WO2021051542A1 - 一种多缝隙微波消融针 - Google Patents

一种多缝隙微波消融针 Download PDF

Info

Publication number
WO2021051542A1
WO2021051542A1 PCT/CN2019/117282 CN2019117282W WO2021051542A1 WO 2021051542 A1 WO2021051542 A1 WO 2021051542A1 CN 2019117282 W CN2019117282 W CN 2019117282W WO 2021051542 A1 WO2021051542 A1 WO 2021051542A1
Authority
WO
WIPO (PCT)
Prior art keywords
coaxial cable
needle
semi
hole
emission window
Prior art date
Application number
PCT/CN2019/117282
Other languages
English (en)
French (fr)
Inventor
周春琳
万超杰
万梓威
熊蓉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021051542A1 publication Critical patent/WO2021051542A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1892Details of electrical isolations of the antenna

Definitions

  • the invention belongs to the technical field of microwave ablation needles, and specifically relates to a multi-slit microwave ablation needle.
  • Microwave ablation technology has been widely used in clinical medicine.
  • the output power of the microwave source is controlled to achieve the cutting-edge heating effect, so that the tumor cell protein at the lesion is denatured and solidified, and the therapeutic effect of killing the tumor cell is achieved.
  • microwave ablation technology can significantly improve the treatment efficiency and quality of life of patients. The maturity and perfection of microwave ablation technology will open up a new model for tumor treatment.
  • Chinese invention patent CN 104546126 A discloses a microwave ablation antenna suitable for interventional treatment of lung cancer, with ablation diameter Above 5cm, but the roundness is not high, the shape is ellipsoid or spindle type, most of the structure of the cancer focus is close to a sphere, when the ablation area is not a sphere, it will lead to incomplete ablation of the tumor, or damage to a large part of the normal Organization.
  • the ablation hot zone is on the whole, that is, the needle is far away from the ablation center, which makes it difficult to control the ablation operation.
  • the present invention proposes a multi-slit microwave ablation needle, the ablation range of the ablation needle is closer to the sphere, the needle is closer to the center of the ablation range, and the ablation effect is good.
  • a multi-slot microwave ablation needle which is characterized in that it comprises an antenna radiation area and an ablation needle water-cooling system.
  • the antenna radiation area includes a metal needle, a transmission area jacket and a semi-steel coaxial cable. It is made of high-temperature resistant material with a dielectric constant of 28-32, and it includes a stepped through hole; the semi-steel coaxial cable includes a coaxial cable outer conductor, a coaxial cable inner conductor, and a coaxial cable insulation layer.
  • the outer conductor and insulation layer of the coaxial cable are stripped at two locations, and filled with high-temperature resistant materials with a relative permittivity of 25 to 35, so as to form the first emission window and the second emission window with the outer jacket of the emission area.
  • the stepped through hole of the jacket of the launching area is divided into two sections, the semi-steel coaxial cable is sheathed in the first section of the stepped through hole, and the stepped through hole is the first section of the hole.
  • the second section of the hole is filled with metal to form a metal electrode, and a third emission window is formed with the outer shell of the emission area.
  • the second section of the stepped through hole is a tapered hole, and the ratio of the diameter of the end adjacent to the metal needle to the diameter of the end adjacent to the inner conductor of the coaxial cable is 1-3.
  • the length of the third emission window is 3 to 4 mm
  • the length of the first emission window and the second emission window is 0.9 to 1.2 mm
  • the length of the first emission window and the second emission window is between 0.9 and 1.2 mm.
  • the distance between the two is 0.9-1.2 mm
  • the distance between the second emission window and the third emission window is also 0.9-1.2 mm.
  • the diameter of the inner conductor of the coaxial cable is 0.28 to 0.31 mm
  • the outer diameter of the insulating layer of the coaxial cable is 0.93 to 0.95 mm
  • the outer diameter of the outer conductor of the coaxial cable is 1.2 to 1.2 mm. 1.3mm
  • the outer diameter of the ablation needle is 1.8-1.9mm.
  • the outer jacket of the emission zone is specifically made of zirconia, and the high temperature resistant material filled in the semi-steel coaxial cable is zirconia.
  • the metal needle is tapered, and the ratio of its length to the bottom diameter is 2-5.
  • the ablation needle of the present invention forms three hot zones to work together by setting three emission windows, and reasonably sets the size and material of each part of the ablation needle, so as to ensure that the ablation hot zone is larger and closer to the sphere, and is ensured by the water cooling system
  • the temperature of the needle shaft of the ablation needle is controllable to ensure the safety of ablation.
  • Figure 1 is a cross-sectional view of the antenna part of the microwave ablation needle of the present invention.
  • Figure 2 is a schematic diagram of the overall structure of the ablation needle of the present invention.
  • Fig. 3 is a diagram of the ablation effect of the ablation needle of the present invention, in which the diameter of the circular area is 6 cm.
  • ablation needle antenna radiation area 100 metal needle 110, emission area jacket 120, third emission window 121, first emission window 122, second emission window 123, semi-steel coaxial cable 130, coaxial cable Inner conductor 131, coaxial cable insulation layer 132, coaxial cable outer conductor 133, metal electrode 134, waterproof pad 141, needle bar 142, water circulation channel 143, water retaining layer 144, outlet tank 210, inlet tank 220, coaxial The cable connection end 230, the water outlet 240, and the water inlet 250.
  • the multi-slit microwave ablation needle uses a semi-steel coaxial cable as an antenna to radiate microwave signals and convert microwave energy into heat energy.
  • One end of the semi-steel coaxial cable is connected to a microwave source through a microwave connection line, and the other end of the semi-steel coaxial cable is processed to form a microwave emission area, which radiates microwaves outward.
  • the structure is designed to achieve a larger and rounder ablation range.
  • the ablation needle was cooled by water cooling.
  • the multi-slit microwave ablation needle of the present invention includes an antenna radiation area 100 and an ablation needle water-cooling system.
  • the antenna radiation area includes a metal needle 110, a transmitting area jacket 120, and a semi-steel coaxial cable 130.
  • the transmitting area jacket 120 is composed of
  • the relative dielectric constant is made of high temperature resistant material with a relative dielectric constant of 28 to 32, and it includes a stepped through hole;
  • the semi-steel coaxial cable includes a coaxial cable outer conductor 133, a coaxial cable inner conductor 131, and a coaxial cable insulation Layer 132, the semi-steel coaxial cable has two coaxial cable outer conductors 133 and insulating layer 132 that are ring-stripped and filled with high-temperature resistant materials with a relative dielectric constant of 25 to 35 to form the outer jacket 120 of the emitter.
  • the first launch window 122 and the second launch window 123, the stepped through hole of the launch area jacket 120 is divided into two sections, and the semi-steel coaxial cable is sheathed in the first section of the stepped through hole. Inside, the second section of the stepped through hole is filled with metal to form a third emission window 121 with the emission area jacket 120.
  • the first launch window 122 and the second launch window 123 are made of a semi-steel coaxial cable 130 at a certain distance.
  • the first launch window 122 and the second launch window 123 are stripped of the corresponding parts.
  • Coaxial cable outer conductor 133, coaxial cable insulation layer 132, the exposed coaxial cable inner conductor 131 is sheathed in a high relative dielectric constant high temperature resistant zirconia ceramic material, and the adjacent surface is tightly sealed by AB glue connection.
  • the second section of the stepped through hole is set as a tapered hole, which is adjacent to the metal
  • the ratio of the diameter of one end of the needle 110 to the diameter of one end of the adjacent coaxial cable inner conductor 131 is 1 to 3.
  • the filler metal in the tapered hole is welded to the metal needle, and the needle is reinforced.
  • the length of the third emission window 121 is set to 3 to 4 mm
  • the length of the first emission window 122 and the second emission window 123 are 0.9 to 1.2 mm
  • the first emission window 122 and the second emission window 123 are The distance between the emission windows 123 is 0.9-1.2 mm
  • the distance between the second emission window 123 and the third emission window 121 is also 0.9-1.2 mm.
  • the diameter of the coaxial cable inner conductor 131 is 0.28 ⁇ 0.31mm
  • the outer diameter of the coaxial cable insulation layer 132 is 0.93 ⁇ 0.95mm
  • the outer diameter of the coaxial cable outer conductor 133 The diameter of the ablation needle is 1.2-1.3mm; the outer diameter of the ablation needle is 1.8-1.9mm.
  • the ablation needle water cooling system includes a water outlet tank 210, a water inlet tank 220, a water outlet 240, a water inlet 250, a water circulation channel 143, a water retaining layer 144, a waterproof pad 141, and 130 sets of semi-steel coaxial cables Enter the needle bar 142 and fix the water-retaining layer 144 between the two to form a water circulation channel 143.
  • the waterproof pad 141 is fixed by AB glue and the launch area jacket 120, and the cooling water of the ablation needle uses safe normal saline, even if the leakage is caused by accident, it has no negative impact on the human body and the operation.
  • the water inlet 250 is connected to an external physiological saline water source, and the power is provided by an external water pump, and the external cooling physiological saline is input into the water inlet 250 to the water inlet tank 220 at a certain rate, and the cooling water is from
  • the water inlet tank 220 enters the ablation needle tube, and the water-cooling system for the ablation needle is performed in the water-cooling system of the ablation needle by the waterproof cushion 141, the water circulation channel 143, and the water-retaining layer 144.
  • the cooling water returns to the water outlet tank 210 after passing through the needle tube of the ablation needle, and the heat exchanged cooling water then flows out of the water outlet 240 to the outside, thereby forming a water-cooling cycle cooling system.
  • the microwave source connects the microwave signal to the ablation needle coaxial cable terminal 230 through a flexible connecting wire of a certain length, and the ablation needle coaxial cable terminal 230 is the microwave input channel of the entire ablation needle.
  • FIG. 3 shows the ablation effect diagram of a specific ablation needle.
  • the ratio of the diameter of the end of the ablation needle near the metal needle 110 to the diameter of the end near the inner conductor 131 of the coaxial cable is 3.
  • the length of the third emission window 121 is 3.5mm
  • the length of the first emission window 122 and the second emission window 123 is 0.9mm
  • the distance between the first emission window 122 and the second emission window 123 is 1mm
  • the second emission window The distance between 123 and the third emission window 121 is also 0.9 mm.
  • the diameter of the coaxial cable inner conductor 131 is 0.28 mm
  • the outer diameter of the coaxial cable insulating layer 132 is 0.94 mm
  • the outer diameter of the coaxial cable outer conductor 133 is 1.2 mm
  • the outer diameter of the ablation needle is 1.8 mm.
  • the metal needle 110 is tapered, and the ratio of its length to the bottom diameter is 3.8.
  • the emission area jacket 120 is made of zirconia, and the first and second emission windows are filled with zirconia. The experiment was performed at room temperature of 25 degrees Celsius, microwave power of 50W, ablation of fresh isolated pig liver for 600 seconds, and the experimental data obtained.
  • the ablation range (the outer contour of the bright line part) is close to a sphere, and the diameter is greater than 6 cm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种多缝隙微波消融针,包括天线辐射区(100)和消融针水冷系统,天线辐射区(100)包括金属针头(110)、发射区外套(120)和半钢同轴电缆(130),发射区外套(120)由相对介电常数在28~32的耐高温材料制成,且包括一个台阶通孔;半钢同轴电缆(130)包括同轴电缆外导体(133)、同轴电缆内导体(131)、同轴电缆绝缘层(132),半钢同轴电缆(130)有两处的同轴电缆外导体(133)和绝缘层(132)被环剥,填充相对介电常数在25~35的耐高温材料,从而与发射区外套(120)形成第一发射窗口(122)和第二发射窗口(123),发射区外套(120)的台阶通孔分为两段,半钢同轴电缆(130)套设在台阶通孔的第一段孔内,台阶通孔的第二段孔内填充金属,与发射区外套(120)形成第三发射窗口(121)。消融针通过设置三个发射窗口(122,123,121),从而保证消融热区范围更大,且更接近球体。

Description

一种多缝隙微波消融针 技术领域
本发明属于微波消融针技术领域,具体涉及一种多缝隙微波消融针。
背景技术
微波消融技术已经广泛应用于临床医学中,通过微波源控制其输出功率来达到尖端升温效果,使病灶处肿瘤细胞蛋白质变性凝固,达到杀死肿瘤细胞的治疗效果。相较于大范围的切除手术以及化疗放疗带来的强烈副作用,微波消融技术可以显著提高患者治疗效率和生活质量。微波消融技术的成熟与完善将会为肿瘤的治疗开辟新的模式。
但是,目前的微波消融针在治疗肿瘤时,在消融范围更大更圆方面性能并不能达到实际的需求,中国发明专利CN 104546126 A公开了一种适用于肺癌介入治疗的微波消融天线,消融直径在5cm以上,但是圆度并不高,形状是椭球或者纺锤型,癌症病灶大部分结构趋近于球体,当消融区域非球体时将导致肿瘤消融不彻底,或者损伤了很大部分的正常的组织。并且其消融热区整体靠上,也就是针头远离了消融中心位置,导致消融手术很难控制。
发明内容
本发明针对现有技术的不足,提出一种多缝隙微波消融针,该消融针消融范围更接近球体,针头更接近消融范围的中心,消融效果好。
本发明的目的通过如下的技术方案来实现:
一种多缝隙微波消融针,其特征在于,包括天线辐射区和消融针水冷系统,所述的天线辐射区包括金属针头、发射区外套和半钢同轴电缆,所述的发射区外套由相对介电常数在28~32的耐高温材料制成,且其包括一个台阶通孔;所述的半钢同轴电缆包括同轴电缆外导体、同轴电缆内导体、同轴电缆绝缘层,所述的半钢同轴电缆有两处的同轴电缆外导体和绝缘层被环剥,填充相对介电常数在25~35的耐高温材料,从而与发射区外套形成第一发射窗口和第二发射窗口,所述的发射区外套的台阶通孔分为两段,所述的半钢同轴电缆套设在所述的台阶通孔的第一段孔内,所述的台阶通孔的第二段孔内填充金属形成金属电极,与发射区外套形成第三发射窗口。
进一步地,所述的台阶通孔的第二段孔为锥形孔,其临近金属针头一端的直径与临近所述的同轴电缆内导体一端的直径的比值为1~3。
进一步地,所述的第三发射窗口的长度为3~4mm,所述的第一发射窗口和第二发射窗口的长度为0.9~1.2mm,所述的第一发射窗口和第二发射窗口之间的距离为0.9~1.2mm,所述 的第二发射窗口和第三发射窗口的距离也为0.9~1.2mm。
进一步地,所述的同轴电缆内导体的直径为0.28~0.31mm,所述的同轴电缆绝缘层的外径为0.93~0.95mm,所述的同轴电缆外导体的外径为1.2~1.3mm;所述的消融针的外径为1.8~1.9mm。
进一步地,所述的发射区外套具体由氧化锆制成,所述的半钢同轴电缆内填充的耐高温材料为氧化锆。
进一步地,所述的金属针头为锥形,其长度和底部直径的比值为2~5。
本发明的有益效果如下:
本发明的消融针通过设置三个发射窗口形成三个热区共同作用,并合理设置消融针各部分的尺寸和材料,从而保证消融热区范围更大,且更接近球体,并通过水冷系统保证消融针针杆温度可控,从而保证消融安全性。
附图说明
图1为本发明的微波消融针的天线部分的剖视图;
图2为本发明的消融针的整体结构示意图;
图3为本发明消融针消融效果图,图中圆形区域直径6cm。
图中标号示意如下:消融针天线辐射区100,金属针头110,发射区外套120,第三发射窗口121,第一发射窗口122,第二发射窗口123,半钢同轴电缆130,同轴电缆内导体131,同轴电缆绝缘层132,同轴电缆外导体133,金属电极134,防水垫141,针杆142,水循环通道143,挡水层144,出水箱210,进水箱220,同轴电缆连接端230,出水口240,进水口250。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1-2所示,本发明提供的多缝隙微波消融针,使用半钢同轴电缆当作天线,将微波信号辐射出去,将微波能变成热能。半钢同轴电缆一端通过微波连接线与微波源进行连接,半钢同轴电缆另一端进行加工,形成微波发射区,向外辐射微波。在天线辐射一端,进行结构设计,以达到消融范围更大更圆的效果。为了不是杆温升温过高导致正常组织受损,消融针进行了水冷降温。
本发明的多缝隙微波消融针包括天线辐射区100和消融针水冷系统,所述的天线辐射区包括金属针头110、发射区外套120和半钢同轴电缆130,所述的发射区外套120由相对介电常数在28~32的耐高温材料制成,且其包括一个台阶通孔;所述的半钢同轴电缆包括 同轴电缆外导体133、同轴电缆内导体131、同轴电缆绝缘层132,所述的半钢同轴电缆有两处的同轴电缆外导体133和绝缘层132被环剥,填充相对介电常数在25~35的耐高温材料,从而与发射区外套120形成第一发射窗口122和第二发射窗口123,所述的发射区外套120的台阶通孔分为两段,所述的半钢同轴电缆套设在所述的台阶通孔的第一段孔内,所述的台阶通孔的第二段孔内填充金属,与发射区外套120形成第三发射窗口121。
如图1中所示,第一发射窗口122和第二发射窗口123是将半钢同轴电缆130,按着一定的距离进行制作,第一发射窗口122和第二发射窗口123是剥离相应部分的同轴电缆外导体133、同轴电缆绝缘层132,将裸露的同轴电缆内导体131套入高相对介电常数的耐高温氧化锆陶瓷材料,并且通过AB胶与相邻的面进行紧密连接。
为了提高针头的稳定度,且为了防止手术过程中消融针针头脱落导致二次手术伤害,同时增加消融范围以及消融圆度,将台阶通孔的第二段孔设置为锥形孔,其临近金属针头110一端的直径与临近的同轴电缆内导体131一端的直径的比值为1~3。且使锥形孔内填充金属与金属针头焊接连接,对针头进行加固处理。
为了保证有效消融范围更大更圆,设置第三发射窗口121的长度为3~4mm,第一发射窗口122和第二发射窗口123的长度为0.9~1.2mm,第一发射窗口122和第二发射窗口123之间的距离为0.9~1.2mm,第二发射窗口123和第三发射窗口121的距离也为0.9~1.2mm。
为了保证有效消融范围更大更圆,设置同轴电缆内导体131的直径为0.28~0.31mm,的同轴电缆绝缘层132的外径为0.93~0.95mm,的同轴电缆外导体133的外径为1.2~1.3mm;的消融针的外径为1.8~1.9mm。
如图1-2所示,消融针水冷系统包括出水箱210、进水箱220、出水口240、进水口250,水循环通道143、挡水层144、防水垫141,半钢同轴电缆130套进针杆142中,并且将挡水层144固定在两者之间,形成水循环通道143。通过环氧树脂胶与针杆142和同轴电缆外导体133进行密封连接,保证冷却水在消融针内部流动不泄露出消融针,且针杆142采用不锈钢材质,保证微波消融针整体的硬度不易弯曲变形,也保证了冷却水在流动中生锈。防水垫141经过AB胶与发射区外套120进行固定,并且消融针冷却水使用的是安全的生理盐水,即使因为意外原因导致泄漏,对人体以及手术没有负面影响。
如图2中所示,进水口250与外界的生理盐水水源进行连接,通过外界的水泵提供动力,将外界的冷却生理盐水按着一定的速率输入进水口250到进水箱220,冷却水从进水箱220进入消融针管,在防水垫141、水循环通道143、挡水层144等共同组成消融针水冷系统中进行对消融管的冷却降温。冷却水经过消融针针管之后回到出水箱210,换热后的冷却水接着从出水口240中流出到外界的,从而形成了水冷循环降温系统。
如图2中所示,微波源将微波信号通过具有一定长度软的连接线与消融针同轴电缆接线端230进行连接,消融针同轴电缆接线端230是整个消融针的微波输入通道。
图3给出了一个具体的消融针的消融效果图,该消融针临近金属针头110一端的直径与临近同轴电缆内导体131一端的直径的比值为3。第三发射窗口121的长度为3.5mm,第一发射窗口122和第二发射窗口123的长度为0.9mm,第一发射窗口122和第二发射窗口123之间的距离为1mm,第二发射窗口123和第三发射窗口121的距离也为0.9mm。同轴电缆内导体131的直径为0.28mm,同轴电缆绝缘层132的外径为0.94mm,同轴电缆外导体133的外径为1.2mm;消融针的外径为1.8mm。金属针头110为锥形,其长度和底部直径的比值为3.8。发射区外套120由氧化锆制成,第一第二发射窗口填充氧化锆。实验在室温25摄氏度,微波功率为50W,进行对新鲜离体猪肝消融600秒,得出的实验数据。
如图3所示,在消融效果图中可知消融范围(亮线部分的外轮廓)近于球体,且直径大于6cm。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (6)

  1. 一种多缝隙微波消融针,其特征在于,包括天线辐射区和消融针水冷系统,所述的天线辐射区包括金属针头(110)、发射区外套(120)和半钢同轴电缆(130),所述的发射区外套(120)由相对介电常数在28~32的耐高温材料制成,且其包括一个台阶通孔;所述的半钢同轴电缆包括同轴电缆外导体(133)、同轴电缆内导体(131)、同轴电缆绝缘层(132),所述的半钢同轴电缆有两处的同轴电缆外导体(133)和绝缘层(132)被环剥,填充相对介电常数在25~35的耐高温材料,从而与发射区外套(120)形成第一发射窗口(122)和第二发射窗口(123),所述的发射区外套(120)的台阶通孔分为两段,所述的半钢同轴电缆套设在所述的台阶通孔的第一段孔内,所述的台阶通孔的第二段孔内填充金属形成金属电极(134),与发射区外套(120)形成第三发射窗口(121)。
  2. 根据权利要求1所述的多缝隙微波消融针,其特征在于,所述的台阶通孔的第二段孔为锥形孔,其临近金属针头(110)一端的直径与临近所述的同轴电缆内导体(131)一端的直径的比值为1~3。
  3. 根据权利要求1所述的多缝隙微波消融针,其特征在于,所述的第三发射窗口(121)的长度为3~4mm,所述的第一发射窗口(122)和第二发射窗口(123)的长度为0.9~1.2mm,所述的第一发射窗口(122)和第二发射窗口(123)之间的距离为0.9~1.2mm,所述的第二发射窗口(123)和第三发射窗口(121)的距离也为0.9~1.2mm。
  4. 根据权利要求1所述的多缝隙微波消融针,其特征在于,所述的同轴电缆内导体(131)的直径为0.28~0.31mm,所述的同轴电缆绝缘层(132)的外径为0.93~0.95mm,所述的同轴电缆外导体(133)的外径为1.2~1.3mm;所述的消融针的外径为1.8~1.9mm。
  5. 根据权利要求1所述的多缝隙微波消融针,其特征在于,所述的发射区外套(120)具体由氧化锆制成,所述的半钢同轴电缆(130)内填充的耐高温材料为氧化锆。
  6. 根据权利要求1所述的金属针头,其特征在于,所述的金属针头(110)为锥形,其长度和底部直径的比值为2~5。
PCT/CN2019/117282 2019-09-16 2019-11-12 一种多缝隙微波消融针 WO2021051542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910870046.1A CN110507414A (zh) 2019-09-16 2019-09-16 一种多缝隙微波消融针
CN201910870046.1 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021051542A1 true WO2021051542A1 (zh) 2021-03-25

Family

ID=68630963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117282 WO2021051542A1 (zh) 2019-09-16 2019-11-12 一种多缝隙微波消融针

Country Status (2)

Country Link
CN (1) CN110507414A (zh)
WO (1) WO2021051542A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366289A (zh) * 2022-01-14 2022-04-19 南通大学 一种微波消融天线及制作方法
CN114305676B (zh) * 2022-03-10 2022-05-31 北京科技大学 一种基于断开式外导体结构的微波消融天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110060326A1 (en) * 2009-09-09 2011-03-10 Vivant Medical, Inc. System and Method for Performing an Ablation Procedure
CN104323856A (zh) * 2014-11-11 2015-02-04 南京维京九洲医疗器械研发中心 无磁水冷微波消融针制造方法
CN104546126A (zh) * 2015-01-21 2015-04-29 范卫君 一种适用于肺癌介入治疗的微波消融天线
CN104688335A (zh) * 2015-03-16 2015-06-10 郑加生 一种用于治疗大肝癌的微波消融天线
CN204600678U (zh) * 2015-01-21 2015-09-02 王华明 一种双窗型微波消融针的针头结构
CN205433888U (zh) * 2016-03-11 2016-08-10 南阳市第二人民医院 一种新型消融针

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856940B2 (en) * 2016-03-02 2020-12-08 Covidien Lp Ablation antenna including customizable reflectors
CN207561978U (zh) * 2017-04-26 2018-07-03 唐华松 一种新型微波消融电极针
CN108652738A (zh) * 2018-05-02 2018-10-16 华东理工大学 一种微波消融天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110060326A1 (en) * 2009-09-09 2011-03-10 Vivant Medical, Inc. System and Method for Performing an Ablation Procedure
CN104323856A (zh) * 2014-11-11 2015-02-04 南京维京九洲医疗器械研发中心 无磁水冷微波消融针制造方法
CN104546126A (zh) * 2015-01-21 2015-04-29 范卫君 一种适用于肺癌介入治疗的微波消融天线
CN204600678U (zh) * 2015-01-21 2015-09-02 王华明 一种双窗型微波消融针的针头结构
CN104688335A (zh) * 2015-03-16 2015-06-10 郑加生 一种用于治疗大肝癌的微波消融天线
CN205433888U (zh) * 2016-03-11 2016-08-10 南阳市第二人民医院 一种新型消融针

Also Published As

Publication number Publication date
CN110507414A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
EP3494917B1 (en) Truly spherical microwave ablation antenna and system
US6866624B2 (en) Apparatus and method for treatment of malignant tumors
CN101711705B (zh) 微波消融针及其微波消融治疗仪
CN100405989C (zh) 直接穿刺治疗肿瘤的微波辐射天线
US6009351A (en) System and method for transurethral heating with rectal cooling
CN202386782U (zh) 同轴缝隙带扼流环的微波热疗天线
CN201642316U (zh) 微波消融针及其微波消融治疗仪
CN106109009B (zh) 一种使用433MHz频率的水冷微波消融针
WO2021051542A1 (zh) 一种多缝隙微波消融针
JPH06501411A (ja) 前立腺過温症用尿道被挿入塗布具
CN104546126B (zh) 一种适用于肺癌介入治疗的微波消融天线
CN101224137A (zh) 用于915MHz的聚能微波消融针
CN104720892A (zh) 一种用于囊性癌肿瘤消融治疗的微波消融天线
CN203564331U (zh) 一种新型微波消融针
CN106037930A (zh) 一种微波消融软杆针
CN206198041U (zh) 一种微波消融软杆针
CN204600678U (zh) 一种双窗型微波消融针的针头结构
CN204890167U (zh) 一种19g肺癌微波消融电极
CN108030549B (zh) 一种单边微波消融针
CN109602490A (zh) 一种支气管镜下用的微波消融电极
CN206403855U (zh) 用于静脉曲张治疗的微波热凝水冷控温一体导管
CN209059424U (zh) 一种穿刺型半柔微波消融针及其水冷结构、外导套
JPH07185019A (ja) 温熱治療装置
CN117064540B (zh) 一种微波消融天线
CN218280326U (zh) 一种辐射器和微波源一体式结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945562

Country of ref document: EP

Kind code of ref document: A1