WO2019095259A1 - 一种石墨烯复合聚酰亚胺薄膜及其制备方法 - Google Patents

一种石墨烯复合聚酰亚胺薄膜及其制备方法 Download PDF

Info

Publication number
WO2019095259A1
WO2019095259A1 PCT/CN2017/111570 CN2017111570W WO2019095259A1 WO 2019095259 A1 WO2019095259 A1 WO 2019095259A1 CN 2017111570 W CN2017111570 W CN 2017111570W WO 2019095259 A1 WO2019095259 A1 WO 2019095259A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
parts
polyimide resin
mixture
weight
Prior art date
Application number
PCT/CN2017/111570
Other languages
English (en)
French (fr)
Inventor
徐伟伟
王勇
祁晓东
姜新
陈晨
Original Assignee
江苏亚宝绝缘材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亚宝绝缘材料股份有限公司 filed Critical 江苏亚宝绝缘材料股份有限公司
Publication of WO2019095259A1 publication Critical patent/WO2019095259A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds

Definitions

  • the invention relates to a polyimide film, in particular to a graphene composite polyimide film and a preparation method thereof.
  • polyimide has high chemical stability, high mechanical properties, high radiation resistance and high processability, and has a large application space in the aerospace industry.
  • the resistivity of polyimide is high, electrons are not easily moved in the material, and the accumulated charge is difficult to diffuse, and static electricity is formed. Static electricity is extremely dangerous in the aerospace field, and it is easy to damage aviation equipment and damage electronic components.
  • graphene As a new type of carbon material, graphene has a special two-dimensional structure. Electrons can move rapidly with almost no resistance on the surface, so they have good electrical conductivity. In addition, graphene has thermal, electrical and mechanical properties. Extremely excellent performance is much higher than other inorganic materials, which are lacking in some high molecular polymers, so graphene/polymer composites are gradually being valued in various research institutions.
  • the present invention has been made to overcome the above-mentioned drawbacks of the prior art, and to obtain a polyimide composite film by a reasonable group distribution ratio and process improvement.
  • the mechanical properties and electrical properties of the film are obviously improved, and the surface layer is even and flat, the yield is high, and the comprehensive quality is good.
  • a graphene composite polyimide film composed of the following components in parts by weight:
  • polyimide resin polymer 150-300 parts of polyimide resin polymer, 1-2 parts of fullerene, 0.1-0.2 parts of rare earth oxide, and 2.5-3.5 parts of modifier;
  • the polyimide resin polymer includes the following components by weight: 0.2-1.5% of graphene, 1-5% of titanium dioxide, 0.5-6% of silica sol, 2-10% of fluorinated acrylate copolymer, polyacyl The balance of the imine resin, wherein the fluorine-containing acrylate copolymer is a molecular weight of 3000-10000 hyperbranched polymer.
  • the modifier is composed of methyl salicylate and liquid paraffin in a ratio by weight ratio (3-5):1.
  • the polyimide resin polymer comprises the following percentage components: graphene 0.5-0.75%, titanium dioxide 2-3%, silica sol 2-5%, fluorine-containing acrylate copolymer 3-6 %, the remaining amount of polyimide resin.
  • the polyimide resin polymer further comprises a composite filler of 1-2%, the composite filler being nanometer magnesium oxide whiskers, nano-silica having a mass ratio of 1:0-2.
  • the preparation steps of the polyimide resin polymer are as follows:
  • the graphene composite polyimide film has a thickness of 8 to 12 ⁇ m; and the volume resistivity is 4.5 ⁇ 10 1 to 3.7 ⁇ 10 6 .
  • the invention has the following beneficial effects: the graphene composite polyimide polymer structure prepared by the reasonable group distribution ratio has strong conductivity, stable microscopic network structure, and chemical modification between components. Combined, the mechanical properties and electrical properties are obviously improved.
  • the components are processed step by step, and the modification is carried out in turn.
  • the polyimide resin and the fluorine-containing acrylate copolymer are firstly blended to react, and on the other hand, the film is improved.
  • Transparency and toughness, on the other hand, the disproportionated block copolymer significantly improves the spatial network structure of the resin, and has good amphoteric reactivity, improving the crosslinking bond between groups.
  • nano-titanium dioxide, composite filler and silica sol on the one hand to improve the mechanical properties, reinforcement and strengthening, on the other hand can further consolidate the network structure, such as titanium dioxide and polyimide resin can form a "bridge" space
  • the silica sol promotes spatial rheology, and is blended and diluted with the fluorine-containing acrylate copolymer to accelerate the bonding efficiency with the resin matrix.
  • the graphene composite polyimide film of the invention has excellent mechanical properties, an elongation at break of more than 45%, a film thickness of only 8-12 ⁇ m, a tensile strength at room temperature of more than 180 MPa, an elastic modulus of more than 2.88 GPa and no wrinkle, and smoothness.
  • the degree is high and the volume resistivity is 4.5 ⁇ 10 1 -3.7 ⁇ 10 6 .
  • a graphene composite polyimide film composed of the following components in parts by weight: 170 parts of a polyimide resin polymer, 1.2 parts of fullerenes, 0.13 parts of rare earth oxides, and 2.7 parts of a modifier;
  • the modifier is composed of methyl salicylate and liquid paraffin at a ratio of 3.5:1 by weight.
  • the polyimide resin polymer includes the following components by weight: graphene 1%, titanium dioxide 2%, silica sol 0.5%, fluorine-containing acrylate copolymer 4%, polyimide resin balance, as follows The steps are carried out:
  • the graphene composite polyimide film prepared above has a thickness of 15 ⁇ m, a tensile strength at room temperature of 190 MPa, an elongation at break of 46%, an elastic modulus of 2.90 GPa, and no wrinkle and high flatness.
  • a graphene composite polyimide film composed of the following components in parts by weight: 200 parts of a polyimide resin polymer, 1.8 parts of fullerenes, 0.2 parts of rare earth oxides, and 3 parts of a modifier;
  • the modifier is composed of methyl salicylate and liquid paraffin in a ratio of 4:1 by weight.
  • the polyimide resin polymer includes the following components by weight: graphene 0.2%, titanium dioxide 1%, silica sol 4%, fluorine-containing acrylate copolymer 3%, polyimide resin balance, and also includes The composite filler is 1.5%, and the composite filler is nanometer magnesium oxide whisker and nano-silica having a mass ratio of 1:2.
  • the polyimide resin polymer was carried out as follows:
  • the graphene composite polyimide film prepared above has a thickness of 12 ⁇ m, a tensile strength at room temperature of 202 MPa, an elongation at break of 50%, an elastic modulus of 2.95 GPa, and no wrinkle and high flatness.
  • a graphene composite polyimide film composed of the following components in parts by weight: 200 parts of a polyimide resin polymer, 1.8 parts of fullerenes, 0.2 parts of rare earth oxides, and 3 parts of a modifier;
  • the modifier is composed of methyl salicylate and liquid paraffin at a ratio of 4.5:1 by weight.
  • the polyimide resin polymer includes the following components by weight: 0.75% of graphene, 3% of titanium dioxide, 3% of silica sol, 6% of fluorine-containing acrylate copolymer, balance of polyimide resin, and
  • the composite filler is 2%, and the composite filler is nanometer magnesium oxide whisker and nano silicon oxide with a mass ratio of 1:1.
  • the polyimide resin polymer was prepared in the same manner as in Example 2.
  • the graphene composite polyimide film prepared above has a thickness of 10 ⁇ m, and the tensile strength at room temperature is 208 MPa, the modulus of elasticity is 3.01 GPa, the elongation at break is 52%, and it is not wrinkled and has a high flatness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种石墨烯复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物150-300份,富勒烯1-2份,稀土氧化物0.1-0.2份,改性剂2.5-3.5份,其中聚酰亚胺树脂聚合物包括以下重量百分含量组分:石墨烯0.2-1.5%、钛白粉1-5%、硅溶胶0.5-6%、含氟丙烯酸酯共聚物2-10%、复合填充料1-2%,该复合填充料为质量比1:(0-2)的纳米氧化镁晶须和纳米氧化硅,聚酰亚胺树脂余量,其中含氟丙烯酸酯共聚物为分子量3000-10000的超支化聚合物;改性剂由水杨酸甲酯和液态石蜡按照重量比(3-5):1的比例配置而成。该石墨烯复合聚酰亚胺薄膜的力学性能优异,断裂伸长率大于40%,薄膜厚度只有8-12μm,常温拉伸强度大于200MPa,弹性模量大于2.88GPa且不起皱,平整度高,体积电阻率为4.5×10 1-3.7×10 6 Ωcm。

Description

一种石墨烯复合聚酰亚胺薄膜及其制备方法 技术领域
本发明涉及一种聚酰亚胺薄膜,特别涉及一种石墨烯复合聚酰亚胺薄膜及其制备方法。
背景技术
目前,航空航天事业的蓬勃发展对于高分子材料的需求越来越迫切,但是由于太空环境的影响,对于高分子材料的各方面性能都有了苛刻的要求。聚酰亚胺作为一种高耐热的材料,同时还具备高化学稳定性、高机械性能、高耐辐射性与高度可加工性,在航天事业上有很大的应用空间。但是聚酰亚胺的电阻率较高,电子在材料里不容易移动,积攒的电荷难以扩散,就会形成静电,而静电在航天领域是极其危险的,容易破坏航空器材,损坏电子元件。
石墨烯作为一种新型的碳材料,其具有特殊的二维结构,电子可以在其表面几乎没有阻力的迅速移动,因此具有良好的导电性,另外,石墨烯在热学、电学、力学方面都具有极其优秀的性能,远高于其他的无机材料,而这些正是一些高分子聚合物所欠缺的,所以石墨烯/高分子复合材料在各个研究机构中逐渐被重视。
目前,对于特种聚酰亚胺复合薄膜材料已有了大量的报道,但仍存在这制备繁琐、污染大,且最终复合材料平展度低,性能不理想等问题。
发明内容
本发明是为了克服上述现有技术中缺陷,通过合理的组分配比和工艺改进制得聚酰亚胺复合薄膜。该薄膜力学性能、电学性能均具有明显的提升,且表层均匀平整,成品率高,综合质量好。
一种石墨烯复合聚酰亚胺薄膜,由以下组分按照重量份数组成:
聚酰亚胺树脂聚合物150-300份,富勒烯1-2份,稀土氧化物0.1-0.2份,改性剂2.5-3.5份;
聚酰亚胺树脂聚合物包括以下重量百分含量组分:石墨烯0.2-1.5%、钛白粉1-5%、硅溶胶0.5-6%、含氟丙烯酸酯共聚物2-10%、聚酰亚胺树脂余量,其中含氟丙烯酸酯共聚物为分子量3000-10000超支化聚合物。
优选地,所述改性剂由水杨酸甲酯和液态石蜡按照重量比(3-5):1的比例配置而成。
优选地,所述聚酰亚胺树脂聚合物包括以下百分含量组分:石墨烯0.5-0.75%、钛白粉2-3%、硅溶胶2-5%、含氟丙烯酸酯共聚物3-6%、聚酰亚胺树脂余量。
优选地,聚酰亚胺树脂聚合物还包括复合填充料1-2%,该复合填充料为质量比1:0-2的纳米氧化镁晶须、纳米氧化硅。
优选地,聚酰亚胺树脂聚合物的制备步骤如下:
1)按重量比称取原料,将聚酰亚胺树脂缓慢加热升温至60-80℃,然后向其中加入含氟丙烯酸酯共聚物,先快速搅拌10-15min,然后保温慢速搅拌0.5-1h,再降温至30±5℃,超声处理10-12min,随后保温静置2-4h,得混合物一;
2)常温条件下将石墨烯分批次加入混合物一中,在添加过程中保持超声处理,待添加完成后每隔15min超声处理20-30min,间隔超声处理4-5次,得混合物二;
3)将钛白粉研磨至纳米级,然后与复合填充料一起在45℃恒温震荡条件下加入硅溶胶中,保温反应0.5-1.5h,得混合物三;
4)将混合物三在搅拌条件下缓慢加入混合物二中,先在45-50℃保温搅拌30min,然后降至常温搅拌成均相即可。
上述石墨烯复合聚酰亚胺薄膜的制备方法,将所有组分充分混合,采用流延法制备得到膜层,再经双辊冷却、牵引、卷取制得。
优选地,所述石墨烯复合聚酰亚胺薄膜厚度为8-12μm;体积电阻率为4.5×101-3.7×106
与现有技术相比,本发明具有如下有益效果:本发明通过合理的组分配比制备的石墨烯复合聚酰亚胺聚合物结构导电性强,微观网络结构稳定,组分间通过化学改性联合,力学性能、电学性能均具有明显的提升,将各组分分步处理,依次参杂改性,先将聚酰亚胺树脂与含氟丙烯酸酯共聚物共混反应,一方面提高薄膜的透明度和韧性,另一方面超歧化的嵌段共聚物明显改善了树脂的空间网络结构,且具有良好的两性反应活性,提高了基团间的交联键合性。随后添加的层状石墨烯,一部分表层结合,一部分内部嵌合,可结合空间容纳性强,分散性明显提高,性能提升度好。最后填充的纳米钛白粉、复合填充料和硅溶胶,一方面提高力学性能,补强强化,另一方面可进一步巩固网络结构,如钛白粉与聚酰亚胺树脂间可形成“桥梁”的空间分子间键合搭接,硅溶胶促进空间流变性,并与含氟丙烯酸酯共聚物共混稀释结合,加快与树脂基体的结合效率。
本发明的石墨烯复合聚酰亚胺薄膜,力学性能优异,断裂伸长率大于45%,薄膜厚度只有8-12μm,常温拉伸强度大于180MPa,弹性模量大于2.88GPa 且不起皱,平整度高,体积电阻率为4.5×101-3.7×106
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1
一种石墨烯复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物170份,富勒烯1.2份,稀土氧化物0.13份,改性剂2.7份;所述改性剂由水杨酸甲酯和液态石蜡按照重量比3.5:1的比例配置而成。
聚酰亚胺树脂聚合物包括以下重量百分含量组分:石墨烯1%、钛白粉2%、硅溶胶0.5%、含氟丙烯酸酯共聚物4%、聚酰亚胺树脂余量,按照如下步骤进行:
1)按重量比称取原料,将聚酰亚胺树脂缓慢加热升温至60℃,然后向其中加入含氟丙烯酸酯共聚物,先以150rpm快速搅拌15min,然后恒温以50rpm慢速搅拌0.5h,再降温至30±5℃,以45KHz超声处理10-12min,随后保温静置3h,得混合物一;
2)常温条件下将石墨烯分5次加入混合物一中,在添加过程中保持28KHz超声处理,整个添加过程不少于20min,待添加完成后每隔15min以35KHz超声处理30min,间隔超声处理共4次,得混合物二;
3)将钛白粉研磨至纳米级,然后与复合填充料一起在45℃恒温震荡条件下加入硅溶胶中,保温反应1h,得混合物三;
4)将混合物三在搅拌条件下缓慢加入混合物二中,先在50℃保温搅拌30min,然后降至常温搅拌成均相即可。
将石墨烯复合聚酰亚胺薄膜的将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
上述制备的石墨烯复合聚酰亚胺薄膜厚度为15μm,常温拉伸强度为190MPa,断裂伸长率为46%,弹性模量为2.90GPa,且不起皱、平整度高。
实施例2
一种石墨烯复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物200份,富勒烯1.8份,稀土氧化物0.2份,改性剂3份;所述改性剂由水杨酸甲酯和液态石蜡按照重量比4:1的比例配置而成。
聚酰亚胺树脂聚合物包括以下重量百分含量组分:石墨烯0.2%、钛白粉1%、硅溶胶4%、含氟丙烯酸酯共聚物3%、聚酰亚胺树脂余量,还包括复合填充料1.5%,该复合填充料为质量比1:2的纳米氧化镁晶须、纳米氧化硅。聚酰亚胺树脂聚合物按照如下步骤进行:
1)按重量比称取原料,将聚酰亚胺树脂缓慢加热升温至80℃,然后向其中加入含氟丙烯酸酯共聚物,先以150rpm快速搅拌15min,然后恒温以30rpm慢速搅拌0.5h,再降温至30±5℃,以48KHz超声处理10-12min,随后保温静置4h,得混合物一;
2)常温条件下将石墨烯分5次加入混合物一中,在添加过程中保持28KHz超声处理,整个添加过程不少于20min,待添加完成后每隔15min以35KHz超声处理20min,间隔超声处理共5次,得混合物二;
3)将钛白粉研磨至纳米级,然后与复合填充料一起在45℃恒温震荡条件下加入硅溶胶中,保温反应1h,得混合物三;
4)将混合物三在搅拌条件下缓慢加入混合物二中,先在50℃保温搅拌30min,然后降至常温搅拌成均相即可。
将石墨烯复合聚酰亚胺薄膜的将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
上述制备的石墨烯复合聚酰亚胺薄膜厚度为12μm,常温拉伸强度为202MPa,断裂伸长率为50%,弹性模量为2.95GPa,且不起皱、平整度高。
实施例3
一种石墨烯复合聚酰亚胺薄膜,由以下组分按照重量份数组成:聚酰亚胺树脂聚合物200份,富勒烯1.8份,稀土氧化物0.2份,改性剂3份;所述改性剂由水杨酸甲酯和液态石蜡按照重量比4.5:1的比例配置而成。
聚酰亚胺树脂聚合物包括以下重量百分含量组分:石墨烯0.75%、钛白粉3%、硅溶胶3%、含氟丙烯酸酯共聚物6%、聚酰亚胺树脂余量,还包括复合填充料2%,该复合填充料为质量比1:1的纳米氧化镁晶须、纳米氧化硅。聚酰亚胺树脂聚合物制备方法同实施例2。
将石墨烯复合聚酰亚胺薄膜的将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
上述制备的石墨烯复合聚酰亚胺薄膜厚度为10μm,常温拉伸强度为 208MPa,弹性模量为3.01GPa,断裂伸长率为52%,且不起皱、平整度高。
以上公开的仅为本发明的几个具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (5)

  1. 一种石墨烯复合聚酰亚胺薄膜,其特征在于,由以下组分按照重量份数组成:
    聚酰亚胺树脂聚合物150-300份,富勒烯1-2份,稀土氧化物0.1-0.2份,改性剂2.5-3.5份;
    聚酰亚胺树脂聚合物包括以下重量百分含量组分:石墨烯0.2-1.5%、钛白粉1-5%、硅溶胶0.5-6%、含氟丙烯酸酯共聚物2-10%、复合填充料1-2%,该复合填充料为质量比1:0-2的纳米氧化镁晶须和纳米氧化硅,聚酰亚胺树脂余量,其中含氟丙烯酸酯共聚物为分子量3000-10000超支化聚合物;
    所述改性剂由水杨酸甲酯和液态石蜡按照重量比(3-5):1的比例配置而成。
  2. 根据权利要求1所述的一种石墨烯复合聚酰亚胺薄膜,其特征在于,所述聚酰亚胺树脂聚合物包括以下百分含量组分:石墨烯0.5-0.75%、钛白粉2-3%、硅溶胶2-5%、含氟丙烯酸酯共聚物3-6%、聚酰亚胺树脂余量。
  3. 根据权利要求1所述的一种石墨烯复合聚酰亚胺薄膜,其特征在于,聚酰亚胺树脂聚合物的制备步骤如下:
    1)按重量比称取原料,将聚酰亚胺树脂缓慢加热升温至60-80℃,然后向其中加入含氟丙烯酸酯共聚物,先快速搅拌10-15min,然后保温慢速搅拌0.5-1h,再降温至30±5℃,超声处理10-12min,随后保温静置2-4h,得混合物一;
    2)常温条件下将石墨烯分批次加入混合物一中,在添加过程中保持超声处理,待添加完成后每隔15min超声处理20-30min,间隔超声处理4-5次,得混合物二;
    3)将钛白粉研磨至纳米级,然后与复合填充料一起在45℃恒温震荡条件下加入硅溶胶中,保温反应0.5-1.5h,得混合物三;
    4)将混合物三在搅拌条件下缓慢加入混合物二中,先在45-50℃保温搅拌30min,然后降至常温搅拌成均相即可。
  4. 权利要求1-3任一项所述的石墨烯复合聚酰亚胺薄膜的制备方法,其特征在于,将所有组分充分混合,采用流延法制备得到薄膜,再经双辊冷却、牵引、卷取制得。
  5. 根据权利要求4所述的制备方法,其特征在于,所述石墨烯复合聚酰亚胺薄膜厚度为8-12μm;体积电阻率为4.5×101-3.7×106
PCT/CN2017/111570 2017-11-15 2017-11-17 一种石墨烯复合聚酰亚胺薄膜及其制备方法 WO2019095259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711132280.1 2017-11-15
CN201711132280.1A CN107828210B (zh) 2017-11-15 2017-11-15 一种石墨烯复合聚酰亚胺薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095259A1 true WO2019095259A1 (zh) 2019-05-23

Family

ID=61651668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111570 WO2019095259A1 (zh) 2017-11-15 2017-11-17 一种石墨烯复合聚酰亚胺薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN107828210B (zh)
WO (1) WO2019095259A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107828210B (zh) * 2017-11-15 2020-06-12 江苏亚宝绝缘材料股份有限公司 一种石墨烯复合聚酰亚胺薄膜及其制备方法
CN110894292A (zh) * 2019-10-31 2020-03-20 安徽国风塑业股份有限公司 一种荧光型聚酰亚胺薄膜及其制备方法
CN114846052A (zh) * 2019-12-26 2022-08-02 三菱瓦斯化学株式会社 聚酰亚胺树脂、聚酰亚胺树脂组合物、聚酰亚胺清漆和聚酰亚胺薄膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774461A (zh) * 2015-04-29 2015-07-15 江苏亚宝绝缘材料股份有限公司 一种采用含羰基二酐和二胺制备的聚酰亚胺薄膜
CN105566906A (zh) * 2016-03-18 2016-05-11 江苏亚宝绝缘材料股份有限公司 一种黑色导电聚酰亚胺薄膜
CN105694708A (zh) * 2016-03-18 2016-06-22 江苏亚宝绝缘材料股份有限公司 一种电力传输专用聚酰亚胺导电膜剂
CN105694036A (zh) * 2016-03-18 2016-06-22 江苏亚宝绝缘材料股份有限公司 一种掺杂氧化铝的聚酰亚胺树脂
CN105778498A (zh) * 2016-03-18 2016-07-20 江苏亚宝绝缘材料股份有限公司 一种黑色聚酰亚胺薄膜
CN107828210A (zh) * 2017-11-15 2018-03-23 江苏亚宝绝缘材料股份有限公司 一种石墨烯复合聚酰亚胺薄膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194335B (zh) * 2014-08-27 2016-09-07 中国科学院宁波材料技术与工程研究所 一种聚酰亚胺/石墨烯复合材料的制备方法及其产品
CN105925100A (zh) * 2016-06-13 2016-09-07 姹や寒 一种电力电网户外设备用耐腐蚀涂料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774461A (zh) * 2015-04-29 2015-07-15 江苏亚宝绝缘材料股份有限公司 一种采用含羰基二酐和二胺制备的聚酰亚胺薄膜
CN105566906A (zh) * 2016-03-18 2016-05-11 江苏亚宝绝缘材料股份有限公司 一种黑色导电聚酰亚胺薄膜
CN105694708A (zh) * 2016-03-18 2016-06-22 江苏亚宝绝缘材料股份有限公司 一种电力传输专用聚酰亚胺导电膜剂
CN105694036A (zh) * 2016-03-18 2016-06-22 江苏亚宝绝缘材料股份有限公司 一种掺杂氧化铝的聚酰亚胺树脂
CN105778498A (zh) * 2016-03-18 2016-07-20 江苏亚宝绝缘材料股份有限公司 一种黑色聚酰亚胺薄膜
CN107828210A (zh) * 2017-11-15 2018-03-23 江苏亚宝绝缘材料股份有限公司 一种石墨烯复合聚酰亚胺薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, HONGMEI ET AL.: "Progress in Modification of Polyimide by Nanoscale Materials", CHINA PLASTICS, vol. 29, no. 2, 28 February 2015 (2015-02-28), pages 1 - 7 *
MA, CUI ET AL.: "The Making of High Conductivity Graphene-Carbon Nano-tube/Polyimide Films with In Situ Polymerization Method", JOURNAL OF NINGXIA UNIVERSITY ( NATURAL SCIENCE EDITION), vol. 35, no. 3, 30 September 2014 (2014-09-30), pages 235 - 239 *

Also Published As

Publication number Publication date
CN107828210A (zh) 2018-03-23
CN107828210B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
Kumar et al. Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite
Wang et al. Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
Zhu et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength
Chen et al. High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers
Nah et al. Reinforcing rubber with carbon nanotubes
Guo et al. Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
Wang et al. Mechanical reinforcement of graphene/poly (vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods
Zhou et al. Highly improving the mechanical and thermal properties of epoxy resin via blending with polyetherketone cardo
Cui et al. Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites
Huang et al. Cryogenic properties of SiO2/epoxy nanocomposites
WO2019095259A1 (zh) 一种石墨烯复合聚酰亚胺薄膜及其制备方法
Wen et al. Tailoring rubber-filler interfacial interaction and multifunctional rubber nanocomposites by usage of graphene oxide with different oxidation degrees
Wang et al. Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites
Roy et al. Effect of particle size on mixed-mode fracture of nanographene reinforced epoxy and mode I delamination of its carbon fiber composite
George et al. Influence of matrix polarity on the properties of ethylene vinyl acetate–carbon nanofiller nanocomposites
Mustafa et al. Improving the tensile, toughness, and flexural properties of epoxy resin based nanocomposites filled with ZrO2 and Y2O3 nanoparticles
Xu et al. Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites
Cozza et al. Evaluation of fracture toughness of epoxy polymer composite incorporating micro/nano silica, rubber and CNTs
Panta et al. Ozone functionalized graphene nanoplatelets and triblock copolymer hybrids as nanoscale modifiers to enhance the mechanical performance of epoxy adhesives
Mahuof et al. The effect of a novel BYK dispersant for MWCNT on flexural properties of epoxy nanocomposites and hybrid carbon fiber composites
He et al. Effect of filler functional groups on the mechanical properties and relevant mechanisms of polydicyclopentadiene nanocomposites
Zhang et al. Highly improved creep resistance in polypropylene through thermally reduced graphene oxide and its creep lifetime prediction
Liang et al. Preparation and physical properties of CeO2 doped and modified epoxy resin composites
Erkendirci et al. Effects of nanomaterials on the mechanical properties of epoxy hybrid composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931902

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17931902

Country of ref document: EP

Kind code of ref document: A1