WO2019095272A1 - 微波信号抑制装置、方法、天线组件及微波消融针 - Google Patents

微波信号抑制装置、方法、天线组件及微波消融针 Download PDF

Info

Publication number
WO2019095272A1
WO2019095272A1 PCT/CN2017/111618 CN2017111618W WO2019095272A1 WO 2019095272 A1 WO2019095272 A1 WO 2019095272A1 CN 2017111618 W CN2017111618 W CN 2017111618W WO 2019095272 A1 WO2019095272 A1 WO 2019095272A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
microwave signal
ablation
dielectric constant
antenna assembly
Prior art date
Application number
PCT/CN2017/111618
Other languages
English (en)
French (fr)
Inventor
黄文星
詹德志
Original Assignee
赛诺微医疗科技(浙江)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赛诺微医疗科技(浙江)有限公司 filed Critical 赛诺微医疗科技(浙江)有限公司
Priority to PCT/CN2017/111618 priority Critical patent/WO2019095272A1/zh
Publication of WO2019095272A1 publication Critical patent/WO2019095272A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1853Monopole antennas

Definitions

  • the present invention relates to the field of microwave therapy equipment, and more particularly to a microwave signal suppression device, a method, an antenna assembly for microwave ablation, and a microwave ablation needle using the same.
  • microwave ablation technology has been rapidly developed through continuous improvement and innovation of microwave instruments and antennas.
  • Early microwave ablation needles did not have a water-cooled circulation system.
  • the needle bar was extremely easy to overheat and could only support a small power input of 10 to 30 W.
  • the width of the isolated ablation zone was only 1 to 2 cm, and the shape was irregular.
  • the application of the water-cooled circulation system allows the temperature of the microwave needle bar to be controlled, allowing a large input of power to achieve a larger ablation area.
  • the microwave ablation system can generally support a high power of 80 to 100 W, and the width of the ablation region can reach 3 to 4 cm.
  • the microwave ablation disclosed in the above-mentioned Chinese Patent Application No. 201610348040.4 is effective for tumor ablation with a diameter of 3 to 4 cm, and the ablation zone has an ideal spherical shape.
  • the tumor-matched ablation zone is obtained by reducing the power or shortening the time.
  • the power is reduced or the time is shortened, the lateral dimension of the ablation zone is reduced more than the axial dimension, so that the ablation zone becomes an ellipsoidal shape.
  • Microwave ablation needle electromagnetic waves based on conventional design need to pass through the area that has been ablated, and then expand to the peripheral unablated area.
  • electromagnetic waves pass through the ablated region, they are absorbed in a large amount, and the electromagnetic wave energy entering the peripheral extended ablation zone is small, which causes the electromagnetic energy to be uncharged. It is used to expand the ablation zone, which in turn increases the degree of carbonization in the ablated zone.
  • the main object of the present invention is to provide a microwave ablation antenna based on multi-stage turbulence technology to at least partially solve the above technical problems.
  • the present invention provides a microwave signal suppression apparatus, including:
  • a composite structure comprising a low dielectric constant non-metal material, and a plurality of segments of metal film formed on the non-metal material, each segment of the metal film having a length in a direction of propagation of the microwave signal to be suppressed 1/4 to 3/4 wavelengths of the microwave signal, and the interval between the metal thin films is 1/10 to 1/20 wavelengths of the microwave signal;
  • the low dielectric constant non-metal material has a relative dielectric constant of less than or equal to 5 with respect to vacuum.
  • the present invention further provides a method for suppressing a microwave signal, comprising the steps of:
  • the microwave signal generator to be suppressed is covered by the microwave signal suppressing means as described above.
  • the present invention also provides an antenna assembly for microwave ablation, comprising:
  • a transmission cable configured to transmit microwaves for ablation generated by the microwave generating unit to the first radiation unit
  • a microwave signal suppressing device as described above is formed outside the transmission cable, wherein the microwave signal to be suppressed at the time of calculating the wavelength is a microwave signal propagating in the tissue of the patient to be treated.
  • the present invention also provides a microwave ablation needle, characterized in that the microwave ablation needle comprises an antenna assembly for microwave ablation as described above.
  • the microwave ablation antenna of the present invention has the following beneficial effects:
  • Microwave ablation needle based on multi-stage turbulence technology has better adaptability.
  • the input power is small or the ablation time is short, or the power is reduced or the ablation time is shortened, An ideal spherical ablation zone;
  • the microwave ablation needle based on multi-stage turbulence technology can make full use of microwave energy and reduce the degree of carbonization in the central region.
  • FIG. 1 is a schematic structural view of a microwave ablation antenna assembly disclosed in the prior art
  • FIG. 2 is a schematic structural view of a multi-stage turbulent microwave ablation antenna assembly of the present invention
  • Fig. 3 is a schematic view showing the effect of broadening the ablation region of the present invention.
  • Ceramic needle 2. Copper cap, 3. Non-metallic outer tube, 4. Coaxial wire dielectric layer, 5. Coaxial inner conductor, 6. First copper foil, 7. PI inlet pipe, 8. Two-stage copper foil, 9. coaxial outer conductor, 10. stainless steel outer tube.
  • the invention discloses a microwave signal suppression device, comprising:
  • a composite structure comprising a low dielectric constant non-metal material, and a plurality of segments of metal film formed on the non-metal material, each segment of the metal film having a length in a direction of propagation of the microwave signal to be suppressed 1/4 to 3/4 wavelengths of the microwave signal, and the interval between the metal thin films is 1/10 to 1/20 wavelengths of the microwave signal;
  • the low dielectric constant non-metal material has a relative dielectric constant of less than or equal to 5 with respect to vacuum.
  • the low dielectric constant non-metal material may be a whole body, and a plurality of metal thin films are formed thereon; the low dielectric constant non-metal material may also be a plurality of segments, and a metal film is formed on each segment.
  • the fixing is carried out by other means such as bonding or separately supporting.
  • the composite structure is in the form of a ring or a flat plate, and is used to suppress a microwave signal emitted from a circular wire when it is annular, and is used to suppress a microwave signal propagating on a plane when it is in a flat shape.
  • the metal film of the plurality of segments includes, for example, 2, 3 or 4 segments, and is usually 2 segments.
  • the non-metallic material may form a segment simultaneously with the metal film, or the non-metal material may be a single body, except that the metal film formed thereon has a segment.
  • the material used for the metal film is selected from the group consisting of copper, iron, aluminum, gold, silver, palladium, platinum, tin, nickel, zinc, and alloys thereof.
  • the low dielectric constant non-metal material is selected from the group consisting of polytetrafluoroethylene, polyethylene, polyimide, and polyoxymethylene.
  • the metal thin film is formed on a low dielectric constant non-metal material by magnetron sputtering, bonding, electroplating or electroless plating.
  • the invention also discloses a method for suppressing microwave signals, which comprises the following steps:
  • the microwave signal transmission device to be suppressed such as a transmission cable, a transmission copper wire on a circuit board, or the like, is covered by the microwave signal suppression device as described above.
  • the invention also discloses a specific application of the above microwave signal suppression device, that is, an antenna assembly for microwave ablation, in order to ensure that the microwave ablation can obtain an ideal spherical shape under various conditions, the invention is specially developed and developed.
  • a multi-stage turbulent microwave ablation antenna The microwave ablation needle based on this antenna design has better adaptability, and when the input power is small or the ablation time is short, an ideal spherical ablation zone can still be obtained.
  • an antenna assembly for microwave ablation comprising:
  • a transmission cable configured to transmit the microwave for ablation generated by the microwave generating unit to the first radiation unit
  • each of the second radiating elements is a ring-shaped composite structure including a low dielectric constant non-metal material and formed thereon
  • the annular metal film has a length of 1/4 to 3/4 wavelengths of microwaves propagating in the lesion tissue of the patient to be treated, and the interval between each segment of the annular metal film is in the lesion tissue of the patient to be treated 1/10 to 1/20 wavelengths of the transmitted microwave;
  • the low dielectric constant non-metallic material has a relative dielectric constant of less than or equal to 5 with respect to vacuum.
  • the relative dielectric constant of human tissue relative to vacuum varies slightly due to human factors, but it is basically within a narrow range, for example, between 38 and 42 for the liver and between 20 and 25 for the lung tissue. Between, muscle tissue is around 15. Therefore, when the microwave propagates in different human tissues, the wavelength thereof is also within a certain range, and the length and interval of the annular metal film are based on the wavelength, and the maximum and minimum values thereof are respectively taken, and in this range
  • the internal value, the antenna assembly thus produced is also an antenna assembly adapted to different human tissues, for example, for the liver, for the lungs, and the like.
  • the second radiating element may comprise a plurality of segments, for example comprising 2, 3 or 4 segments, usually 2 segments or 3 segments satisfying the requirements.
  • These annular composite structures are preferably arranged in the same direction along the axial direction in the same curved surface, and may be formed with a step difference in the radial direction of the shaft, but the step difference between the steps may not be too large.
  • the material used for the annular metal film is selected from the group consisting of copper, iron, aluminum, gold, silver, palladium, platinum, tin, nickel, zinc and alloys thereof, of which copper and silver are preferred.
  • the low dielectric constant non-metal material is selected from the group consisting of polytetrafluoroethylene PTFE, polyethylene PE, polyimide PI, polyoxymethylene POM, and the like.
  • the annular metal film is formed on the low dielectric constant non-metal material by magnetron sputtering, bonding, electroplating or electroless plating.
  • the low dielectric constant non-metallic material is the wall of the cooling water circulation passage in the antenna assembly for microwave ablation, that is, the wall of the cooling water circulation passage is directly utilized, and a ring is formed thereon. Metal film.
  • the annular composite structure can be formed by other means.
  • the first radiating element is a "cap" shaped radiator or a coaxial inner core, and the material thereof may be selected from the group consisting of copper, gold, silver, nickel, tin and alloys thereof, of which copper is preferred.
  • the present invention also discloses a microwave ablation needle comprising an antenna assembly for microwave ablation as described above.
  • the microwave ablation needle can be either a rigid microwave ablation needle or a flexible microwave ablation needle.
  • the cross-section of the multi-stage turbulent microwave ablation antenna assembly of the present invention is as shown in FIG. 2, and includes a ceramic needle 1, a copper cap 2 non-metallic outer tube 3, a coaxial dielectric layer 4, a coaxial inner conductor 5, and a first segment. Copper foil 6, PI inlet pipe 7, second segment copper foil 8, coaxial outer conductor 9, stainless steel outer tube 10.
  • the inner blank area is a cooling water circulation channel, and the copper cap is welded on the inner conductor of the coaxial line.
  • the length of the copper cap is about 1/10 to 1/2 wavelength (relative to the dielectric constant of the tissue).
  • Each length of copper foil wrapped on the PI tube is about half wavelength (relative to the dielectric constant of the tissue), and the PI tube forms a multi-stage composite annular structure, and the distance between each composite structure is about 1/10 to 1 /20 wavelengths (relative to the dielectric constant of the tissue), the feed point is located inside the last composite loop structure.
  • the copper cap is the radiator of the antenna assembly, and the electromagnetic wave is radiated to the outer tissue through the radiator, and the electromagnetic wave transmitted backward along the needle bar is cut off at the end of the first composite loop structure. Therefore, at this stage, the electromagnetic waves are mainly concentrated in the spherical region represented by A, and the tissue in this region is fully ablated. If the ablation is completed at this time, the ablation zone is a sphere having a diameter of about 1.5 to 2.5 cm. If the ablation continues, the water in the A area will be vaporized.
  • the dielectric constant of this part of the structure will be reduced a lot, causing the first-stage composite structure to lose the turbulence effect, and the electromagnetic wave will gradually expand backward along the needle bar.
  • the ablation zone gradually expands from the spherical region A to the spherical region B, and the spherical diameter is expanded to 4 to 5 cm. Therefore, microwave ablation needles based on multi-stage turbulence technology can always obtain a better spherical ablation zone for different powers or different ablation times.
  • the copper cap and the first-stage composite structure together constitute a radiator, and the second-stage composite structure exerts a turbulent action. This causes the radiation zone to move backward along the needle bar, and a portion of the electromagnetic waves can be fully utilized without directly passing through the ablated zone into the unablated zone.
  • the length of the composite structure of each section may be different, and it is effective in the range of 1/4 to 3/4 wavelength;
  • the composite annular turbulent structure is not limited to two segments, and can be pushed to several segments according to reason;
  • the outer tube can be made of flexible material, that is, the design is also applicable to the flexible microwave ablation needle;
  • the metal is not limited to copper, and may be a metal or an alloy such as gold, silver, nickel or tin, and the non-metal material may also be a low dielectric such as polytetrafluoroethylene (PTFE) or polyethylene (PE). Constant non-metallic material, the metal layer and the non-metal layer can be composited by spraying or bonding;
  • the design can also be used without the cooling water circulation channel, that is, it is also suitable for the microwave ablation needle which is not water-cooled and the cooling water is not at the head;
  • the copper cap material is not limited to copper, and may be other metal or alloy materials such as gold, silver, nickel, and tin.

Abstract

一种微波信号抑制装置、方法、天线组件及微波消融针。其中,该微波信号抑制装置包括复合结构,该复合结构包括低介电常数的非金属材料,以及形成在非金属材料上的若干段金属薄膜,每一段金属薄膜的长度为待抑制的微波信号的1/4~3/4个波长,金属薄膜间的间隔为待抑制的微波信号的1/10~1/20个波长;其中,低介电常数的非金属材料的相对于真空的相对介电常数小于等于5。本发明的微波信号抑制装置及基于多级扼流技术的微波消融针具有较好自适应性,当输入功率较小或消融时间较短,或降低功率或缩短消融时间时,仍能获得较理想的球形消融区,相较常规设计更能充分利用微波能量,降低中心区域的碳化程度。

Description

微波信号抑制装置、方法、天线组件及微波消融针 技术领域
本发明涉及微波治疗设备技术领域,更具体地涉及一种微波信号抑制装置、方法、用于微波消融的天线组件及采用其的微波消融针。
背景技术
从1994年首次报告超声引导下经皮穿刺,将微波天线置入瘤体内治疗小肝癌获得成功以来,微波消融技术通过对微波仪和天线的不断改进创新得到快速发展。早期微波消融针没有水冷循环系统,针杆极易过热,只能支持10~30W的小功率输入,离体消融区域宽度只有1~2cm,且形状不规则。水冷循环系统的应用,使得微波针针杆的温度得到控制,从而允许输入较大功率,以获得较大的消融面积。目前,微波消融系统普遍可以支持80~100W的大功率,离体消融区域宽度可以达到3~4cm。近年来国内出现了多种微波消融产品,这些产品在工艺、结构和材料等方面各有特色,但这些产品的消融区域形状都是椭圆形,轴比不可控,使得微波消融区域与肿瘤区域匹配度不好,治疗的精准度不高。如图1所示,本发明人的申请号为201610348040.4号的中国发明专利申请公开了一种金属和非金属结合的复合环状结扼流技术,这种技术使得微波消针的消融效果得到极大改善,可以获得理想的球形消融区。
但是,上述现有技术仍然存在如下技术缺陷:
(1)上述201610348040.4号中国发明专利申请公开的微波消融针对于直径为3~4cm的肿瘤消融效果很好,消融区呈理想的球形。对于直径为1~3cm的小肿瘤,通过减小功率或缩短时间来获得与肿瘤匹配的消融区域。但是减小功率或缩短时间时,消融区横向尺寸比轴向尺寸减小的多,使得消融区变成一个椭球形。
(2)基于传统设计的微波消融针电磁波需要穿过已经消融的区域,再往外围未消融区域扩展。电磁波穿过已经消融区域过程中会被大量吸收,而进入外围扩展消融区的电磁波能量很少,这导致电磁能量未被充 分利用于扩展消融区,反而加重已消融区的碳化程度。
发明内容
有鉴于此,本发明的主要目的在于提供一种基于多级扼流技术的微波消融天线,以至少部分解决上述技术问题。
为了实现上述目的,作为本发明的一个方面,本发明提供了一种微波信号抑制装置,其特征在于,包括:
复合结构,所述复合结构包括低介电常数的非金属材料,以及形成在非金属材料上的若干段金属薄膜,每一段所述金属薄膜在待抑制的微波信号传播方向上的长度为所述微波信号的1/4~3/4个波长,所述金属薄膜之间的间隔为所述微波信号的1/10~1/20个波长;
其中,所述低介电常数的非金属材料的相对于真空的相对介电常数小于等于5。
作为本发明的另一个方面,本发明还提供了一种微波信号的抑制方法,其特征在于,包括以下步骤:
采用如上所述的微波信号抑制装置覆盖待抑制的微波信号发生器。
作为本发明的再一个方面,本发明还提供了一种用于微波消融的天线组件,包括:
第一辐射单元,用于发射消融用微波;
传输线缆,用于将微波发生单元产生的消融用微波传输给所述第一辐射单元;
其特征在于,在所述传输线缆外形成有如上所述的微波信号抑制装置,其中计算波长时的待抑制的微波信号为在待治疗患者病灶组织中传播的微波信号。
作为本发明的还一个方面,本发明还提供了一种微波消融针,其特征在于,所述微波消融针包含有如上所述的用于微波消融的天线组件。
基于上述技术方案可知,本发明的微波消融天线具有如下有益效果:
(1)基于多级扼流技术的微波消融针有较好的自适应性,当输入功率较小或消融时间较短,或降低功率或缩短消融时间时,仍能获得较 理想的球形消融区;
(2)相对于传统设计,基于多级扼流技术的微波消融针更能充分利用微波能量,降低中心区域的碳化程度。
附图说明
图1是现有技术公开的一种微波消融天线组件的结构示意图;
图2是本发明的多级扼流微波消融天线组件的结构示意图;
图3是本发明的消融区域展宽效果示意图。
在上图中,附图标记含义如下:
1.陶瓷针头,2.铜帽,3.非金属外管,4.同轴线介质层,5.同轴线内导体,6.第一段铜箔,7.PI进水管,8.第二段铜箔,9.同轴线外导体,10.不锈钢外管。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
本发明公开了一种微波信号抑制装置,包括:
复合结构,所述复合结构包括低介电常数的非金属材料,以及形成在非金属材料上的若干段金属薄膜,每一段所述金属薄膜在待抑制的微波信号传播方向上的长度为所述微波信号的1/4~3/4个波长,所述金属薄膜之间的间隔为所述微波信号的1/10~1/20个波长;
其中,该低介电常数的非金属材料的相对于真空的相对介电常数小于等于5。该低介电常数的非金属材料可以为一个整体,在其上形成若干段金属薄膜;该低介电常数的非金属材料也可以为多个分段,每个分段上形成一金属薄膜,通过其它方式,例如粘结或分别支撑的方式进行固定。
作为优选,该复合结构为环状或平板状,当为环状时用于抑制圆导线发出的微波信号,当为平板状时用于抑制在平面上传播的微波信号。
其中,该若干段的金属薄膜例如包括2、3或4段,常见的为2段。 非金属材料可以与金属薄膜同时形成分段,也可以非金属材料为一个整体,只是其上形成的金属薄膜具有分段。
其中,该金属薄膜所使用的材料选自铜、铁、铝、金、银、钯、铂、锡、镍、锌及其合金。
其中,该低介电常数的非金属材料选自聚四氟乙烯、聚乙烯、聚酰亚胺、聚甲醛。
其中,该金属薄膜通过磁控溅射、粘结、电镀或化学镀方式形成在低介电常数的非金属材料上。
本发明还公开了一种微波信号的抑制方法,其特征在于,包括以下步骤:
采用如上所述的微波信号抑制装置覆盖待抑制的微波信号传输元件,例如传输电缆、电路板上的传输铜线等。
本发明还公开了一种上述微波信号抑制装置的一种具体应用,即用于微波消融的天线组件,为了保证微波消融在各种情况下都能获得较理想的球形,本发明专门研究开发了一种多级扼流微波消融天线。基于这种天线设计的微波消融针有较好的自适应性,当输入功率较小或消融时间较短时,仍能获得较理想的球形消融区。
具体地,本发明公开了一种用于微波消融的天线组件,包括:
第一辐射单元,用于发射消融用微波;
传输线缆,用于将微波发生单元产生的消融用微波传输给第一辐射单元;
其中,在传输线缆外形成有若干段第二辐射单元,每一段该第二辐射单元均为环状复合结构,该环状复合结构包括低介电常数的非金属材料,以及形成在其上的环形金属薄膜,该环形金属薄膜的长度为在待治疗患者病灶组织中传播的微波的1/4~3/4个波长,每段环形金属薄膜之间的间隔为在待治疗患者病灶组织中传播的微波的1/10~1/20个波长;
该低介电常数的非金属材料的相对于真空的相对介电常数小于等于5。
人体组织相对于真空的相对介电常数因人因测试条件有细微变化,但基本在一个较窄的范围之内,例如对于肝脏,在38~42之间,肺部组织,在20~25之间,肌肉组织在15左右。由此微波在不同的人体组织中传播时,其波长也在一定的范围之内,环形金属薄膜的长度和间隔是基于波长的,也分别取其中的最大值和最小值,而在这个范围之内取值,由此制成的天线组件也是分别适应于不同人体组织的天线组件,例如用于肝脏的、用于肺部的、……等等。
上述第二辐射单元可以包括多段,例如包括2、3或4段,通常2段或3段即满足要求。这些环状复合结构优选是在同一曲面内沿着轴向依次排列,也可以在轴半径方向形成高低的台阶差,但台阶之间的级差不能太大。
环状金属薄膜所使用的材料选自铜、铁、铝、金、银、钯、铂、锡、镍、锌及其合金,其中优选为铜和银。低介电常数的非金属材料选自聚四氟乙烯PTFE、聚乙烯PE、聚酰亚胺PI、聚甲醛POM等。环形金属薄膜通过磁控溅射、粘结、电镀或化学镀等方式形成在该低介电常数的非金属材料上。
在一个优选实施例中,低介电常数的非金属材料为该用于微波消融的天线组件中的冷却水循环通道的管壁,即直接利用该冷却水循环通道的管壁,在其上形成环状金属薄膜。当然,如果没有冷却水循环通道或冷却水不能到达头部的第一辐射单元,也可以通过其它方式形成该环状复合结构。
该第一辐射单元为“帽”状辐射器或同轴线内芯,其材质可以选自铜、金、银、镍、锡及其合金,其中优选为铜。
本发明还公开了一种微波消融针,该微波消融针包含有如上所述的用于微波消融的天线组件。该微波消融针既可以是刚性微波消融针,也可以是柔性微波消融针。
下面结合附图并通过具体实施例来对本发明的技术方案作进一步阐述说明。
实施例
本发明的多级扼流微波消融天线组件剖面如图2所示,包括陶瓷针头1、铜帽2非金属外管3、.同轴线介质层4、同轴线内导体5、第一段铜箔6、PI进水管7、第二段铜箔8、同轴线外导体9、不锈钢外管10。
其内部空白区域为冷却水循环通道,铜帽是焊接在同轴线内导体上的,铜帽长度约为1/10~1/2个波长(相对于组织介电常数)。包裹在PI管上的每一段铜箔长度约为半个波长(相对于组织介电常数),与PI管都构成多段复合环状结构,每段复合结构之间的距离约1/10~1/20个波长(相对于组织介电常数),馈电点位于最后一段复合环状结构内部。
如图3所示,在消融开始阶段,铜帽是天线组件的辐射器,电磁波通过辐射器往外向组织辐射,沿针杆后向传输的电磁波截止于第一段复合环状结构末端。所以在这个阶段电磁波主要集中在A代表的球形区域内,这个区域内的组织会被充分消融。如果这时结束消融,消融区是一个直径约为1.5~2.5cm的球形。如果消融继续,A区域内的水分会被气化干净,这时候这部分组织的介电常数会降低很多,导致第一级复合结构失去扼流效应,电磁波会沿针杆逐渐向后扩展,最终截止于第二级复合结构末端,消融区由球形区域A逐渐扩展到球形区域B,球形直径扩展至4~5cm。因此,基于多级扼流技术的微波消融针,对于不同功率或不同消融时间,总能获得较理想的球形消融区。
另外,在第一级复合结构失去扼流效应以后,铜帽和第一级复合结构共同构成辐射器,第二级复合结构发挥扼流作用。这导致辐射区沿针杆向后移动,一部分电磁波得以不经过已消融区而直接进入未消融区,而得到充分利用。
此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域技术人员可对其进行简单地更改或替换,例如:
(1)各段复合结构长度可以有差异,在1/4~3/4波长范围内均有效;
(2)复合环状扼流结构不限于两段,可以依理推至若干段;
(3)外管可以选用柔性材料,即本设计也适用于柔性微波消融针;
(4)复合结构中,金属不限于铜,也可以是金、银、镍、锡等金属或合金,非金属材料也可以是聚四氟乙烯(PTFE)、聚乙烯(PE)等低介电常数非金属材料,金属层与非金属层之间可以通过喷涂或粘接进行复合;
(5)该设计也可以不留冷却水循环通道,即也适用于非水冷及冷却水不到头的微波消融针;
(6)铜帽材质不限于铜,也可以是金、银、镍、锡等其他金属或合金材料。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种微波信号抑制装置,其特征在于,包括:
    复合结构,所述复合结构包括低介电常数的非金属材料,以及形成在非金属材料上的若干段金属薄膜,每一段所述金属薄膜在待抑制的微波信号传播方向上的长度为所述微波信号的1/4~3/4个波长,所述金属薄膜之间的间隔为所述微波信号的1/10~1/20个波长;
    其中,所述低介电常数的非金属材料的相对于真空的相对介电常数小于等于5。
  2. 根据权利要求1所述的微波信号抑制装置,其特征在于,所述复合结构为环状或平板状。
  3. 根据权利要求1所述的微波信号抑制装置,其特征在于,所述金属薄膜包括2、3或4段。
  4. 根据权利要求1所述的微波信号抑制装置,其特征在于,所述金属薄膜所使用的材料选自铜、铁、铝、金、银、钯、铂、锡、镍、锌及其合金。
  5. 根据权利要求1所述的微波信号抑制装置,其特征在于,所述低介电常数的非金属材料选自聚四氟乙烯、聚乙烯、聚酰亚胺或聚甲醛。
  6. 根据权利要求1所述的微波信号抑制装置,其特征在于,所述金属薄膜通过磁控溅射、粘结、电镀或化学镀方式形成在所述低介电常数的非金属材料上。
  7. 一种微波信号的抑制方法,其特征在于,包括以下步骤:
    采用如权利要求1至6任意一项所述的微波信号抑制装置覆盖待抑制的微波信号发生器。
  8. 一种用于微波消融的天线组件,包括:
    第一辐射单元,用于发射消融用微波;
    传输线缆,用于将微波发生单元产生的消融用微波传输给所述第一辐射单元;
    其特征在于,在所述传输线缆外形成有如权利要求1至6任意一项所述的微波信号抑制装置,其中计算波长时的待抑制的微波信号为在待 治疗患者病灶组织中传播的微波信号。
  9. 根据权利要求8所述的用于微波消融的天线组件,其特征在于,所述低介电常数的非金属材料为所述用于微波消融的天线组件中使用的冷却水循环通道的管壁;
  10. 根据权利要求8所述的用于微波消融的天线组件,其特征在于,所述第一辐射单元为“帽”状辐射器或同轴线内芯。
  11. 根据权利要求8所述的用于微波消融的天线组件,其特征在于,所述第一辐射单元的材质选自铜、金、银、镍、锡及其合金。
  12. 一种微波消融针,其特征在于,所述微波消融针包含有如权利要求8至11任意一项所述的用于微波消融的天线组件。
  13. 根据权利要求12所述的微波消融针,所述微波消融针为柔性微波消融针。
PCT/CN2017/111618 2017-11-17 2017-11-17 微波信号抑制装置、方法、天线组件及微波消融针 WO2019095272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111618 WO2019095272A1 (zh) 2017-11-17 2017-11-17 微波信号抑制装置、方法、天线组件及微波消融针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111618 WO2019095272A1 (zh) 2017-11-17 2017-11-17 微波信号抑制装置、方法、天线组件及微波消融针

Publications (1)

Publication Number Publication Date
WO2019095272A1 true WO2019095272A1 (zh) 2019-05-23

Family

ID=66539293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111618 WO2019095272A1 (zh) 2017-11-17 2017-11-17 微波信号抑制装置、方法、天线组件及微波消融针

Country Status (1)

Country Link
WO (1) WO2019095272A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172863A1 (en) * 2011-01-05 2012-07-05 Vivant Medical, Inc. Energy-Delivery Devices with Flexible Fluid-Cooled Shaft, Inflow/Outflow Junctions Suitable for Use with Same, and Systems Including Same
CN105326564A (zh) * 2011-04-08 2016-02-17 柯惠Lp公司 具有可互换天线探测器的微波消融装置
WO2016029022A1 (en) * 2014-08-20 2016-02-25 Covidien Lp Systems and methods for spherical ablations
CN105816240A (zh) * 2016-05-24 2016-08-03 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN106420048A (zh) * 2016-08-31 2017-02-22 赛诺微医疗科技(北京)有限公司 一种柔性微波消融天线及采用其的微波消融针

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172863A1 (en) * 2011-01-05 2012-07-05 Vivant Medical, Inc. Energy-Delivery Devices with Flexible Fluid-Cooled Shaft, Inflow/Outflow Junctions Suitable for Use with Same, and Systems Including Same
CN105326564A (zh) * 2011-04-08 2016-02-17 柯惠Lp公司 具有可互换天线探测器的微波消融装置
WO2016029022A1 (en) * 2014-08-20 2016-02-25 Covidien Lp Systems and methods for spherical ablations
CN105816240A (zh) * 2016-05-24 2016-08-03 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN106420048A (zh) * 2016-08-31 2017-02-22 赛诺微医疗科技(北京)有限公司 一种柔性微波消融天线及采用其的微波消融针

Similar Documents

Publication Publication Date Title
US10238452B2 (en) Dual antenna microwave resection and ablation device, system and method of use
WO2017201954A1 (zh) 用于微波消融的天线组件及采用其的微波消融针
WO2018040253A1 (zh) 柔性微波消融天线及采用其的微波消融针
US6527768B2 (en) End-firing microwave ablation instrument with horn reflection device
US20130192063A1 (en) Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
WO1999032048A1 (en) X-ray needle providing heating with microwave energy
CN107822710A (zh) 微波信号抑制装置、方法、天线组件及微波消融针
JP2011251116A (ja) アンテナ放射部分の大気曝露のためのバラン構造を有する電気外科手術装置およびそれを用いてエネルギーを組織に導く方法
JPH02502613A (ja) 冠状血管及び周辺動脈等、人体の動脈の狭窄を再疎通するために用いられるバルーンカテーテル
US10993767B2 (en) Microwave ablation antenna assemblies
WO2019095272A1 (zh) 微波信号抑制装置、方法、天线组件及微波消融针
US9095360B2 (en) Feeding structure for dual slot microwave ablation probe
WO2021135610A1 (zh) 一种基于螺旋缝隙结构的微波消融天线
CN209074874U (zh) 微波信号抑制装置、天线组件及微波消融针
CN108030549B (zh) 一种单边微波消融针
WO2021051542A1 (zh) 一种多缝隙微波消融针
CN206587036U (zh) 一种柔性微波消融天线及采用其的微波消融针
CN114305676A (zh) 一种基于断开式外导体结构的微波消融天线
CN109199582B (zh) 宽域微波消融天线及采用其的肺微波消融软电极
WO2015066311A1 (en) Systems and methods for neuromodulation and treatment of abnormal growths
WO2020087274A1 (zh) 宽域微波消融天线及采用其的肺微波消融软电极
CN117695001A (zh) 微波消融软针
CN216319527U (zh) 双螺旋微波腔道辐射器
JP2019524376A (ja) マイクロ波装置
CN2482390Y (zh) 高强度螺旋形穿刺微波辐射天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932548

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17932548

Country of ref document: EP

Kind code of ref document: A1