WO2019091419A1 - 一种无人机增稳控制方法、装置以及无人机 - Google Patents

一种无人机增稳控制方法、装置以及无人机 Download PDF

Info

Publication number
WO2019091419A1
WO2019091419A1 PCT/CN2018/114497 CN2018114497W WO2019091419A1 WO 2019091419 A1 WO2019091419 A1 WO 2019091419A1 CN 2018114497 W CN2018114497 W CN 2018114497W WO 2019091419 A1 WO2019091419 A1 WO 2019091419A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
torque
disturbance
angular velocity
driving
Prior art date
Application number
PCT/CN2018/114497
Other languages
English (en)
French (fr)
Inventor
徐彬
张一博
项昌乐
马罡
樊伟
Original Assignee
酷黑科技(北京)有限公司
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 酷黑科技(北京)有限公司, 北京理工大学 filed Critical 酷黑科技(北京)有限公司
Publication of WO2019091419A1 publication Critical patent/WO2019091419A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability

Definitions

  • the invention relates to the technical field of drones, in particular to a method and a device for controlling the stability of a drone and a drone.
  • the drone has the characteristics of wide application, low cost, good maneuverability and wide use scenes. It is widely used in aerial photography, plant protection, forest fire prevention, electric power inspection, public security and anti-terrorism. In order to make the drone have better environmental adaptability and the passage of complex environment, it is often necessary to miniaturize and lighten the drone. However, the miniaturization of the existing drone will inevitably lead to the decline of the aerodynamic force of the aircraft. The disadvantages of reduced load capacity, reduced anti-interference ability, and significant reduction in wind resistance. Even if the miniaturization is not considered, the existing drones cannot guarantee good anti-disturbance performance, especially for large impact loads, the existing drones are difficult to maintain stability, and in serious cases, accidents such as crashes may occur. This greatly restricts the application range of the drone, such as the inability to use in the complex wind field gust environment; it must work in the open space to avoid contact with the physical environment, otherwise it will be unstable due to sudden changes in the body's force and torque.
  • the technical solutions commonly used by the existing UAVs include increasing the control torque and using more advanced control algorithms.
  • Increasing the control torque means increasing the adjustment range of the lift of the paddle by increasing the diameter of the paddle or increasing the power reserve of the motor, or increasing the arm of the control torque, for example, increasing the arm length of the multi-axis aircraft motor shaft to the center, thereby making the body It has a larger control torque to resist external disturbances.
  • This method can lead to an oversized structure of the drone, which restricts its use environment.
  • the use of more advanced control algorithms means that the control module performs special estimation and compensation for external disturbances, thereby mitigating the effects of external disturbances, such as adaptive control and L1 control.
  • the object of the present invention is to provide a drone stability control device, method and drone to solve the problem that the existing drone is easily destabilized when subjected to an impact load.
  • the present invention provides a drone stabilization control device, including:
  • a servo drive module a gyro device connected to the servo drive module, and a control module;
  • the control module is configured to acquire a current disturbance torque of the drone platform, determine a precession angular velocity of the gyro device required to suppress the disturbance according to the current disturbance torque, and generate a driving instruction for driving the gyro device to generate a corresponding control torque, Sended to the servo drive module;
  • the servo drive module is configured to receive the driving instruction, and provide a corresponding control torque by driving the gyro deflection to suppress interference of the current instantaneous disturbance on the posture of the drone.
  • the gyro device includes a two-axis flywheel and a driving motor; wherein the two-axis flywheel is a symmetrical flywheel, and is driven by the driving motor to rotate, and the rotation direction is opposite.
  • control module includes: a microprocessor, an angular velocity sensor, and a servo motor controller;
  • the angular velocity sensor is configured to: acquire an X axial angular velocity when the drone is subjected to a disturbance torque along an axial direction of the X axis;
  • the microprocessor is configured to determine a magnitude and a direction of a flywheel precession angular velocity in the gyro device required to suppress the disturbance according to the X axial angular velocity, and output the signal to the servo motor controller;
  • the servo motor controller is configured to generate a driving command sent to the servo driving module according to the magnitude and direction of the precessional angular velocity.
  • the UAV stabilization control device further includes: a locknut for fixing the degree of freedom of the flywheel in the direction of the motor shaft.
  • the method further includes: a device housing fixedly connected to the drone platform by a connecting component.
  • the present invention also provides a drone, comprising the drone stabilization control device of any of the above.
  • the device casing of the UAV stabilization control device is fixedly connected to the UAV body upper plate, and the UAV body upper plate is fixedly connected to the UAV platform.
  • the invention also provides a drone stabilization control method, which adopts the drone stabilization control device of any of the above, the method comprising:
  • the method further includes: determining a stabilization control mode in which the drone is currently located;
  • the current stabilization control mode is the independent disturbance suppression mode, determining, according to the current disturbance torque, a precession angular velocity of the gyro device required to suppress the disturbance, and generating a drive for driving the gyro device to generate a corresponding control torque Instructions, specific processes include:
  • a drive command sent to the servo drive module is generated based on the magnitude and direction of the precessional angular velocity.
  • the method further includes: determining a stabilization control mode in which the drone is currently located;
  • the control module of the UAV stabilization control device communicates with the onboard flight control system, and the determination is based on the current disturbance torque and the desired attitude of the drone.
  • the precession angular velocity of the required gyro device is generated, and a driving command for driving the gyro device to generate a corresponding control torque is generated, and the specific process includes:
  • a drive command sent to the servo drive module is generated based on the magnitude and direction of the precessional angular velocity.
  • the UAV stabilization control device and method provided by the invention acquire the current disturbance torque of the UAV platform through the control module, determine the precession angular velocity of the gyro device required to suppress the disturbance according to the current disturbance torque, and generate the driving gyro device
  • a driving command for generating a corresponding control torque is sent to the servo driving module; the servo driving module receives the driving command, and provides a corresponding control torque by driving the gyro deflection to suppress interference of the current instantaneous disturbance to the posture of the drone.
  • the present application can increase the amount of additional mechanical torque control without changing the original aerodynamic torque control structure, and quickly provide a control torque that is much larger than that provided by the aerodynamic torque of the unmanned aerial vehicle body, thereby solving the problem that the existing drone is subjected to The problem of easy instability during impact load greatly improves the anti-disturbance and impact resistance of the drone. Further, the present invention provides a drone having the above technical advantages.
  • FIG. 1 is a structural block diagram of a specific implementation manner of a drone stabilization control device provided by the present invention
  • FIG. 2 is a schematic structural view of a specific embodiment of a drone stabilization control device provided by the present invention.
  • FIG. 3 is a schematic diagram of the principle of the drone stabilization control device provided by the present invention.
  • FIG. 5 is a schematic diagram of a mounting method of a drone stabilization control device provided by the present invention.
  • FIG. 6 is a flowchart of a specific implementation manner of a drone stabilization control method according to an embodiment of the present invention.
  • FIG. 1 A structural block diagram of a specific embodiment of the drone stabilization control device provided by the present invention is shown in FIG. 1 , and the device includes:
  • a servo drive module 1 a servo drive module 1, a gyro device 2 connected to the servo drive module 1, and a control module 3;
  • the control module 3 is configured to acquire a current disturbance torque of the drone platform, determine a precession angular velocity of the gyro device required to suppress the disturbance according to the current disturbance torque, and generate a drive for driving the gyro device 2 to generate a corresponding control torque An instruction is sent to the servo drive module 1;
  • the servo driving module 1 is configured to receive the driving instruction, and provide a corresponding control torque by driving the gyro device 2 to suppress the interference of the current instantaneous disturbance on the posture of the drone.
  • the gyro device includes a two-axis flywheel and a driving motor; wherein the two-axis flywheel is a symmetrical flywheel, and is driven by the driving motor to rotate, and the rotation direction is opposite.
  • the gyro device in the present application may adopt one or any other multiple flywheels, and is not limited to two in the embodiment.
  • the double flywheel structure used in the embodiment of the present application is only one of the more preferred embodiments, and the other The number and arrangement should also fall within the scope of this patent. If an odd number of flywheels are used, the additional torque can be offset by the attitude control of the body. Due to the mechanism of the flywheel itself, the magnitude of the additional torque is much smaller than that of the flywheel. Therefore, it is feasible to offset by the adjustment of the body. of. In addition, if a greater settling torque is required, more than two flywheels can be used, and the more the flywheel is used, the greater the total additional torque that can be generated.
  • the control module 3 may specifically include: a microprocessor, an angular velocity sensor, and a servo motor controller;
  • the angular velocity sensor is configured to: acquire an X axial angular velocity when the drone is subjected to a disturbance torque along an axial direction of the X axis;
  • the microprocessor is configured to determine a magnitude and a direction of a flywheel precession angular velocity in the gyro device required to suppress the disturbance according to the X axial angular velocity, and output the signal to the servo motor controller;
  • the servo motor controller is configured to generate a drive command sent to the servo drive module 1 according to the magnitude and direction of the precession angular velocity.
  • the UAV stabilization control device acquires the current disturbance torque of the UAV platform through the control module, determines the precession angular velocity of the gyro device required to suppress the disturbance according to the current disturbance torque, and generates a corresponding driving gyro device to generate corresponding
  • the driving command for controlling the torque is sent to the servo driving module; the servo driving module receives the driving command, and provides a corresponding control torque by driving the gyro deflection to suppress the interference of the current instantaneous disturbance on the posture of the drone.
  • the present application can increase the amount of additional mechanical torque control without changing the original aerodynamic torque control structure, and quickly provide a control torque that is much larger than that provided by the aerodynamic torque of the unmanned aerial vehicle body, thereby solving the problem that the existing drone is subjected to
  • the problem of easy instability during impact load greatly improves the anti-disturbance and impact resistance of the drone.
  • the drone stabilization control device may further include: a locknut for fixing the degree of freedom of the flywheel in the direction of the motor shaft.
  • the embodiment may further include: a device housing fixedly connected to the drone platform by a connecting component.
  • FIG. 2 is a schematic structural diagram of a specific embodiment of a drone stabilization control device provided by the present invention.
  • the device specifically includes: a device housing 11, a coupling middle frame 12, a flywheel coupling shaft 13, a flywheel 14, and a servo motor arm. 15.
  • the control module 16 the coupling shaft 17, the servo motor 18, the locknut 19, the flywheel cup 20, the connecting rod 21, and the precessing shaft 22.
  • the basic structure of the drone stabilization control device includes a device housing 11, two servo drive modules coupled to the device housing 11, and gyro devices coupled to the two servo drive modules.
  • the gyro device includes a flywheel 14 and a drive motor thereof, a flywheel coupling shaft 17 and a coupling middle frame 12, and a control module 16 that controls the precession angular velocity of the flywheel 14 when the UAV disturbance suppression mode is turned on. Reduce the impact of transient disturbances on the attitude of the drone.
  • the control module 16 can accurately control the precession angular velocity and direction of the flywheel 14 to accurately suppress the interference.
  • the control module controls the servo drive module.
  • the output angular velocity can achieve the corresponding anti-interference torque.
  • the initial positions of the two gyro-wheels 14 are parallel to the Z-axis of the UAV stabilization control device; the rotation directions of the two flywheels 14 are opposite; the connection with the flywheel 14 is in the connection
  • the coupling shaft 17 of the frame 12 is parallel to the Y-axis of the drone stabilization control device and is coupled to two servo drive modules, respectively.
  • the drone stabilization control device needs to be fixedly mounted with the drone, and the x-axis of the device is parallel to the equivalent disturbance torque direction of the drone.
  • the control module 16 includes a microprocessor (CPU), an angular velocity sensor, and a drive motor controller that precesses the servo motor controller and the flywheel 14.
  • CPU microprocessor
  • angular velocity sensor angular velocity sensor
  • drive motor controller that precesses the servo motor controller and the flywheel 14.
  • the drive motor stops rotating, and the coupling middle frame 12 coupled with the flywheel 14 is returned to the initial installation position by the servo motor, that is, the Z of the drone stabilization control device.
  • the axes are parallel.
  • the working flow chart of the drone stabilization control device provided by the present invention is further elaborated on the specific working process of the UAV stabilization control device provided by the present invention, and the control module can be based on the working condition.
  • Two control modes are designed differently: independent disturbance suppression mode and mixed disturbance suppression mode.
  • the control module 16 of the UAV stabilization control device When the independent disturbance suppression mode is activated, the control module 16 of the UAV stabilization control device does not communicate with the UAV airborne flight control system.
  • the flywheel is driven at a high speed by a drive motor, and when the drone coupled to the drone stabilization control device is subjected to a disturbance torque along the X-axis axial direction of the UAV stabilization control device,
  • An angular velocity sensor reads an X-axis angular velocity of the UAV stabilization control device, and the microprocessor determines the two flywheels required to suppress the disturbance based on the X-axis angular velocity of the UAV stabilization control device
  • the magnitude and direction of the angular velocity are precessed and output to the servo motor controller to suppress the effect of the disturbance on the attitude of the aircraft by controlling the precession of the two flywheels to provide a corresponding torque.
  • the control module 16 of the UAV stabilization control device When the hybrid disturbance suppression mode is activated, the control module 16 of the UAV stabilization control device will communicate with the UAV airborne flight control system.
  • the flywheel is driven at a high speed by a drive motor, and when the drone coupled to the drone stabilization control device is subjected to a disturbance torque along the X-axis axial direction of the UAV stabilization control device,
  • An angular velocity sensor reads an X-axis angular velocity of the UAV stabilization control device, and the microprocessor communicates with the onboard flight control system of the UAV to obtain the UAV Attitude information and system control information, the microprocessor determines the two required to suppress the disturbance based on the X-axis angular velocity of the UAV stabilization control device and the attitude information of the UAV and system control information
  • the flywheel precesses the magnitude and direction of the angular velocity and outputs to the servo motor controller to suppress the influence of the disturbance on the attitude of the aircraft by controlling the
  • the present invention also provides a drone, comprising the drone stabilization control device of any of the above.
  • a schematic diagram of a mounting method of the drone stabilization control device 100 denotes a stabilization control device
  • 200 denotes an upper panel of the unmanned aircraft body
  • 300 denotes a drone platform.
  • the device casing of the UAV stabilization control device 100 is fixedly coupled to the UAV body upper plate 200, and the UAV body upper plate 200 is fixedly coupled to the UAV platform 300.
  • the device housing of the drone stabilization control device 100 can be fixed by bolts.
  • the control torque required for the attitude control of the existing UAV is derived from the aerodynamic torque, that is, the attitude control torque is realized by changing the aerodynamic distribution acting on the air body.
  • the helicopter adopts a cyclic variable pitch
  • the multi-axis aircraft adopts different propeller tension
  • the fixed wing The aircraft adopts a change in the angle of the rudder surface.
  • the above-mentioned form of limited aerodynamic range is limited, and the force arm acting on the center of mass of the body is limited by the size of the fuselage, so the pneumatic control torque provided by the drone is limited, and the torque generation speed is limited, and the fuselage is subjected to a large external impact.
  • the drone stabilization control device based on the mechanical stabilization principle proposed by the invention can increase the additional mechanical torque control amount without changing the original aerodynamic torque control structure, according to different working conditions of the drone Provide different control modes, participate in the attitude control of the drone through a set of flywheel precession system and corresponding control strategy, quickly provide the control torque far greater than the aerodynamic torque of the UAV body, and solve the problem of the existing drones.
  • the drone stabilization control method provided by the embodiment of the present invention is introduced below.
  • the UAV stabilization control method described below and the UAV stabilization control device described above can be mutually referenced.
  • FIG. 6 is a flowchart of a specific implementation manner of a drone stabilization control method according to an embodiment of the present invention.
  • Step S101 acquiring a current disturbance torque of the drone platform
  • Step S102 determining, according to the current disturbance torque, a precession angular velocity of the gyro device required to suppress the disturbance, and generating a driving instruction for driving the gyro device to generate a corresponding control torque;
  • Step S103 Send the driving instruction to the servo driving module, and provide a corresponding control torque by driving the gyro deflection to suppress interference of the current instantaneous disturbance to the posture of the drone.
  • the drone stabilization control method provided by the present invention can adopt two control modes: an independent disturbance suppression mode and a hybrid disturbance suppression mode.
  • the selected stabilization control mode is the independent disturbance suppression mode
  • determining, according to the current disturbance torque, a precession angular velocity of the gyro device required to suppress the disturbance, and generating a driving torque to generate the corresponding control torque by the gyro device Drive instructions including:
  • a drive command sent to the servo drive module is generated based on the magnitude and direction of the precessional angular velocity.
  • the control module of the UAV stabilization control device communicates with the onboard flight control system, and the suppression disturbance is determined according to the current disturbance torque and the desired posture of the drone
  • the required angular velocity of the gyro device, and generating a driving command for driving the gyro device to generate a corresponding control torque specifically comprising:
  • a drive command sent to the servo drive module is generated based on the magnitude and direction of the precessional angular velocity.
  • the present invention can quickly provide a control torque that is much larger than that provided by the UAV body, and solves the problem that the existing UAV is easily destabilized when subjected to an impact load, and greatly improves the anti-disturbance and impact resistance of the UAV. Capability; simple mechanical structure, clear control strategy, high reliability; fast response, accurate actuation, superior performance; modular features, easy to install, not restricted by drone structure, suitable for all types of drones The platform does not need to be modified for the original drone; it can be installed as an anti-disturbance performance upgrade accessory on the existing drone, with low cost and good versatility.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

一种无人机增稳控制方法、装置以及无人机,通过控制模块获取无人机平台的当前扰动力矩,根据当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动陀螺装置产生相应控制力矩的驱动指令,发送至伺服驱动模块;伺服驱动模块接收驱动指令,通过驱动陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。本申请能够在不改变原有空气动力力矩控制结构的前提下,增加额外的机械力矩控制量,快速提供远大于无人机本体气动力矩所能提供的控制力矩,解决了现有无人机受到冲击载荷时容易失稳的问题,大幅提高了无人机的抗扰动与抗冲击能力。

Description

一种无人机增稳控制方法、装置以及无人机
本申请要求于2017年11月09日提交中国专利局、申请号为201711097061.4、发明名称为“一种无人机增稳控制方法、装置以及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无人机技术领域,特别是涉及一种无人机增稳控制方法、装置以及无人机。
背景技术
无人机具有用途广泛、成本低、机动性能好、使用场景广泛的特点,广泛应用于空中摄像、植保、森林防火、电力巡检、公安反恐等领域。为了使无人机具有更好的环境适应性与复杂环境的通过性,往往需要无人机尽可能小型化与轻型化,然而,对现有无人机的小型化势必带来机体气动力下降、载荷能力下降、抗干扰能力下降、抗风性能显著降低的缺点。即使不考虑其小型化,现有无人机也不能保证良好的抗扰动性能,特别是对于较大的冲击载荷,现有无人机很难保持稳定,严重时甚至会出现坠机等事故,这大大制约了无人机的应用范围,比如无法在复杂风场突风环境中使用;必须工作在空旷空间,避免与物理环境发生接触,否则会因为机体力与力矩的突变发生失稳。
为了提高无人机的抗冲击能力,现有无人机普遍采用的技术方案包括增大控制力矩和使用更先进的控制算法两种。增大控制力矩指通过增大桨盘直径或者提高电机动力储备而增加桨盘升力的调节范围,或者增大控制力矩的力臂,例如增加多轴飞行器电机轴到中心的臂长,从而使机体具有更大的控制力矩来抵御外界扰动。这种方法会导致无人机机体结构尺寸过大,制约其使用环境。使用更先进的控制算法指控制模块针对外界扰动进行专门的估计与补偿,从而减轻外界扰动的影响,如自适应控制、L1控制等。这些控制算法的设计过程复杂,通用性差,可靠性相对较低,对控制 器硬件的性能要求较高,且只能处理相对不大的扰动,对于较大的扰动,会使控制算法出现饱和,影响其效果。鉴于此,提供一种应用于无人机上的增稳控制装置是非常有必要的。
发明内容
本发明的目的是提供一种无人机增稳控制装置、方法以及无人机,以解决现有无人机受到冲击载荷时容易失稳的问题。
为解决上述技术问题,本发明提供一种无人机增稳控制装置,包括:
伺服驱动模块、与所述伺服驱动模块相连的陀螺装置以及控制模块;
所述控制模块用于获取无人机平台的当前扰动力矩,根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,发送至所述伺服驱动模块;
所述伺服驱动模块用于接收所述驱动指令,通过驱动所述陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。
可选地,所述陀螺装置包括双轴飞轮、驱动电机;其中,所述双轴飞轮为对称飞轮,通过所述驱动电机带动进行自转,自转方向相反。
可选地,所述控制模块包括:微处理器、角速度传感器、伺服电机控制器;
其中,所述角速度传感器用于:当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
所述微处理器用于根据所述X轴向角速度确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向,并输出给所述伺服电机控制器;
所述伺服电机控制器用于根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
可选地,所述无人机增稳控制装置还包括:防松螺母,用于固定飞轮沿电机转轴方向的自由度。
可选地,还包括:装置外壳,通过连接部件固定连接在所述无人机平台上。
本发明还提供了一种无人机,包括上述任一种所述的无人机增稳控制装置。
可选地,所述无人机增稳控制装置的装置外壳固定连接在无人机机体上板上,所述无人机机体上板固定连接在所述无人机平台上。
本发明还提供了一种无人机增稳控制方法,采用上述任一种所述的无人机增稳控制装置,所述方法包括:
获取无人机平台的当前扰动力矩;
根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令;
将所述驱动指令发送至所述伺服驱动模块,通过驱动所述陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。
可选地,还包括:判断无人机当前所处的增稳控制模式;
在当前所述的增稳控制模式为独立扰动抑制模式时,所述根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,具体过程包括:
当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
根据所述X轴向角速度确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向;
根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
可选地,还包括:判断无人机当前所处的增稳控制模式;
在当前所述的增稳控制模式为混合扰动抑制模式时,无人机增稳控制装置的控制模块与机载飞控系统通讯,所述根据所述当前扰动力矩及无人机期望姿态确定所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,具体过程包括:
当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
获取无人机当前姿态信息以及系统控制信息;
根据所述X轴向角速度、所述当前姿态信息以及所述系统控制信息,确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向;
根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
本发明所提供的无人机增稳控制装置以及方法,通过控制模块获取无 人机平台的当前扰动力矩,根据当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动陀螺装置产生相应控制力矩的驱动指令,发送至伺服驱动模块;伺服驱动模块接收驱动指令,通过驱动陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。本申请能够在不改变原有空气动力力矩控制结构的前提下,增加额外的机械力矩控制量,快速提供远大于无人机本体气动力矩所能提供的控制力矩,解决了现有无人机受到冲击载荷时容易失稳的问题,大幅提高了无人机的抗扰动与抗冲击能力。此外,本发明还提供了一种具有上述技术优点的无人机。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的无人机增稳控制装置的一种具体实施方式的结构框图;
图2为本发明所提供的无人机增稳控制装置的一种具体实施方式的结构示意图;
图3为本发明所提供的无人机增稳控制装置的原理示意图;
图4为本发明所提供的无人机增稳控制装置的工作流程图;
图5为本发明所提供的无人机增稳控制装置的一种安装方法示意图;
图6为本发明实施例提供的无人机增稳控制方法的一种具体实施方式的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具 体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所提供的无人机增稳控制装置的一种具体实施方式的结构框图如图1所示,该装置包括:
伺服驱动模块1、与所述伺服驱动模块1相连的陀螺装置2以及控制模块3;
所述控制模块3用于获取无人机平台的当前扰动力矩,根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置2产生相应控制力矩的驱动指令,发送至所述伺服驱动模块1;
所述伺服驱动模块1用于接收所述驱动指令,通过驱动所述陀螺装置2偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。
在本实施例中,陀螺装置包括双轴飞轮、驱动电机;其中,所述双轴飞轮为对称飞轮,通过所述驱动电机带动进行自转,自转方向相反。当然,本申请中陀螺装置可以采用一个或其他任意多个飞轮,并不限于本实施例中的两个,本申请实施例所采用的双飞轮结构只是其中一种较为优选的实施方案,其他的个数和排布方式也应属于本专利保护范围。如果采用奇数个飞轮,可以通过机体姿态控制对其附加力矩进行抵消,由于飞轮本身的机理,该附加力矩的大小数量级远远小于飞轮产生的增稳控制力矩,因此用机体的调整进行抵消是可行的。另外,如果需要更大的增稳力矩,则可以使用多于两个的飞轮,使用飞轮越多,则总的可以产生的附加力矩也越大。
控制模块3可以具体包括:微处理器、角速度传感器、伺服电机控制器;
其中,所述角速度传感器用于:当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
所述微处理器用于根据所述X轴向角速度确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向,并输出给所述伺服电机控制器;
所述伺服电机控制器用于根据所述进动角速度的大小与方向,生成发 送至所述伺服驱动模块1的驱动指令。
本发明所提供的无人机增稳控制装置,通过控制模块获取无人机平台的当前扰动力矩,根据当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动陀螺装置产生相应控制力矩的驱动指令,发送至伺服驱动模块;伺服驱动模块接收驱动指令,通过驱动陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。本申请能够在不改变原有空气动力力矩控制结构的前提下,增加额外的机械力矩控制量,快速提供远大于无人机本体气动力矩所能提供的控制力矩,解决了现有无人机受到冲击载荷时容易失稳的问题,大幅提高了无人机的抗扰动与抗冲击能力。
进一步地,本发明所提供的无人机增稳控制装置还可以包括:防松螺母,用于固定飞轮沿电机转轴方向的自由度。此外,本实施例还可以包括:装置外壳,通过连接部件固定连接在所述无人机平台上。
参照图2本发明所提供的无人机增稳控制装置的一种具体实施方式的结构示意图,该装置具体包括:装置外壳11、联接中框12、飞轮联接轴13、飞轮14、伺服电机臂15、控制模块16、联接转轴17、伺服电机18、防松螺母19、飞轮套杯20、连杆21、进动转轴22。
无人机增稳控制装置的基本结构包括装置外壳11,与所述装置外壳11联接的两个伺服驱动模块,与所述两个伺服驱动模块分别联接的陀螺装置。所述陀螺装置包括飞轮14与其驱动电机、飞轮联接轴17与联接中框12以及控制模块16,所述控制模块16在无人机扰动抑制模式开启时通过控制所述飞轮14的进动角速度来减少瞬时扰动对于无人机姿态的影响。
双轴飞轮的稳定装置利用陀螺的进动特性,其原理可用图3来表示,其中H表示飞轮14自转矢量,ω表示飞轮14进动矢量,则Mx表示此时由于陀螺进动产生的抗干扰力矩。其矢量方程为:MX=ω×H。当无人机平台作业时受扰动时,产生了干扰力矩为M’,则此时只需满足双轴飞轮进动产生的扭矩沿干扰力矩的方向分量与干扰力矩M’相等,即M’=ω*H*sinθ,其中θ为干扰力矩于进动力矩之间的夹角。简单来说,在已知干扰力矩的前提下,只需控制模块16准确的控制飞轮14的进动角速度和方向即可精 确的抑制干扰。对于无人机而言,当无人机上固定安装无人机增稳控制装置,并且无人机增稳控制装置x轴与无人机等效扰动转矩方向平行,则控制模块控制伺服驱动模块输出的角速度即能实现输出相应的抗干扰力矩。
两个陀螺装置飞轮14初始位置为其自转轴线与所述无人机增稳控制装置的Z轴平行;所述的两个飞轮14的自转方向为相反;与所述飞轮14相联接的联接中框12的联接转轴17与所述无人机增稳控制装置的Y轴平行,并且分别与两个伺服驱动模块联接。该无人机增稳控制装置需要与无人机固定安装,并且该装置x轴与无人机等效扰动转矩方向平行。
所述控制模块16包括微处理器(CPU)、角速度传感器、以及进动伺服电机控制器和飞轮14的驱动电机控制器。扰动抑制模式关闭下,所述驱动电机停止转动,并且与所述飞轮14相联接的联接中框12在伺服电机的驱动下返回初始安装位置,即与所述无人机增稳控制装置的Z轴平行。
参照图4本发明所提供的无人机增稳控制装置的工作流程图,下面对本发明所提供的无人机增稳控制装置的具体工作过程进行进一步详细阐述,其控制模块可以根据工况的不同设计两种控制模式:独立扰动抑制模式以及混合扰动抑制模式。
独立扰动抑制模式激活下,所述无人机增稳控制装置的控制模块16不与无人机机载飞控系统通讯。所述飞轮在驱动电机驱动下高速转动,当与所述无人机增稳控制装置联接的无人机受到沿所述无人机增稳控制装置X轴轴向的扰动转矩时,所述角速度传感器读取所述无人机增稳控制装置的X轴向角速度,所述微处理器基于所述无人机增稳控制装置的X轴向角速度确定抑制扰动所需的所述两个飞轮进动角速度的大小与方向,并输出给所述伺服电机控制器,以通过控制所述两个飞轮的进动提供相应的力矩来抑制扰动对所述飞行器姿态的影响。
混合扰动抑制模式激活下,所述无人机增稳控制装置的控制模块16将与无人机机载飞控系统通讯。所述飞轮在驱动电机驱动下高速转动,当与所述无人机增稳控制装置联接的无人机受到沿所述无人机增稳控制装置X轴轴向的扰动转矩时,所述角速度传感器读取所述无人机增稳控制装置的X轴向角速度,并且所述微处理器通过与所述的无人机的机载飞控系统进行通讯以获取所述的无人机的姿态信息以及系统控制信息,所述微处理 器基于所述无人机增稳控制装置的X轴向角速度以及所述的无人机的姿态信息以及系统控制信息确定抑制扰动所需的所述两个飞轮进动角速度的大小与方向,并输出给所述伺服电机控制器,以通过控制所述两个飞轮的进动提供相应的力矩来抑制扰动对所述飞行器姿态的影响,并且辅助所述的无人机的机载飞控系统对所述的无人机进行姿态控制。
本发明还提供了一种无人机,包括上述任一种所述的无人机增稳控制装置。
参照图5无人机增稳控制装置的一种安装方法示意图所示,100表示增稳控制装置,200表示无人机机体上板,300表示无人机平台。所述无人机增稳控制装置100的装置外壳固定连接在无人机机体上板200上,所述无人机机体上板200固定连接在所述无人机平台300上。具体地,无人机增稳控制装置100的装置外壳可以通过螺栓进行固定。
现有无人机姿态控制所需控制力矩均来自空气动力力矩,即姿态控制力矩由改变作用于机体的空气动力分配实现,如直升机采用周期变距、多轴飞行器采用调节不同螺旋桨拉力、固定翼飞机采用改变舵面角度。以上形式的调节空气动力范围有限,另外作用于机体质心的力臂受到机身尺寸限制,所以无人机所提供的气动控制力矩有限,且力矩产生速度有限,机身承受外界较大的冲击载荷时很难保持稳定,严重时甚至会出现坠机等事故,这大大制约了无人机的应用范围,比如无法承受较大突风扰动;必须工作在空旷空间,避免与物理环境发生接触,否则会因为机体力与力矩的突变发生失稳;无法抵抗投掷物品、抛射物体所引起的突变力矩扰动。
本发明提出的基于机械增稳原理的无人机增稳控制装置,能够在不改变原有空气动力力矩控制结构的前提下,增加额外的机械力矩控制量,根据无人机所处工况不同提供不同的控制模式,通过一套飞轮进动系统及相应的控制策略参与无人机姿态控制,快速提供远大于无人机本体气动力矩所能提供的控制力矩,解决了现有无人机受到冲击载荷时容易失稳的问题,大幅提高了无人机的抗扰动与抗冲击能力,且机械结构简单,控制策略清晰,可靠性强;响应迅速,作动准确,性能优越;具有模块化的特点,便于安装,不受无人机结构限制,适用于各种类型的无人机平台,不需要对 原有无人机进行改装;可以作为抗扰动性能提升附件将软硬件安装在现有无人机上,成本低,通用性好。
下面对本发明实施例提供的无人机增稳控制方法进行介绍,下文描述的无人机增稳控制方法与上文描述的无人机增稳控制装置可相互对应参照。
图6为本发明实施例提供的无人机增稳控制方法的一种具体实施方式的流程图,参照图6无人机增稳控制方法可以包括:
步骤S101:获取无人机平台的当前扰动力矩;
步骤S102:根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令;
步骤S103:将所述驱动指令发送至所述伺服驱动模块,通过驱动所述陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。
作为一种具体实施方式,本发明所提供的无人机增稳控制方法可以采用两种控制模式:独立扰动抑制模式以及混合扰动抑制模式。
其中,在所选的增稳控制模式为独立扰动抑制模式时,所述根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,具体包括:
当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;根据所述X轴向角速度确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向;
根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
在所选的增稳控制模式为混合扰动抑制模式时,无人机增稳控制装置的控制模块与机载飞控系统通讯,所述根据所述当前扰动力矩及无人机期望姿态确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,具体包括:
当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
获取无人机当前姿态信息以及系统控制信息;
根据所述X轴向角速度、所述当前姿态信息以及所述系统控制信息,确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向;
根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。综上,本发明能够快速提供远大于无人机本体所能提供的控制力矩,解决了现有无人机受到冲击载荷时容易失稳的问题,大幅提高了无人机的抗扰动与抗冲击能力;机械结构简单,控制策略清晰,可靠性强;响应迅速,作动准确,性能优越;具有模块化的特点,便于安装,不受无人机结构限制,适用于各种类型的无人机平台,不需要对原有无人机进行改装;可以作为抗扰动性能提升附件将软硬件安装在现有无人机上,成本低,通用性好。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的无人机增稳控制方法、装置以及无人机进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指 出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种无人机增稳控制装置,其特征在于,包括:
    伺服驱动模块、与所述伺服驱动模块相连的陀螺装置以及控制模块;
    所述控制模块用于获取无人机平台的当前扰动力矩,根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,发送至所述伺服驱动模块;
    所述伺服驱动模块用于接收所述驱动指令,通过驱动所述陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。
  2. 如权利要求1所述的无人机增稳控制装置,其特征在于,所述陀螺装置包括双轴飞轮、驱动电机;其中,所述双轴飞轮为对称飞轮,通过所述驱动电机带动进行自转,自转方向相反。
  3. 如权利要求2所述的无人机增稳控制装置,其特征在于,所述控制模块包括:微处理器、角速度传感器、伺服电机控制器;
    其中,所述角速度传感器用于:当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
    所述微处理器用于根据所述X轴向角速度确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向,并输出给所述伺服电机控制器;
    所述伺服电机控制器用于根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
  4. 如权利要求3所述的无人机增稳控制装置,其特征在于,所述无人机增稳控制装置还包括:防松螺母,用于固定飞轮沿电机转轴方向的自由度。
  5. 如权利要求1至4任一项所述的无人机增稳控制装置,其特征在于,还包括:装置外壳,通过连接部件固定连接在所述无人机平台上。
  6. 一种无人机,其特征在于,包括如权利要求1至5任一项所述的无人机增稳控制装置。
  7. 如权利要求6所述的无人机,其特征在于,所述无人机增稳控制装置的装置外壳固定连接在无人机机体上板上,所述无人机机体上板固定连接在所述无人机平台上。
  8. 一种无人机增稳控制方法,其特征在于,采用如权利要求1至5任一项所述的无人机增稳控制装置,所述方法包括:
    获取无人机平台的当前扰动力矩;
    根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令;
    将所述驱动指令发送至所述伺服驱动模块,通过驱动所述陀螺装置偏转提供相应的控制力矩,以抑制当前瞬时扰动对无人机姿态的干扰。
  9. 如权利要求8所述的无人机增稳控制方法,其特征在于,还包括:
    判断无人机当前所处的增稳控制模式;
    在当前所述的增稳控制模式为独立扰动抑制模式时,根据所述当前扰动力矩确定抑制扰动所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,具体过程包括:
    当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
    根据所述X轴向角速度确定抑制扰动所需的陀螺装置中飞轮进动角速度的大小与方向;
    根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
  10. 如权利要求8所述的无人机增稳控制方法,其特征在于,还包括:
    判断无人机当前所处的增稳控制模式;
    在当前所述的增稳控制模式为混合扰动抑制模式时,无人机增稳控制装置的控制模块与机载飞控系统通讯,根据所述当前扰动力矩及无人机期望姿态确定所需的陀螺装置的进动角速度,并生成驱动所述陀螺装置产生相应控制力矩的驱动指令,具体过程包括:
    当无人机受到沿X轴轴向的扰动转矩时,获取X轴向角速度;
    获取无人机当前姿态信息以及系统控制信息;
    根据所述X轴向角速度、所述当前姿态信息以及所述系统控制信息,确定所需的陀螺装置中飞轮进动角速度的大小与方向;
    根据所述进动角速度的大小与方向,生成发送至所述伺服驱动模块的驱动指令。
PCT/CN2018/114497 2017-11-09 2018-11-08 一种无人机增稳控制方法、装置以及无人机 WO2019091419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711097061.4 2017-11-09
CN201711097061.4A CN107894776A (zh) 2017-11-09 2017-11-09 一种无人机增稳控制方法、装置以及无人机

Publications (1)

Publication Number Publication Date
WO2019091419A1 true WO2019091419A1 (zh) 2019-05-16

Family

ID=61804780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114497 WO2019091419A1 (zh) 2017-11-09 2018-11-08 一种无人机增稳控制方法、装置以及无人机

Country Status (2)

Country Link
CN (1) CN107894776A (zh)
WO (1) WO2019091419A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894776A (zh) * 2017-11-09 2018-04-10 酷黑科技(北京)有限公司 一种无人机增稳控制方法、装置以及无人机
CN112278255A (zh) * 2020-10-29 2021-01-29 西北工业大学 一种用飞轮进行姿态控制的无人机
CN114132487B (zh) * 2021-12-06 2024-03-08 重庆交通大学绿色航空技术研究院 一种应用于消防无人机的保护装置及保护装置控制方法
TWI802170B (zh) * 2021-12-23 2023-05-11 建準電機工業股份有限公司 用以控制太空飛行器轉向的姿態控制器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987513A (ja) * 1982-11-12 1984-05-21 Tech Res & Dev Inst Of Japan Def Agency 慣性空間における安定化装置
EP1908686A1 (en) * 2006-09-29 2008-04-09 Honeywell International Inc. Hierarchial strategy for singularity avoidance in arrays of control moment gyroscopes
CN103345149A (zh) * 2013-06-24 2013-10-09 北京航天控制仪器研究所 一种动力调谐陀螺仪伺服控制回路
CN104457722A (zh) * 2014-12-05 2015-03-25 浙江大学 一种带控制的单轴双陀螺稳定系统及其控制方法
CN107891975A (zh) * 2017-11-09 2018-04-10 酷黑科技(北京)有限公司 一种空中作业机器人
CN107894776A (zh) * 2017-11-09 2018-04-10 酷黑科技(北京)有限公司 一种无人机增稳控制方法、装置以及无人机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201287830Y (zh) * 2008-10-14 2009-08-12 西安展翼航空科技有限公司 航拍摄像机用稳定支架
CN106843245B (zh) * 2016-12-01 2022-02-01 北京京东乾石科技有限公司 一种无人机姿态控制方法、装置及无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987513A (ja) * 1982-11-12 1984-05-21 Tech Res & Dev Inst Of Japan Def Agency 慣性空間における安定化装置
EP1908686A1 (en) * 2006-09-29 2008-04-09 Honeywell International Inc. Hierarchial strategy for singularity avoidance in arrays of control moment gyroscopes
CN103345149A (zh) * 2013-06-24 2013-10-09 北京航天控制仪器研究所 一种动力调谐陀螺仪伺服控制回路
CN104457722A (zh) * 2014-12-05 2015-03-25 浙江大学 一种带控制的单轴双陀螺稳定系统及其控制方法
CN107891975A (zh) * 2017-11-09 2018-04-10 酷黑科技(北京)有限公司 一种空中作业机器人
CN107894776A (zh) * 2017-11-09 2018-04-10 酷黑科技(北京)有限公司 一种无人机增稳控制方法、装置以及无人机

Also Published As

Publication number Publication date
CN107894776A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2019091419A1 (zh) 一种无人机增稳控制方法、装置以及无人机
Lyu et al. Design and implementation of a quadrotor tail-sitter VTOL UAV
Whitehead et al. Model reference adaptive control of a quadrotor UAV
AU2013234603B2 (en) Altitude regulator
NL2017971B1 (en) Unmanned aerial vehicle
US11628927B2 (en) Method of controlling an actuator system and aircraft using same
KR100351378B1 (ko) 이동체의 조종장치
CN108445753B (zh) 用于平衡侧向力和抑制无人机侧向反推力的方法
JP2019137389A (ja) 飛行装置
CN115016268A (zh) 一种基于滑模理论的可倾转四旋翼无人机容错控制方法
AU2657397A (en) Method and apparatus for controlling an unmanned symmetric aircraft
Jothiraj et al. Enabling bidirectional thrust for aggressive and inverted quadrotor flight
CN116301009B (zh) 一种变构型无人机的抗干扰安全控制方法
CN206968972U (zh) 一种抗风扰的非平面飞行器
JP3519206B2 (ja) エンジンの推力調整によるロケットの制御方法
KR101622277B1 (ko) 모듈화된 쿼드 로터 제어 시스템 및 그의 제어 방법
CN108681251B (zh) 六旋翼无人机电机倾角的确定方法
Jothiraj et al. Control allocation of bidirectional thrust quadrotor subject to actuator constraints
CN111258324A (zh) 多旋翼无人机控制方法、装置、多旋翼无人机及存储介质
CN113200145B (zh) 一种便携式微小型共轴双桨无人机及其控制方法
Cicolani et al. Modeling and simulation of a helicopter slung load stabilization device
Elhennawy Dynamic modeling and robust nonlinear control of unmanned quadrotor vehicle
KR20150107664A (ko) 쿼드 로터 자세 제어 시스템 및 그의 제어 방법
Derafa et al. Four Rotors Helicopter Yaw and Altitude Stabilization.
TWI783438B (zh) 固定翼垂直起降飛行器及其自動控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875837

Country of ref document: EP

Kind code of ref document: A1