WO2020087274A1 - 宽域微波消融天线及采用其的肺微波消融软电极 - Google Patents

宽域微波消融天线及采用其的肺微波消融软电极 Download PDF

Info

Publication number
WO2020087274A1
WO2020087274A1 PCT/CN2018/112668 CN2018112668W WO2020087274A1 WO 2020087274 A1 WO2020087274 A1 WO 2020087274A1 CN 2018112668 W CN2018112668 W CN 2018112668W WO 2020087274 A1 WO2020087274 A1 WO 2020087274A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave ablation
wide
ring
area
ablation antenna
Prior art date
Application number
PCT/CN2018/112668
Other languages
English (en)
French (fr)
Inventor
黄文星
詹德志
戴春喜
Original Assignee
赛诺微医疗科技(浙江)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赛诺微医疗科技(浙江)有限公司 filed Critical 赛诺微医疗科技(浙江)有限公司
Priority to PCT/CN2018/112668 priority Critical patent/WO2020087274A1/zh
Publication of WO2020087274A1 publication Critical patent/WO2020087274A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves

Definitions

  • the present disclosure relates to the technical field of microwave treatment equipment, and more particularly to a wide-area microwave ablation antenna and a microwave ablation needle using the same.
  • microwave ablation technology Since the first report in 1994 of ultrasound-guided percutaneous puncture and the success of placing a microwave antenna into the tumor to treat small liver cancer, microwave ablation technology has been gradually applied to ablation of more tissue tumors, such as kidney, thyroid, lung and other organs.
  • the application of the new antenna technology makes the microwave ablation area controllable, and the ablation area more suitable for the tumor can be obtained.
  • the inventor's Chinese patent application No. 201711145464.1 provides a new antenna design that can produce a spherical shape matching the tumor. Ablation zone.
  • the main purpose of the present disclosure is to provide a wide-area microwave ablation antenna and a microwave ablation needle using the same, in order to at least partially solve at least one of the above technical problems.
  • a wide-area microwave ablation antenna including a radiator, a coaxial line, and two ring-shaped composite structures, which are characterized by:
  • the same axis is used to transmit the microwave generated by the microwave generator for ablation to the radiator;
  • Two ring-shaped composite structures which are arranged in the radial direction on the periphery of the coaxial line, are used to suppress electromagnetic waves propagating backward along the coaxial line.
  • the two ring-shaped composite structures both include a ring-shaped non-metallic layer and are located on the ring A ring-shaped metal layer outside the non-metallic layer, the two ring-shaped metal layers and the coaxial line are electrically insulated from each other, and satisfy the following relationship:
  • L 1 and L 2 are the lengths of the ring metal layers in the two ring composite structures, and L 3 is the axial overlap length of the ring metal layers in the two ring composite structures; ⁇ 0 is used for The wavelength of the ablated microwave transmitted in a vacuum; ⁇ 1 and ⁇ 2 are the maximum and minimum relative dielectric constants of the human tissue capable of microwave ablation of the wide-area microwave ablation antenna, respectively.
  • a microwave ablation needle is also provided.
  • the microwave ablation needle includes the wide-area microwave ablation antenna as described above.
  • microwave ablation antenna and ablation needle of the present disclosure have the following beneficial effects compared with the prior art:
  • the present disclosure can adapt to tissues with large differences in dielectric constant and a wide range of changes in dielectric constant, and these tissues with large changes in dielectric constant, such as lungs, still have a better ablation effect;
  • the present disclosure has a better ablation effect for tissues with different dielectric constants, and there is no need to design multiple specifications for specific tissues.
  • FIG. 1 is a schematic structural diagram of a wide-area microwave ablation antenna of the present disclosure.
  • the present disclosure discloses a wide-area microwave ablation antenna.
  • the wide-area microwave ablation antenna includes a radiator, a coaxial line, and two ring-shaped composite structures, in which:
  • the same axis is used to transmit the microwave generated by the microwave generator for ablation to the radiator; wherein the coaxial line includes an inner conductor and an outer conductor;
  • Two ring-shaped composite structures which are arranged in the radial direction on the periphery of the coaxial line, are used to suppress electromagnetic waves propagating backward along the coaxial line.
  • the two ring-shaped composite structures both include a ring-shaped non-metallic layer and are located on the ring A ring-shaped metal layer outside the non-metallic layer, the two ring-shaped metal layers and the coaxial line are electrically insulated from each other, and satisfy the following relationship:
  • L 1 and L 2 are the lengths of the ring metal layers in the two ring composite structures
  • L 3 is the axial overlap length of the ring metal layers in the two ring composite structures
  • ⁇ 0 is used for ablation The wavelength of microwave transmission in vacuum
  • ⁇ 1 and ⁇ 2 are the maximum and minimum relative permittivity of human tissue that can be ablated by wide-area microwave ablation antenna;
  • the two ring-shaped metal layers satisfy the following relationship:
  • the ring-shaped composite structure may include only the above two layers, or may include more layers, such as a non-metallic layer outside the ring-shaped metal layer.
  • the ring-shaped metal layer can be made of various conductive metals, such as copper, iron, aluminum, gold, silver, palladium, platinum, tin, nickel, zinc, or alloys thereof, of which copper is preferred, such as copper foil, sputtered copper Or copper plating, such as wrapping or pasting a thin layer of metal foil on the outer wall of the non-metallic layer, or forming a thin metal layer on the outer surface of the non-metallic layer by sputtering or other processes, or by electroplating or electroless plating and other processes
  • a thin metal layer is formed on the outer surface of the non-metal layer.
  • the shape of the ring-shaped metal layer changes with the outer shape of the water inlet pipe, and is generally ring-shaped, and its thickness is in the range of 0.001 to 2 mm, preferably 0.05 mm.
  • the ring-shaped composite structure can be set as a ring around the coaxial line, can be set close to the coaxial line, or can maintain a distance, for example, the distance of the coaxial line is doubled, but the two ring-shaped composite structures must be guaranteed
  • the ring-shaped metal layer and the coaxial line in the three are electrically insulated from each other.
  • the thickness of the two ring-shaped composite structures is preferably in the range of 0.001 to 2 mm.
  • a cooling channel can be formed outside the coaxial line in the form of a surrounding non-metallic hose. The cooling channel is used for the cooling medium flowing in through the inner wall gap and the cooling medium flowing out through the outer wall gap.
  • the cooling channel can be used as the non-metallic layer of the ring-shaped composite structure, and a metal layer is provided on the outer surface to form the ring Composite structure.
  • the cooling channel is made of PTFE (polytetrafluoroethylene) material.
  • PTFE polytetrafluoroethylene
  • a stainless steel tube can be used in the connecting section, but an annular metal layer must be formed on the outer surface of the cooling channel made of PTFE material on.
  • the cooling channel may be designed as a non-water-cooled circulation method or a semi-water-cooled method, or as a water-cooled circulation method with an inlet pipe and an outlet pipe;
  • the cooling medium conveyed in the cooling passage is not limited to cooling water, For example, it may also be a cooling medium (refrigerant).
  • the ring-shaped metal layer can also be a braided metal wire layer, which can play the role of shielding the Ferrari cage, while the structure is more flexible.
  • the radiation area of the antenna assembly of the present disclosure may not be filled with any high dielectric constant medium, such as zirconia and other high dielectric constant ceramic materials with a relative dielectric constant above 25 relative to vacuum .
  • the radiator may be a piece of metal tube, or may be directly an extension of the inner core of the coaxial line. In specific use, the two are of equal length design.
  • the antenna assembly further includes a temperature detector for detecting the temperature of the radiator; in this case, the temperature detector is preferably connected to the control circuit, when the temperature exceeds a certain threshold, For example, measures such as increasing the flow rate of the cooling medium in the cooling channel and reducing the radiation power of the radiator are used to prevent the radiator temperature from rising too high to burn the radiator and prevent harm to the human body.
  • the present disclosure also discloses a microwave ablation needle, which includes the above-mentioned wide-area microwave ablation antenna.
  • the microwave ablation needle further includes a flexible outer shell, so that the entire microwave ablation needle can penetrate into the human body as the natural tube on the body to be treated bends and deforms.
  • This flexible microwave ablation needle is also called a microwave ablation soft electrode.
  • the various parts of the wide-area microwave ablation antenna of the present disclosure are as follows: 1. coaxial inner conductor, 2. coaxial dielectric layer, 3. coaxial outer conductor, 4. cooling water inlet Gap, 5. Non-metal inner tube, 6. Inner metal ring, 7. Non-metal outer tube, 8. Outer metal ring, 9. Cooling water outlet gap, 10. Metal cap.
  • the non-metal inner tube 5 and the inner layer metal ring 6, the non-metal outer tube 7 and the outer layer metal ring 8 form two metal-non-metal composite ring structures.
  • the lengths of the two composite ring structures are L 1 and L 2 , respectively, and the axial overlap length is L 3 .
  • the coaxial outer conductor 3 in the region starting from the leftmost end of the inner metal ring 6 up to the metal cap 10 is stripped.
  • ⁇ 0 is the wavelength of microwave transmission in vacuum, that is, the length of the inner metal-nonmetal composite ring structure is equivalent to half of the wavelength of microwave transmission in tissue.
  • ⁇ 0 is the wavelength of microwave transmission in vacuum.
  • the equivalent metal-nonmetal composite ring structure can also suppress the microwave "backward" along the coaxial line, and the microwave is bound to the approximately spherical area around the antenna.
  • the metal-nonmetal composite ring structure has a certain control effect on the microwave used for ablation; within 30% The metal-nonmetal composite ring structure has a better control effect on the microwave used for ablation.
  • the wide-area microwave ablation antenna of the present disclosure can better control the microwave distribution in tissues with a relative permittivity ranging from ⁇ 2 to ⁇ 1 .
  • the present disclosure can also be designed as a non-water-cooled circulation method or a semi-water-cooled method, that is, there is no inlet and outlet gaps, and only one waterway gap;
  • This disclosure is applicable to both rigid microwave ablation antennas and flexible ablation antennas, depending on the hardness of the material selected for its outer tube;
  • the non-emission area of the non-metal inner tube 5 and non-metal outer tube 7 of the present disclosure, that is, the coaxial transmission end may be made of metal.
  • the metal cap 10 may be an independent piece of metal tube welded to the coaxial inner conductor, or may be an extension of the coaxial inner conductor;
  • the inner conductor, outer conductor and metal ring of the coaxial cable can be continuous metal or braided wire;

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种宽域微波消融天线及采用其的肺微波消融软电极,该宽域微波消融天线包括辐射器、同轴线和两个环状复合结构,其中该两个环状复合结构设置在同轴线外围的径向方向,均包括一环状非金属层(5,7)及位于环状非金属层外的一环状金属层(6,8),该两个环状金属层(6,8)与同轴线三者之间彼此电绝缘,且满足一定关系式。由此,该微波消融天线及消融针能够适应介电常数差异较大及介电常数变化范围很宽的组织,对介电常数不同的组织都有较好的消融效果,不需要针对具体的组织分别设计多种规格。

Description

宽域微波消融天线及采用其的肺微波消融软电极 技术领域
本公开涉及微波治疗设备技术领域,更具体地涉及一种宽域微波消融天线及采用其的微波消融针。
背景技术
从1994年首次报导在超声引导下经皮穿刺,将微波天线置入瘤体内治疗小肝癌获得成功以来,微波消融技术逐渐被应用于更多组织肿瘤消融,如肾、甲状腺、肺等器官。新的天线技术的应用使得微波消融区域可控,可以获得与肿瘤更匹配的消融区,例如本发明人的201711145464.1号中国专利申请,提供了一种新的天线设计,可以产生与肿瘤匹配的球形消融区。
但是,这种天线设计的一些关键尺寸与组织的介电常数有关。本发明人发现,将该天线设计用于一些介电常数变化较大的组织,例如肺时,消融效果会很不稳定,现有技术需要针对介电常数不同的组织分别设计多种规格的消融天线,这就带来了使用上的很不方便。
发明内容
有鉴于此,本公开的主要目的在于提供一种宽域微波消融天线及采用其的微波消融针,以期至少部分地解决上述技术问题中的至少之一。
为了实现上述目的,作为本公开的一个方面,提供了一种宽域微波消融天线,包括辐射器、同轴线和两个环状复合结构,其特征在于:
辐射器,用于将用于消融的微波发射出去;
同轴线,用于将微波发生器产生的用于消融的微波传输给所述辐射器;
两个环状复合结构,设置在同轴线外围的径向方向,用于抑制沿同轴线反向传播的电磁波,所述两个环状复合结构均包括一环状非金属层及位于环状非金属层外的一环状金属层,所述两个环状金属层与同轴线三者之间彼此电绝缘,且满足如下关系式:
Figure PCTCN2018112668-appb-000001
Figure PCTCN2018112668-appb-000002
其中,L 1和L 2分别为两个环状复合结构中环状金属层的长度,L 3为两个环状复合结构中环状金属层的轴向重叠长度;λ 0为所述用于消融的微波在真空中传输的波长;ε 1、ε 2分别为所述宽域微波消融天线能够微波消融的人体组织的最大和最小相对介电常数。
作为本公开的另一个方面,还提供了一种微波消融针,所述微波消融针包含有如上所述的宽域微波消融天线。
基于上述技术方案可知,本公开的微波消融天线及消融针相对于现有技术具有如下有益效果:
(1)本公开能够适应介电常数差异较大及介电常数变化范围很宽的组织,对这些介电常数变化较大的组织,如肺,仍有较好的消融效果;
(2)本公开对介电常数不同的组织都有较好的消融效果,不需要针对具体的组织分别设计多种规格。
附图说明
图1是本公开的宽域微波消融天线的结构示意图。
上图中,附图标记含义如下:
1、同轴线内导体;2、同轴线介质层;3、同轴线外导体;4、冷却水进水间隙;5、非金属内管;6、内层金属环;7、非金属外管;8、外层金属环;9、冷却水出水间隙;10、金属帽。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
本公开公开了一种宽域微波消融天线,该宽域微波消融天线包括辐射器、同轴线和两个环状复合结构,其中:
辐射器,用于将用于消融的微波发射出去;
同轴线,用于将微波发生器产生的用于消融的微波传输给所述辐射器;其中,该同轴线包括内导体和外导体;
两个环状复合结构,设置在同轴线外围的径向方向,用于抑制沿同轴线反向传播的电磁波,所述两个环状复合结构均包括一环状非金属层及位于环状非金属层外的一环状金属层,所述两个环状金属层与同轴线三者之间彼此电绝缘,且满足如下关系式:
Figure PCTCN2018112668-appb-000003
Figure PCTCN2018112668-appb-000004
其中,L 1和L 2分别为两个环状复合结构中环状金属层的长度,L 3为两个环状复合结构中环状金属层的轴向重叠长度;λ 0为用于消融的微波在真空中传输的波长;ε 1、ε 2分别为宽域微波消融天线能够微波消融的人体组织的最大和最小相对介电常数;
以及,在齐着环状金属层最左端开始一直到辐射器区域的同轴线的外导体被剥离。
作为优选,该两个环状金属层满足如下关系式:
Figure PCTCN2018112668-appb-000005
Figure PCTCN2018112668-appb-000006
作为优选,该环状复合结构可以仅包括上述两层,也可以还包括更多层,比如在环状金属层外还有一非金属层。
该环状金属层可以选用各种导电金属制成,例如铜、铁、铝、金、银、钯、铂、锡、镍、锌或其合金,其中优选采用铜,例如铜箔、溅镀铜或镀敷铜材料,例如将加工成薄层的金属箔包裹或粘贴在非金属层的外壁,或者通过溅镀等工艺在非金属层外表面形成薄金属层,或者通过电镀或化学镀等工艺在非金属层外表面形成薄金属层。该环状金属层的形状随着进水管的外形而变化,通常为圆环状,其厚度在0.001~2mm范围之间,优选为0.05mm。
该环状复合结构可以设置为环绕同轴线的一个环,可以紧贴同轴线设置,也可以保持一段距离,例如同轴线直径的一倍距离,但必须保证该两个环状复合结构中的环状金属层与同轴线三者彼此保持电绝缘。该两个环状复合结构的厚度优选分别在0.001~2mm范围之间。作为一个优选实施方式,在同轴线外可以采用环绕的非金属软管形式形成冷却通道, 该冷却通道用于在内壁间隙通过流入的冷却介质,外壁间隙通过流出的冷却介质,该冷却介质用于对包括辐射器的辐射区的部分或全部进行冷却;在这种情况下,可以利用该冷却通道作为该环状复合结构的非金属层,在其外表面设置一金属层来共同构成该环状复合结构。在一优选实施例中,该冷却通道为PTFE(聚四氟乙烯)材质,为了增强其强度,在接出段可以采用不锈钢管,但环状金属层必须形成在该PTFE材质的冷却通道外表面上。在一优选实施例中,该冷却通道可以设计成非水冷循环的方式或半水冷方式,也可以设计成有进水管、出水管的水冷循环方式;冷却通道中输送的冷却介质不限于冷却水,例如还可以是冷却工质(冷媒)。
在一优选实施例中,该环状金属层还可以为金属丝编织层,能起到法拉利笼的屏蔽作用,同时结构更柔软。
作为本公开的又一个创新点,在本公开的天线组件的辐射区可以不填充任何高介电常数介质,例如氧化锆等相对于真空的相对介电常数在25以上的高介电常数陶瓷材料。
在上述天线组件中,辐射器可以为一段金属管,也可以直接为同轴线的内芯延长段,具体使用时两者采用等长的设计。
在一个优选实施例中,该天线组件还包括温度探测器,用于对辐射器的温度进行检测;在此情况下,该温度探测器优选与控制电路相连,当监测到温度超过一定阈值时,例如采用加大冷却通道中冷却介质的流速,降低辐射器发射功率等手段来防止辐射器温度升到太高而烧坏辐射器,以及防止对人体造成伤害。
作为本公开的另一个方面,本公开还公开了一种微波消融针,其中包含有上述的宽域微波消融天线。作为优选,该微波消融针还包括柔性外壳,从而整个微波消融针能够随着待治疗人体身上的天然管道弯曲变形而深入该人体内部,这种柔性的微波消融针也称作微波消融软电极。
下文结合附图和具体实施例对本公开的技术方案作进一步阐述说明。需要说明的是,下文中的具体实施例只是用于示例,并不用于限制 本公开的具体技术方案。
如图1所示,本公开的宽域微波消融天线的各个部分依次为:1.同轴线内导体、2.同轴线介质层、3.同轴线外导体、4.冷却水进水间隙、5.非金属内管、6.内层金属环、7.非金属外管、8.外层金属环、9.冷却水出水间隙、10.金属帽。其中,非金属内管5与内层金属环6、非金属外管7与外层金属环8组成两个金属-非金属复合环状结构。两个复合环状结构的长度分别为L 1和L 2,轴向重叠长度为L 3。在齐着内层金属环6最左端开始一直到金属帽10的区域内的同轴线外导体3被剥离。当本公开的宽域微波消融天线周围组织的相对介电常数较高,记为ε 1,则
Figure PCTCN2018112668-appb-000007
其中,λ 0为微波在真空中传输的波长,即内层金属-非金属复合环状结构的长度与微波在组织中传输波长的一半相当。此时,在非金属内管5沿内层金属环6内侧传输的微波与内层金属环6外侧组织中传输的微波在内层金属环6末端相位相反而相干相消,微波被束缚在天线周围近似球形区域,而不沿同轴线向后端“逃逸”。当组织相对介电常数较低时,两个金属-非金属复合环状结构之间的耦合度较高,两个金属-非金属复合环状结构等效为一个长度为(L 1+L 2-L 3)的金属-非金属复合环状结构。将组织较低的相对介电常数记为ε 2,则
Figure PCTCN2018112668-appb-000008
其中,λ 0为微波在真空中传输的波长。则等效的金属-非金属复合环状结构也能抑制微波沿同轴线后向“逃逸”,将微波被束缚在天线周围近似球形区域。
经实际测试试用,上述约等式(1)和(2)两边差异在50%以内时,该金属-非金属复合环状结构对用于消融的微波有一定的控制作用;在30%以内时,该金属-非金属复合环状结构对用于消融的微波有较好的控制作用。通过优化L 1、L 2和L 3,本公开的宽域微波消融天线在相对介电常数为ε 2~ε 1范围内的组织中均能较好地控制微波分布。
此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或 替换,例如:
(1)本公开也可以设计成非水冷循环的方式或半水冷方式,即没有进水间隙和出水间隙,只有一个水路间隙;
(2)本公开既适用于硬质微波消融天线,也适用于柔性消融天线,取决于其外管选用的材质的硬度;
(3)本公开非金属内管5和非金属外管7的非发射区域,即同轴线传输端可以是金属材质。
(4)金属帽10可以是独立的一段金属管焊接于同轴线内导体,也可以是同轴线内导体的延伸段;
(5)同轴线内导体、外导体以及金属环可以是连续的金属,也可以是金属丝编织结构;
(6)内外两个金属-非金属复合环状结构相对于天线前端的轴向方向顺序可以互换。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种宽域微波消融天线,所述宽域微波消融天线包括辐射器、同轴线和两个环状复合结构,其特征在于:
    辐射器,用于将用于消融的微波发射出去;
    同轴线,用于将微波发生器产生的用于消融的微波传输给所述辐射器;
    两个环状复合结构,设置在所述同轴线外围的轴向方向,用于抑制沿同轴线反向传播的电磁波,所述两个环状复合结构均包括一环状非金属层及位于环状非金属层外的一环状金属层,所述两个环状金属层与同轴线三者之间彼此电绝缘,且满足如下关系式:
    Figure PCTCN2018112668-appb-100001
    Figure PCTCN2018112668-appb-100002
    其中,L 1和L 2分别为两个环状复合结构中环状金属层的长度,L 3为两个环状复合结构中环状金属层的轴向重叠长度;λ 0为所述用于消融的微波在真空中传输的波长;ε 1、ε 2分别为所述宽域微波消融天线能够微波消融的人体组织的最大和最小相对介电常数。
  2. 如权利要求1所述的宽域微波消融天线,其特征在于,所述两个环状金属层满足如下关系式:
    Figure PCTCN2018112668-appb-100003
    Figure PCTCN2018112668-appb-100004
  3. 如权利要求1所述的宽域微波消融天线,其特征在于,所述环状金属层的材料为铜、铁、铝、金、银、钯、铂、锡、镍、锌或其合金。
  4. 如权利要求1所述的宽域微波消融天线,其特征在于,所述两个环状复合结构的总厚度分别均在0.001~2mm范围之间。
  5. 如权利要求1所述的宽域微波消融天线,其特征在于,所述环状金属层为金属镀膜层、金属箔层或金属丝编织层。
  6. 如权利要求1所述的宽域微波消融天线,其特征在于,齐着环状金属层最远离辐射器端开始一直到辐射器区域的同轴线的外导体被 剥离。
  7. 如权利要求1所述的宽域微波消融天线,其特征在于,所述宽域微波消融天线还包括冷却通道,用于对所述辐射器进行冷却。
  8. 如权利要求7所述的宽域微波消融天线,其特征在于,所述冷却通道能够将冷却介质输送到所述辐射器最前端,从而对整个所述辐射器进行冷却。
  9. 如权利要求7所述的宽域微波消融天线,其特征在于,所述冷却通道设计成非水冷循环的方式或半水冷方式。
  10. 如权利要求7所述的宽域微波消融天线,其特征在于,所述冷却通道用于输送冷却水或冷却工质。
  11. 如权利要求7所述的宽域微波消融天线,其特征在于,所述冷却通道为非金属材质。
  12. 如权利要求11所述的宽域微波消融天线,其特征在于,所述冷却通道由PTFE材料制成。
  13. 如权利要求7所述的宽域微波消融天线,其特征在于,所述环状金属层通过将加工成薄层的金属箔包裹或粘贴而环绕设置在所述同轴线外围的冷却通道的外壁,或者通过溅镀工艺、电镀或化学镀工艺在所述同轴线外围的冷却通道的外壁上环绕形成,从而所述环状金属层与所述非金属材质的冷却通道共同构成所述环状复合结构或所述环状复合结构的一部分。
  14. 如权利要求1所述的宽域微波消融天线,其特征在于,所述天线组件的辐射区未填充任何相对于真空的相对介电常数在25以上的高介电常数固体介质。
  15. 如权利要求1所述的宽域微波消融天线,其特征在于,所述辐射器为独立的一段金属管或同轴线内芯的延长段。
  16. 如权利要求1所述的宽域微波消融天线,其特征在于,所述宽域微波消融天线还包括温度探测器,用于对所述辐射器的温度进行检测。
  17. 一种微波消融针,其特征在于,所述微波消融针包含有如权利要求1~16任一项所述的宽域微波消融天线。
  18. 如权利要求17所述的微波消融针,其特征在于,所述微波消融针还包括柔性外壳,从而整个微波消融针能够随着待治疗人体身上的天然管道弯曲变形而深入该人体内部;或者,所述微波消融针还包括硬质外壳,从而整个微波消融针能够经皮穿刺抵达待微波消融的病患位置。
  19. 如权利要求17所述的宽域微波消融天线,其特征在于,所述微波消融针为肺部微波消融软电极。
PCT/CN2018/112668 2018-10-30 2018-10-30 宽域微波消融天线及采用其的肺微波消融软电极 WO2020087274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112668 WO2020087274A1 (zh) 2018-10-30 2018-10-30 宽域微波消融天线及采用其的肺微波消融软电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112668 WO2020087274A1 (zh) 2018-10-30 2018-10-30 宽域微波消融天线及采用其的肺微波消融软电极

Publications (1)

Publication Number Publication Date
WO2020087274A1 true WO2020087274A1 (zh) 2020-05-07

Family

ID=70463374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112668 WO2020087274A1 (zh) 2018-10-30 2018-10-30 宽域微波消融天线及采用其的肺微波消融软电极

Country Status (1)

Country Link
WO (1) WO2020087274A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768596B1 (en) * 2004-07-02 2014-03-05 UK Investment Associates LLC Radiation applicator for radiating tissue
CN204744403U (zh) * 2015-03-16 2015-11-11 南京维京九洲医疗器械研发中心 一种大肝癌微波消融针
CN205885525U (zh) * 2016-05-24 2017-01-18 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN106420048A (zh) * 2016-08-31 2017-02-22 赛诺微医疗科技(北京)有限公司 一种柔性微波消融天线及采用其的微波消融针
US20170056049A1 (en) * 2011-02-09 2017-03-02 Covidien Lp Tissue dissectors
CN107260301A (zh) * 2017-04-20 2017-10-20 南通融锋医疗科技有限公司 真圆微波消融天线及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768596B1 (en) * 2004-07-02 2014-03-05 UK Investment Associates LLC Radiation applicator for radiating tissue
US20170056049A1 (en) * 2011-02-09 2017-03-02 Covidien Lp Tissue dissectors
CN204744403U (zh) * 2015-03-16 2015-11-11 南京维京九洲医疗器械研发中心 一种大肝癌微波消融针
CN205885525U (zh) * 2016-05-24 2017-01-18 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN106420048A (zh) * 2016-08-31 2017-02-22 赛诺微医疗科技(北京)有限公司 一种柔性微波消融天线及采用其的微波消融针
CN107260301A (zh) * 2017-04-20 2017-10-20 南通融锋医疗科技有限公司 真圆微波消融天线及系统

Similar Documents

Publication Publication Date Title
EP3466364B1 (en) Antenna assembly for microwave ablation and microwave ablation needle using same
EP3494917B1 (en) Truly spherical microwave ablation antenna and system
US11497555B2 (en) Flexible microwave ablation antenna and microwave ablation needle employing same
CN107822710B (zh) 微波信号抑制装置、方法、天线组件及微波消融针
CA2676522C (en) Dual-band dipole microwave ablation antenna
CN202386782U (zh) 同轴缝隙带扼流环的微波热疗天线
JP2011031047A (ja) 誘電体装荷を備えた指向性の窓部焼灼アンテナ
US20170231696A1 (en) Microwave ablation antenna assemblies
CN114305676A (zh) 一种基于断开式外导体结构的微波消融天线
CN109199582B (zh) 宽域微波消融天线及采用其的肺微波消融软电极
WO2020087274A1 (zh) 宽域微波消融天线及采用其的肺微波消融软电极
CN108030549B (zh) 一种单边微波消融针
CN216754593U (zh) 一种高效冷循环微波臻圆针
CN206587036U (zh) 一种柔性微波消融天线及采用其的微波消融针
CN111012483A (zh) 一种基于螺旋缝隙结构的微波消融天线
CN209826967U (zh) 一种微波消融针体及微波消融针
CN117695001A (zh) 微波消融软针
CN205885525U (zh) 用于微波消融的天线组件及采用其的微波消融针
CN209074874U (zh) 微波信号抑制装置、天线组件及微波消融针
WO2019095272A1 (zh) 微波信号抑制装置、方法、天线组件及微波消融针
AU2017219068B2 (en) Dual-band dipole microwave ablation antenna
CN117064540B (zh) 一种微波消融天线
WO2023087662A1 (zh) 一种高效冷循环微波臻圆针
AU2013273707B2 (en) Dual-band dipole microwave ablation antenna
Lu et al. A Balun-free Helical Slot Antenna for the Microwave Ablation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939117

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18939117

Country of ref document: EP

Kind code of ref document: A1