WO2019095262A1 - 一种碳纳米管复合聚酰亚胺薄膜及其制备方法 - Google Patents

一种碳纳米管复合聚酰亚胺薄膜及其制备方法 Download PDF

Info

Publication number
WO2019095262A1
WO2019095262A1 PCT/CN2017/111575 CN2017111575W WO2019095262A1 WO 2019095262 A1 WO2019095262 A1 WO 2019095262A1 CN 2017111575 W CN2017111575 W CN 2017111575W WO 2019095262 A1 WO2019095262 A1 WO 2019095262A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
carbon nanotube
nanotube composite
parts
polyimide resin
Prior art date
Application number
PCT/CN2017/111575
Other languages
English (en)
French (fr)
Inventor
徐伟伟
王勇
祁晓东
姜新
陈晨
Original Assignee
江苏亚宝绝缘材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亚宝绝缘材料股份有限公司 filed Critical 江苏亚宝绝缘材料股份有限公司
Publication of WO2019095262A1 publication Critical patent/WO2019095262A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention relates to a polyimide film, in particular to a carbon nanotube composite polyimide film and a preparation method thereof.
  • polyimide has high chemical stability, high mechanical properties, high radiation resistance and high processability, and has a large application space in the aerospace industry.
  • the resistivity of polyimide is high, electrons are not easily moved in the material, and the accumulated charge is difficult to diffuse, and static electricity is formed. Static electricity is extremely dangerous in the aerospace field, and it is easy to damage aviation equipment and damage electronic components.
  • carbon nanotubes Due to the significant conjugation effect, carbon nanotubes have some special electrical properties, and the structure of carbon nanotubes is the same as that of graphite. Very good electrical performance. Therefore, the combination of carbon nanotubes and polyimide is a very promising research direction. At present, carbon nanotubes have been widely used in the composite doping research of polymer materials, and good results have been achieved, but there are still cumbersome preparations. The comprehensive performance is not ideal, so further research and improvement are needed to obtain low-cost, high-quality polymer materials.
  • the present invention has been made to overcome the above-mentioned drawbacks of the prior art, and to obtain a polyimide composite film by a reasonable group distribution ratio and process improvement.
  • the mechanical properties and electrical properties of the film are obviously improved, and the surface layer is even and flat, the yield is high, and the comprehensive quality is good.
  • a carbon nanotube composite polyimide film consisting of the following components in parts by weight:
  • polyimide resin polymer 150-250 parts of polyimide resin polymer, 1-2 parts of fullerene, 0.1-0.2 parts of rare earth oxide, and 2.5-3.5 parts of modifier;
  • the polyimide resin polymer includes the following components by weight: 0.5-3% of carbon nanotubes, 1-3% of titanium dioxide, 0.5-3% of nitride fine powder, 0.1-2% of modified kaolin, and fluorosilicone. Acid copper 0.1-2%, the remaining amount of polyimide resin.
  • the polyimide resin polymer comprises the following percentage components: 0.5-1.75% of carbon nanotubes, 1.5-2.7% of titanium dioxide, 0.5-3% of nitride fine powder, and modified kaolin 0.5-1 %, copper fluorosilicate 0.5-1.3%, polyimide resin balance.
  • the nitride fine powder is a composition of any one or more of silicon nitride, zirconium nitride, titanium nitride, zinc nitride, and tantalum nitride.
  • the nitride fine powder is any combination of silicon nitride, zirconium nitride, titanium nitride, and zinc nitride in a mass ratio of 0.5:0.8:0.8:0.3.
  • the step of preparing the modified kaolin is as follows: first, the kaolin is ground in a ball mill to a particle size of 0.2-0.3 ⁇ m, and then taken out, and a coupling agent having a total mass of kaolin of 0.5-1.5% is added thereto, and then sent together.
  • a coupling agent having a total mass of kaolin of 0.5-1.5% is added thereto, and then sent together.
  • Into a high-speed mixer first heat the reaction at 70-90 ° C, 2000 rpm for 10-30min, then warm to 110-120 ° C, 3000 rpm stirring reaction 10-30min, and finally cool to 80-100 ° C, 2000rpm stirring reaction 10-30min.
  • the preparation steps of the polyimide resin polymer are as follows:
  • step 2) the addition is carried out at least 3 times, and the interval between each addition is 10-15 min; in step 3), the nitride fine powder and the carbon nanotubes are at least divided into three portions and alternately added, and the interval between each addition is 10-15min.
  • the carbon nanotube composite polyimide film has a thickness of 8 to 12 ⁇ m.
  • the invention has the following beneficial effects: the invention has reasonable formula composition and process improvement, and the dispersion and bonding between the raw materials are strong, the obtained polymer material is evenly distributed, the spatial structure is cross-linked stably, and the invention is effectively improved. Mechanics, electrical performance, comprehensive quality has been significantly improved, with good market value.
  • the invention not only improves the electrical conductivity of the polymer through the carbon nanotubes and the nitride fine powder, but also significantly improves the reinforcing effect, and the tensile strength is improved by more than 3 times, and the copper fluorosilicate is used to improve the smoothness of the resin film.
  • the appearance is improved, and the solvent resistance and aging resistance are improved.
  • free copper ions are generated, which can be bonded to the end groups of the resin matrix or integrated in the space. It has strong electrical connectivity, and it is combined with modified kaolin.
  • the inter-molecular network structure has good transitional transition, good component dispersion and strong overall bonding.
  • the network structure can be further consolidated, such as a space-intermolecular bonding bond between the titanium dioxide and the polyimide resin to form a "bridge".
  • specific modifiers results in a significant reduction in the thickness of the film while maintaining excellent mechanical properties.
  • a carbon nanotube composite polyimide film is composed of the following components in parts by weight: 170 parts of a polyimide resin polymer, 1.2 parts of fullerenes, 0.1 parts of rare earth oxides, and 2.5 parts of a modifier;
  • the polyimide resin polymer includes the following components by weight: 1.5% of carbon nanotubes, 1.5% of titanium dioxide, 0.5% of nitride fine powder, 0.5% of modified kaolin, 1.5% of copper fluorosilicate, and polyimide. Resin balance, wherein the carbon nanotubes are single-walled carbon nanotubes with a diameter of 0.5-3 nm; the nitride fine powder is made of silicon nitride, zirconium nitride, titanium nitride having a mass ratio of 0.5:0.8:0.8:0.3. A composition of zinc nitride.
  • the modifier is composed of methyl salicylate and liquid paraffin in a ratio of 3.5:1 by weight.
  • the preparation step of the modified kaolin is as follows: first, the kaolin is ground in a ball mill to a particle size of 0.2-0.3 ⁇ m, and then taken out, and a titanate coupling agent having a total mass of 0.5% of kaolin is added thereto, and then The mixture was fed into a high-speed mixer, first heated at 70 ° C, 2000 rpm for 30 min, then heated to 110 ° C, stirred at 3000 rpm for 10 min, and finally cooled to 80 ° C, 2000 rpm stirred reaction for 30 min.
  • the preparation steps of the polyimide resin polymer are as follows:
  • the prepared carbon nanotube composite polyimide film has an elongation at break of 42%, a film thickness of only 12 ⁇ m, a tensile strength at room temperature of 182 MPa, a linear thermal expansion coefficient of 32 ppm/° C., and no wrinkle and high flatness.
  • a carbon nanotube composite polyimide film is composed of the following components in parts by weight: 200 parts of a polyimide resin polymer, 1.8 parts of fullerenes, 0.2 parts of rare earth oxides, and 3 parts of a modifier;
  • the modifier is composed of methyl salicylate and liquid paraffin in a ratio of 4:1 by weight.
  • the polyimide resin polymer includes the following components by weight: 0.68% of carbon nanotubes, 1.8% of titanium dioxide, 2.0% of nitride fine powder, 0.6% of modified kaolin, 1.1% of copper fluorosilicate, and polyamido Amount of amine resin.
  • the modifier is composed of methyl salicylate and liquid paraffin at a ratio of 4.2:1 by weight.
  • the modified kaolin and polyimide resin polymers were prepared in the same manner as in Example 1.
  • a carbon nanotube composite polyimide film is composed of the following components in parts by weight: 200 parts of a polyimide resin polymer, 1.8 parts of fullerenes, 0.2 parts of rare earth oxides, and 3 parts of a modifier;
  • the modifier is composed of methyl salicylate and liquid paraffin at a ratio of 4.5:1 by weight.
  • the polyimide resin polymer includes the following components by weight: carbon nanotubes 2%, titanium dioxide 2.5%, nitride fine powder 3%, modified kaolin 1.5%, copper fluorosilicate 2%, polyimide Resin balance.
  • the modifier is composed of methyl salicylate and liquid paraffin at a ratio of 4.5:1 by weight.
  • the modified kaolin and polyimide resin polymers were prepared in the same manner as in Example 1.
  • the carbon nanotube composite polyimide film prepared above has a thickness of 9 ⁇ m, a tensile strength at room temperature of 195 MPa, an elongation at break of 48%, a linear thermal expansion coefficient of 26 ppm/° C., and is not wrinkled and has a high flatness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

一种碳纳米管复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物150-250份,富勒烯1-2份,稀土氧化物0.1-0.2份,改性剂2.5-3.5份,聚酰亚胺树脂聚合物包括以下重量百分含量组分:碳纳米管0.5-3%、钛白粉1-3%、氮化物微粉0.5-3%、改性高岭土0.1-2%、氟硅酸铜0.1-2%、聚酰亚胺树脂余量。

Description

一种碳纳米管复合聚酰亚胺薄膜及其制备方法 技术领域
本发明涉及一种聚酰亚胺薄膜,特别涉及一种碳纳米管复合聚酰亚胺薄膜及其制备方法。
背景技术
目前,航空航天事业的蓬勃发展对于高分子材料的需求越来越迫切,但是由于太空环境的影响,对于高分子材料的各方面性能都有了苛刻的要求。聚酰亚胺作为一种高耐热的材料,同时还具备高化学稳定性、高机械性能、高耐辐射性与高度可加工性,在航天事业上有很大的应用空间。但是聚酰亚胺的电阻率较高,电子在材料里不容易移动,积攒的电荷难以扩散,就会形成静电,而静电在航天领域是极其危险的,容易破坏航空器材,损坏电子元件。
碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质,而且碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。因此,将碳纳米管与聚酰亚胺复合是非常看好的研究方向,目前,碳纳米管已大量用于高分子材料的复合参杂研究,且取得的良好的成效,但仍然存在制备繁琐、综合性能不够理想等问题,因此,需要进一步的研究和完善以获得低成本、高质量的高分子材料。
目前,对于特种聚酰亚胺复合薄膜材料已有了大量的报道,但仍存在这制备繁琐、污染大,且最终复合材料平展度低,性能不理想等问题。
发明内容
本发明是为了克服上述现有技术中缺陷,通过合理的组分配比和工艺改进制得聚酰亚胺复合薄膜。该薄膜力学性能、电学性能均具有明显的提升,且表层均匀平整,成品率高,综合质量好。
一种碳纳米管复合聚酰亚胺薄膜,由以下组分按照重量份数组成:
聚酰亚胺树脂聚合物150-250份,富勒烯1-2份,稀土氧化物0.1-0.2份,改性剂2.5-3.5份;
聚酰亚胺树脂聚合物包括以下重量百分含量组分:碳纳米管0.5-3%、钛白粉1-3%、氮化物微粉0.5-3%、、改性高岭土0.1-2%、氟硅酸铜0.1-2%、聚酰亚胺树脂余量。
优选地,所述改性剂由水杨酸甲酯和液态石蜡按照重量比(3.2-5.5):1的比例配置而成。
优选地,所述聚酰亚胺树脂聚合物包括以下百分含量组分:碳纳米管0.5-1.75%、钛白粉1.5-2.7%、氮化物微粉0.5-3%、、改性高岭土0.5-1%、氟硅酸铜0.5-1.3%、聚酰亚胺树脂余量。
优选地,所述氮化物微粉为氮化硅、氮化锆、氮化钛、氮化锌、氮化钽中的任意一种或以上的组合物。
优选地,所述氮化物微粉为质量比为0.5:0.8:0.8:0.3的氮化硅、氮化锆、氮化钛、氮化锌的任组合物。
优选地,所述改性高岭土制备步骤如下:先将高岭土置于球磨机中研磨至粒径为0.2-0.3μm,然后取出,向其中添加高岭土总质量0.5-1.5%的偶联剂,再一起送入高速混合机内,先在70-90℃、2000rpm加热反应10-30min,然后升温至110-120℃,3000rpm搅拌反应10-30min,最后降温至80-100℃、2000rpm搅拌反应10-30min。
优选地,聚酰亚胺树脂聚合物的制备步骤如下:
1)按重量百分比称取原料,先将氟硅酸铜加入聚酰亚胺树脂中,先常温下搅拌均匀,然后在搅拌条件下逐渐升温75±5℃,继续搅拌10-20min,保温30min,得混合物一;
2)将改性高岭土分次加入混合物一中,搅拌均匀后,50℃保温反应1-3h,得混合物二;
3)将氮化物微粉、碳纳米管在搅拌条件下分多次交替加入混合物二中,先40-50℃加热搅拌0.5-1h,然后常温搅拌0.5-2h,即可。
优选地,步骤2)中至少分3次加入,每两次添加间隔为10-15min;步骤3)中氮化物微粉、碳纳米管均至少分为三份,交替添加,每两次添加间隔为10-15min。
上述碳纳米管复合聚酰亚胺薄膜的制备方法,将所有组分充分混合,采用流延法制备得到膜层,再经双辊冷却、牵引、卷取制得。
优选地,所述碳纳米管复合聚酰亚胺薄膜厚度为8-12μm。
与现有技术相比,本发明具有如下有益效果:本发明通过合理的配方组成和工艺改进,原料间分散结合性强,制得的聚合物材料分布均匀,空间结构交联稳固,有效提高了力学、电学性能,综合质量显著提升,具有良好的市场推广价值。
本发明通过碳纳米管、氮化物微粉不仅提高了聚合物的导电性能,同时明显提高了补强作用,拉伸强度提高了3倍以上,配合氟硅酸铜,一方面提高了树脂薄膜的平整美观度,改善了耐溶剂、耐老化性,另一方面在结合过程中,产生游离的铜离子,可与树脂基体端基键合或空间内部嵌合,整体导 电连通性强,配合改性高岭土,分子间的网络结构连接过渡性好,组分分散性好,整体结合力强。此外,可进一步巩固网络结构,如钛白粉与聚酰亚胺树脂间可形成“桥梁”的空间分子间键合搭接。使用特定的改性剂,使得薄膜的厚度大幅降低,同时还能保持优异的力学性能。
本发明的碳纳米管复合聚酰亚胺薄膜,力学性能优异,断裂伸长率大于40%,薄膜厚度只有8-12μm,常温拉伸强度大于180MPa,线性热膨胀系数为20-36ppm/℃,且不起皱,平整度高,导电率为3.67×10-5-1.67S/m。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1
一种碳纳米管复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物170份,富勒烯1.2份,稀土氧化物0.1份,改性剂2.5份;
聚酰亚胺树脂聚合物包括以下重量百分含量组分:碳纳米管1.5%、钛白粉1.5%、氮化物微粉0.5%、改性高岭土0.5%、氟硅酸铜1.5%、聚酰亚胺树脂余量,其中,碳纳米管采用单壁碳纳米管,管径为0.5-3nm;氮化物微粉采用质量比为0.5:0.8:0.8:0.3的氮化硅、氮化锆、氮化钛、氮化锌的组合物。
所述改性剂由水杨酸甲酯和液态石蜡按照重量比3.5:1的比例配置而成。
改性高岭土制备步骤如下:先将高岭土置于球磨机中研磨至粒径为0.2-0.3μm,然后取出,向其中添加高岭土总质量0.5%的钛酸酯偶联剂,再 一起送入高速混合机内,先在70℃、2000rpm加热反应30min,然后升温至110℃,3000rpm搅拌反应10min,最后降温至80℃、2000rpm搅拌反应30min。
聚酰亚胺树脂聚合物的制备步骤如下:
1)按重量百分比称取原料,先将氟硅酸铜加入聚酰亚胺树脂中,先常温下搅拌均匀,然后在搅拌条件下逐渐升温75±5℃,继续搅拌10min,保温30min,得混合物一;
2)将改性高岭土分3次加入混合物一中,每两次添加间隔为10min,搅拌均匀后,50℃保温反应2h,得混合物二;
3)将氮化物微粉、碳纳米管在搅拌条件下均分3次交替加入混合物二中,每两次添加间隔为10min,先10℃加热搅拌0.5h,然后常温搅拌1.5h,即可。
将碳纳米管复合聚酰亚胺薄膜的将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
制备得到的碳纳米管复合聚酰亚胺薄膜断裂伸长率为42%,薄膜厚度只有12μm,常温拉伸强度为182MPa,线性热膨胀系数为32ppm/℃,且不起皱,平整度高。
实施例2
一种碳纳米管复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物200份,富勒烯1.8份,稀土氧化物0.2份,改性剂3份;所述改性剂由水杨酸甲酯和液态石蜡按照重量比4:1的比例配置而成。
聚酰亚胺树脂聚合物包括以下重量百分含量组分:碳纳米管0.68%、钛白粉1.8%、氮化物微粉2.0%、、改性高岭土0.6%、氟硅酸铜1.1%、聚酰亚胺树脂余量。
所述改性剂由水杨酸甲酯和液态石蜡按照重量比4.2:1的比例配置而成。
改性高岭土和聚酰亚胺树脂聚合物的制备方法同实施例1。
将碳纳米管复合聚酰亚胺薄膜的将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
上述制备的碳纳米管复合聚酰亚胺薄膜厚度为10μm,常温拉伸强度为190MPa,断裂伸长率为45%,线性热膨胀系数为28ppm/℃,且不起皱,平整度高。
实施例3
一种碳纳米管复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物200份,富勒烯1.8份,稀土氧化物0.2份,改性剂3份;所述改性剂由水杨酸甲酯和液态石蜡按照重量比4.5:1的比例配置而成。
聚酰亚胺树脂聚合物包括以下重量百分含量组分:碳纳米管2%、钛白粉2.5%、氮化物微粉3%、改性高岭土1.5%、氟硅酸铜2%、聚酰亚胺树脂余量。
所述改性剂由水杨酸甲酯和液态石蜡按照重量比4.5:1的比例配置而成。
改性高岭土和聚酰亚胺树脂聚合物的制备方法同实施例1。
将碳纳米管复合聚酰亚胺薄膜的将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
上述制备的碳纳米管复合聚酰亚胺薄膜厚度为9μm,常温拉伸强度为195MPa,断裂伸长率为48%,线性热膨胀系数为26ppm/℃,且不起皱,平整度高。
以上公开的仅为本发明的几个具体实施例,但是,本发明并非局限于此, 任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (8)

  1. 一种碳纳米管复合聚酰亚胺薄膜,其特征在于,由以下组分按照重量份数组成:
    聚酰亚胺树脂聚合物150-250份,富勒烯1-2份,稀土氧化物0.1-0.2份,改性剂2.5-3.5份;
    聚酰亚胺树脂聚合物包括以下重量百分含量组分:碳纳米管0.5-3%、钛白粉1-3%、氮化物微粉0.5-3%、改性高岭土0.1-2%、氟硅酸铜0.1-2%、聚酰亚胺树脂余量;
    所述改性剂由水杨酸甲酯和液态石蜡按照重量比(3.2-5.5):1的比例配置而成;
    所述氮化物微粉为质量比为0.5:0.8:0.8:0.3的氮化硅、氮化锆、氮化钛、氮化锌的任组合物。
  2. 根据权利要求1所述的一种碳纳米管复合聚酰亚胺薄膜,其特征在于,所述聚酰亚胺树脂聚合物包括以下百分含量组分:碳纳米管0.5-1.75%、钛白粉1.5-2.7%、氮化物微粉0.5-3%、、改性高岭土0.5-1%、氟硅酸铜0.5-1.3%、聚酰亚胺树脂余量。
  3. 根据权利要求1所述的一种碳纳米管复合聚酰亚胺薄膜,其特征在于,所述氮化物微粉为氮化硅、氮化锆、氮化钛、氮化锌、氮化钽中的任意一种或以上的组合物。
  4. 根据权利要求1所述的一种碳纳米管复合聚酰亚胺薄膜,其特征在于, 所述改性高岭土制备步骤如下:先将高岭土置于球磨机中研磨至粒径为0.2-0.3μm,然后取出,向其中添加高岭土总质量0.5-1.5%的偶联剂,再一起送入高速混合机内,先在70-90℃、2000rpm加热反应10-30min,然后升温至110-120℃,3000rpm搅拌反应10-30min,最后降温至80-100℃、2000rpm搅拌反应10-30min。
  5. 根据权利要求1所述的一种碳纳米管复合聚酰亚胺薄膜,其特征在于,聚酰亚胺树脂聚合物的制备步骤如下:
    1)按重量百分比称取原料,先将氟硅酸铜加入聚酰亚胺树脂中,先常温下搅拌均匀,然后在搅拌条件下逐渐升温75±5℃,继续搅拌10-20min,保温30min,得混合物一;
    2)将改性高岭土分次加入混合物一中,搅拌均匀后,50℃保温反应1-3h,得混合物二;
    3)将氮化物微粉、碳纳米管在搅拌条件下分多次交替加入混合物二中,先40-50℃加热搅拌0.5-1h,然后常温搅拌0.5-2h,即可。
  6. 根据权利要求5所述的一种碳纳米管复合聚酰亚胺薄膜,其特征在于,步骤2)中至少分3次加入,每两次添加间隔为10-15min;步骤3)中氮化物微粉、碳纳米管均至少分为三份,交替添加,每两次添加间隔为10-15min。
  7. 权利要求1-6中任一项所述的碳纳米管复合聚酰亚胺薄膜的制备方法,将所有组分充分混合,采用流延法制备得到膜层,再经双辊冷却、牵引、卷取制得。
  8. 根据权利要求7所述的制备方法,其特征在于,所述碳纳米管复合聚 酰亚胺薄膜厚度为8-12μm。
PCT/CN2017/111575 2017-11-15 2017-11-17 一种碳纳米管复合聚酰亚胺薄膜及其制备方法 WO2019095262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711132887.X 2017-11-15
CN201711132887.XA CN107857997B (zh) 2017-11-15 2017-11-15 一种碳纳米管复合聚酰亚胺薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095262A1 true WO2019095262A1 (zh) 2019-05-23

Family

ID=61701968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111575 WO2019095262A1 (zh) 2017-11-15 2017-11-17 一种碳纳米管复合聚酰亚胺薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN107857997B (zh)
WO (1) WO2019095262A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785666A (zh) * 2022-12-29 2023-03-14 武汉航空仪表有限责任公司 一种高韧高导电聚酰亚胺电热膜及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530703A (zh) * 2015-01-20 2015-04-22 无锡顺铉新材料有限公司 低介电常数聚酰亚胺及其制备方法
CN105566906A (zh) * 2016-03-18 2016-05-11 江苏亚宝绝缘材料股份有限公司 一种黑色导电聚酰亚胺薄膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530703A (zh) * 2015-01-20 2015-04-22 无锡顺铉新材料有限公司 低介电常数聚酰亚胺及其制备方法
CN105566906A (zh) * 2016-03-18 2016-05-11 江苏亚宝绝缘材料股份有限公司 一种黑色导电聚酰亚胺薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU YU: "Research on Preparation and Gas Separation Properties of Polyimide/Carbon Nanotube Mixed Matrix Membranes", CHINESE MASTER'S THESES FULL-TEXT DATABASE ENGINEERING SCIENCE & TECHNOLOGY I, 15 June 2016 (2016-06-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN107857997A (zh) 2018-03-30
CN107857997B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
Chen et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
Jiang et al. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride
Huang et al. Cryogenic properties of SiO2/epoxy nanocomposites
CN109467931B (zh) 一种基于纳米液态金属的柔性介电弹性体复合材料及其制备方法
Guan et al. Thermally conductive epoxy/boron nitride composites with high glass transition temperatures for thermal interface materials
CN103224705A (zh) 纳米改性聚酰亚胺复合薄膜及其制备方法
Li et al. Improvements in transmittance, mechanical properties and thermal stability of silica–polyimide composite films by a novel sol–gel route
WO2017201987A1 (zh) 一种抗静电复合纳米材料薄膜及其制备方法
Zhou et al. Investigation of dielectric and thermal conductive properties of epoxy resins modified by core-shell structured PS@ SiO2
WO2019095259A1 (zh) 一种石墨烯复合聚酰亚胺薄膜及其制备方法
Hou et al. Preparation and properties characterization of gallic acid epoxy resin/succinic anhydride bionanocomposites modified by green reduced graphene oxide
WO2019095262A1 (zh) 一种碳纳米管复合聚酰亚胺薄膜及其制备方法
WO2022179332A1 (zh) 一种电红外致热膜及其制备方法、电红外致热装置
Tang et al. High-temperature-resistant barium strontium titanate@ Ag/poly (arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength
CN113817452B (zh) 一种氮化碳改性碳纳米管复合导热硅脂的制备方法
CN111286208A (zh) 一种复合tb胶粉改性沥青及其制备方法
CN103396548B (zh) 一种高介电聚酰亚胺/钛酸铜钙纳米线复合材料的制备方法
CN106674959A (zh) 一种阻燃导热垫片及其制备方法
Dhakal et al. Influence of graphene reinforcement in conductive polymer: Synthesis and characterization
CN111777993B (zh) 一种无硅导热膏及其制备方法
CN110330010B (zh) 一种高效的石墨烯基导电添加剂及其制备方法
WO2020029533A1 (zh) 改性六方氮化硼及其制备方法和用途
CN105885414A (zh) 石墨烯/聚酰亚胺纳米复合材料及其制备方法
Liu et al. Influence of functionalized core–shell structure on the thermodynamic and shape memory properties of nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17932346

Country of ref document: EP

Kind code of ref document: A1