端设备进行上行传输的最小时域单元。sTTI可能支持的可选长度包括7个上行符号、1个上行符号、2个上行符号、3个上行符号或4个上行符号等结构,其中上行符号可以是单载波频分多址接入符号(single carrier frequency division multiplexing access symbol,SC-FDMA symbol),也可以是正交频分多址接入符号(orthogonal frequency division multiplexing access symbol,OFDMA symbol)。对于下行传输而言,TTI是下行资源分配或下行传输的时域粒度,或者说TTI是网络设备进行下行传输的最小时域单元。sTTI可能支持的可选长度包括7个下行符号、1个下行符号、2个下行符号、3个下行符号或4个下行 符号等结构,其中下行符号可以是OFDMA符号。sTTI还支持其他短于1ms的TTI长度。可选的,该一个时间单元还可以是时间上连续的至少两个TTI,例如非授权频谱上,该时间单元可以是时间上连续的多个TTI组成的一个突发(burst),例如,该时间单元可以是第一子带集合的上行突发,或者,例如第i上行突发。
在本申请的一种实现方式中,所述第一子带集合中可包括至少两个子带。
采用本申请提供的信道侦听方法,网络设备占用一个载波的至少一个子带后,通知终端设备在该载波上执行LBT的类型。当网络设备在该载波上发送下行信息所占用的子带在频域范围上包含终端设备被调度发送上行信息所占的子带时,网络设备才指示终端设备使用单时隙CCA接入该载波,如果下行信息所占子带在频域范围上未包含被调度的上行信息所占的子带,则网络设备指示终端设备使用随机回退CCA。可以在高效接入信道的同时实现与周围竞争节点的友好共存,并节省了通知信令开销。
基于图1所示的通信系统100,如图8所示,本申请提供一种信道侦听类型的指示方法,图8中的网络设备可具体为图1中的网络设备101,终端设备可具体为图1中的终端设备102,所述方法包括:
步骤S81:网络设备生成第一指示信息。
在本申请中,所述第一指示信息用于指示所述网络设备发送下行信息所占用的第二子带集合,或者,所述第一指示信息用于指示第一子带集合,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带。所述第一子带集合可包括一个子带或包括至少两个子带,所述第二子带集合可包括一个子带或包括至少两个子带。
在本申请实施例中,所述第一指示信息可为小区公共控制信息,或者所述第一指示信息可为组(group)控制信息,针对包括该终端设备在内的至少一个终端设备。
为了让终端设备确定哪些子带被网络设备占用,并可以共享MCOT给终端设备以单时隙CCA接入信道发送上行信息,该网络设备需要发送第一指示信息,将该第二子带集合或该第二子带集合的占用情况通知给该终端设备。
在本申请实施例中,所述第一指示信息可显示指示所述第二子带集合,也可隐式指示所述第二子带集合。在一种实现方式中,所述显示指示可为:该第一指示信息中的比特域来指示网络设备对第一子带集合的占用情况。例如所述第一指示信息可以显式地指示第二子带集合所包括的子带的序号,也可以通过位图(bit map)的形式指示第二子带集合中的每个子带是否被占用,例如’0’代表未被占用,’1’代表被占用。所述隐式指示可为:终端设备通过对该第一指示信息的盲检测来确定。例如,在某个子带上检测到该第一指示信息,则确定网络设备占用该子带。
在本申请实施例中,所述第一指示信息用于指示第一子带集合,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带。
具体的,所述第一指示信息可以显式地指示第一子带集合所包括的子带的序号,也可以通过位图(bit map)的形式指示第一子带集合中的每个子带是否被占用,例如’0’代表未被占用,’1’代表被占用。所述第一指示信息也可隐式指示所述第一子带集合,所述隐式指示可为:终端设备通过对该第一指示信息的盲检测来确定。例如,在某个子带上检测到该第一指示信息,则确定网络设备占用该子带。另外,该网络设备也可以不限于上述两种方式,而是用其他方式通知对该第二子带集合的占用情况。
步骤S82:网络设备向终端设备发送所述第一指示信息。
在本申请的一示例中,所述第一指示信息可承载在一个控制信令中。具体的,所述第一指示信息可承载在一个物理层下行控制信令中。更具体的,该物理层下行控制信令可为一个DCI。例如该DCI可为公共物理层下行控制信道(common physical downlink control channel,CPDCCH)中的控制信息。再例如,该物理层下行控制信令可为一个DCI中的至少一个字段。
应理解,为节省开销,该第一指示信息承载在一个控制信令中,而不是至少两个控制信令中,其中每个控制信令用于指示第二子带集合或第一子带集合其中一个子带的占用情况。进一步的,该第一指示信息承载的物理层下行控制信令在第二子带集合或第一子带集合中所包含的其中一个子带上。
步骤S83:终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,所述第一子带为所述网络设备调度所述终端设备发送上行信息所占用的子带。
步骤S84:终端设备根据所述信道侦听类型,对所述第一子带执行信道侦听。
在本申请实施例中,所述终端设备在对所述第一子带侦听成功时,该终端设备可以占用该第一子带发送上行信息。
具体的,所述终端设备对所述第一子带可以使用长侦听类型的信道侦听,也可以使用短侦听类型的信道侦听。当所述终端设备对所述第一子带可以使用长侦听类型的信道侦听时,所述终端设备可以对第一子带独立执行长侦听类型的信道侦听,例如采用侦听方法3-1。也可以执行短侦听类型信道侦听,并根据另一个长侦听类型子带是否成功与第一子带的短侦听类型是否成功确定是否占用该子带发送上行信息,例如采用侦听方法3-2,其中第一子带可以是一级子带或二级子带。
应理解,对于该第一子带集合中的任意一个子带,该网络设备可能占用了该子带发送下行信息,此时,该终端设备可以共享该子带,或该子带所在的子带集合(第二子带集合或第三子带集合)所对应的MCOT,使用单时隙CCA进行信道侦听以接入信道。该网络设备也可能并未占用该子带发送下行信息,或者该网络设备可能占用了该子带但是终端设备要发送的上行信息的上行突发超出了该MCOT,此时该终端设备无法共享MCOT。
应理解,对于一个网络设备已经占用的子带,为了让终端设备确定该子带上哪段时域资源可以共享给该终端设备以单时隙CCA接入信道发送上行信息,网络设备还需要指示可以用于单时隙CCA接入信道的上行时域资源。
在本申请的一示例中,所述第一指示信息还用于指示第二子带集合的上行时域资源;其中,所述第二子带集合的上行时域资源与所述下行信息在所述第二子带集合中所占的时域资源之和不超过所述第二子带集合的MCOT,所述第二子带集合的上行时域资源为所述终端设备在所述第二子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
相应的,所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发位于所述第二子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型。所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
具体的,网络设备可以指示第二子带集合的上行时域资源的起始时刻(或起始时间单元)、结束时刻(或结束时间单元)、持续时长中的至少两种,也可以具体指示第二子带集合的上行时域资源具体是哪些TTI或子帧或时隙,也可以使用其他指示方法,此处不做限定。其中,该上行信息的起始时刻(或起始时间单元)可以是该上行时域资源相比于下行信息结束时刻的时间偏移(或时间间隔)。
应理解,第一子带的上行突发为承载在第一子带上的上行突发,上行突发的定义如前所述,不再赘述。进一步的,第一子带的上行突发与网络设备调度终端设备发送信息的其他相邻的时间单元在时间上不连续。
可选的,所述第一子带的上行突发位于所述第二子带集合的上行时域资源内包括,所述第一子带的上行突发的结束时刻不晚于所述第二子带集合的上行时域资源的结束时刻。
可选的,所述第一子带的上行突发位于所述第二子带集合的上行时域资源内包括,所述第一子带的上行突发的起始时刻不早于所述第二子带集合的上行时域资源的起始时刻,且所述第一子带的上行突发的结束时刻不晚于所述第二子带集合的上行时域资源的结束时刻。
在本申请中,当所述第一子带未包含在所述第二子带集合中;或者,所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发未位于所述第二子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为长侦听类型。
应理解,当所述下行信息在某个子带集合(例如第二子带集合或第一子带集合)的每个子带占用的时域资源相同时,所述下行信息所占的时域资源为所述下行信息在该子带集合的任意一个子带占用的时域资源。当所述下行信息在该子带集合的每个子带占用的时域资源不完全相同时,所述下行信息所占的时域资源为最早的起始时刻到最晚的结束时刻之间的时域资源,其中,对下行信息在该子带集合的每个子带上都占用对应的时域资源,其中最早的起始时刻为该子带集合的所有子带对应的各自的时域资源中,起始时刻最早的时域资源的起始时刻,最晚的结束时刻为结束时刻最晚的时域资源的结束时刻。例如下行信息在该子带集合中包含的K个子带中,对应地占用K段时域资源,最早的起始时刻为这K段时域资源中起始时刻最早的时域资源对应的起始时刻,最晚的结束时刻为这K段时域资源中结束时刻最晚的时域资源对应的结束时刻。K为正整数。
应理解,所述第二子带集合的MCOT为所述网络设备在发送所述下行信息前针对所述第二子带集合进行的信道侦听所对应的MCOT。进一步的,所述网络设备在发送所述下行信息之前执行的信道侦听为长侦听类型的信道侦听。
应理解,所述网络设备在发送所述下行信息前针对所述第二子带集合进行的信道侦听如侦听方法3-1或侦听方法3-2或侦听方法4所述,不再赘述。
在本申请的一示例中,所述第一指示信息还用于指示第二子带集合的上行时域资源;其中,所述第二子带集合的上行时域资源与所述下行信息在所述第二子带集合中任一子带中所占的时域资源之和不超过所述任一子带的MCOT,所述第二子带集合的上行时域资源为所述终端设备在所述第二子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
相应的,所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发位于所述第二子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短 信道侦听类型。
应理解,所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在本申请中,当所述第一子带未包含在所述第二子带集合中;或者,所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发未位于所述第二子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为长侦听类型。
应理解,所述第二子带集合中的任意一个子带的MCOT为所述网络设备在发送所述下行信息前针对所述任意一个子带进行的信道侦听所对应的MCOT。其中,子带#i所对应的MCOT的说明如前所述,不再赘述。比如所述任一子带为子带#i,子带#i的上行时域资源与网络设备在子带#i上发送下行信息所对应的时域资源之和不超过子带#i的最大信道占用时长。进一步的,所述网络设备在发送所述下行信息之前执行的信道侦听为长侦听类型的信道侦听。
例如图9a,网络设备通知终端设备:发送下行信息所占用的第二子带集合包括{子带1,子带2,子带3,子带4},并且由于子帧#4(第4个子帧)与第二子带集合的任意一个子带的下行信息的时域长度之和不超过该任意子带的MCOT,因此通知第二子带集合的上行时域资源为子帧#4。终端设备可以在子带1、子带2、子带3和子带4上针对上行突发{子帧#4}执行单时隙CCA,并且虽然在子带1、子带2、子带4的子帧#6(第6个子帧)也在对应子带的MCOT内,但是受限于网络设备只通知一个公共的第二子带集合对应的上行时域资源,即子帧#4,因此终端设备在这四个子带的上行突发{子帧#6}都执行随机回退CCA。
在本申请的一示例中,所述第一指示信息还用于指示所述第二子带集合中每个子带的上行时域资源;其中,所述第二子带集合中任一子带的上行时域资源为根据所述任一子带的MCOT所确定的,所述任一子带的上行时域资源为所述终端设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源。
进一步的,所述第二子带集合中任一子带的上行时域资源为根据所述任一子带的MCOT所确定的包括,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
相应的,所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第二子带集合中,且所述第一子带的上行突发位于所述第一子带的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
具体的,网络设备可以指示第二子带集合中每个子带的上行时域资源的起始时刻(或起始时间单元)、结束时刻(或结束时间单元)、持续时长中的至少两种,也可以具体指示第二子带集合中每个子带的上行时域资源具体是哪些TTI或子帧或时隙,也可以使用其他指示方法,此处不做限定。其中,该上行信息的起始时刻(或起始时间单元)可以是该上行时域资源相比于下行信息结束时刻的时间偏移(或时间间隔)。
在本申请中,当所述第一子带未包含在所述第二子带集合中;或者,所述第一子带包 含在所述第二子带集合中,且所述第一子带的上行突发未位于所述第一子带的上行时域资源内时,所述终端设备确定所述信道侦听类型为长信道侦听类型。
可选的,所述第一子带的上行突发位于所述第一子带的上行时域资源内包括,所述第一子带的上行突发的结束时刻不晚于所述第一子带的上行时域资源的结束时刻。
可选的,所述第一子带的上行突发位于所述第一子带的上行时域资源内包括,所述第一子带的上行突发的起始时刻不早于所述第一子带的上行时域资源的起始时刻,且所述第一子带的上行突发的结束时刻不晚于所述第一子带的上行时域资源的结束时刻。
需要说明的是,所述第二子带集合中的任意一个子带的MCOT为所述网络设备在发送所述下行信息前针对所述任意一个子带进行的信道侦听所对应的MCOT。其中,子带#i所对应的MCOT的说明如前所述,不再赘述。比如所述任一子带为子带#i,子带#i的上行时域资源与网络设备在子带#i上发送下行信息所对应的时域资源之和不超过子带#i的最大信道占用时长。
例如图9b、图9c,对于一个载波包括全部子带{子带1,子带2,子带3,子带4}中,该网络设备可能只占用其中的部分子带作为第二子带集合发送下行信息。对于图9b中,网络设备通知终端设备:发送下行信息所占用的第二子带集合包括{子带1,子带2},以及每个子带的上行时域资源:子带1的上行时域资源为子帧#4~子帧#6,子带2的上行时域资源为子帧#4~子帧#6,则终端设备可以在子带1和子带2上针对上行突发{子帧#4,子帧#5,子帧#6}执行单时隙CCA,而对于网络设备未占用的子带3、子带4,终端设备执行随机回退CCA。对于图9c,网络设备通知终端设备:发送下行信息所占用的第二子带集合包括{子带1,子带2},以及子带1的上行时域资源以及子带2的上行时域资源为{子帧#4},则终端设备可以在子带1和子带2上分别针对上行突发{子帧#4},执行单时隙CCA;对于上行突发{子帧#6},由于超出了子带1和子带2上行时域资源,因此分别执行随机回退CCA;对于网络设备未占用的子带3、子带4,终端设备执行随机回退CCA。
例如图9d,网络设备通知终端设备:发送下行信息所占用的第二子带集合包括{子带1,子带2,子带3,子带4},以及每个子带的上行时域资源:子带1、子带2、子带4的上行时域资源为子帧#4~子帧#6,子带3的上行时域资源为{子帧#4},则终端设备可以在子带1、子带2和子带4上针对上行突发{子帧#4}和上行突发{子帧#6}执行单时隙CCA,在子带3上针对上行突发{子帧#4}执行单时隙CCA,针对上行突发{子帧#6}执行随机回退CCA。
在本申请的一示例中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合的上行时域资源;其中,所述第一子带集合的上行时域资源与所述下行信息在所述第一子带集合中所占的时域资源之和不超过所述第一子带集合的MCOT,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带,所述第一子带集合的上行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
相应的,所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发位于所述第一子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备 调度所述终端设备发送所述上行信息所占的时间单元。
具体的,网络设备可以指示第一子带集合的上行时域资源的起始时刻(或起始时间单元)、结束时刻(或结束时间单元)、持续时长中的至少两种,也可以具体指示第一子带集合的上行时域资源具体是哪些TTI或子帧或时隙,也可以使用其他指示方法,此处不做限定。其中,该上行时域资源的起始时刻(或起始时间单元)可以是该上行时域资源相比于下行信息结束时刻的时间偏移(或时间间隔)。
在本申请中,当所述第一子带未包含在所述第一子带集合中;或者,所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发未位于所述第一子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为长信道侦听类型。
可选的,所述第一子带的上行突发位于所述第一子带集合的上行时域资源内包括,所述第一子带的上行突发的结束时刻不晚于所述第一子带集合的上行时域资源的结束时刻。
可选的,所述第一子带的上行突发位于所述第一子带集合的上行时域资源内包括,所述第一子带的上行突发的起始时刻不早于所述第一子带集合的上行时域资源的起始时刻,且所述第一子带的上行突发的结束时刻不晚于所述第一子带集合的上行时域资源的结束时刻。
应理解,所述第一子带集合的MCOT为所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的MCOT。进一步的,所述网络设备在发送所述下行信息之前执行的信道侦听为长侦听类型的信道侦听。
应理解,所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听如侦听方法3-1或侦听方法3-2或侦听方法4所述,不再赘述。
在本申请的一示例中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合的上行时域资源;其中,所述第一子带集合的上行时域资源与所述下行信息在所述第一子带集合中任一子带中所占的时域资源之和不超过所述任一子带的MCOT,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带,所述第一子带集合的上行时域资源为所述终端设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。
相应的,所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发位于所述第一子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
在本申请中,当所述第一子带未包含在所述第一子带集合中;或者,所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发未位于所述第一子带集合的上行时域资源内时,所述终端设备确定所述信道侦听类型为长信道侦听类型。
需要说明的是,所述第一子带集合中的任意一个子带的MCOT为所述网络设备在发送所述下行信息前针对所述任意一个子带进行的信道侦听所对应的MCOT。其中,子带#i所对应的MCOT的说明如前所述,不再赘述。比如所述任一子带为子带#i,子带#i的上行时域资源与网络设备在子带#i上发送下行信息所对应的时域资源之和不超过子带#i的最大信 道占用时长。
例如图9a,网络设备通知终端设备:发送下行信息所占用的第二子带集合包括{子带1,子带2,子带3,子带4},并且由于子帧#4与第一子带集合的任意一个子带的下行信息的时域长度之和不超过该任意子带的MCOT,因此通知第一子带集合的上行时域资源为子帧#4。终端设备可以在子带1、子带2、子带3和子带4上针对上行突发{子帧#4}执行单时隙CCA,并且虽然在子带1、子带2、子带4的子帧#6也在对应子带的MCOT内,但是受限于网络设备只通知一个公共的第一子带集合对应的上行时域资源,即子帧#4,因此终端设备在这四个子带的上行突发{子帧#6}都执行随机回退CCA。
在本申请的一示例中,当第一子带集合中的每个子带均包括在所述第二子带集合中时,所述第一指示信息还用于指示所述第一子带集合中每个子带的上行时域资源;其中,所述第一子带集合中任一子带的上行时域资源为根据所述任一子带的MCOT所确定的,所述任一子带的上行时域资源为所述终端设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占的至少一个子带。
进一步的,所述第一子带集合中任一子带的上行时域资源为根据所述任一子带的MCOT所确定的包括,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
相应的,所述终端设备根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,包括:当所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发位于所述第一子带的上行时域资源内时,所述终端设备确定所述信道侦听类型为短信道侦听类型;所述第一子带的上行突发为所述网络设备调度所述终端设备在所述第一子带占用的时间上连续的至少一个时间单元,所述第一子带的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元。
具体的,网络设备可以指示第一子带集合中每个子带的上行时域资源的起始时刻(或起始时间单元)、结束时刻(或结束时间单元)、持续时长中的至少两种,也可以具体指示第一子带集合中每个子带的上行时域资源具体是哪些TTI或子帧或时隙,也可以使用其他指示方法,此处不做限定。其中,该上行时域资源的起始时刻(或起始时间单元)可以是该上行时域资源相比于下行信息结束时刻的时间偏移(或时间间隔)。
在本申请中,当所述第一子带未包含在所述第一子带集合中;或者,所述第一子带包含在所述第一子带集合中,且所述第一子带的上行突发未位于所述第一子带的上行时域资源内时,所述终端设备确定所述信道侦听类型为长信道侦听类型。
需要说明的是,所述任一子带的上行时域资源与所述下行信息在所述任一子带所占的时域资源之和不超过所述任一子带的MCOT。
例如图9d,网络设备通知终端设备:发送下行信息所占用的第二子带集合包括{子带1,子带2,子带3,子带4},并指示第一子带集合的每个子带的上行时域资源:子带1、子带2、子带4的上行时域资源为子帧#4~子帧#6,子带3的上行时域资源为{子帧#4},则终端设备可以在子带1、子带2和子带4上针对上行突发{子帧#4}和上行突发{子帧#6}执行单时隙CCA,在子带3上针对上行突发{子帧#4}执行单时隙CCA,针对上行突发{子帧#6}执行随机回退CCA。
采用本申请提供的信道侦听方法,网络设备占用一个载波的至少一个子带后,通知可 以用于终端设备执行单时隙CCA的上行时域资源。当网络设备在该载波上发送下行信息所占用的子带在频域范围上包含终端设备被调度发送上行信息所占的子带,且该子带的上行时域资源未超出该子带的MCOT时,终端设备才使用单时隙CCA接入该载波,否则终端设备使用随机回退CCA。可以在高效接入信道的同时实现与周围竞争节点的友好共存,并节省了通知信令开销。
在本申请中,除了网络设备可以将发送下行信息所占用的第二子带集合通知给终端设备以使终端设备通过短侦听类型接入信道,当终端设备执行长侦听类型的信道侦听成功从而发送上行信息占用上行子带后,还可以将发送上行信息所占用的第一子带集合通知给网络设备以使网络设备通过短侦听类型接入信道,即把MCOT共享给网络设备。
在本申请的一示例中,终端设备生成第一指示信息,所述第一指示信息用于指示所述终端设备发送上行信息所占用的第一子带集合;所述终端设备向网络设备发送所述第一指示信息。
对应的,网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,所述第二子带为所述网络设备发送上行信息所占用的子带。网络设备根据所述信道侦听类型,对所述第二子带执行信道侦听。
具体的,在本申请实施例中,所述终端设备占用所述第一子带集合发送该上行信息包括:所述终端设备占用该第一子带集合中的所有子带发送该上行信息。也就是说,该第一子带集合中的每个子带都是被该终端设备占用发送上行信息的子带,其中该每个子带上承载该上行信息的一部分。应理解,对于该终端设备占用的该第一子带集合中的任意一个子带,该终端设备可以占用该任意一个子带对应的全部频域资源(例如全部PRB),也可以占用该任意一个子带对应的部分频域资源(例如部分PRB),以上均称之为占用该任意一个子带。
在本申请的一示例中,所述第一指示信息可承载在一个控制信令中。该控制信令可以承载在上行业务信道中,也可以承载在上行控制信道中。具体的,该控制信令承载在上行传输中,例如包含在该上行信息中。
在本申请的一示例中,所述第一指示信息还用于指示第一子带集合的下行时域资源;其中,所述第一子带集合的下行时域资源与所述上行信息在所述第一子带集合中所占的时域资源之和不超过所述第一子带集合的最大信道占用时长,所述第一子带集合的下行时域资源为所述网络设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。类似于网络设备使用第一指示信息将第二子带集合下行时域资源指示给终端设备,不再赘述。
相应的,所述网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,包括:当所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发位于所述第一子带集合的下行时域资源内时,所述网络设备确定所述信道侦听类型为短信道侦听类型。所述第二子带的下行突发为所述网络设备在所述第二子带占用的时间上连续的至少一个时间单元。
具体的,终端设备可以指示第一子带集合的下行时域资源的起始时刻(或起始时间单元)、结束时刻(或结束时间单元)、持续时长中的至少两种,也可以具体指示第一子带集合的下行时域资源具体是哪些TTI或子帧或时隙,也可以使用其他指示方法,此处不做限定。其中,该下行时域资源的起始时刻(或起始时间单元)可以是该下行时域资源相比于 上行信息结束时刻的时间偏移(或时间间隔)。
应理解,第二子带的下行突发为承载在第二子带上的下行突发,下行突发的定义如前所述,不再赘述。进一步的,第二子带的下行突发与网络设备发送信息的其他相邻的时间单元在时间上不连续。
可选的,所述第二子带的下行突发位于所述第一子带集合的下行时域资源内包括,所述第二子带的下行突发的结束时刻不晚于所述第一子带集合的下行时域资源的结束时刻。
可选的,所述第二子带的下行突发位于所述第一子带集合的下行时域资源内包括,所述第二子带的下行突发的起始时刻不早于所述第一子带集合的下行时域资源的起始时刻,且所述第二子带的下行突发的结束时刻不晚于所述第一子带集合的下行时域资源的结束时刻。
在本申请中,当所述第二子带未包含在所述第一子带集合中;或者,所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发未位于所述第一子带集合的下行时域资源内时,所述网络设备确定所述信道侦听类型为长侦听类型。
应理解,所述终端设备在发送所述上行信息前针对所述第一子带集合进行的信道侦听如侦听方法1或侦听方法2-1或侦听方法2-2所述,不再赘述。进一步的,该信道侦听为长侦听类型的信道侦听。
在本申请的一示例中,所述第一指示信息还用于指示第一子带集合的下行时域资源;其中,所述第一子带集合的下行时域资源与所述上行信息在所述第一子带集合中任一子带中所占的时域资源之和不超过所述任一子带的最大信道占用时长,所述第一子带集合的下行时域资源为所述网络设备在所述第一子带集合中的至少一个子带上执行短侦听类型的信道侦听所对应的时域资源。类似于网络设备使用第一指示信息将第二子带集合下行时域资源指示给终端设备,不再赘述。
相应的,所述网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,包括:当所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发位于所述第一子带集合的下行时域资源内时,所述网络设备确定所述信道侦听类型为短信道侦听类型。
在本申请中,当所述第二子带未包含在所述第一子带集合中;或者,所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发未位于所述第一子带集合的下行时域资源内时,所述网络设备确定所述信道侦听类型为长侦听类型。
应理解,所述第一子带集合中的任意一个子带的MCOT为所述终端设备在发送所述上行信息前针对所述任意一个子带进行的信道侦听所对应的MCOT。比如所述任一子带为子带#i,子带#i的下行时域资源与终端设备在子带#i上发送上行信息所对应的时域资源之和不超过子带#i的最大信道占用时长。进一步的,所述终端设备在发送所述上行信息之前执行的信道侦听为长侦听类型的信道侦听。
在本申请的一示例中,所述第一指示信息还用于指示所述第一子带集合中每个子带的下行时域资源;其中,所述第一子带集合中任一子带的下行时域资源为根据所述任一子带的最大信道占用时长所确定的,所述任一子带的下行时域资源为所述网络设备在所述任一子带上执行短侦听类型的信道侦听所对应的时域资源。类似于网络设备使用第一指示信息将第二子带集合中每个子带的下行时域资源指示给终端设备,不再赘述。
进一步的,所述第一子带集合中任一子带的下行时域资源为根据所述任一子带的 MCOT所确定的包括,所述任一子带的下行时域资源与所述上行信息在所述任一子带所占的时域资源之和不超过所述任一子带的最大信道占用时长。
相应的,所述网络设备根据所述第一指示信息,确定对第二子带执行信道侦听的信道侦听类型,包括:当所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发位于所述第二子带的下行时域资源内时,所述网络设备确定所述信道侦听类型为短信道侦听类型。
具体的,终端设备可以指示第一子带集合中每个子带的下行时域资源的起始时刻(或起始时间单元)、结束时刻(或结束时间单元)、持续时长中的至少两种,也可以具体指示第一子带集合中每个子带的下行时域资源具体是哪些TTI或子帧或时隙,也可以使用其他指示方法,此处不做限定。其中,该下行时域资源的起始时刻(或起始时间单元)可以是该下行时域资源相比于上行信息结束时刻的时间偏移(或时间间隔)。
在本申请中,当所述第二子带未包含在所述第一子带集合中;或者,所述第二子带包含在所述第一子带集合中,且所述第二子带的下行突发未位于所述第二子带的下行时域资源内时,所述网络设备确定所述信道侦听类型为长信道侦听类型。
可选的,所述第二子带的下行突发位于所述第二子带的下行时域资源内包括,所述第二子带的下行突发的结束时刻不晚于所述第二子带的下行时域资源的结束时刻。
可选的,所述第二子带的下行突发位于所述第二子带的下行时域资源内包括,所述第二子带的下行突发的起始时刻不早于所述第二子带的下行时域资源的起始时刻,且所述第二子带的下行突发的结束时刻不晚于所述第二子带的下行时域资源的结束时刻。
应理解,下行突发(burst)可以包括网络设备发送信息所占用的至少一个时间上连续的时间单元。进一步的,下行突发与网络设备发送信息的其他相邻的时间单元在时间上不连续,或者,下行突发与未包含在该下行突发内的其他用于网络设备发送信息的时间单元在时间上不连续。即,下行突发之前和之后存在空隙。类似于上行突发的表述,不再赘述。
图10示出了上述实施例中所涉及的基站的一种可能的结构示意图。该基站1000可以是如图1中所示的网络设备101,或者该基站可以是图2或图8中的网络设备。
所示基站包括收发器1001,控制器/处理器1002。所述收发器1001可以用于支持基站与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其它UE之间进行无线电通信。所述控制器/处理器1002可以用于执行各种用于与UE或其他网络设备通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由收发器1001进行调解,并进一步由控制器/处理器1002进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1002进行处理,并由收发器1001进行调解来产生下行链路信号,并经由天线发射给UE。所述控制器/处理器1002还用于执行根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述收发器1001还用于向UE发送第一指示信息。所述控制器/处理器1002还可以用于执行图2或图8中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程,譬如,生成第一指示信息,所述第一指示信息用于指示所述网络设备发送下行信息所占用的第二子带集合等。所述基站还可以包括存储器1003,可以用于存储基站的程序代码和数据。所述基站还可以包括通信单元1004,用于支持基站与其他网络实体进行通信。例如,用于支持基站与图1中示出的其他通信网络实体间进行通信,例如UE等。
可以理解的是,图10仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
图11示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图,所述UE1100可以是如图1中的UE,可以为图2或图8中所示的终端设备。所述UE包括收发器1101,控制器/处理器1102,还可以包括存储器1103和调制解调处理器1104。
收发器1101调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。收发器1101调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1104中,编码器11041接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器11042进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器11044处理(例如,解调)该输入采样并提供符号估计。解码器11043处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器11041、调制器11042、解调器11044和解码器11043可以由合成的调制解调处理器1104来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1102对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理,比如,根据第一指示信息,对信道进行侦听。作为示例,控制器/处理器802用于支持UE执行图2或图8中涉及UE的内容。存储器1103用于存储用于所述UE的程序代码和数据。
如图12所示,本申请还提供一种信道侦听类型的指示装置120,该装置包括:
处理单元121,用于根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述第一子带集合包括处理单元121调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括发送单元122发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;
发送单元122,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述信道侦听类型。
关于所述处理单元121、发送单元122的具体实现过程,可参见上述方法实施例,在此不再赘述。
如图13所示,本申请还提供一种信道侦听类型的指示装置130,包括:
收发单元131,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示处理单元132对第一子带集合执行信道侦听所对应的信道侦听类型,所述信道侦听类型由所述第一子带集合与第二子带集合的关系所确定,所述第一子带集合包括所述网络设备调度所述收发单元132发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;
处理单元132,用于根据所述信道侦听类型,对所述第一子带集合执行信道侦听。
关于所述收发单元131、处理单元132的具体实现过程,可参见上述方法实施例,在此不再赘述。
如图14所示,本申请还提供一种信道侦听类型的指示装置140,该装置包括:
处理单元141,用于生成第一指示信息,所述第一指示信息用于指示发送单元142发送下行信息所占用的第二子带集合;
发送单元142,用于向终端设备发送所述第一指示信息。
关于所述处理单元141、发送单元142的具体实现过程,可参见上述方法实施例,在此不再赘述。
如图15所示,本申请还提供一种信道侦听类型的指示装置150,包括:
接收单元151,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备发送下行信息所占用的第二子带集合;
处理单元152,用于根据所述第一指示信息,确定对第一子带执行信道侦听的信道侦听类型,以及根据所述信道侦听类型,对所述第一子带执行信道侦听,所述第一子带为所述网络设备调度所述接收单元151发送上行信息所占用的子带。
关于所述接收单元151、处理单元152的具体实现过程,可参见上述方法实施例,在此不再赘述。
本申请还提供一种通信装置,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行上述任一种信道侦听类型指示方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述任一种信道侦听类型的指示方法。
本申请还提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种信道侦听类型的指示方法。
如图16所示,本申请还提供一种通信系统160,所述通信系统160包括网络设备161和终端设备162,所述网络设备161的工作过程可具体参见上述方法及装置实施例的记载,所述终端设备162的工作过程也可具体参见上述方法及装置实施例的记载,在此不再赘述。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的 保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (42)

  1. 一种信道侦听类型的指示方法,其特征在于,包括:
    网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述信道侦听类型。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:
    当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述短侦听类型。
  3. 根据权利要求1所述的方法,其特征在于,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:
    当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为所述短侦听类型;
    其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  4. 根据权利要求1所述的方法,其特征在于,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:
    在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为短侦听类型;
    其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的最大信道占用时长内,包括:所述第i子带的第i上行突发位于所述第i子带的最大信道占用时长内;
    所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述 上行信息所占用的时间单元;
    所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:
    当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,所述网络设备确定所述信道侦听类型为所述长侦听类型。
  6. 根据权利要求1、3或4所述的方法,其特征在于,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:
    当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发未位于所述第一子带集合所对应的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为长侦听类型;
    其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  7. 根据权利要求1、3或4所述的方法,其特征在于,所述网络设备根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,包括:
    在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的最大信道占用时长内时,所述网络设备确定所述信道侦听类型为所述长侦听类型;
    其中,所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
    所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述网络设备向终端设备发送第一指示信息,包括:
    所述网络设备向所述终端设备发送调度信令,所述调度信令中携带有所述第一指示信息,所述调度信令用于调度所述终端设备占用所述第一子带集合和第一时间单元发送所述 上行信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一子带集合包括至少两个子带。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述长侦听类型为随机回退的空闲信道评测,所述短侦听类型为单时隙空闲信道评测。
  11. 一种信道侦听类型的指示方法,其特征在于,包括:
    终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备对第一子带集合执行信道侦听所对应的信道侦听类型,所述信道侦听类型由所述第一子带集合与第二子带集合的关系所确定,所述第一子带集合包括所述网络设备调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;
    所述终端设备根据所述信道侦听类型,对所述第一子带集合执行信道侦听。
  12. 根据权利要求11所述的方法,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,所述信道侦听类型为所述短侦听类型。
  13. 根据权利要求11所述的方法,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内时,所述信道侦听类型为所述短侦听类型;
    其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  14. 根据权利要求11所述的方法,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的最大信道占用时长内时,所述信道侦听类型为短侦听类型;
    其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的最大信道占用时长内,包括:所述第i子带的第i上行突发位于所述第i子带的最大信道占用时长内;
    所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占用的时间单元;
    所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  15. 根据权利要求11至14任一项所述的方法,其特征在于,当所述第一子带集合中的至少一子带未包含在所述第二子带集合中时,所述信道侦听类型为所述长侦听类型。
  16. 根据权利要求11、13或14所述的方法,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发未位于所述第一子带集合所对应的最大信道占用时长内时,所述信道侦听类型为长侦听类型;
    其中,所述第一子带集合的上行突发为所述网络设备调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  17. 根据权利要求11、13或14所述的方法,其特征在于,在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的最大信道占用时长内时,所述信道侦听类型为所述长侦听类型;
    其中,所述第i上行突发为所述网络设备调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述终端设备发送所述上行信息所占的时间单元;
    所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  18. 根据权利要求11至17任一项所述的方法,其特征在于,所述终端设备接收网络设备发送的第一指示信息,包括:
    所述终端设备接收所述网络设备发送的调度信令,所述调度信令中携带有所述第一指示信息,所述调度信令用于调度所述终端设备占用所述第一子带集合和第一时间单元发送所述上行信息。
  19. 根据权利要求11至18任一项所述的方法,其特征在于,所述第一子带集合包括至少两个子带。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,所述长侦听类型为随机回退的空闲信道评测,所述短侦听类型为单时隙空闲信道评测。
  21. 一种信道侦听类型的指示装置,其特征在于,包括:
    处理单元,用于根据第一子带集合与第二子带集合的关系,确定终端设备对所述第一子带集合执行信道侦听所对应的信道侦听类型,所述第一子带集合包括所述处理单元调度所述终端设备发送上行信息所占用的至少一个子带,所述第二子带集合包括发送单元发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;
    所述发送单元,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述信道侦听类型。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元,具体用于:
    当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,确定所述信道侦听类型为所述短侦听类型。
  23. 根据权利要求21所述的装置,其特征在于,所述处理单元,具体用于:
    当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内时,确定所述信道侦听类型为所述短侦听类型;
    其中,所述第一子带集合的上行突发为所述处理单元调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述处理单元调度所述终端设备发送所述上行信息所占用的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述发送单元在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  24. 根据权利要求21所述的装置,其特征在于,所述处理单元,具体用于:
    在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的最大信道占用时长内时,确定所述信道侦听类型为短侦听类型;
    其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的最大信道占用时长内,包括:所述第i子带的第i上行突发位于所述第i子带的最大信道占用时长内;
    所述第i上行突发为所述处理单元调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述处理单元调度所述终端设备发送所述上行信息所占用的时间单元;
    所述第i子带的最大信道占用时长为所述发送单元在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,所述处理单元,具体用于:
    当所述第一子带集合中的至少一个子带未包含在所述第二子带集合中时,确定所述信道侦听类型为所述长侦听类型。
  26. 根据权利要求21、23或24所述的装置,其特征在于,所述处理单元,具体用于:
    当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发未位于所述第一子带集合所对应的最大信道占用时长内时,确定所述信道侦听类型为长侦听类型;
    其中,所述第一子带集合的上行突发为所述处理单元调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述处理单元调度所述终端设备发送所述上行信息所占的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述发送单元在发送所述下行信息前,针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个 子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述发送单元在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  27. 根据权利要求21、23或24所述的装置,其特征在于,所述处理单元,具体用于:
    在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的最大信道占用时长内时,确定所述信道侦听类型为所述长侦听类型;
    其中,所述第i上行突发为所述处理单元调度所述终端设备在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述处理单元调度所述终端设备发送所述上行信息所占的时间单元;
    所述第i子带的最大信道占用时长为所述发送单元在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  28. 根据权利要求21至27任一项所述的装置,其特征在于,所述发送单元,具体用于:
    向所述终端设备发送调度信令,所述调度信令中携带有所述第一指示信息,所述调度信令用于调度所述终端设备占用所述第一子带集合和第一时间单元发送所述上行信息。
  29. 根据权利要求21至28任一项所述的装置,其特征在于,所述第一子带集合包括至少两个子带。
  30. 根据权利要求21至29任一项所述的装置,其特征在于,所述长侦听类型为随机回退的空闲信道评测,所述短侦听类型为单时隙空闲信道评测。
  31. 一种信道侦听类型的指示装置,其特征在于,包括:
    收发单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示处理单元对第一子带集合执行信道侦听所对应的信道侦听类型,所述信道侦听类型由所述第一子带集合与第二子带集合的关系所确定,所述第一子带集合包括所述网络设备调度所述收发单元发送上行信息所占用的至少一个子带,所述第二子带集合包括所述网络设备发送下行信息所占用的至少一个子带,所述信道侦听类型包括长侦听类型或短侦听类型;
    所述处理单元,用于根据所述信道侦听类型,对所述第一子带集合执行信道侦听。
  32. 根据权利要求31所述的装置,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中时,所述信道侦听类型为所述短侦听类型。
  33. 根据权利要求31所述的装置,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发位于所述第一子带集合所对应的最大信道占用时长内时,所述信道侦听类型为所述短侦听类型;
    其中,所述第一子带集合的上行突发为所述网络设备调度所述处理单元在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述处理单元发送所述上行信息所占用的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信 道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  34. 根据权利要求31所述的装置,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中每个子带的上行突发均位于所对应子带的最大信道占用时长内时,所述信道侦听类型为短侦听类型;
    其中,针对所述第一子带集合中的第i子带,所述第i子带的上行突发位于所对应子带的最大信道占用时长内,包括:所述第i子带的第i上行突发位于所述第i子带的最大信道占用时长内;
    所述第i上行突发为所述网络设备调度所述处理单元在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述收发单元发送所述上行信息所占用的时间单元;
    所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  35. 根据权利要求31至34任一项所述的装置,其特征在于,当所述第一子带集合中的至少一子带未包含在所述第二子带集合中时,所述信道侦听类型为所述长侦听类型。
  36. 根据权利要求31、33或34所述的装置,其特征在于,当所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合的上行突发未位于所述第一子带集合所对应的最大信道占用时长内时,所述信道侦听类型为长侦听类型;
    其中,所述第一子带集合的上行突发为所述处理单元调度所述终端设备在所述第一子带集合占用的时间上连续的至少一个时间单元,所述第一子带集合的上行突发包括所述网络设备调度所述收发单元发送所述上行信息所占的时间单元;
    所述第一子带集合所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第一子带集合进行的信道侦听所对应的最大信道占用时长;
    或者,所述第一子带集合所对应的最大信道占用时长为根据所述第一子带集合中每个子带所对应的最大信道占用时长所确定的,所述第一子带集合中任一子带所对应的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述任一子带的信道侦听所对应的最大信道占用时长。
  37. 根据权利要求31、33或34所述的装置,其特征在于,在所述第一子带集合中的每个子带均包含在所述第二子带集合中,且所述第一子带集合中第i子带的第i上行突发未位于所述第i子带的最大信道占用时长内时,所述信道侦听类型为所述长侦听类型;
    其中,所述第i上行突发为所述网络设备调度所述处理单元在所述第i子带占用的时间上连续的至少一个时间单元,所述第i上行突发包括所述网络设备调度所述收发单元发送所述上行信息所占的时间单元;
    所述第i子带的最大信道占用时长为所述网络设备在发送所述下行信息前,针对所述第i子带执行的信道侦听所对应的最大信道占用时长,所述i为大于零小于等于N的整数,所述N为所述第一子带集合所包括子带的数量,所述N为正整数。
  38. 根据权利要求31至37任一项所述的装置,其特征在于,所述收发单元,具体用于:
    接收所述网络设备发送的调度信令,所述调度信令中携带有所述第一指示信息,所述 调度信令用于调度所述处理单元占用所述第一子带集合和第一时间单元发送所述上行信息。
  39. 根据权利要求31至38任一项所述的装置,其特征在于,所述第一子带集合包括至少两个子带。
  40. 根据权利要求31至39任一项所述的装置,其特征在于,所述长侦听类型为随机回退的空闲信道评测,所述短侦听类型为单时隙空闲信道评测。
  41. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至20任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1至20任一项所述的方法。
PCT/CN2018/121594 2017-12-29 2018-12-17 一种信道侦听类型的指示方法及装置 WO2019128765A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18894218.9A EP3716709B1 (en) 2017-12-29 2018-12-17 Channel listening type indication method and device
EP22189368.8A EP4156839A1 (en) 2017-12-29 2018-12-17 Channel listening type indication method and apparatus
US16/911,440 US11553521B2 (en) 2017-12-29 2020-06-25 Channel listening type indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711486366.4A CN109996340B (zh) 2017-12-29 2017-12-29 一种信道侦听类型的指示方法及装置
CN201711486366.4 2017-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,440 Continuation US11553521B2 (en) 2017-12-29 2020-06-25 Channel listening type indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019128765A1 true WO2019128765A1 (zh) 2019-07-04

Family

ID=67063107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121594 WO2019128765A1 (zh) 2017-12-29 2018-12-17 一种信道侦听类型的指示方法及装置

Country Status (4)

Country Link
US (1) US11553521B2 (zh)
EP (2) EP4156839A1 (zh)
CN (1) CN109996340B (zh)
WO (1) WO2019128765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081971A1 (en) * 2019-11-01 2021-05-06 Nokia Shanghai Bell Co., Ltd. Methods and apparatuses for signaling procedure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272540B2 (en) 2018-08-09 2022-03-08 Ofinno, Llc Channel access and uplink switching
US11272539B2 (en) 2018-08-09 2022-03-08 Ofinno, Llc Channel access and bandwidth part switching
US20210392685A1 (en) * 2018-11-02 2021-12-16 Lg Electronics Inc. Method by which terminal transmits uplink signal in unlicensed band, and apparatus using method
WO2020091561A1 (en) * 2018-11-02 2020-05-07 Samsung Electronics Co., Ltd. Method and device for radio resource allocation in wireless communication system
KR20200050849A (ko) * 2018-11-02 2020-05-12 삼성전자주식회사 무선 통신 시스템에서 무선 자원 할당을 위한 방법 및 장치
WO2021029638A1 (ko) * 2019-08-14 2021-02-18 주식회사 케이티 비면허 대역에서 데이터를 송수신하는 방법 및 장치
CN118118071A (zh) * 2019-12-31 2024-05-31 华为技术有限公司 一种信道信息反馈方法及通信装置
CN113541830B (zh) * 2020-04-17 2022-09-23 大唐移动通信设备有限公司 空闲信道检测方法、装置、电子设备和存储介质
CN116368739A (zh) * 2020-10-15 2023-06-30 中兴通讯股份有限公司 无线通信系统的信道状态信息参考信号的配置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811496A (zh) * 2011-05-31 2012-12-05 普天信息技术研究院有限公司 一种随机接入方法
WO2016195585A1 (en) * 2015-06-05 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods therein for sending and decoding, respectively, downlink information
CN107318171A (zh) * 2016-04-26 2017-11-03 北京佰才邦技术有限公司 一种上行传输方法、装置、用户终端及基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047973A1 (ko) * 2015-09-17 2017-03-23 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 멀티 캐리어 상에서 lbt 과정을 수행하는 방법 및 장치
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
US10798735B2 (en) * 2015-11-06 2020-10-06 Qualcomm Incorporated Enhanced licensed assisted access uplink channel access
US10798687B2 (en) * 2016-03-15 2020-10-06 Intel IP Corporation Scheduling uplink transmission outside of a transmission opportunity
US10764913B2 (en) * 2016-03-24 2020-09-01 Qualcomm Incorporated Techniques for assisting performance of listen before talk procedures and uplink traffic multiplexing at user equipment
CN107294646B (zh) * 2016-04-01 2020-08-07 电信科学技术研究院 一种信息反馈方法、基站及终端
US10880922B2 (en) * 2016-05-20 2020-12-29 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling multiple subframes in unlicensed spectrum
EP3387876B8 (en) 2016-06-11 2019-07-17 Ofinno, LLC Listen before talk procedure in a wireless device and wireless device
CN107734701A (zh) * 2016-08-11 2018-02-23 株式会社Ntt都科摩 信道接入方法、基站和移动台
KR102412727B1 (ko) * 2016-09-30 2022-06-24 삼성전자 주식회사 신호의 송수신 방법 및 장치
US10893543B2 (en) * 2017-10-30 2021-01-12 Samsung Electronics Co., Ltd. Method and apparatus for random access design of NR unlicensed

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811496A (zh) * 2011-05-31 2012-12-05 普天信息技术研究院有限公司 一种随机接入方法
WO2016195585A1 (en) * 2015-06-05 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods therein for sending and decoding, respectively, downlink information
CN107318171A (zh) * 2016-04-26 2017-11-03 北京佰才邦技术有限公司 一种上行传输方法、装置、用户终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716709A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081971A1 (en) * 2019-11-01 2021-05-06 Nokia Shanghai Bell Co., Ltd. Methods and apparatuses for signaling procedure

Also Published As

Publication number Publication date
EP4156839A1 (en) 2023-03-29
EP3716709A4 (en) 2020-12-23
EP3716709B1 (en) 2022-09-07
EP3716709A1 (en) 2020-09-30
CN109996340A (zh) 2019-07-09
US11553521B2 (en) 2023-01-10
CN109996340B (zh) 2022-03-25
US20200329496A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2019128765A1 (zh) 一种信道侦听类型的指示方法及装置
US11523424B2 (en) Scheduling in license assisted access
CN107980240B (zh) 信道接入配置
RU2702266C2 (ru) Первый радиоузел и соответствующий способ выполнения прослушивания перед передачей (lbt) с помощью выбранного способа lbt
US10164746B2 (en) Techniques for managing transmissions of reference signals
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
CN115868227A (zh) 非授权侧行链路的基于子信道的占用时间共享
CN112771810A (zh) 发现参考信号测量定时配置窗口中的上行链路传输
CN111316737B (zh) 数据传输方法、终端设备和网络设备
US11844109B2 (en) Controlling AUL transmissions when coexisting with scheduled UEs
US10542438B2 (en) Method for detecting signal on unlicensed spectrum channel, user equipment, and base station
EP3240214B1 (en) Method for uplink transmission in unlicensed band, and device using same
KR20170043539A (ko) 면허 및 비면허 대역에 대한 통신
WO2020009928A1 (en) Synchronized medium sharing with private network
CN108605343B (zh) 用于在未许可频带中复用调度请求的系统和方法
WO2019056370A1 (zh) 一种通信方法和装置
US11032818B2 (en) Radio-unlicensed (NR-U) channel reservation at slot boundary
CN109937603B (zh) 基于竞争的传输方法和设备
WO2019095322A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018894218

Country of ref document: EP

Effective date: 20200622

NENP Non-entry into the national phase

Ref country code: DE