CN111012483A - 一种基于螺旋缝隙结构的微波消融天线 - Google Patents

一种基于螺旋缝隙结构的微波消融天线 Download PDF

Info

Publication number
CN111012483A
CN111012483A CN201911410678.6A CN201911410678A CN111012483A CN 111012483 A CN111012483 A CN 111012483A CN 201911410678 A CN201911410678 A CN 201911410678A CN 111012483 A CN111012483 A CN 111012483A
Authority
CN
China
Prior art keywords
spiral
semi
needle
ablation
rigid coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911410678.6A
Other languages
English (en)
Other versions
CN111012483B (zh
Inventor
陈海东
林森
车文荃
薛泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911410678.6A priority Critical patent/CN111012483B/zh
Publication of CN111012483A publication Critical patent/CN111012483A/zh
Priority to PCT/CN2020/125575 priority patent/WO2021135610A1/zh
Priority to US17/790,136 priority patent/US20230140891A1/en
Application granted granted Critical
Publication of CN111012483B publication Critical patent/CN111012483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1846Helical antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1876Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with multiple frequencies

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明公开一种基于螺旋缝隙结构的微波消融天线。所述微波消融天线包括圆锥状的消融针头,半刚性同轴线针杆,半刚性同轴线针杆的前端与消融针头末端相互连接,连接处后方的外导体上开有数个可优化的螺旋缝隙进行辐射,并在螺旋缝隙后方不开或者开有数个环形缝隙进行阻抗匹配和辐射,能量在半刚性同轴线中传输并在缝隙处进行高效辐射。本发明的微波消融针,微波能量传输消耗低,能量在螺旋缝隙处高效辐射,主要集中在消融天线前端,有效抑制向后的辐射,从而为微创或者无创微波肿瘤治疗提供一种新型结构。

Description

一种基于螺旋缝隙结构的微波消融天线
技术领域
本发明涉及肿瘤的微波热消融领域,特别涉及一种基于螺旋缝隙结构的微波消融天线。
背景技术
随着肿瘤微创技术的发展,微波消融的医学技术在临床医疗领域逐步得到了认可和广泛的应用。微波消融属于原位消融的一种,原位消融治疗是指在影像学方法CT或超声引导下,利用金属针或电极经皮穿刺抵达靶组织,以直接输入化学能或非化学能的方式局灶性灭活靶组织的微创治疗手段。微波消融技术具有消融范围大,并发症少,安全的优势,已经成为了恶性肿瘤的常规治疗手段。微波是一种高频电磁波,传递的电磁能可以被人体组织吸收,进而快速转化为大量热能。
目前的微波消融天线主要基于同轴线结构的设计,分为单极子,偶极子和同轴缝隙等消融天线。同轴缝隙天线(Jiang,Y.,et al.,A coaxial slot antenna withfrequency of 433MHz for microwave ablation therapies:design,simulation,andexperimental research.Med Biol Eng Comput,2017.55(11):p.2027-2036.)通过在同轴线的外导体上开槽,使得微波能量在肝脏中辐射。但是,目前开的槽长度长,间距大,使得消融针的能量辐射部分过长,缝隙辐射产生的消融区域呈椭球型,圆度小,且天线的尖端能量较少,容易产生烧尾效应。
发明内容
本发明克服了上述的缺陷和不足,提出一种基于螺旋缝隙结构的微波消融天线,使得天线的缝隙开在前端,就能在ISM规定的频率915MHz或2.45GHz达到阻抗匹配,且能量集中在天线的尖端,消融区域近似球形。
本发明的目的至少通过如下技术方案之一实现。
一种基于螺旋缝隙结构的微波消融天线,包括消融针头和半刚性同轴线针杆,所述消融针头末端和半刚性同轴线针杆的前端相互连接,消融针头和半刚性同轴线针杆的最外层覆盖绝缘介质层。
进一步地,所述消融针头呈圆锥状,内部是金属圆锥,可以是铜或者银等金属材料,外部覆盖有绝缘介质层。
进一步地,所述半刚性同轴线针杆具有四层结构,包括内导体、介质层、外导体和绝缘介质层;半半刚性同轴线针杆内部为由金属圆柱构成的内导体,内导体的外侧依次覆盖介质层、外导体和绝缘介质层,所述外导体由金属圆环柱构成。
进一步地,所述半刚性同轴线针杆的内导体与消融针头的圆锥底部相接,外导体与消融针头的圆锥底部相接,使得内导体和外导体之间形成封闭的短路。
进一步地,所述半刚性同轴线针杆在与消融针头的连接处的后方的外导体上开有至少一个参数可优化的螺旋缝隙进行辐射,根据回拨损耗和温度场的边界范围设置螺旋缝隙的数量和参数,所述螺旋缝隙用于实现多次反射,使频率谐振在规定的ISM频率内。
进一步地,若基于螺旋缝隙结构的微波消融天线要工作在两个或以上的频点,所述半刚性同轴线针杆在螺旋缝隙后方开有至少一个长度不一环形缝隙进行阻抗匹配和辐射,根据温度场的边界范围和回拨损耗设置环形缝隙的数量和长度。
进一步地,所述绝缘介质层、介质层的材料为特氟龙,具有耐高温、高润滑和不粘附的特性。
与现有技术比较,本发明的一种基于螺旋缝隙结构的微波消融天线具有以下有益效果和优点:
(1)本发明在现有的工业技术上易于加工,成本较低;
(2)本发明可实现传输线的多次反射,容易使频率谐振在规定的ISM频率内;
(3)本发明的缝隙数目少且集中在半刚性同轴线的前端,具有较高的强度且能量辐射集中在尖端;
(4)本发明产生的消融区域相对于多缝隙结构的消融天线后向辐射较小,且更接近于球形。
附图说明
图1为本发明的一种基于螺旋缝隙结构的微波消融天线结构示意图。
图2为本发明实施例中消融针头的结构示意图。
图3为本发明实施例中种基于螺旋缝隙结构的微波消融天线在肝脏中的S参数仿真结果图。
图4为本发明实施例中种基于螺旋缝隙结构的微波消融天线在肝脏中的2.45GHz温度场仿真结果图。
具体实施方式
下面将结合附图和具体的实施例对本发明的具体实施作进一步说明。需要指出的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1、图2所示,一种基于螺旋缝隙结构的微波消融天线,包括消融针头1和半刚性同轴线针杆2,所述消融针头1末端和半刚性同轴线针杆2的前端相互连接,消融针头1和半刚性同轴线针杆2的最外层覆盖绝缘介质层3。
所述消融针头1呈圆锥状,内部是金属圆锥,可以是铜或者银等金属材料,外部覆盖有绝缘介质层3。
所述半刚性同轴线针杆2具有四层结构,包括内导体5、介质层4、外导体6和绝缘介质层3;半刚性同轴线针杆2内部为由金属圆柱构成的内导体5,内导体5的外侧依次覆盖介质层4、外导体6和绝缘介质层3,所述外导体6由金属圆环柱构成。
所述半刚性同轴线针杆2的内导体5与消融针头1的圆锥底部相接,外导体6与消融针头1的圆锥底部相接,使得内导体5和外导体6之间形成封闭的短路。
所述半刚性同轴线针杆2在与消融针头1的连接处的后方的外导体6上开有至少一个参数可优化的螺旋缝隙7进行辐射,根据温度场的范围和回拨损耗设置螺旋缝隙7的数量和参数,所述螺旋缝隙7用于实现多次反射,使频率谐振在规定的ISM频率内。
若基于螺旋缝隙结构的微波消融天线要工作在两个或以上的频点,所述半刚性同轴线针杆2在螺旋缝隙7后方开有至少一个长度不一环形缝隙8进行阻抗匹配和辐射,根据温度场的边界范围和回波损耗设置环形缝隙8的长度和数量。
所述绝缘介质层3、介质层4的材料为特氟龙,具有耐高温、高润滑和不粘附的特性。
实施例:
本实施例中,以同轴线加工技术设计并制造了在2.45GHz频段内平面结构的微波消融天线。
图1为本发明实施例的结构图,主要包括消融针头1和半刚性同轴线针杆2;本实施例中,消融针头1整体为圆锥状,内部为金属圆锥,底面直径为2mm,高度为1mm,外层覆盖着绝缘介质层3,材料为特氟龙,具有足够的机械强度和穿刺力,同时能防黏连,不脱落,构成底面直径为2mm,高度为2mm的圆锥。
半刚性同轴线针杆2内部为圆柱结构的内导体5,外层依次覆盖着介质层4,外导体6和绝缘介质层3;本实施例中,内导体5的直径为0.5mm,长度为60mm;外侧覆盖的介质层4为圆环柱结构,材料为特氟龙,内直径为0.5mm,外直径为1.7mm,长度为60mm;介质层4外侧覆盖的外导体6也为圆环柱结构,内直径为1.7mm,外直径为2mm,长度为60mm;外导体6外侧覆盖的绝缘介质层3为圆环柱结构,材料也为特氟龙,内直径为2mm,外直径为2.5mm,长度为60mm。
所述半刚性同轴线针杆2的前端与消融针头1进行连接,并在连接处的后方开有螺旋缝隙,本实施例中,螺旋缝隙距离连接处的距离为0.7mm,螺旋缝隙的缝隙宽度为0.45mm,螺距为0.3mm,圈数为4圈,电磁波在此处多次反射叠加相消,在螺旋缝隙的后方开有一环形缝隙8,进行多个频率的阻抗匹配和辐射,本实施例中,环形缝隙8距离螺旋缝隙7的距离为2.9mm,环形缝隙8的长度为3mm,能量在缝隙处高效辐射,进行微波消融。
图3所示为本实施例中微波消融天线在肝脏中的S参数仿真结果,谐振频率在915MHz和2.45GHz附近,在规定的ISM频段内,为目前微波消融最常用的频段,分别达到-20.69dB和-24.33dB。
图4所示为本实施例中微波消融天线在模拟肝脏环境中的温度场仿真,功率为42W,时间为120s,肝脏的介电常数为43,初始温度为310.15K,图中最内层的阴影部分为大于333.15K的区域,为消融区域,长径为66.4mm,短径为33.2mm,圆度为0.5。
综上所述,本发明的一种基于螺旋缝隙结构的微波消融天线,在现有的工业技术上易于加工,成本较低,实现传输线的多次反射,容易使频率谐振在规定的ISM频率内,微波能量传输消耗低,缝隙数目少且集中在半刚性同轴线的前端,具有较高的强度且能量辐射集中在尖端,产生的消融区域相对于多缝隙结构的消融天线后向辐射较小,且更接近于球形。

Claims (7)

1.一种基于螺旋缝隙结构的微波消融天线,其特征在于,包括消融针头(1)和半刚性同轴线针杆(2),所述消融针头(1)末端和半刚性同轴线针杆(2)的前端相互连接,消融针头(1)和半刚性同轴线针杆(2)的最外层覆盖绝缘介质层(3)。
2.根据权利要求1所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于:所述消融针头(1)呈圆锥状,内部是金属圆锥,外部覆盖有绝缘介质层(3)。
3.根据权利要求1所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述半刚性同轴线针杆(2)具有四层结构,包括内导体(5)、介质层(4)、外导体(6)和绝缘介质层(3);半刚性同轴线针杆(2)内部为由金属圆柱构成的内导体(5),内导体(5)的外侧依次覆盖介质层(4)、外导体(6)和绝缘介质层(3),所述外导体(6)由金属圆环柱构成。
4.根据权利要求3所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述半刚性同轴线针杆(2)的内导体(5)与消融针头(1)的圆锥底部相接,外导体(6)与消融针头(1)的圆锥底部相接,使得内导体(5)和外导体(6)之间形成封闭的短路。
5.根据权利要求3所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述半刚性同轴线针杆(2)在与消融针头(1)的连接处的后方的外导体(6)上开有至少一个螺旋匝数、螺旋间距、螺旋缝隙宽度和螺旋与螺旋距离参数可优化的螺旋缝隙(7)进行辐射,根据回拨损耗和温度场的边界范围来设置螺旋的个数和参数,所述螺旋缝隙(7)用于实现多次反射,使频率谐振在规定的ISM频率内。
6.根据权利要求1所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,若基于螺旋缝隙结构的微波消融天线要工作在两个或以上的频点,所述半刚性同轴线针杆(2)在螺旋缝隙(7)后方开有至少一个长度不一环形缝隙(8)进行阻抗匹配和辐射,根据温度场的边界范围和回拨损耗设置环形缝隙(8)的长度和数量。
7.根据权利要求3所述的一种基于螺旋缝隙结构的微波消融天线,其特征在于,所述绝缘介质层(3)、介质层(4)的材料为特氟龙。
CN201911410678.6A 2019-12-31 2019-12-31 一种基于螺旋缝隙结构的微波消融天线 Active CN111012483B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911410678.6A CN111012483B (zh) 2019-12-31 2019-12-31 一种基于螺旋缝隙结构的微波消融天线
PCT/CN2020/125575 WO2021135610A1 (zh) 2019-12-31 2020-10-30 一种基于螺旋缝隙结构的微波消融天线
US17/790,136 US20230140891A1 (en) 2019-12-31 2020-10-30 Microwave ablation antenna based on spiral slot structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911410678.6A CN111012483B (zh) 2019-12-31 2019-12-31 一种基于螺旋缝隙结构的微波消融天线

Publications (2)

Publication Number Publication Date
CN111012483A true CN111012483A (zh) 2020-04-17
CN111012483B CN111012483B (zh) 2021-12-17

Family

ID=70197525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911410678.6A Active CN111012483B (zh) 2019-12-31 2019-12-31 一种基于螺旋缝隙结构的微波消融天线

Country Status (3)

Country Link
US (1) US20230140891A1 (zh)
CN (1) CN111012483B (zh)
WO (1) WO2021135610A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021135610A1 (zh) * 2019-12-31 2021-07-08 华南理工大学 一种基于螺旋缝隙结构的微波消融天线
CN114305676A (zh) * 2022-03-10 2022-04-12 北京科技大学 一种基于断开式外导体结构的微波消融天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583556A (en) * 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
US6051018A (en) * 1997-07-31 2000-04-18 Sandia Corporation Hyperthermia apparatus
EP2060239A1 (en) * 2007-11-16 2009-05-20 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
CN101987037A (zh) * 2010-11-04 2011-03-23 西安理工大学 微带螺旋双频率热疗天线
CN202386782U (zh) * 2011-12-13 2012-08-22 南京理工大学 同轴缝隙带扼流环的微波热疗天线
CN105596079A (zh) * 2016-02-18 2016-05-25 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
US20160296283A1 (en) * 2010-02-26 2016-10-13 Covidien Lp Tunable microwave ablation probe
CN108652738A (zh) * 2018-05-02 2018-10-16 华东理工大学 一种微波消融天线
CN108784830A (zh) * 2018-07-11 2018-11-13 安徽大中润科技有限公司 微波针

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482390Y (zh) * 2001-07-12 2002-03-20 中国人民解放军第二军医大学 高强度螺旋形穿刺微波辐射天线
US9968400B2 (en) * 2014-06-20 2018-05-15 Perseon Corporation Ablation emitter assembly
CN108201468A (zh) * 2018-02-08 2018-06-26 南京康友医疗科技有限公司 一种带天线组件的微波消融针
CN111012483B (zh) * 2019-12-31 2021-12-17 华南理工大学 一种基于螺旋缝隙结构的微波消融天线

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583556A (en) * 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
US6051018A (en) * 1997-07-31 2000-04-18 Sandia Corporation Hyperthermia apparatus
EP2060239A1 (en) * 2007-11-16 2009-05-20 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
US20090131926A1 (en) * 2007-11-16 2009-05-21 Tyco Healthcare Group Lp Dynamically Matched Microwave Antenna for Tissue Ablation
US20160296283A1 (en) * 2010-02-26 2016-10-13 Covidien Lp Tunable microwave ablation probe
CN101987037A (zh) * 2010-11-04 2011-03-23 西安理工大学 微带螺旋双频率热疗天线
CN202386782U (zh) * 2011-12-13 2012-08-22 南京理工大学 同轴缝隙带扼流环的微波热疗天线
CN105596079A (zh) * 2016-02-18 2016-05-25 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN108652738A (zh) * 2018-05-02 2018-10-16 华东理工大学 一种微波消融天线
CN108784830A (zh) * 2018-07-11 2018-11-13 安徽大中润科技有限公司 微波针

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021135610A1 (zh) * 2019-12-31 2021-07-08 华南理工大学 一种基于螺旋缝隙结构的微波消融天线
CN114305676A (zh) * 2022-03-10 2022-04-12 北京科技大学 一种基于断开式外导体结构的微波消融天线
CN114305676B (zh) * 2022-03-10 2022-05-31 北京科技大学 一种基于断开式外导体结构的微波消融天线

Also Published As

Publication number Publication date
WO2021135610A1 (zh) 2021-07-08
CN111012483B (zh) 2021-12-17
US20230140891A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US6527768B2 (en) End-firing microwave ablation instrument with horn reflection device
JP6634076B2 (ja) 小型マイクロ波アブレーションアセンブリ
JP5420347B2 (ja) 二重帯域ダイポールマイクロ波切除アンテナ
US6706040B2 (en) Invasive therapeutic probe
US20100045559A1 (en) Dual-Band Dipole Microwave Ablation Antenna
US11058487B2 (en) Microwave ablation antenna system with reflector and slot
JP2010194317A (ja) 医療用途のための漏洩波アンテナ
CN111012483B (zh) 一种基于螺旋缝隙结构的微波消融天线
Huang et al. A review of antenna designs for percutaneous microwave ablation
US20210244469A1 (en) Microwave apparatus, system and method
US20190207316A1 (en) Dipole antenna for microwave ablation
CN116784973A (zh) 一种消融区域可重构的微波消融天线及其控制方法
Acikgoz et al. Microwave coaxial antenna for cancer treatment: Reducing the backward heating using a double choke
Luyen et al. Minimally Invasive Microwave Ablation Antennas
Maini Design optimization of tapered cap floating sleeve antenna for interstitial microwave ablation for liver tumor
US20190175271A1 (en) Microwave instrument
CN215130023U (zh) 一种微波消融天线
CN217660110U (zh) 一种肺磨玻璃结节微波消融天线
KP et al. A low profile ferrite sleeve choke for localized power delivery during hyperthermia using coaxial wire antenna
CN106902465A (zh) 一种基于螺旋天线的微波聚焦球面阵列天线
Jin et al. A Study of Microwave Ablation With Hollow Antenna
Maini et al. Analysis of copper tube sleeve coaxial spiral antenna for interstitial hepatic microwave ablation
Elshafiey et al. Ultra-wideband applicator for brain-tumor ablation and imaging system
CN114948195A (zh) 一种肺磨玻璃结节微波消融天线
Yassin et al. Dielectric-loaded 5.8 GHz interstitial monopole antenna for spherically-shaped hepatic tumors ablation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant