WO2021135610A1 - 一种基于螺旋缝隙结构的微波消融天线 - Google Patents

一种基于螺旋缝隙结构的微波消融天线 Download PDF

Info

Publication number
WO2021135610A1
WO2021135610A1 PCT/CN2020/125575 CN2020125575W WO2021135610A1 WO 2021135610 A1 WO2021135610 A1 WO 2021135610A1 CN 2020125575 W CN2020125575 W CN 2020125575W WO 2021135610 A1 WO2021135610 A1 WO 2021135610A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
semi
needle
ablation
dielectric layer
Prior art date
Application number
PCT/CN2020/125575
Other languages
English (en)
French (fr)
Inventor
陈海东
林森
车文荃
薛泉
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/790,136 priority Critical patent/US20230140891A1/en
Publication of WO2021135610A1 publication Critical patent/WO2021135610A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1846Helical antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1876Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with multiple frequencies

Definitions

  • the present invention relates to the field of microwave thermal ablation of tumors, and in particular to a microwave ablation antenna based on a spiral slot structure.
  • Microwave ablation is a type of in-situ ablation.
  • In-situ ablation treatment refers to the use of metal needles or electrodes to reach the target tissue under the guidance of imaging methods CT or ultrasound, and directly input chemical or non-chemical energy.
  • Microwave ablation technology has the advantages of large ablation range, fewer complications, and safety, and has become a conventional treatment for malignant tumors.
  • Microwave is a kind of high-frequency electromagnetic wave, the electromagnetic energy transmitted can be absorbed by human tissues, and then quickly converted into a large amount of heat energy.
  • the current microwave ablation antennas are mainly based on the design of the coaxial line structure, and are divided into monopole, dipole and coaxial slot ablation antennas.
  • Coaxial slot antenna (Jiang, Y., et al., A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research. Med Biol Eng Comput, 2017. 55(11): p. 2027-2036.)
  • the microwave energy is radiated in the liver.
  • the current slot length is long and the spacing is large, so that the energy radiation part of the ablation needle is too long.
  • the ablation area generated by the slit radiation is ellipsoidal, small in roundness, and the tip energy of the antenna is less, which is easy to produce the tail burn effect. .
  • the present invention overcomes the above-mentioned defects and deficiencies, and proposes a microwave ablation antenna based on a spiral slot structure, so that the slot of the antenna is opened at the front end, impedance matching can be achieved at the frequency 915MHz or 2.45GHz specified by ISM, and the energy is concentrated in the antenna The tip, the ablation area is approximately spherical.
  • a microwave ablation antenna based on a spiral gap structure comprising an ablation needle and a semi-rigid coaxial needle shaft, the end of the ablation needle and the front end of the semi-rigid coaxial needle shaft are connected to each other, the ablation needle and the semi-rigid coaxial needle shaft
  • the outermost layer of the rod is covered with an insulating dielectric layer.
  • the ablation needle has a conical shape, and the inside is a metal cone, which may be a metal material such as copper or silver, and the outside is covered with an insulating dielectric layer.
  • the semi-rigid coaxial wire needle bar has a four-layer structure, including an inner conductor, a dielectric layer, an outer conductor, and an insulating dielectric layer; the semi-rigid coaxial wire needle bar has an inner conductor composed of a metal cylinder, and the inner conductor The outer side of the layer is sequentially covered with a dielectric layer, an outer conductor and an insulating dielectric layer, and the outer conductor is composed of a metal circular column.
  • the inner conductor of the semi-rigid coaxial needle shaft is connected with the conical bottom of the ablation needle, and the outer conductor is connected with the conical bottom of the ablation needle, so that a closed short circuit is formed between the inner conductor and the outer conductor.
  • the semi-rigid coaxial needle bar is provided with at least one spiral slit with optimizable parameters on the outer conductor behind the connection with the ablation needle for radiation, and the spiral is set according to the return loss and the boundary range of the temperature field.
  • the number and parameters of the slits, the spiral slits are used to achieve multiple reflections, so that the frequency resonance is within the specified ISM frequency.
  • the semi-rigid coaxial needle shaft has at least one annular slot of different lengths behind the spiral slot for impedance matching and radiation. , Set the number and length of the annular gap according to the boundary range of the temperature field and the return loss.
  • the material of the insulating dielectric layer and the dielectric layer is Teflon, which has the characteristics of high temperature resistance, high lubrication and non-adhesion.
  • the microwave ablation antenna based on the spiral slot structure of the present invention has the following beneficial effects and advantages:
  • the present invention is easy to process on the existing industrial technology, and the cost is low;
  • the present invention can realize multiple reflections of the transmission line, and it is easy to make the frequency resonance within the specified ISM frequency;
  • the number of slits of the present invention is small and concentrated at the front end of the semi-rigid coaxial line, with high intensity and energy radiation concentrated at the tip;
  • the ablation area produced by the present invention has smaller backward radiation than the ablation antenna with a multi-slit structure, and is closer to a spherical shape.
  • Fig. 1 is a schematic structural diagram of a microwave ablation antenna based on a spiral slot structure of the present invention.
  • Fig. 2 is a schematic structural diagram of an ablation needle in an embodiment of the present invention.
  • Fig. 3 is a diagram of S parameter simulation results of a microwave ablation antenna based on a spiral slot structure in the liver in an embodiment of the present invention.
  • Fig. 4 is a diagram showing the simulation result of a 2.45 GHz temperature field in the liver of a microwave ablation antenna based on a spiral slot structure in an embodiment of the present invention.
  • a microwave ablation antenna based on a spiral slot structure includes an ablation needle 1 and a semi-rigid coaxial needle shaft 2.
  • the ablation needle 1 has a cone shape, and the inside is a metal cone, which may be a metal material such as copper or silver, and the outside is covered with an insulating dielectric layer 3.
  • the semi-rigid coaxial wire needle bar 2 has a four-layer structure, including an inner conductor 5, a dielectric layer 4, an outer conductor 6 and an insulating dielectric layer 3.
  • the semi-rigid coaxial wire needle bar 2 has an inner conductor composed of a metal cylinder. 5.
  • the outer side of the inner conductor 5 sequentially covers the dielectric layer 4, the outer conductor 6 and the insulating dielectric layer 3, and the outer conductor 6 is composed of a metal circular column.
  • the inner conductor 5 of the semi-rigid coaxial needle shaft 2 is connected to the conical bottom of the ablation needle 1, and the outer conductor 6 is connected to the conical bottom of the ablation needle 1, so that the inner conductor 5 and the outer conductor 6 form a closed Short circuit.
  • the semi-rigid coaxial needle bar 2 is provided with at least one spiral slit 7 with optimizable parameters on the outer conductor 6 behind the connection with the ablation needle 1 for radiation, and the spiral is set according to the range of the temperature field and the return loss.
  • the number and parameters of the slits 7, and the spiral slits 7 are used to realize multiple reflections and make the frequency resonance within the specified ISM frequency.
  • the semi-rigid coaxial needle shaft 2 has at least one annular slot 8 of different lengths behind the spiral slot 7 for impedance matching and radiation. , Set the length and number of the annular gap 8 according to the boundary range of the temperature field and the return loss.
  • the material of the insulating dielectric layer 3 and the dielectric layer 4 is Teflon, which has the characteristics of high temperature resistance, high lubrication and non-adhesion.
  • a microwave ablation antenna with a planar structure in the 2.45 GHz frequency band is designed and manufactured using coaxial processing technology.
  • Figure 1 is a structural diagram of an embodiment of the present invention, which mainly includes an ablation needle 1 and a semi-rigid coaxial needle shaft 2; in this embodiment, the ablation needle 1 is conical as a whole, with a metal cone inside, a bottom diameter of 2mm, and a height It is 1mm, the outer layer is covered with insulating dielectric layer 3, the material is Teflon, which has sufficient mechanical strength and puncture force, and can prevent adhesion and does not fall off. It forms a cone with a bottom diameter of 2mm and a height of 2mm.
  • the inside of the semi-rigid coaxial wire needle bar 2 is an inner conductor 5 with a cylindrical structure, and the outer layer is sequentially covered with a dielectric layer 4, an outer conductor 6 and an insulating dielectric layer 3.
  • the diameter of the inner conductor 5 is 0.5 mm and the length It is 60mm;
  • the dielectric layer 4 covering the outside is a circular column structure, the material is Teflon, the inner diameter is 0.5mm, the outer diameter is 1.7mm, and the length is 60mm;
  • the outer conductor 6 covering the outer side of the dielectric layer 4 is also a ring Column structure, the inner diameter is 1.7mm, the outer diameter is 2mm, and the length is 60mm;
  • the insulating dielectric layer 3 covering the outer conductor 6 is a circular column structure, the material is also Teflon, the inner diameter is 2mm, and the outer diameter is 2.5 mm, the length is 60mm.
  • the front end of the semi-rigid coaxial needle shaft 2 is connected with the ablation needle 1, and a spiral gap is opened behind the connection.
  • the distance between the spiral gap and the connection is 0.7 mm.
  • the width is 0.45mm, the pitch is 0.3mm, and the number of turns is 4 turns.
  • the electromagnetic wave is reflected and superimposed and canceled by multiple times.
  • a circular slit 8 is opened behind the spiral slit to perform impedance matching and radiation of multiple frequencies.
  • the distance between the annular gap 8 and the spiral gap 7 is 2.9 mm, and the length of the annular gap 8 is 3 mm. Energy is efficiently radiated at the gap for microwave ablation.
  • Figure 3 shows the S parameter simulation results of the microwave ablation antenna in the liver in this embodiment.
  • the resonant frequencies are around 915MHz and 2.45GHz. Within the specified ISM frequency band, they are currently the most commonly used frequency bands for microwave ablation, reaching -20.69 respectively. dB and -24.33dB.
  • Figure 4 shows the simulation of the temperature field of the microwave ablation antenna in this embodiment in a simulated liver environment.
  • the power is 42W
  • the time is 120s
  • the dielectric constant of the liver is 43
  • the initial temperature is 310.15K.
  • the shaded area is the area larger than 333.15K, which is the ablation area
  • the long diameter is 66.4mm
  • the short diameter is 33.2mm
  • the roundness is 0.5.
  • the microwave ablation antenna based on the spiral slot structure of the present invention is easy to process in the existing industrial technology, has a low cost, realizes multiple reflections of the transmission line, and easily makes the frequency resonance within the specified ISM frequency.
  • Microwave energy transmission is low consumption
  • the number of slots is small and concentrated at the front end of the semi-rigid coaxial line, with high intensity and energy radiation is concentrated at the tip, the resulting ablation area is smaller than that of the ablation antenna with multi-slit structure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种基于螺旋缝隙(7)的微波消融天线,其包括圆锥状的消融针头(1)、半刚性同轴线针杆(2),半刚性同轴线针杆(2)的前端与消融针头(1)末端相互连接,连接处后方的外导体(6)上开有数个可优化的螺旋缝隙(7)以进行辐射,并在螺旋缝隙(7)后方不开或开有数个环形缝隙(8)以进行阻抗匹配和辐射,能量在半刚性同轴线中传输并在缝隙(7,8)处进行高效辐射。该微波消融针的微波能量传输消耗低,能量在螺旋缝隙(7)处高效辐射,且主要集中在消融天线前端,能够有效抑制向后的辐射。

Description

一种基于螺旋缝隙结构的微波消融天线 技术领域
    本发明涉及肿瘤的微波热消融领域,特别涉及一种基于螺旋缝隙结构的微波消融天线。
背景技术
随着肿瘤微创技术的发展,微波消融的医学技术在临床医疗领域逐步得到了认可和广泛的应用。微波消融属于原位消融的一种,原位消融治疗是指在影像学方法CT或超声引导下,利用金属针或电极经皮穿刺抵达靶组织,以直接输入化学能或非化学能的方式局灶性灭活靶组织的微创治疗手段。微波消融技术具有消融范围大,并发症少,安全的优势,已经成为了恶性肿瘤的常规治疗手段。微波是一种高频电磁波,传递的电磁能可以被人体组织吸收,进而快速转化为大量热能。
目前的微波消融天线主要基于同轴线结构的设计,分为单极子,偶极子和同轴缝隙等消融天线。同轴缝隙天线(Jiang, Y., et al., A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research. Med Biol Eng Comput, 2017. 55(11): p. 2027-2036.)通过在同轴线的外导体上开槽,使得微波能量在肝脏中辐射。但是,目前开的槽长度长,间距大,使得消融针的能量辐射部分过长,缝隙辐射产生的消融区域呈椭球型,圆度小,且天线的尖端能量较少,容易产生烧尾效应。
技术解决方案
本发明克服了上述的缺陷和不足,提出一种基于螺旋缝隙结构的微波消融天线,使得天线的缝隙开在前端,就能在ISM规定的频率915MHz或2.45GHz达到阻抗匹配,且能量集中在天线的尖端,消融区域近似球形。
本发明的目的至少通过如下技术方案之一实现。
一种基于螺旋缝隙结构的微波消融天线,包括消融针头和半刚性同轴线针杆,所述消融针头末端和半刚性同轴线针杆的前端相互连接,消融针头和半刚性同轴线针杆的最外层覆盖绝缘介质层。
进一步地,所述消融针头呈圆锥状,内部是金属圆锥,可以是铜或者银等金属材料,外部覆盖有绝缘介质层。
进一步地,所述半刚性同轴线针杆具有四层结构,包括内导体、介质层、外导体和绝缘介质层;半半刚性同轴线针杆内部为由金属圆柱构成的内导体,内导体的外侧依次覆盖介质层、外导体和绝缘介质层,所述外导体由金属圆环柱构成。
   进一步地,所述半刚性同轴线针杆的内导体与消融针头的圆锥底部相接,外导体与消融针头的圆锥底部相接,使得内导体和外导体之间形成封闭的短路。
进一步地,所述半刚性同轴线针杆在与消融针头的连接处的后方的外导体上开有至少一个参数可优化的螺旋缝隙进行辐射,根据回拨损耗和温度场的边界范围设置螺旋缝隙的数量和参数,所述螺旋缝隙用于实现多次反射,使频率谐振在规定的ISM频率内。
进一步地,若基于螺旋缝隙结构的微波消融天线要工作在两个或以上的频点,所述半刚性同轴线针杆在螺旋缝隙后方开有至少一个长度不一环形缝隙进行阻抗匹配和辐射,根据温度场的边界范围和回拨损耗设置环形缝隙的数量和长度。
进一步地,所述绝缘介质层、介质层的材料为特氟龙,具有耐高温、高润滑和不粘附的特性。
有益效果
与现有技术比较,本发明的一种基于螺旋缝隙结构的微波消融天线具有以下有益效果和优点:
(1)本发明在现有的工业技术上易于加工,成本较低;
(2)本发明可实现传输线的多次反射,容易使频率谐振在规定的ISM频率内;
(3)本发明的缝隙数目少且集中在半刚性同轴线的前端,具有较高的强度且能量辐射集中在尖端;
(4)本发明产生的消融区域相对于多缝隙结构的消融天线后向辐射较小,且更接近于球形。
附图说明
    图1为本发明的一种基于螺旋缝隙结构的微波消融天线结构示意图。
    图2为本发明实施例中消融针头的结构示意图。
    图3为本发明实施例中种基于螺旋缝隙结构的微波消融天线在肝脏中的S参数仿真结果图。
图4为本发明实施例中种基于螺旋缝隙结构的微波消融天线在肝脏中的2.45GHz温度场仿真结果图。
本发明的实施方式
    下面将结合附图和具体的实施例对本发明的具体实施作进一步说明。需要指出的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1、图2所示,一种基于螺旋缝隙结构的微波消融天线,包括消融针头1和半刚性同轴线针杆2,所述消融针头1末端和半刚性同轴线针杆2的前端相互连接,消融针头1和半刚性同轴线针杆2的最外层覆盖绝缘介质层3。
所述消融针头1呈圆锥状,内部是金属圆锥,可以是铜或者银等金属材料,外部覆盖有绝缘介质层3。
所述半刚性同轴线针杆2具有四层结构,包括内导体5、介质层4、外导体6和绝缘介质层3;半刚性同轴线针杆2内部为由金属圆柱构成的内导体5,内导体5的外侧依次覆盖介质层4、外导体6和绝缘介质层3,所述外导体6由金属圆环柱构成。
所述半刚性同轴线针杆2的内导体5与消融针头1的圆锥底部相接,外导体6与消融针头1的圆锥底部相接,使得内导体5和外导体6之间形成封闭的短路。
所述半刚性同轴线针杆2在与消融针头1的连接处的后方的外导体6上开有至少一个参数可优化的螺旋缝隙7进行辐射,根据温度场的范围和回拨损耗设置螺旋缝隙7的数量和参数,所述螺旋缝隙7用于实现多次反射,使频率谐振在规定的ISM频率内。
若基于螺旋缝隙结构的微波消融天线要工作在两个或以上的频点,所述半刚性同轴线针杆2在螺旋缝隙7后方开有至少一个长度不一环形缝隙8进行阻抗匹配和辐射,根据温度场的边界范围和回波损耗设置环形缝隙8的长度和数量。
所述绝缘介质层3、介质层4的材料为特氟龙,具有耐高温、高润滑和不粘附的特性。
    实施例:
本实施例中,以同轴线加工技术设计并制造了在2.45GHz频段内平面结构的微波消融天线。
图1为本发明实施例的结构图,主要包括消融针头1和半刚性同轴线针杆2;本实施例中,消融针头1整体为圆锥状,内部为金属圆锥,底面直径为2mm,高度为1mm,外层覆盖着绝缘介质层3,材料为特氟龙,具有足够的机械强度和穿刺力,同时能防黏连,不脱落,构成底面直径为2mm,高度为2mm的圆锥。
半刚性同轴线针杆2内部为圆柱结构的内导体5,外层依次覆盖着介质层4,外导体6和绝缘介质层3;本实施例中,内导体5的直径为0.5mm,长度为60mm;外侧覆盖的介质层4为圆环柱结构,材料为特氟龙,内直径为0.5mm,外直径为1.7mm,长度为60mm;介质层4外侧覆盖的外导体6也为圆环柱结构,内直径为1.7mm,外直径为2mm,长度为60mm;外导体6外侧覆盖的绝缘介质层3为圆环柱结构,材料也为特氟龙,内直径为2mm,外直径为2.5mm,长度为60mm。
所述半刚性同轴线针杆2的前端与消融针头1进行连接,并在连接处的后方开有螺旋缝隙,本实施例中,螺旋缝隙距离连接处的距离为0.7mm,螺旋缝隙的缝隙宽度为0.45mm,螺距为0.3mm,圈数为4圈,电磁波在此处多次反射叠加相消,在螺旋缝隙的后方开有一环形缝隙8,进行多个频率的阻抗匹配和辐射,本实施例中,环形缝隙8距离螺旋缝隙7的距离为2.9mm,环形缝隙8的长度为3mm,能量在缝隙处高效辐射,进行微波消融。
图3所示为本实施例中微波消融天线在肝脏中的S参数仿真结果,谐振频率在915MHz和2.45GHz附近,在规定的ISM频段内,为目前微波消融最常用的频段,分别达到-20.69dB和-24.33dB。
图4所示为本实施例中微波消融天线在模拟肝脏环境中的温度场仿真,功率为42W,时间为120s,肝脏的介电常数为43,初始温度为310.15K,图中最内层的阴影部分为大于333.15K的区域,为消融区域,长径为66.4mm,短径为33.2mm,圆度为0.5。
综上所述,本发明的一种基于螺旋缝隙结构的微波消融天线,在现有的工业技术上易于加工,成本较低,实现传输线的多次反射,容易使频率谐振在规定的ISM频率内,微波能量传输消耗低,缝隙数目少且集中在半刚性同轴线的前端,具有较高的强度且能量辐射集中在尖端,产生的消融区域相对于多缝隙结构的消融天线后向辐射较小,且更接近于球形。

Claims (7)

  1. 一种基于螺旋缝隙结构的微波消融天线,其特征在于,包括消融针头(1)和半刚性同轴线针杆(2),所述消融针头(1)末端和半刚性同轴线针杆(2)的前端相互连接,消融针头(1)和半刚性同轴线针杆(2)的最外层覆盖绝缘介质层(3)。
  2. 根据权利要求1所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于:所述消融针头(1)呈圆锥状,内部是金属圆锥,外部覆盖有绝缘介质层(3)。
  3. 根据权利要求1所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述半刚性同轴线针杆(2)具有四层结构,包括内导体(5)、介质层(4)、外导体(6)和绝缘介质层(3);半刚性同轴线针杆(2)内部为由金属圆柱构成的内导体(5),内导体(5)的外侧依次覆盖介质层(4)、外导体(6)和绝缘介质层(3),所述外导体(6)由金属圆环柱构成。
  4. 根据权利要求3所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述半刚性同轴线针杆(2)的内导体(5)与消融针头(1)的圆锥底部相接,外导体(6)与消融针头(1)的圆锥底部相接,使得内导体(5)和外导体(6)之间形成封闭的短路。
  5. 根据权利要求3所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述半刚性同轴线针杆(2)在与消融针头(1)的连接处的后方的外导体(6)上开有至少一个螺旋匝数、螺旋间距、螺旋缝隙宽度和螺旋与螺旋距离参数可优化的螺旋缝隙(7)进行辐射,根据回拨损耗和温度场的边界范围来设置螺旋的个数和参数,所述螺旋缝隙(7)用于实现多次反射,使频率谐振在规定的ISM频率内。
  6. 根据权利要求1所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,若基于螺旋缝隙结构的微波消融天线要工作在两个或以上的频点,所述半刚性同轴线针杆(2)在螺旋缝隙(7)后方开有至少一个长度不一环形缝隙(8)进行阻抗匹配和辐射,根据温度场的边界范围和回拨损耗设置环形缝隙(8)的长度和数量。
  7. 根据权利要求3所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述绝缘介质层(3)、介质层(4)的材料为特氟龙。
     
PCT/CN2020/125575 2019-12-31 2020-10-30 一种基于螺旋缝隙结构的微波消融天线 WO2021135610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,136 US20230140891A1 (en) 2019-12-31 2020-10-30 Microwave ablation antenna based on spiral slot structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911410678.6 2019-12-31
CN201911410678.6A CN111012483B (zh) 2019-12-31 2019-12-31 一种基于螺旋缝隙结构的微波消融天线

Publications (1)

Publication Number Publication Date
WO2021135610A1 true WO2021135610A1 (zh) 2021-07-08

Family

ID=70197525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125575 WO2021135610A1 (zh) 2019-12-31 2020-10-30 一种基于螺旋缝隙结构的微波消融天线

Country Status (3)

Country Link
US (1) US20230140891A1 (zh)
CN (1) CN111012483B (zh)
WO (1) WO2021135610A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012483B (zh) * 2019-12-31 2021-12-17 华南理工大学 一种基于螺旋缝隙结构的微波消融天线
CN114305676B (zh) * 2022-03-10 2022-05-31 北京科技大学 一种基于断开式外导体结构的微波消融天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482390Y (zh) * 2001-07-12 2002-03-20 中国人民解放军第二军医大学 高强度螺旋形穿刺微波辐射天线
CN202386782U (zh) * 2011-12-13 2012-08-22 南京理工大学 同轴缝隙带扼流环的微波热疗天线
CN108201468A (zh) * 2018-02-08 2018-06-26 南京康友医疗科技有限公司 一种带天线组件的微波消融针
CN108652738A (zh) * 2018-05-02 2018-10-16 华东理工大学 一种微波消融天线
US20190117305A1 (en) * 2014-06-20 2019-04-25 Perseon Corporation Ablation emitter assembly
CN111012483A (zh) * 2019-12-31 2020-04-17 华南理工大学 一种基于螺旋缝隙结构的微波消融天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583556A (en) * 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
US6051018A (en) * 1997-07-31 2000-04-18 Sandia Corporation Hyperthermia apparatus
US8280525B2 (en) * 2007-11-16 2012-10-02 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
US8617153B2 (en) * 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
CN101987037B (zh) * 2010-11-04 2012-04-04 西安理工大学 微带螺旋双频率热疗天线
CN105596079B (zh) * 2016-02-18 2018-09-28 赛诺微医疗科技(浙江)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN108784830A (zh) * 2018-07-11 2018-11-13 安徽大中润科技有限公司 微波针

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482390Y (zh) * 2001-07-12 2002-03-20 中国人民解放军第二军医大学 高强度螺旋形穿刺微波辐射天线
CN202386782U (zh) * 2011-12-13 2012-08-22 南京理工大学 同轴缝隙带扼流环的微波热疗天线
US20190117305A1 (en) * 2014-06-20 2019-04-25 Perseon Corporation Ablation emitter assembly
CN108201468A (zh) * 2018-02-08 2018-06-26 南京康友医疗科技有限公司 一种带天线组件的微波消融针
CN108652738A (zh) * 2018-05-02 2018-10-16 华东理工大学 一种微波消融天线
CN111012483A (zh) * 2019-12-31 2020-04-17 华南理工大学 一种基于螺旋缝隙结构的微波消融天线

Also Published As

Publication number Publication date
CN111012483B (zh) 2021-12-17
CN111012483A (zh) 2020-04-17
US20230140891A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US6527768B2 (en) End-firing microwave ablation instrument with horn reflection device
JP6634076B2 (ja) 小型マイクロ波アブレーションアセンブリ
JP5651402B2 (ja) 遠位に位置付けられた共鳴構造を備える誘電体装荷された同軸の開口部を有する電気外科手術装置およびその製造方法
JP5657974B2 (ja) 電気外科手術装置、そこに連結可能な指向性リフレクタ・アセンブリ、およびそれらを備える電気外科手術システム
US8608731B2 (en) Leaky-wave antennas for medical applications
US11058487B2 (en) Microwave ablation antenna system with reflector and slot
US20030100894A1 (en) Invasive therapeutic probe
JP2010194317A (ja) 医療用途のための漏洩波アンテナ
WO2021135610A1 (zh) 一种基于螺旋缝隙结构的微波消融天线
JP2008142467A (ja) 同軸プローブ
Acikgoz et al. Microwave coaxial antenna for cancer treatment: reducing the backward heating using a double choke
WO2021129054A1 (zh) 一种基于pcb结构的平面结构微波消融天线及消融针
Maini Design optimization of tapered cap floating sleeve antenna for interstitial microwave ablation for liver tumor
Luyen et al. Minimally Invasive Microwave Ablation Antennas
CN106902465A (zh) 一种基于螺旋天线的微波聚焦球面阵列天线
CN111921094A (zh) 一种矩形腔体微波理疗辐射器
CN217660110U (zh) 一种肺磨玻璃结节微波消融天线
CN109330680A (zh) 一种磁兼容的偶极子微波消融针
Liu et al. Microwave Ablation Antenna with the ablation pattern being a figure-of-eight
CN110548227A (zh) 一种微波针灸辐射器
CN216319527U (zh) 双螺旋微波腔道辐射器
Khan et al. Design Analysis of Microwave Ablation using Minimally Invasive Antenna in Human Liver
CN219307747U (zh) 一种花瓣式腔道辐射器
CN111991701B (zh) 一种四象限加载433MHz圆形波导辐射器
JPH0614760Y2 (ja) 加温療法用マイクロ波放射器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20910951

Country of ref document: EP

Kind code of ref document: A1