WO2019091239A1 - 一种天线移相器传动装置 - Google Patents

一种天线移相器传动装置 Download PDF

Info

Publication number
WO2019091239A1
WO2019091239A1 PCT/CN2018/107606 CN2018107606W WO2019091239A1 WO 2019091239 A1 WO2019091239 A1 WO 2019091239A1 CN 2018107606 W CN2018107606 W CN 2018107606W WO 2019091239 A1 WO2019091239 A1 WO 2019091239A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
worm
gear
transmission
driving
Prior art date
Application number
PCT/CN2018/107606
Other languages
English (en)
French (fr)
Inventor
李永忠
邹仲灏
Original Assignee
罗森伯格技术(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗森伯格技术(昆山)有限公司 filed Critical 罗森伯格技术(昆山)有限公司
Publication of WO2019091239A1 publication Critical patent/WO2019091239A1/zh
Priority to US16/813,929 priority Critical patent/US11303019B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/203Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with non-parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2084Perpendicular arrangement of drive motor to screw axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/209Arrangements for driving the actuator using worm gears

Definitions

  • the present invention relates to a transmission in a mobile communication antenna, and more particularly to a transmission for driving a phase shifter in a mobile communication antenna.
  • the radiation angle of the mobile communication antenna needs to be adjusted according to the main source change of the antenna.
  • the mode is to drive the phase shifter in the antenna to adjust it.
  • phase shifters in a mobile communication antenna There are often many phase shifters in a mobile communication antenna, and these phase shifters often have different adjustments.
  • phase shifter driving devices on the market are one-to-one.
  • One motor separately controls one phase shifter.
  • multiple motors need to be configured, because the motor is expensive and heavy. Not only causes the antenna to be bulky, but also increases the cost.
  • phase-shifting device with more than one belt and two belts.
  • the patent application number is CN201610049909.5
  • the patent name is an antenna azimuth adjusting device.
  • the overall transmission ratio of the scheme is insufficient, and the motor needs to be decelerated to increase the torque; 2.
  • the gear and the rack are meshed, the rotation is changed to a translational mode, and the gear is skipped.
  • the risk can be reversed from the output end (ie, the regulating slave device in the patent) to the input end (ie, the regulating active device in the patent), which is easy to damage the structure; 4.
  • the output port is concentrated. It is difficult to deploy, which is not conducive to the antenna layout.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide an antenna phase shifter transmission device which is compact in structure and advantageous in antenna layout.
  • an antenna phase shifter transmission device comprising: a transmission input portion, a shift selection portion, and a transmission output portion,
  • the transmission input portion includes a driving shaft, at least two driving gears axially fixedly mounted on the driving shaft, and a first driving assembly coupled to the driving shaft;
  • the shift selection portion includes a screw, a transmission assembly mounted on the screw, and a second drive assembly coupled to the screw drive;
  • the transmission output portion includes an output shaft and at least two sets of output gear sets that are mounted on the output shaft, and one set of output gear sets corresponds to a drive gear on the drive shaft;
  • the first driving component drives the driving gear synchronous rotation on the driving shaft
  • the second driving component drives the screw to rotate
  • the transmission component slides along the screw axis under the driving of the screw, and selects any driving gear on the driving shaft.
  • a drive connection is established with a corresponding set of output gear sets on the output shaft.
  • the first driving component comprises a first motor, a first worm connected to the first motor, and a first worm gear meshing with the first worm, the first worm wheel being fixedly mounted on the driving shaft, the first A motor drives the first worm to drive the first worm wheel to rotate, and the first worm wheel drives the driving shaft to drive the driving gear to rotate synchronously.
  • the second driving assembly includes a second motor, a second worm coupled to the second motor, and a second worm gear meshing with the second worm, the second worm gear being fixedly mounted on the screw, the The two motors drive the second worm to rotate, and the second worm drives the second worm wheel to drive the screw to rotate.
  • the second drive assembly further includes a reversing gear set including a plurality of reversing gears, the reversing gears meshing with each other, and one of the outermost two reversing gears Connected to the second motor drive and the other to the second worm drive.
  • a reversing gear set including a plurality of reversing gears, the reversing gears meshing with each other, and one of the outermost two reversing gears Connected to the second motor drive and the other to the second worm drive.
  • the movement between the respective output gear sets of the transmission output portion is relatively independent.
  • the output gear set includes a sleeve sleeved on the output shaft, an output gear mounted on the sleeve, and an output assembly coupled to the output gear, the output gear and the drive gear of the transmission input portion
  • the sleeve rotates synchronously with the output gear
  • the output assembly includes a first output worm mounted on the sleeve, a first output worm gear meshed with the first output worm, and a second output worm coupled to the first output worm gear, the first output worm Rotating synchronously with the sleeve, the first output worm drives the first output worm wheel to rotate, and the first output worm wheel drives the second output worm to rotate.
  • the transmission assembly comprises a nut fixedly mounted on the screw and an idler gear mounted on the nut, the idler gear sliding along the screw shaft under the driving of the nut, and selecting any one of the driving gears on the driving shaft Simultaneously mesh with the corresponding output gear on the output shaft to establish a transmission connection.
  • the screw is located between the drive shaft and the output shaft, and the screw, the drive shaft and the output shaft are all parallel to each other.
  • the cross section between the driving shaft and the driving gear and the contact portion between the driving shaft and the first worm wheel is a regular hexagon, but other shapes may be used if feasible.
  • the screw and the nut are coupled to each other by an external and internal thread.
  • the driving shaft and the driving gear are fixed by a snap spring.
  • one end of the nut is fixed with a wing for restricting relative rotation between the nut and the idler gear, and the idle gear is sandwiched between the nut and the wing.
  • all of the tooth faces of the drive gear, the output gear and the idle gear are chamfered.
  • each of the second output worms is provided with a rack meshing therewith, the rack is a helical tooth and is connected to a phase shifter.
  • the invention is responsible for power input and selection output by two motors respectively, and selects to drive any number of phase shifters, which can effectively reduce the number of motors used, compact structure and save space.
  • the output end can be spread flat, which is beneficial to the antenna layout, and can increase or decrease the output quantity as needed, and the equipment has strong versatility.
  • the whole commutating structure uses worm gear and worm drive to reduce the installation requirements, and the whole transmission process is driven by the worm to the worm wheel to increase the reverse transmission resistance. Finally, the output part is rotated to the translation by the connection of the worm and the rack to prevent the phenomenon of skipping. At the same time, the turbine to the worm drive has self-locking protection to prevent reverse transmission, thereby preventing the position change of the phase shifter and ensuring the phase shifter adjustment. Accuracy.
  • FIG. 1 is a schematic view showing the overall structure of the present invention after assembly
  • Figure 2 is a schematic view of the exploded structure of the present invention
  • Figure 3 is a schematic view showing the overall structure of the present invention after removing the casing
  • Figure 4 is a schematic structural view of a transmission input portion of the present invention.
  • Figure 5 is a schematic structural view of a shift selection portion of the present invention.
  • Figure 6 is a partial structural schematic view of the transmission output portion of the present invention.
  • Figure 7 is a schematic view showing the overall structure of the transmission output portion of the present invention.
  • an antenna phase shifter transmission device disclosed in the embodiment of the present invention includes a transmission input portion 100, a shift selection portion 200 and a transmission output portion 300, wherein the transmission input portion 100 and the transmission The gear selection portion 200 is completely disengaged, and the gear selection portion 200 is selected to establish a transmission connection with any one of the output terminals of the transmission output portion 300, thereby performing phase adjustment on a phase shifter (not shown) connected to the output terminal.
  • the transmission input portion 100 includes a drive shaft 101, at least two drive gears 102, and a first drive assembly.
  • the drive gears 102 are evenly spaced along the axial spacing of the drive shaft 101, and each drive gear 102 It is fixedly mounted on the drive shaft 101.
  • the first drive assembly is used to drive the drive shaft 101 to drive all of the drive gears 102 mounted thereon to rotate synchronously.
  • the first driving component includes a first motor 103, a first worm 104, and a first worm wheel 105.
  • the extending direction of the rotating shaft of the first motor 103 is perpendicular to the driving shaft 101, and the first worm 104 is The rotating shaft of the first motor 103 is connected or shared with the first motor 103.
  • the first motor 103 drives its own rotating shaft to rotate in the axial direction
  • the first worm 104 is synchronously rotated in the axial direction; the first worm wheel 105 is mounted.
  • the first worm wheel 105 meshes with the first worm 104, and the two cooperate to realize the 90° reversing rotation, that is, the rotation of the first worm 104 is transmitted to the first After the worm wheel 105, the first worm wheel 105 rotates synchronously in the radial direction, and the first worm wheel 105 rotates while driving all the driving gears 102 on the driving shaft 101 to rotate in synchronization.
  • the driving gear 102 and the first worm wheel 105 are respectively fixed on the driving shaft 101 by a snap spring (not shown), and in order to synchronously rotate the driving gear 102 and the first worm wheel 105 and the driving shaft 101, an active setting is performed.
  • a cross section of the portion between the shaft 101 and the driving gear 102 and between the driving shaft 101 and the first worm wheel 105 is a regular hexagon.
  • the power transmission from the first motor 103 to the driving shaft 101 is selected from a worm gear structure, and does not interfere with the installation of the driving gear 102, so that the driving gear 102 can adjust the position as needed (for example, adjusting the spacing between the driving gears) And quantity.
  • the worm gear has low precision in mounting, and the phenomenon of tooth skipping is largely prevented.
  • the shift selection portion 200 specifically includes a screw 201, a second drive assembly, and a transmission assembly.
  • the screw 201 is parallel to the drive shaft 101, and the surface of the screw 201 has an external thread (not shown).
  • the second driving component is configured to drive the radial rotation of the screw 201, which specifically includes a second motor 202, a reversing gear set, a second worm 203, and a second worm wheel 204.
  • the rotation axis of the second motor 202 extends in a direction with the driving shaft 101 and
  • the screws 201 are all vertical, and the second motor 202 drives its own rotating shaft to rotate axially.
  • the reversing gear set is used to convert the axial rotation of the rotating shaft of the second motor 202 into a radial rotation.
  • the reversing gear set includes a plurality of reversing gears, and each reversing gear is fixed on a rotating shaft.
  • the direction of extension of each shaft is also perpendicular to both the drive shaft 101 and the screw 201, the reversing gears mesh with each other, and the two outermost gears are reversing (for the convenience of the following description, the two outermost gears are defined here.
  • the leftmost reversing gear 205 and the rightmost reversing gear 206, respectively, the reversing gear between the leftmost and rightmost reversing gears 205, 206 is defined as an intermediate reversing gear 207), wherein the leftmost end
  • the reversing gear 205 is connected to the rotating shaft of the second motor 202 or has a common rotating shaft with the second motor 202, and the rightmost reversing gear 206 is drivingly coupled to the second worm 203.
  • the rotating shaft of the second motor 202 drives the leftmost reversing gear shaft 205 connected thereto to rotate, and the reversing gear 205 drives the intermediate reversing gear 207 meshing with it to rotate axially, and sequentially transmits to the same
  • the second worm 203 is connected to the rightmost reversing gear 206.
  • the second worm 203 is connected to the rotating shaft of the rightmost reversing gear 206 or shares a rotating shaft with the rightmost reversing gear 206, and the rightmost reversing gear 206 drives the second worm 203 for synchronous axial rotation.
  • the second worm wheel 204 is fixedly mounted on the screw 201 and meshes with the second worm 203.
  • the second worm wheel 204 is fixedly mounted at the right end of the screw 201.
  • the second worm wheel 204 cooperates with the second worm 203 to realize 90° reverse rotation, that is, after the rotation of the second worm 203 is transmitted to the second worm wheel 204, the second worm wheel 204 rotates synchronously in the radial direction, and the second worm wheel 204 rotates simultaneously.
  • the screw 201 is driven to rotate synchronously.
  • the transmission assembly is mounted on the screw 201 for axial sliding along the screw 201 by the screw 201.
  • the transmission assembly includes a nut 208 and an idler gear 209.
  • the inner surface of the nut 208 is provided with an internal thread (not shown) that cooperates with the external thread on the screw 201.
  • the screw 201 rotates radially, the nut is driven.
  • the 208 slides along its axial direction; the idler gear 209 is pivoted on the nut 208 and slides synchronously with the nut 208 along the axial direction of the screw 201.
  • one end of the nut 208 is fixed with a wing 210 for restricting relative rotation between the nut 208 and the idler gear 209.
  • the idler gear 209 is sandwiched between the nut 208 and the wing 210, and the wing 210 on the nut 208 also functions as a shoulder. .
  • the transmission output portion 300 specifically includes an output shaft 201 and at least two sets of output gear sets 308 mounted on the output shaft 301.
  • the output shaft 201 is non-rotating and is responsible for supporting each set of output gears. Group 308, and the movements between the various output gear sets 308 on the output shaft 201 are independent, independent of each other, and which output gear set 308 is moved depending on the position of the shifting selection portion of the idler gear 209.
  • the positional relationship between the drive shaft 101, the screw 201 and the output shaft 301 is three parallel to each other, and the screw 201 is located between the drive shaft 101 and the output shaft 301.
  • Each set of output gear sets 308 includes a bushing 302, an output gear 303 and an output assembly, the bushing 302 is fitted over the output shaft 301, the output gear 303 is mounted on the bushing 302, and the output gear 303 is coupled to the drive gear 102 of the drive input portion.
  • One-to-one correspondence ie, both positions and numbers are corresponding
  • the output gear 303 drives the sleeve 302 to rotate synchronously.
  • the idler gear 209 of the shift select portion is selectively meshed with the different drive gears 102 and the corresponding output gears 303 according to their different sliding positions to establish a transmission connection to realize the selection transmission.
  • all the tooth faces of the driving gear 102, the output gear 303 and the idle gear 209 of the present embodiment are chamfered.
  • Each set of output assemblies includes a first output worm 304, a first output worm gear 305, and a second output worm 306.
  • the first output worm 304 is also mounted on the sleeve 302, which rotates in synchronism with the sleeve 302.
  • the first output worm gear 305 is engaged with the first output worm 304 to achieve a 90° reversing drive, i.e., the first output worm gear 305 rotates synchronously with the first output worm 304.
  • the second output worm 306 is drivingly coupled to the first output worm gear 305.
  • the second output worm gear 305 can share a rotation shaft or the rotation shaft of the second output worm 306 is coupled to the rotation shaft of the first output worm wheel 305.
  • the rotation shaft of the first output worm wheel 305 The extending direction is perpendicular to the output shaft 301.
  • the first output worm gear 305 is rotationally transmitted to the second output worm 306 to drive the second output worm 306 to rotate in synchronization.
  • Each of the second output worms 306 is further provided with a rack 307 meshing therewith.
  • the rack 307 is a helical tooth and is connected with a phase shifter.
  • the rack 307 is synchronously rotated with the second output worm 306, thereby driving the rack 307.
  • the phase shifter moves and adjusts its phase.
  • the antenna phase shifter transmission of the present embodiment is integrally mounted on a casing 400 which functions to support and mount the various components.
  • the invention is responsible for the power input and the selection output by the two motors respectively, and selects to drive any number of phase shifters, the structure is compact, and the output end of the transmission output part can be spread flat, and the output quantity can be increased or decreased as needed.
  • the entire reversing structure uses worm gears to reduce the installation requirements, and the entire transmission process is driven by the worm to the worm gear, increasing the reverse transmission resistance.
  • the output part is rotated into a translational motion by the connection of the worm and the infinite turbine to prevent the phenomenon of jumping teeth, and the turbine to the worm drive has self-locking protection to prevent reverse transmission, thereby preventing the positional change of the phase shifter.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transmission Devices (AREA)

Abstract

本发明揭示了一种天线移相器传动装置,包括传动输入部分、换挡选择部分和传动输出部分,传动输入部分和换挡选择部分完全分离,且通过换挡选择部分选择与传动输出部分的任意一输出端建立传动连接,从而对与该输出端相连的移相器进行相位调整。本发明由两个电机分别负责动力输入和选择输出,选择带动任意数量的移相器,结构紧凑,且传动输出部分的输出端可以平铺展开,利于天线布局。

Description

一种天线移相器传动装置 技术领域
本发明涉及一种移动通信天线中的传动装置,尤其是涉及一种用于驱动移动通信天线中移相器的传动装置。
背景技术
移动通信天线的辐射角需要根据天线的主源变化相应调整,方式是通过传动装置驱动天线内的移相器,从而对其进行调整。在一个移动通信天线中往往具有很多个移相器,并且这些移相器很多时候都要分别进行不同的调整。
目前市面上大部分移相器驱动装置都是一对一的,一个电机单独控制一个移相器,要实现多个移相器的分别调整就需要配置多个电机,由于电机价格贵,重量大,不但导致天线体积庞大,还增加了成本。
为解决这一问题,人们也相继研究出一些一带多、两带多的移相器传动装置,如专利申请号为CN201610049909.5中公开了专利名称为一种天线方位角调节装置的方案,但是在该方案中存在以下待改进的缺陷:1、该方案的整体传动比不足,需要电机减速增大力矩;2、使用齿轮和齿条相啮合,变转动为平动的传动方式,有跳齿的风险;3、动力可以从输出端(即该专利中的调节从动装置)逆向传回输入端(即该专利中的调节主动装置),容易对结构产生破坏;4、输出端口比较集中,难以展开,不利于天线布局。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种结构紧凑、利于天线布局的天线移相器传动装置。
为实现上述目的,本发明提出如下技术方案:一种天线移相器传动装置,包括:传动输入部分、换挡选择部分和传动输出部分,
所述传动输入部分包括主动轴、轴向固定安装在主动轴上的至少两个主动齿轮及与主动轴传动连接的第一驱动组件;
所述换挡选择部分包括螺杆、安装在螺杆上的传动组件和与螺杆传动连接的第二驱动组件;
所述传动输出部分包括输出轴和安转在输出轴上的至少两组输出齿轮组,一组输出齿轮组对应主动轴上的一个主动齿轮;
所述第一驱动组件驱动主动轴上的主动齿轮同步转动,所述第二驱动组件驱动螺杆转动,所述传动组件在螺杆的带动下沿螺杆轴向滑动,选择主动轴上的任意一主动齿轮与输出轴上对应的一组输出齿轮组建立传动连接。
优选地,所述第一驱动组件包括第一电机、与第一电机相连的第一蜗杆和与第一蜗杆相啮合的第一蜗轮,所述第一蜗轮固定安装在主动轴上,所述第一电机驱动第一蜗杆带动第一蜗轮转动,所述第一蜗轮驱动主动轴带动主动齿轮同步转动。
优选地,所述第二驱动组件包括第二电机、与第二电机传动连接的第二蜗杆和与第二蜗杆相啮合的第二蜗轮,所述第二蜗轮固定安装在螺杆上,所述第二电机驱动第二蜗杆转动,所述第二蜗杆驱动第二蜗轮带动螺杆转动。
优选地,所述第二驱动组件还包括换向齿轮组,所述换向齿轮组包括若干换向齿轮,所述换向齿轮之间相啮合,且最外端的两个换向齿轮的其中一个与第二电机传动连接,另一个与所述第二蜗杆传动连接。
优选地,所述传动输出部分的各个输出齿轮组之间运动相对独立。
优选地,所述输出齿轮组包括套装在输出轴上的轴套、安装在轴套上的输出齿轮和与所述输出齿轮传动连接的输出组件,所述输出齿轮与传动 输入部分的主动齿轮一一对应,所述轴套与输出齿轮同步转动。
优选地,所述输出组件包括安装在轴套上的第一输出蜗杆、与第一输出蜗杆啮合的第一输出蜗轮和与第一输出蜗轮传动连接的第二输出蜗杆,所述第一输出蜗杆与轴套同步转动,所述第一输出蜗杆带动第一输出蜗轮转动,所述第一输出蜗轮带动第二输出蜗杆转动。
优选地,所述传动组件包括固定安装在螺杆上的螺母和安转在螺母上的惰齿轮,所述惰齿轮在螺母的带动下沿螺杆轴向滑动,选择与主动轴上的任意一主动齿轮和输出轴上的对应输出齿轮同时啮合,建立传动连接。
优选地,所述螺杆位于主动轴和输出轴之间,且所述螺杆、主动轴和输出轴三者均相互平行。
优选地,所述主动轴与主动齿轮之间、主动轴与第一蜗轮之间相接触部分的截面为正六边形,但在方案可行的情况下也可为其它形状。
优选地,所述螺杆和螺母之间通过外、内螺纹配合传动连接。
优选地,所述主动轴与主动齿轮之间、主动轴与第一蜗轮之间通过卡簧固定。
优选地,所述螺母一端固定有限制螺母和惰齿轮之间相对转动的翅膀,所述惰齿轮夹于螺母和翅膀之间。
优选地,所述主动齿轮、输出齿轮及惰齿轮的所有齿面设置倒角。
优选地,每个所述第二输出蜗杆上设置一与其啮合的齿条,所述齿条为斜齿且连接一移相器。
本发明的有益效果是:
1、本发明由两个电机分别负责动力输入和选择输出,选择带动任意数量的移相器,可有效减少电机的使用数量,结构紧凑,节约空间。
2、输出端可以平铺展开,利于天线布局,且可随需要增减输出数量,设备通用性强。
3、整个换向结构全部使用蜗轮蜗杆传动,降低安装要求,且整个传动 过程均由蜗杆传动到蜗轮,增大逆向传动阻力。最后输出部分通过蜗杆与齿条的连接方式变转动为平动,防止跳齿现象,同时涡轮到蜗杆传动有自锁保护,防止逆向传动,从而防止移相器的位置变动,保证移相器调整精确度。
4、自带减速,不需要额外的电机减速装置。
附图说明
图1是本发明组装后的整体结构示意图;
图2是本发明的爆炸结构示意图;
图3是本发明除去壳体后的整体结构示意图;
图4是本发明传动输入部分的结构示意图;
图5是本发明换挡选择部分的结构示意图;
图6是本发明传动输出部分的部分结构示意图;
图7是本发明传动输出部分的整体结构示意图。
附图标记:
100、传动输入部分,101、主动轴,102、主动齿轮,103、第一电机,104、第一蜗杆,105、第一蜗轮,200、换挡选择部分,201、螺杆,202、第二电机,203、第二蜗杆,204、第二蜗轮,205、最左端的换向齿轮,206、最右端的换向齿轮,207、中间换向齿轮,208、螺母,209、惰齿轮,210、翅膀,300、传动输出部分,301、输出轴,302、轴套,303、输出齿轮,304、第一输出蜗杆,305、第一输出蜗轮,306、第二输出蜗杆,307、齿条,308、输出齿轮组,400、壳体。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
结合图1~图3所示,本发明实施例所揭示的一种天线移相器传动装置,包括传动输入部分100、换挡选择部分200和传动输出部分300,其中,传动输入部分100和换挡选择部分200完全分离,且通过换挡选择部分200选择与传动输出部分300的任意一输出端建立传动连接,从而对与该输出端相连的移相器(图未示)进行相位调整。
具体地,结合图4所示,传动输入部分100包括主动轴101、至少两个主动齿轮102和第一驱动组件,主动齿轮102沿主动轴101的轴向间隔均匀分布,且每个主动齿轮102固定安装在主动轴101上。
第一驱动组件用于驱动主动轴101带动安装在其上的所有主动齿轮102同步转动。具体地,本实施例中,第一驱动组件包括第一电机103、第一蜗杆104和第一蜗轮105,第一电机103的转动轴的延伸方向与主动轴101相垂直,第一蜗杆104与第一电机103的转动轴相连或者与第一电机103公用转动轴,第一电机103驱动自身的转动轴沿轴向转动时,第一蜗杆104则跟着沿轴向同步转动;第一蜗轮105安装在主动轴101上,且位于两个主动齿轮102之间,第一蜗轮105与第一蜗杆104相啮合,两者相配合实现90°换向转动,即第一蜗杆104的转动传送给第一蜗轮105后,第一蜗轮105沿径向同步转动,第一蜗轮105转动的同时带动主动轴101上的所有主动齿轮102同步径向转动。
本实施例中,主动齿轮102和第一蜗轮105均通过卡簧(图未示)定位固定在主动轴101上,且为了使主动齿轮102、第一蜗轮105与主动轴101同步转动,设置主动轴101与主动齿轮102之间、主动轴101与第一蜗轮105之间相接触部分的截面为正六边形。
本发明的传动输入部分,从第一电机103到主动轴101的动力传动选用蜗轮蜗杆结构,不干扰主动齿轮102的安装,使主动齿轮102可根据需要调整位置(如调整主动齿轮间的间距)和数量。相比于现有采用斜齿轮 实现传动的结构来说,蜗轮蜗杆对安装的精度低,很大程度防止跳齿的现象。
结合图5所示,换挡选择部分200具体包括螺杆201、第二驱动组件和传动组件,螺杆201与主动轴101相平行,螺杆201的表面具有外螺纹(图未示)。第二驱动组件用于驱动螺杆201径向转动,其具体包括第二电机202、换向齿轮组、第二蜗杆203和第二蜗轮204,第二电机202的转动轴延伸方向与主动轴101和螺杆201均垂直,第二电机202驱动自身的转动轴轴向转动。
换向齿轮组用于将第二电机202转动轴的轴向转动转换为径向转动,本实施例中,换向齿轮组包括若干个换向齿轮,每个换向齿轮固定在一转轴上,每个转轴的延伸方向也与主动轴101和螺杆201均垂直,换向齿轮之间相啮合,且最外端的两个换向齿轮(为了下面描述方便,这里定义最外端的两个换向齿轮分别为最左端的换向齿轮205和最右端的换向齿轮206,位于最左端和最右端的换向齿轮205、206之间的换向齿轮则定义为中间换向齿轮207),其中最左端的换向齿轮205与第二电机202的转动轴传动相连或者与第二电机202公用转动轴,最右端的换向齿轮206与第二蜗杆203传动连接。这样,第二电机202的转动轴驱动与之相连的最左端的换向齿轮轴205向转动,该换向齿轮205再驱动与之啮合的中间换向齿轮207轴向转动,依次传送到与第二蜗杆203传动连接的最右端的换向齿轮206。
第二蜗杆203与最右端的换向齿轮206的转轴相连或者与最右端的换向齿轮206公用一转轴,最右端的换向齿轮206驱动第二蜗杆203进行同步轴向转动。
第二蜗轮204固定安装在螺杆201上且与第二蜗杆203相啮合,本实施例中,第二蜗轮204固定安装在螺杆201的右端。第二蜗轮204与第二蜗杆203相配合实现90°换向转动,即第二蜗杆203的转动传送给第二蜗 轮204后,第二蜗轮204沿径向同步转动,第二蜗轮204转动的同时带动螺杆201同步转动。
传动组件安装在螺杆201上,用于在螺杆201的带动下沿螺杆201轴向滑动。具体地,本实施例中,传动组件包括螺母208和惰齿轮209,螺母208的内表面设置与螺杆201上的外螺纹相配合的内螺纹(图未示),螺杆201径向转动时带动螺母208沿其轴向滑动;惰齿轮209安转在螺母208上,随螺母208沿螺杆201轴向同步滑动。
优选的,螺母208一端固定有限制螺母208和惰齿轮209之间相对转动的翅膀210,惰齿轮209夹于螺母208和翅膀210之间,同时螺母208上的翅膀210还起到轴肩的作用。
结合图6和图7所示,传动输出部分300具体包括输出轴201和安转在输出轴301上的至少两组输出齿轮组308,输出轴201是不转动的,其负责支撑各组输出齿轮组308,且输出轴201上的各个输出齿轮组308之间运动是相独立的,互不干涉,哪个输出齿轮组308运动取决于换挡选择部分惰齿轮209的运动位置。本实施例中,主动轴101、螺杆201和输出轴301之间的位置关系是三者相互平行,且螺杆201位于主动轴101和输出轴301之间。
每组输出齿轮组308包括轴套302、输出齿轮303和输出组件,轴套302套装在输出轴301上,输出齿轮303安装在轴套302上,且输出齿轮303与传动输入部分的主动齿轮102一一对应(即两者位置和数量都是对应的),输出齿轮303带动轴套302同步转动。换挡选择部分的惰齿轮209根据其不同的滑动位置,选择与不同的主动齿轮102和对应的输出齿轮303相啮合,建立传动连接,实现选择传动。
优选地,为了方便惰齿轮209与主动齿轮102、输出齿轮303的轴向运动啮合,本实施例的主动齿轮102、输出齿轮303及惰齿轮209的所有齿面设置倒角。
每组输出组件包括第一输出蜗杆304、第一输出蜗轮305和第二输出蜗杆306,第一输出蜗杆304也安装在轴套302上,其随轴套302同步径向转动。第一输出蜗轮305与第一输出蜗杆304相啮合,实现90°的换向传动,即第一输出蜗轮305随第一输出蜗杆304同步轴向转动。
第二输出蜗杆306与第一输出蜗轮305传动连接,其与第一输出蜗轮305可共用一转轴或者第二输出蜗杆306的转轴与第一输出蜗轮305的转轴相连,第一输出蜗轮305的转轴延伸方向与输出轴301垂直。第一输出蜗轮305转动传送给第二输出蜗杆306,带动第二输出蜗杆306同步轴向转动。
每个第二输出蜗杆306上还设置一与其啮合的齿条307,齿条307为斜齿且连接一移相器,齿条307随第二输出蜗杆306同步轴向转动,从而带动与之相连的移相器移动,调整其相位。
另外,本实施例的天线移相器传动装置整体安装在一壳体400上,壳体400起支撑和安装各部分组件的作用。
本发明由两个电机分别负责动力输入和选择输出,选择带动任意数量的移相器,结构紧凑,且传动输出部分的输出端可以平铺展开,可随需要增减输出数量。另外,整个换向结构全部使用蜗轮蜗杆传动,降低安装要求,且整个传动过程均由蜗杆传动到蜗轮,增大逆向传动阻力。最后输出部分通过蜗杆与无限大的涡轮的连接方式变转动为平动,防止跳齿现象,同时涡轮到蜗杆传动有自锁保护,防止逆向传动,从而防止移相器的位置变动。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

  1. 一种天线移相器传动装置,其特征在于,包括:传动输入部分、换挡选择部分和传动输出部分,
    所述传动输入部分包括主动轴、轴向固定安装在主动轴上的至少两个主动齿轮及与主动轴传动连接的第一驱动组件;
    所述换挡选择部分包括螺杆、安装在螺杆上的传动组件和与螺杆传动连接的第二驱动组件;
    所述传动输出部分包括输出轴和安转在输出轴上的至少两组输出齿轮组,一组输出齿轮组对应主动轴上的一个主动齿轮;
    所述第一驱动组件驱动主动轴上的主动齿轮同步转动,所述第二驱动组件驱动螺杆转动,所述传动组件在螺杆的带动下沿螺杆轴向滑动,选择主动轴上的任意一主动齿轮与输出轴上对应的一组输出齿轮组建立传动连接。
  2. 根据权利要求1所述的天线移相器传动装置,其特征在于,所述第一驱动组件包括第一电机、与第一电机相连的第一蜗杆和与第一蜗杆相啮合的第一蜗轮,所述第一蜗轮固定安装在主动轴上,所述第一电机驱动第一蜗杆带动第一蜗轮转动,所述第一蜗轮驱动主动轴带动主动齿轮同步转动。
  3. 根据权利要求1所述的天线移相器传动装置,其特征在于,所述第二驱动组件包括第二电机、与第二电机传动连接的第二蜗杆和与第二蜗杆相啮合的第二蜗轮,所述第二蜗轮固定安装在螺杆上,所述第二电机驱动第二蜗杆转动,所述第二蜗杆驱动第二蜗轮带动螺杆转动。
  4. 根据权利要求3所述的天线移相器传动装置,其特征在于,所述第二驱动组件还包括换向齿轮组,所述换向齿轮组包括若干换向齿轮,所述换向齿轮之间相啮合,且最外端的两个换向齿轮的其中一个与第二电机传动连接,另一个与所述第二蜗杆传动连接。
  5. 根据权利要求1所述的天线移相器传动装置,其特征在于,所述传动输出部分的各个输出齿轮组之间运动相对独立。
  6. 根据权利要求1或5所述的天线移相器传动装置,其特征在于,所述输出齿轮组包括套装在输出轴上的轴套、安装在轴套上的输出齿轮和与所述输出齿轮传动连接的输出组件,所述输出齿轮与传动输入部分的主动齿轮一一对应,所述轴套与输出齿轮同步转动。
  7. 根据权利要求6所述的天线移相器传动装置,其特征在于,所述输出组件包括安装在轴套上的第一输出蜗杆、与第一输出蜗杆啮合的第一输出蜗轮和与第一输出蜗轮传动连接的第二输出蜗杆,所述第一输出蜗杆与轴套同步转动,所述第一输出蜗杆带动第一输出蜗轮转动,所述第一输出蜗轮带动第二输出蜗杆转动。
  8. 根据权利要求6所述的天线移相器传动装置,其特征在于,所述传动组件包括固定安装在螺杆上的螺母和安转在螺母上的惰齿轮,所述惰齿轮在螺母的带动下沿螺杆轴向滑动,选择与主动轴上的任意一主动齿轮和输出轴上的对应输出齿轮同时啮合,建立传动连接。
  9. 根据权利要求1所述的天线移相器传动装置,其特征在于,所述螺杆位于主动轴和输出轴之间,且所述螺杆、主动轴和输出轴三者均相互平行。
  10. 根据权利要求3所述的天线移相器传动装置,其特征在于,所述每个第二输出蜗杆上安装有一与其啮合的齿条,所述齿条为斜齿且连接一移相器。
PCT/CN2018/107606 2017-11-07 2018-09-26 一种天线移相器传动装置 WO2019091239A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/813,929 US11303019B2 (en) 2017-11-07 2020-03-10 Transmission device for antenna phase shifter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711085332.4A CN109755747A (zh) 2017-11-07 2017-11-07 一种天线移相器传动装置
CN201711085332.4 2017-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/813,929 Continuation US11303019B2 (en) 2017-11-07 2020-03-10 Transmission device for antenna phase shifter

Publications (1)

Publication Number Publication Date
WO2019091239A1 true WO2019091239A1 (zh) 2019-05-16

Family

ID=66400049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107606 WO2019091239A1 (zh) 2017-11-07 2018-09-26 一种天线移相器传动装置

Country Status (3)

Country Link
US (1) US11303019B2 (zh)
CN (1) CN109755747A (zh)
WO (1) WO2019091239A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922013A (zh) * 2021-09-30 2022-01-11 京信通信技术(广州)有限公司 移相选频装置及多频天线
EP4075591A1 (en) * 2021-04-14 2022-10-19 CommScope Technologies LLC Transmission mechanism for base station antenna and base station antenna
US20230307830A1 (en) * 2020-08-20 2023-09-28 Commscope Technologies Llc Transmission mechanism for base station antenna and base station antenna

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755747A (zh) * 2017-11-07 2019-05-14 罗森伯格技术(昆山)有限公司 一种天线移相器传动装置
CN108506448B (zh) * 2017-12-06 2020-01-17 深圳市兆威机电股份有限公司 多频天线传动装置
CN110492246B (zh) * 2019-08-13 2021-05-28 中信科移动通信技术有限公司 基站天线电下倾角调节传动机构及基站天线
CN110911841B (zh) * 2019-11-22 2024-05-28 京信通信技术(广州)有限公司 天线、传动装置及切换机构
CN112555372A (zh) * 2020-12-11 2021-03-26 中国南方电网有限责任公司超高压输电公司百色局 双轴传动丝杠
CN213602013U (zh) * 2020-12-29 2021-07-02 罗森伯格技术有限公司 用于天线的传动装置
CN112688078A (zh) * 2020-12-29 2021-04-20 京信通信技术(广州)有限公司 多频天线、移相装置及传动机构
CN112864623B (zh) * 2020-12-31 2022-08-19 京信通信技术(广州)有限公司 多频天线及其选频调相装置
WO2022199801A1 (en) * 2021-03-23 2022-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Antenna comprising at least two phase shifters
WO2022226691A1 (zh) * 2021-04-25 2022-11-03 摩比天线技术(深圳)有限公司 一种天线传动装置及天线
CN113937495B (zh) * 2021-10-14 2022-08-05 广东领控视觉智能科技有限公司 一种传动装置和采用该传动装置的天线设备
CN116544673A (zh) * 2022-01-26 2023-08-04 普罗斯通信技术(苏州)有限公司 移相器传动装置及天线
CN114583444B (zh) * 2022-03-16 2022-10-04 中土集团福州勘察设计研究院有限公司 一种桥梁通信天线
CN114465005A (zh) * 2022-03-24 2022-05-10 广东博纬通信科技有限公司 一种电下倾角调整装置及基站天线
CN114843752B (zh) * 2022-05-10 2023-02-28 青田百凯通讯科技有限公司 一种卫星天线可调式固定装置和卫星天线
CN116073583B (zh) * 2023-03-07 2023-07-14 中兴通讯股份有限公司 一种电调天线下倾角调节装置及电调天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496769A (zh) * 2011-11-14 2012-06-13 武汉虹信通信技术有限责任公司 一种应用于二维电调天线的传动装置
CN204577599U (zh) * 2015-05-05 2015-08-19 广东通宇通讯股份有限公司 一种移相器传动装置
KR101600832B1 (ko) * 2014-09-24 2016-03-08 주식회사 에이스테크놀로지 위상 가변기 구동 시스템 및 방법
CN105720370A (zh) * 2016-01-25 2016-06-29 华为技术有限公司 一种天线方位角调节装置
CN207559071U (zh) * 2017-11-07 2018-06-29 罗森伯格技术(昆山)有限公司 一种天线移相器传动装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239744B1 (en) * 1999-06-30 2001-05-29 Radio Frequency Systems, Inc. Remote tilt antenna system
EP3098904B1 (en) * 2014-02-10 2018-04-11 Huawei Technologies Co., Ltd. Antenna regulation apparatus and remote electrical tilt antenna
CN107210519B (zh) * 2015-02-24 2019-09-20 康普技术有限责任公司 具有带有定位马达和驱动马达的中继构造的多ret致动器
CN107366715B (zh) * 2016-05-13 2022-01-28 康普技术有限责任公司 具有可选择联动件的致动器齿轮箱
CN109314308A (zh) * 2016-06-15 2019-02-05 康普技术有限责任公司 用于控制远程电子下倾基站天线的多个移相器的致动器
CN106641159B (zh) * 2017-01-24 2023-06-27 昆山恩电开通信设备有限公司 换挡式多路移相器驱动传动装置
CN109755747A (zh) * 2017-11-07 2019-05-14 罗森伯格技术(昆山)有限公司 一种天线移相器传动装置
CN112042050A (zh) * 2018-05-01 2020-12-04 康普技术有限责任公司 具有用于控制多个移相器的紧凑远程电子倾斜致动器的基站天线
WO2020013992A1 (en) * 2018-07-12 2020-01-16 Commscope Technologies Llc Remote electronic tilt base station antennas having adjustable ret linkages
CN111412261A (zh) * 2019-01-04 2020-07-14 康普技术有限责任公司 用于基站天线的操纵器组件
US11239543B2 (en) * 2019-06-27 2022-02-01 Commscope Technologies Llc Base station antennas having phase-error compensation and related methods of operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496769A (zh) * 2011-11-14 2012-06-13 武汉虹信通信技术有限责任公司 一种应用于二维电调天线的传动装置
KR101600832B1 (ko) * 2014-09-24 2016-03-08 주식회사 에이스테크놀로지 위상 가변기 구동 시스템 및 방법
CN204577599U (zh) * 2015-05-05 2015-08-19 广东通宇通讯股份有限公司 一种移相器传动装置
CN105720370A (zh) * 2016-01-25 2016-06-29 华为技术有限公司 一种天线方位角调节装置
CN207559071U (zh) * 2017-11-07 2018-06-29 罗森伯格技术(昆山)有限公司 一种天线移相器传动装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230307830A1 (en) * 2020-08-20 2023-09-28 Commscope Technologies Llc Transmission mechanism for base station antenna and base station antenna
US11984662B2 (en) * 2020-08-20 2024-05-14 Commscope Technologies Llc Transmission mechanism for base station antenna and base station antenna
EP4075591A1 (en) * 2021-04-14 2022-10-19 CommScope Technologies LLC Transmission mechanism for base station antenna and base station antenna
US11909095B2 (en) 2021-04-14 2024-02-20 Commscope Technologies Llc Transmission mechanism for base station antenna and base station antenna
CN113922013A (zh) * 2021-09-30 2022-01-11 京信通信技术(广州)有限公司 移相选频装置及多频天线

Also Published As

Publication number Publication date
US20200212565A1 (en) 2020-07-02
CN109755747A (zh) 2019-05-14
US11303019B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2019091239A1 (zh) 一种天线移相器传动装置
CN207559071U (zh) 一种天线移相器传动装置
US10461419B2 (en) Antenna adjustment apparatus and remote electrical tilt antenna
US20110275477A1 (en) Planetary gear speed reducer
WO2021135403A1 (zh) 天线、传动装置及切换机构
CN109216925B (zh) 天线电下倾角调节的传动装置
EP2796750B1 (en) Epicyclic gear train
CN112864623B (zh) 多频天线及其选频调相装置
CN112821075B (zh) 多频天线及其调相用切换控制机构
CN108458079B (zh) 电调天线的相位调节系统及其传动装置
WO2020052181A1 (zh) 一种电调天线传动选择切换装置
CN208500221U (zh) 一种伸缩式升降装置
WO2023179334A1 (zh) 一种电下倾角调整装置及基站天线
CN109347247B (zh) 电调天线传动装置
CN112582766A (zh) 多频天线及其移相用切换控制机构
CN113540796B (zh) 多频天线、选频调相机构及装置
WO2022141325A1 (zh) 一种天线齿轮箱传动机构以及天线
CN211605413U (zh) 天线、传动装置及切换机构
CN108092002B (zh) 天线电下倾角的控制装置
CN106785450B (zh) 天线及其下倾角控制装置
US20110132117A1 (en) Variable torque transmitting device
CN210668695U (zh) 一种移相传动结构及其天线
CN109244671B (zh) 一种天线换挡机构
CN113540797B (zh) 可选调相控制机构、选频调相装置及多频天线
CN210461549U (zh) 用于蒸笼机的传动结构及蒸笼机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877034

Country of ref document: EP

Kind code of ref document: A1