WO2022141325A1 - 一种天线齿轮箱传动机构以及天线 - Google Patents

一种天线齿轮箱传动机构以及天线 Download PDF

Info

Publication number
WO2022141325A1
WO2022141325A1 PCT/CN2020/141858 CN2020141858W WO2022141325A1 WO 2022141325 A1 WO2022141325 A1 WO 2022141325A1 CN 2020141858 W CN2020141858 W CN 2020141858W WO 2022141325 A1 WO2022141325 A1 WO 2022141325A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
driving gear
driving
driven gear
driven
Prior art date
Application number
PCT/CN2020/141858
Other languages
English (en)
French (fr)
Inventor
何劲业
桑建斌
孔德元
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080107281.4A priority Critical patent/CN116458005A/zh
Priority to EP20967664.2A priority patent/EP4258477A4/en
Priority to BR112023013097A priority patent/BR112023013097A2/pt
Priority to PCT/CN2020/141858 priority patent/WO2022141325A1/zh
Publication of WO2022141325A1 publication Critical patent/WO2022141325A1/zh
Priority to US18/344,335 priority patent/US20230352830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/08Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary motion and oscillating motion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters

Definitions

  • the present application relates to the technical field of antennas, and in particular, to an antenna gearbox transmission mechanism and an antenna.
  • the radiating surface of the mobile communication antenna is adjusted according to the phase change of the radiating unit of the antenna, and the ESC antenna is the mainstream antenna of the current mobile communication antenna. Transmission control of inclination.
  • the phase adjustment of the upper and lower arrays of the control phase shifter is realized by driving two driving motors respectively.
  • the two driving motors increase the cost of the mobile communication antenna, and the use of dual driving motors has the problem of complex and difficult layout.
  • the embodiments of the present application provide an antenna gearbox transmission mechanism and an antenna, which can solve the problem of difficult layout of dual-drive motors and realize the phase adjustment function of controlling the upper and lower arrays of the antenna through single-motor transmission.
  • an antenna gearbox transmission mechanism in a first aspect, includes a drive shaft, a first transmission structure and a second transmission structure, the first transmission structure includes a first driving gear and a first driven gear set, and the first driven gear set includes at least one first driven gear.
  • the second transmission structure includes a second driving gear and a second driven gear, and both the first driving gear and the second driving gear are in driving connection with the drive shaft.
  • the first driven gear set is used for driving connection with the first antenna array phase shifter
  • the second driven gear is used for driving connection with the second antenna array phase shifter.
  • the first driving gear meshes with the first driven gear set, and when the second driving gear moves, the second driving gear meshes with or separates from the second driven gear.
  • the first driven gear set in the first transmission structure is drivingly connected with the first antenna array phase shifter on the antenna, and the second transmission structure
  • the second driven gear is drivingly connected to the second antenna array phase shifter on the antenna, so as to realize the independent control of the first antenna array phase shifter and the second antenna array phase shifter
  • the driving gear is drivingly connected with the same drive shaft to realize the phase adjustment of the first antenna array phase shifter and the second antenna array phase shifter controlled by a single drive motor; by setting the first driving gear to mesh with the first driven gear set,
  • the second driving gear is arranged to be engaged with or disengaged from the second driven gear, the first driving gear can transmit all the power of the drive shaft to the first driven gear set, and the second driving gear can be engaged with the second driven gear.
  • the single drive motor can control the independent phase adjustment amplitude of the first antenna array phase shifter and the second array phase shifter, that is, the single drive motor can control the first phase shifter.
  • the antenna array phase shifter and the second array phase shifter perform different phase adjustments.
  • the second driving gear is provided with partial gear teeth
  • the second driven gear is provided with complete gear teeth
  • the second driving gear is partially meshed with the second driven gear, so that when the second driving gear is moving, the second driving gear and the second driven gear Gears mesh or disengage.
  • the first driven gear realizes forward rotation and reverse rotation
  • the second driven gear realizes forward rotation or reverse rotation
  • forward rotation and reverse rotation can be realized by setting the first driven gear, and when the drive shaft rotates in one direction, the first antenna array phase shifter connected to the first transmission structure can be bidirectionally rotated. Adjustment, by setting the second driven gear to realize forward rotation or reverse rotation, when the drive shaft rotates in one direction, the second antenna array phase shifter connected to the second transmission structure can be unidirectionally adjusted.
  • both the first driving gear and the second driving gear are racks, and the first driving gear and the second driving gear move synchronously and move linearly.
  • the length of the rack of the first driving gear is greater than the length of the rack of the second driving gear.
  • the first driving gear and the second driving gear are driven to perform linear motion synchronously, which is convenient for the phase shift of the first antenna array.
  • the motion of the phase shifter and the second antenna array is controlled.
  • the first driving gear is a rectangular rack, and the rectangular rack is provided with a forward rack and a reverse rack; the second driving gear is provided with a forward rack or Reverse rack.
  • the first driving gear as a rectangular rack
  • by setting the forward rack and the reverse rack it is beneficial to realize the first driven gear
  • the forward rotation and reverse rotation of the first antenna array can realize bidirectional adjustment of the phase shifter of the first antenna array.
  • the first driving gear and the second driving gear are integrally formed.
  • the drive shaft drives one of the gears to move, so that the synchronous movement of the first driving gear and the second driving gear can be realized, the connection structure is simplified, and the layout can be simpler.
  • a connecting block is provided on the first driving gear and/or the second driving gear, and the connecting block is threadedly connected to the drive shaft.
  • the connecting block is threadedly connected with the drive shaft, and when the drive shaft rotates, the connecting block can perform linear motion along the axis of the drive shaft , so as to drive the first driving gear and/or the second driving gear to perform linear motion.
  • the first driving gear and the second driving gear are connected together or integrally formed, only one of the driving gears is required to be provided with a connecting block.
  • the first driving gear and the second driving gear are synchronized to perform linear motion.
  • the first driven gear set includes two first driven gears, the two first driven gears are symmetrically arranged with respect to the center of the first driving gear, and the first driven gear A half-circle of gear teeth meshing with the first driven gear is provided.
  • the total length of the teeth on the second driving gear that mesh with the second driven gear is less than the circumference of the second driving gear.
  • the first driving gear is only connected to one of the first driven gears.
  • the driven gears are meshed with each other, so that when the first driving gear rotates one circle, one of the first driven gears rotates in the forward direction, and the other first driven gear rotates in the reverse direction.
  • the second driving gear By setting the total length of the gear teeth on the second driving gear that mesh with the second driven gear is smaller than the circumference of the second driving gear, that is, the second driving gear is provided with a part of the gear teeth, the second driven gear and the second driven gear
  • the driving gear is partially meshed, and when the second driving gear rotates once, the part without gear teeth cannot drive the second driven gear to rotate, so as to realize the control of the phase adjustment range of the second antenna array phase shifter, and the second
  • the driving gear is partially meshed with the second driven gear, and when the second driving gear rotates in a certain direction, it can only drive the second driven gear to rotate in one direction.
  • the specifications of the first driving gear and the second driving gear are the same.
  • the layout is convenient, and the adjustment range of the array phase shifter can be easily controlled.
  • both the first driven gear and the second driven gear are bevel gears.
  • first driven gear and the second driven gear as bevel gears, they can better cooperate with the corresponding first driving gear and the second driving gear, and the bevel gear can change the transmission direction of the power, which is convenient for the driving shaft Structure layout with the position of the array phase shifter.
  • the first drive gear and the drive shaft and the second drive gear and the drive shaft are all driven by a worm gear.
  • the transmission between the drive shaft and the first driving gear and the driving shaft and the second driving gear is realized by means of worm gear transmission. This arrangement is conducive to making full use of the space and changing the transmission direction of the power at the same time.
  • the first transmission structure includes a first transmission shaft, and the first transmission shaft is in driving connection with the first driven gear set;
  • the second transmission structure includes a second transmission shaft, and the second transmission The shaft is drivingly connected with the second driven gear.
  • One or more pairs of output gears are arranged on the first transmission shaft, and one or more pairs of output gears are arranged on the second transmission shaft.
  • the output gear meshes with the first antenna array phase shifter, so as to transmit the power of the first driven gear set to the first driven gear set.
  • An antenna array phase shifter by arranging a second transmission shaft, and disposing an output gear on the second transmission shaft, the output gear meshes with the second antenna array phase shifter, so as to transmit the power of the second driven gear to the The second antenna array phase shifter.
  • an antenna in a second aspect, includes a first antenna array phase shifter, a second antenna array phase shifter, and the transmission mechanism of the antenna gear box provided in the above-mentioned first aspect, and the first antenna array phase shifter is drivingly connected to the first driven gear set, The second antenna array phase shifter is drivingly connected with the second driven gear.
  • the above-mentioned antenna has the same technical effect as the transmission mechanism of the antenna gear box provided in the foregoing embodiment, which will not be repeated here.
  • FIG. 1 is one of the schematic diagrams of application scenarios of the transmission mechanism of the antenna gearbox provided by the embodiment of the present application;
  • FIG. 2 is one of the schematic structural diagrams of the transmission mechanism of the antenna gearbox provided by the embodiment of the application;
  • FIG 3 is the second schematic diagram of the structure of the transmission mechanism of the antenna gearbox and the second schematic diagram of the application scenario provided by the embodiment of the present application;
  • Fig. 4 is the exploded schematic diagram of the first transmission structure in the transmission mechanism of the antenna gear box shown in Fig. 2;
  • FIG. 5 is an exploded schematic view of the second transmission structure in the transmission mechanism of the antenna gearbox shown in FIG. 2 .
  • 10-drive shaft 20-first driving gear; 201-forward rack; 202-reverse rack; 21-first turbine; 22-first driving gear tooth; 30-second driving gear; 31-second turbine; 32-second driving gear teeth; 40-first driven gear; 50-second driven gear; 60-first transmission shaft; 70-second transmission shaft; 80-output gear; 90 -connecting block; 100-first antenna array phase shifter; 110-second antenna array phase shifter; 120-worm; 131-first upper fixing seat; 132-first lower fixing seat; 141-second upper fixing seat; 142-Second lower fixed seat.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • references throughout the specification to "one embodiment,” “an embodiment,” and “one possible implementation” mean that a particular feature, structure, or characteristic related to the embodiment or implementation is included in the present application at least one embodiment of .
  • appearances of "in one embodiment” or “in an embodiment of the application”, “one possible implementation” in various places throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • an embodiment of the present application provides an antenna gear box transmission mechanism, so as to realize the phase adjustment function of controlling the upper and lower arrays of the antenna through the transmission of a single motor. 5 Describes the embodiments of the present application.
  • FIG. 1 is one of the schematic diagrams of the application scenarios of the transmission mechanism of the antenna gearbox provided by the embodiment of the application
  • FIG. 2 is one of the schematic structural diagrams of the transmission mechanism of the antenna gearbox provided by the embodiment of the application
  • the transmission mechanism of the antenna gearbox shown in FIG. 2 is applied to the application scenario provided in FIG. 1
  • FIG. 3 is the second schematic structural diagram and the second schematic diagram of the application scenario provided by the antenna gearbox transmission mechanism according to the embodiment of the present application.
  • an antenna gearbox transmission mechanism includes: a drive shaft 10, a first transmission structure and a second transmission structure, the first transmission structure includes a first driving gear 20 and a first driven gear set, and the first driven gear set includes at least one first driven gear Gear 40.
  • the number of the first driven gears 40 can be set according to the actual layout requirements and the first driven gear 40.
  • the motion requirements of an antenna array phase shifter 100 are determined.
  • the first driving gear 20 is in driving connection with the driving shaft 10.
  • the driving shaft 10 is the power output shaft of the driving motor.
  • the first driving gear 20 is meshed with the first driven gear set to transmit the power of the driving motor to the first driven gear.
  • the first driven gear set transmits the power to the first antenna array phase shifter 100 through the transmission structure.
  • the meshing of the first driving gear 20 with the first driven gear set means that the first driving gear 20 meshes with the first driven gear 40 in the first driven gear set.
  • the first driven gear set includes only one first driven gear 40, the first driving gear 20 meshes with the first driven gear 40; when the first driven gear set includes a plurality of first driven gears 40 , the first driving gear 20 meshes with one of the first driven gears 40 in the first driven gear set.
  • the second transmission structure includes a second driving gear 30 and a second driven gear 50 , and the second driven gear 50 is used for drivingly connecting with the second antenna array phase shifter 110 .
  • the second driving gear 30 is drivingly connected with the drive shaft 10 to transmit the power of the driving motor to the second driving gear 30 .
  • the second driving gear 30 moves, the second driving gear 30 meshes with or separates from the second driven gear 50 .
  • the fact that the second driving gear 30 and the second driven gear 50 are meshed or separated means that when the second driving gear 30 moves, the second driven gear 50 and the second driving gear 30 will not be in mesh all the time. Instead, it is constantly switched between the meshing state and the disengaging state, that is, the second driving gear 30 and the second driven gear 50 are in a partially meshed state. Therefore, when the second driven gear 50 is drivingly connected to the second antenna array phase shifter 110 through the transmission structure, only part of the power on the driving motor can be transmitted to the second antenna array phase shifter 110 .
  • the first transmission structure and the second transmission structure are mainly realized in the form of gear transmission, but the implementation forms of the first transmission structure and the second transmission structure are not limited, and gear transmission, chain transmission or One or more combinations in the belt drive are equivalently transformed.
  • the antenna gearbox transmission mechanism in the embodiment of the present application is mainly applied to the antenna, and is used to transmit the power of the driving motor to the antenna array phase shifter in the antenna.
  • the antenna in the embodiment of the present application includes a first antenna array phase shifter 100 and a second antenna array phase shifter 110.
  • the first driven gear set in the first transmission structure is used for driving connection with the first antenna array phase shifter 100
  • the second driven gear 50 in the second transmission structure is used for connecting with the second antenna array phase shifter 110 drive connection.
  • the first transmission structure and the second transmission structure are two independent transmission structures, and the power source of the first transmission structure and the second transmission structure can be the same drive motor.
  • the first driven gear set in the first transmission structure is drivingly connected with the first antenna array phase shifter 100 on the antenna, and the second transmission structure
  • the second driven gear 50 is drivingly connected with the second antenna array phase shifter 110 on the antenna, so as to realize the independent control of the first antenna array phase shifter 100 and the second antenna array phase shifter 110;
  • the driving gear 20 and the second driving gear 30 are drivingly connected with the same drive shaft 10, so that only one driving motor can be arranged to drive the first transmission structure and the second transmission structure to move independently, thereby driving the first antenna array phase shifter 100 and the second transmission structure.
  • the second antenna array phase shifter 110 performs independent phase adjustment; by setting the first driving gear 20 to mesh with the first driven gear set, setting the second driving gear 30 to mesh or separate from the second driven gear 50, the first driving gear
  • the gear 20 can transmit the full power of the drive shaft 10 to the first driven gear set, while the second driving gear 30 can transmit part of the power of the drive shaft 10 to the second driven gear when meshing with the second driven gear 50 50, so as to realize the control of the independent phase adjustment amplitude of the first antenna array phase shifter 100 and the second array phase shifter by a single drive motor, that is, to realize the single drive motor to control the first antenna array phase shifter 100 and the second array phase shifter.
  • the phaser performs different phase adjustments.
  • power transmission can be realized between the first driven gear set and the first antenna array phase shifter 100 by means of gear transmission, and the second driven gear 50 and the second antenna array phase shifter 110 Power transmission can also be achieved by means of gear transmission.
  • the power between the first driven gear set and the first antenna array phase shifter 100 and between the second driven gear 50 and the second antenna array phase shifter 110 can also be driven by other means Transmission, such as chain drive, belt drive, or a combination of multiple transmission modes, such as a combination of gear drive and chain drive, or a combination of gear drive and belt drive, etc., those skilled in the art can choose according to the needs of design, layout, etc. or combination.
  • the following takes gear transmission as an example to introduce the embodiments of the present application between the first driven gear set and the first antenna array phase shifter 100 , and between the second driven gear 50 and the second antenna array phase shifter 110 . form of power transmission.
  • the first driven gear 40 in the first driven gear set is fixed on the first transmission shaft 60 , and the first transmission shaft 60 is provided with a non-rotatable relative to the first transmission shaft 60 .
  • the output gear 80 that is, the output gear 80 may be fixedly arranged on the first transmission shaft 60 .
  • the first antenna array phase shifter 100 is provided with gear teeth that mesh with the output gear 80 on the first transmission shaft 60 .
  • the number of phase shifters corresponds.
  • the second driven gear 50 is fixed on the second transmission shaft 70 , and the second transmission shaft 70 is provided with an output gear 80 that cannot rotate relative to the second transmission shaft 70 , that is, the output gear 80 It may be fixedly arranged on the second transmission shaft 70 .
  • the second antenna array phase shifter 110 is provided with gear teeth that mesh with the output gear 80 on the second transmission shaft 70 .
  • the number of phase shifters corresponds.
  • some gear teeth are provided on the second driving gear 30 .
  • the second driving gear 30 is partially meshed with the second driven gear 50, so that when the second driving gear 30 is moving, the second driving gear 30 and the second driven gear The gears 50 are meshed or disengaged. Since the second driven gear 50 is driven by the second driving gear 30 and has no power itself, generally complete gear teeth are provided on the second driven gear 50 to ensure that the second driven gear 50 can interact with the The part of the second driving gear 30 provided with the gear teeth meshes to realize partial transmission of power.
  • the first driven gear 40 realizes forward rotation and reverse rotation
  • the second driven gear 50 realizes forward rotation or reverse rotation
  • the first driven gear 40 realizes forward rotation and reverse rotation, which means that the first driven gear 40 first rotates forwardly and then reversely rotates. ; Or, the first driven gear 40 firstly rotates in the reverse direction, and then rotates in the forward direction.
  • the second driven gear 50 realizes forward rotation or reverse rotation, which means that when the drive shaft 10 only rotates in one direction, the second driven gear 50 can only rotate in one direction, and the one-way motion can be either a forward motion or a is the reverse movement.
  • the first driven gear 40 by setting the first driven gear 40, forward rotation and reverse rotation can be realized, and when the drive shaft 10 rotates in one direction, the first antenna array phase shifter 100 connected to the first transmission structure can be adjusted Bidirectional adjustment is performed, that is, the first antenna array phase shifter 100 can perform reciprocating motion to realize phase adjustment.
  • the second driven gear 50 By setting the second driven gear 50 to realize forward rotation or reverse rotation, when the drive shaft 10 rotates in one direction, the second antenna array phase shifter 110 connected to the second transmission structure can be unidirectionally adjusted, That is, the second antenna array phase shifter 110 moves in one direction.
  • FIG. 2 is one of the schematic structural diagrams of the transmission mechanism of the antenna gear box provided by the embodiment of the present application.
  • the first driving gear 20 and the second driving gear 30 are both racks, and the first driving gear 20 and the second driving gear 30 move synchronously and move linearly.
  • the length of the rack of the first driving gear 20 is greater than the length of the rack of the second driving gear 30 .
  • the first driving gear 20 and the second driving gear 30 are both arranged in the form of racks. Since the first driving gear 20 and the second driving gear 30 are both connected to the drive shaft 10 in a driving manner, the drive shaft 10 rotates , the first driving gear 20 and the second driving gear 30 can be driven to move synchronously.
  • the first driving gear 20 and the second driving gear 30 are both racks. Therefore, the movement form of the first driving gear 20 and the second driving gear 30 is set to be linear movement, which is convenient for driving the first driven gear set and the second driving gear set.
  • the driven gear 50 moves.
  • the first driving gear 20 and the second driving gear 30 By setting both the first driving gear 20 and the second driving gear 30 as racks, when the drive shaft 10 rotates, the first driving gear 20 and the second driving gear 30 are driven to perform linear motion synchronously, so as to facilitate the phase shifting of the first antenna array
  • the motion of the phase shifter 100 and the second antenna array phase shifter 110 is controlled.
  • the phase adjustment amplitude of the first antenna array phase shifter 100 can be realized, which is greater than that of the second antenna array phase shifter 110 .
  • the phase adjustment amplitude can be adjusted independently, so as to realize the independent adjustment of different antenna array phase shifters and control the adjustment amplitude of different antenna array phase shifters.
  • the first driving gear 20 and the second driving gear 30 are integrally formed. As shown in FIG. 2 , since the first driving gear 20 and the second driving gear 30 are both configured as racks, and both the first driving gear 20 and the second driving gear 30 are driven by the drive shaft 10 , they perform linear motion synchronously. Therefore, the first driving gear 20 and the second driving gear 30 can be integrally formed, which can improve the production efficiency of the first driving gear 20 and the second driving gear 30, and is beneficial to realize the first driving gear 20 and the second driving gear 30. Synchronized movement of the gears 30 .
  • connection structure when the first driving gear 20 and the second driving gear 30 are connected to the drive shaft 10 can be simplified, and the drive shaft 10 can drive the first driving gear 20 and the second driving gear 30 to synchronize with one driving connection structure.
  • exercise you can simplify the layout.
  • a connecting block 90 is provided on the first driving gear 20 and/or the second driving gear 30 , and the connecting block 90 is threadedly connected with the drive shaft 10 .
  • the transmission connection between the first driving gear 20 and the second driving gear 30 and the drive shaft 10 can be realized in various forms, such as gear transmission, chain transmission, belt transmission or thread transmission.
  • the driving gear 20 and the second driving gear 30 are in the form of racks. Therefore, in this embodiment, the transmission connection is performed in the form of a threaded transmission.
  • the drive shaft 10 is provided with an external thread
  • the first drive gear 20 and/or the second drive gear 30 is provided with a connection block 90
  • the connection block 90 is provided with an external thread matched with the drive shaft 10 .
  • the design of the thread is based on the fact that when the drive shaft 10 rotates, the connecting block 90 can move back and forth along the axis of the drive shaft 10 .
  • a connecting block 90 is arranged on the first driving gear 20 or the second driving gear 30, so that the drive shaft 10 can drive the first driving gear 20 and the The second driving gear 30 performs a synchronous linear movement along the axis of the drive shaft 10 .
  • a connecting block 90 may be provided on the first driving gear 20 and the second driving gear 30 respectively, and the two connecting blocks 90 are both connected to the drive shaft. 10 threaded connection can also realize that the drive shaft 10 drives the first drive gear 20 and the second drive gear 30 to perform synchronous linear motion along the axis of the drive shaft 10 .
  • the first driving gear 20 is a rectangular rack, and the rectangular rack is provided with a forward rack 201 and a reverse rack 202; the second driving gear 30 is provided with a forward rack or a reverse rack to the rack.
  • the first driven gear set includes a first driven gear 40 .
  • the first driving gear 20 is provided with a forward rack 201 and a reverse rack 202, and the forward rack 201 and the reverse rack 202 are respectively located on the upper and lower sides of the inner side of the rectangular rack.
  • the second driving gear 30 is only provided with a forward rack or a reverse rack, that is, a rack is only provided on one side.
  • the rack length of the first drive gear 20 includes the length of the forward rack 201 and the length of the reverse rack 202.
  • the second driven gear 50 Since the length of the rack of the first drive gear 20 is greater than the length of the rack of the second drive gear 30, when When the movement strokes of the first driving gear 20 and the second driving gear 30 are equal to the length of the rack of the first driving gear 20 , the second driven gear 50 is in a stop state within a part of the stroke of the second driving gear 30 .
  • the length of the rack of the second driving gear 30 equal to the length of the forward rack 201 of the first driving gear 20 as an example, the first driving gear 20 and the first driven gear set, the second driving gear 30 and the The motion state of the second driven gear 50 will be described.
  • the direction of the first driving gear 20 approaching the drive shaft 10 is set as downward, and the direction of the first driving gear 20 away from the drive shaft 10 is set as upward.
  • the connecting block 90 threadedly connected with the drive shaft 10 will be driven to move downward in a straight line along the axis of the drive shaft 10 , and the connecting block 90 will drive the first driving gear 20 and the second driving
  • the gear 30 performs a downward linear movement along the axis of the drive shaft 10 , and the rotation of the drive shaft 10 can be controlled so that the movement stroke of the first drive gear 20 and the second drive gear 30 is the length of the rack of the first drive gear 20 .
  • the first driven gear 40 first meshes with the forward rack 201, driving the first transmission shaft 60 to rotate counterclockwise, and then the first driven gear 40 and the reverse rack 202 engages to drive the first transmission shaft 60 to rotate clockwise, and the first transmission shaft 60 drives the first antenna array phase shifter 100 to move up and down through the output gear 80 fixedly arranged thereon, so as to realize the phase adjustment of the antenna.
  • the second driven gear 50 meshes with the gear teeth on the second driving gear 30, and the second driving gear 30 drives the second driven gear 50 clockwise.
  • the second driven gear 50 drives the second transmission shaft 70 to rotate, and the second transmission shaft 70 drives the second antenna array phase shifter 110 to move through the output gear 80 fixed thereon.
  • the movable gear 50 rotates in one direction, so the second antenna array phase shifter 110 can only move in one direction.
  • the rotation direction of the second driven gear 50 depends on whether the rack provided on the second driving gear 30 is a forward rack or a reverse rack.
  • the length of the rack of the second driving gear 30 is equal to the length of the forward rack 201 of the first driving gear 20 , when the movement stroke of the second driving gear 30 exceeds the length of the forward rack 201 . At this time, there are no gear teeth on the second driving gear 30 that mesh with the second driven gear 50 , so that the second driven gear 50 is in a stopped state, and the second antenna array phase shifter 110 also stops moving.
  • the first driving gear 20 and the first driven gear 40 are always in meshing state, which will drive the first driven gear 40 to rotate all the time, so as to realize the position adjustment of the first antenna array phase shifter 100 .
  • the reverse adjustment of the first antenna array phase shifter 100 and the second antenna array phase shifter can be achieved by adjusting the rotation direction of the drive shaft 10, such as adjusting the drive shaft 10 to rotate in a direction opposite to the preset direction. 110 position, so as to realize the reverse adjustment of the phase change of the antenna.
  • the first driving gear 20 by setting the first driving gear 20 as a rectangular rack, it is advantageous to arrange the forward rack 201 and the reverse rack 202.
  • the forward rack 201 and the reverse rack 202 By setting the forward rack 201 and the reverse rack 202, there are It is beneficial to realize forward rotation and reverse rotation of the first driven gear 40 , thereby realizing bidirectional adjustment of the first antenna array phase shifter 100 .
  • FIG. 3 is the second schematic diagram of the structure of the transmission mechanism of the antenna gearbox and the second schematic diagram of the application scenario provided by the embodiment of the application
  • FIG. 4 is the second schematic diagram of the transmission mechanism of the antenna gearbox shown in FIG. 2 .
  • FIG. 5 is an exploded schematic diagram of the second transmission structure in the transmission mechanism of the antenna gear box shown in FIG. 2 .
  • the first driven gear set includes two first driven gears 40 , and the two first driven gears 40 are related to the first driving gear 20
  • the center is symmetrically arranged, and the first driving gear 20 is provided with a half-circle of gear teeth that mesh with the first driven gear 40 .
  • the total length of the gear teeth on the second driving gear 30 that mesh with the second driven gear 50 is smaller than the circumference of the second driving gear 30 .
  • a half-circle of gear teeth meshing with the first driven gear 40 is arranged on the first driving gear 20, and then two first driven gears are arranged on both sides of the first driving gear 20, and the two first driven gears are about The center of the first driving wheel is symmetrically arranged.
  • the first driving gear 20 rotates once, the first driving gear 20 will mesh with the two first driven gears respectively. Since the two first driven gears 40 are arranged on both sides of the first driving gear 20, the two The rotation directions of the first driven gears 40 are opposite.
  • the total length of the gear teeth on the second driving gear 30 that mesh with the second driven gear 50 is less than the circumference of the second driving gear 30 , that is, when the second driving gear 30 rotates once, the second driving gear 30 and the second driving gear
  • the driven gear 50 is partially meshed.
  • the first driving gear 20 is only connected to one of the first driving gears 20.
  • the first driven gears 40 are meshed with each other, so that when the first driving gear 20 makes one revolution, one of the first driven gears 40 rotates in the forward direction, and the other first driven gear 40 rotates in the reverse direction.
  • the second driving gear 30 is provided with some gear teeth, the second driven gear The gear 50 is partially meshed with the second driving gear 30.
  • the second driving gear 30 rotates for one circle, the part without gear teeth cannot drive the second driven gear 50 to rotate, so as to realize the transmission of the second antenna array phase shifter 110.
  • the phase adjustment range is controlled, and the second driving gear 30 is partially meshed with the second driven gear 50.
  • the second driving gear 30 rotates in a certain direction, it can only drive the second driven gear 50 to rotate in one direction.
  • the antenna gearbox transmission mechanism in the embodiment of the present application is mainly applied to the antenna, and is used to transmit the power of the driving motor to the antenna array phase shifter in the antenna.
  • the antenna in the embodiment of the present application includes a first antenna array phase shifter 100 and a second antenna array phase shifter 110.
  • the first driven gear set in the first transmission structure is used for driving connection with the first antenna array phase shifter 100
  • the second driven gear 50 in the second transmission structure is used for connecting with the second antenna array phase shifter 110 drive connection.
  • the first driving gear 20 and the driving shaft 10 and the second driving gear 30 and the driving shaft 10 are all driven by a worm gear.
  • the transmission between the drive shaft 10 and the first driving gear 20 and the driving shaft 10 and the second driving gear 30 is realized by means of worm gear transmission. This arrangement is conducive to making full use of space and changing the transmission direction of power.
  • the first driving gear 20 is provided with a first turbine 21 , and one end of the drive shaft 10 is provided with a worm 120 .
  • a half-circle of the first driving gear teeth 22 is arranged on the upper surface of the first driving gear 20 , and first driven gears 40 meshing with the first driving gear teeth 22 are respectively arranged on both sides of the first driving gear 20 .
  • the first driven gear 40 is non-rotatably connected to the first transmission shaft 60 , and the two first driven gears 40 can be fixedly arranged on the first transmission shaft 60 .
  • the first transmission shaft 60 is provided with one or more sets of output gears 80 that cannot rotate relative to each other.
  • the output gears 80 are engaged with the first antenna array phase shifter 100 , and the number of the output gears 80 is the same as that on the first antenna array phase shifter 100 .
  • the number of phase shifters is related.
  • the drive shaft 10 drives the first driving gear 20 to rotate through the worm gear structure, and the first driving gear 20 will drive the two first driven gears 40 to rotate during one rotation of the first driving gear 20.
  • the rotation directions of the two first driven gears 40 are opposite. Since the two first driven gears 40 are both fixed on the first transmission shaft 60 , during one rotation of the first driving gear 20 , the first transmission shaft 60 will first rotate forward and then reversely (or reverse firstly). Rotation and then forward rotation), the output gear 80 on the first transmission shaft 60 drives the first antenna array phase shifter 100 to move. During one rotation of the first driving gear 20, the first antenna array phase shifter 100 will reciprocate, so as to adjust the phase of the antenna.
  • the second driving gear 30 is provided with a second turbine 31 , and the other end of the drive shaft 10 is provided with a worm 120 .
  • a part of the second driving gear teeth 32 is provided on the upper surface of the second driving gear 30 .
  • a half-circle of the second driving gear teeth 32 is provided on the upper surface of the second driving gear 30 as an example for description.
  • One side of the second driving gear 30 is provided with a second driven gear 50 meshing with the second driving gear teeth 32 , and the second driven gear 50 is fixedly connected to the second transmission shaft 70 .
  • One or more sets of non-rotatable output gears 80 are arranged on the second transmission shaft 70 .
  • the output gears 80 are engaged with the second antenna array phase shifter 110 , and the number of output gears 80 is the same as that of the second antenna array phase shifter 110 .
  • the number of phase shifters is related.
  • the drive shaft 10 drives the second driving gear 30 to rotate through the worm gear structure. Since the upper surface of the second driving gear 30 is only provided with a half-circle of the second driving gear teeth 32 , when the second driving gear 30 rotates once, during the half-circle rotation, the second driving gear 30 and the second driven gear The driven gear 50 is in the meshing state and drives the second driven gear 50 to rotate, the second driven gear 50 drives the second transmission shaft 70 to rotate, and the output gear 80 provided on the second transmission shaft 70 drives the second antenna array phase shifter 110 make a move.
  • the direction of the second transmission shaft 70 is only related to the rotation direction of the drive shaft 10, that is, when the direction of the drive shaft 10 is determined, the rotation direction of the second transmission shaft 70 is determined, and the second antenna
  • the moving direction of the array phase shifter 110 is determined and is unidirectional.
  • the second driving gear 30 has no gear teeth meshing with the second driven gear 50, the second driving gear 30 and the second driven gear 50 are in a separated state, and the second driven gear 50 stops rotating.
  • the second antenna array phase shifter 110 is also in the stop state. Therefore, the displacement of the second antenna array phase shifter 110 is related to the length of the second driving gear teeth 32 provided on the second driving gear 30 .
  • the first antenna array phase shifter 100 and the second antenna array phase shifter can be adjusted by adjusting the rotation direction of the drive shaft 10, for example, by adjusting the drive shaft 10 to rotate in a direction opposite to the preset direction. 110 for a reverse move.
  • a corresponding fixing seat is also provided.
  • a first upper fixing base 131 and a first lower fixing base 132 are provided for fixing the first transmission structure
  • a second upper fixing base 141 and a second lower fixing base 142 are provided for fixing the second transmission structure.
  • the first upper fixing base 131 and the first lower fixing base 132 may be connected by a bolt structure
  • the second upper fixing base 141 and the second lower fixing base 142 may be connected by a bolt structure.
  • the internal structures of the first upper fixing base 131 and the first lower fixing base 132 are matched with the first transmission structure
  • the internal structures of the second upper fixing base 141 and the second lower fixing base 142 are matched with the second transmission structure.
  • the specifications of the first driving gear 20 and the second driving gear 30 are the same.
  • the layout is convenient, and the adjustment range of the array phase shifter can be easily controlled.
  • the upper first driven gear 40 and the second driven gear 50 are both bevel gears.
  • the first driven gear 40 and the second driven gear 50 are bevel gears.
  • the first driven gear 40 can be better matched with the first driving gear teeth 22 on the first driving gear 20, and better
  • the second driven gear 50 is matched with the second driving gear teeth 32 on the second driving gear 30, and the bevel gear can change the transmission direction of the power, which is convenient for the structural layout according to the position of the driving shaft 10 and the array phaser.
  • an embodiment of the present application provides an antenna.
  • the antenna includes a first antenna array phase shifter 100, a second antenna array phase shifter 110 and an antenna gear box transmission mechanism provided in any one of the embodiments, the first antenna array phase shifter 100 and a first driven gear set Drive connection, the second antenna array phase shifter 110 is drive connection with the second driven gear 50 .
  • the drive connection between the first antenna array phase shifter 100 and the first driven gear set, and the drive connection structure between the second antenna array phase shifter 110 and the second driven gear 50 reference may be made to the content introduced in the foregoing embodiments.
  • the above-mentioned antenna has the same technical effect as the transmission mechanism of the antenna gear box provided in the foregoing embodiment, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmission Devices (AREA)

Abstract

本申请提供一种天线齿轮箱传动机构以及天线,涉及天线技术领域,能够解决双驱动电机布局困难的问题,实现通过单电机传动控制天线上、下阵列的相位调节功能。该天线齿轮箱传动结构包括:驱动轴、第一传动结构和第二传动结构,第一传动结构包括第一主动齿轮和第一从动齿轮组,第一从动齿轮组包括至少一个第一从动齿轮。第二传动结构包括第二主动齿轮和第二从动齿轮,第一主动齿轮和第二主动齿轮均与驱动轴传动连接。第一从动齿轮组用于与第一天线阵列移相器传动连接,第二从动齿轮用于与第二天线阵列移相器传动连接。第一主动齿轮与第一从动齿轮组啮合,第二主动齿轮运动时,第二主动齿轮与第二从动齿轮啮合或者分离。

Description

一种天线齿轮箱传动机构以及天线 技术领域
本申请涉及天线技术领域,尤其涉及一种天线齿轮箱传动机构以及天线。
背景技术
移动通信天线的辐射面是根据天线的辐射单元相位变化做相应的调整,而电调天线是目前移动通信天线的主流天线,电调天线是通过控制单元与机械传动装置相互操作,实现对天线下倾角的传动控制。
目前在多进多出(multiple input multiple output,MIMO)移动通信天线系统里面,控制移相器上、下阵列的相位调节是通过两个驱动电机分别驱动实现。两个驱动电机增加了移动通信天线的成本,而且采用双驱动电机存在着布局复杂、困难的问题。
发明内容
本申请实施例提供一种天线齿轮箱传动机构以及天线,能够解决双驱动电机布局困难的问题,实现通过单电机传动控制天线上、下阵列的相位调节功能。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种天线齿轮箱传动机构。该传动结构包括:驱动轴、第一传动结构和第二传动结构,第一传动结构包括第一主动齿轮和第一从动齿轮组,第一从动齿轮组包括至少一个第一从动齿轮。第二传动结构包括第二主动齿轮和第二从动齿轮,第一主动齿轮和第二主动齿轮均与驱动轴传动连接。第一从动齿轮组用于与第一天线阵列移相器传动连接,第二从动齿轮用于与第二天线阵列移相器传动连接。第一主动齿轮与第一从动齿轮组啮合,第二主动齿轮运动时,第二主动齿轮与第二从动齿轮啮合或者分离。
本申请实施例中,通过设置第一传动结构和第二传动结构,第一传动结构中的第一从动齿轮组与天线上的第一天线阵列移相器传动连接,第二传动结构中的第二从动齿轮与天线上的第二天线阵列移相器传动连接,分别实现对第一天线阵列移相器和第二天线阵列移相器的独立控制;通过将第一主动齿轮和第二主动齿轮与同一个驱动轴传动连接,实现通过单驱动电机控制第一天线阵列移相器和第二天线阵列移相器的相位调节;通过设置第一主动齿轮与第一从动齿轮组啮合,设置第二主动齿轮与第二从动齿轮啮合或分离,第一主动齿轮可以将驱动轴的全部动力传给第一从动齿轮组,而第二主动齿轮可以在与第二从动齿轮啮合时将驱动轴的部分动力传给第二从动齿轮,从而实现单驱动电机对第一天线阵列移相器和第二阵列移相器独立的相位调节幅度的控制,即实现单驱动电机控制第一天线阵列移相器和第二阵列移相器进行不同的相位调节。
在第一方面的一种可能的实现方式中,第二主动齿轮上设置有部分轮齿,第二从动齿轮上设置有完整的轮齿。
在此基础上,通过在第二主动齿轮上设置部分轮齿,使得第二主动齿轮与第二从动齿轮部分啮合,从而实现第二主动齿轮在运动时,第二主动齿轮与第二从动齿轮实现啮合或分离。
在第一方面的一种可能的实现方式中,当驱动轴沿预设方向转动时,第一从动齿轮实现正向转动和反向转动,第二从动齿轮实现正向转动或反向转动。
在此基础上,通过设置第一从动齿轮可以实现正向转动和反向转动,可以实现在驱动轴沿一个方向转动时,对与第一传动结构相连的第一天线阵列移相器进行双向调节,通过设置第二从动齿轮实现正向转动或反向转动,可以实现在驱动轴沿一个方向转动时,对与第二传动结构相连的第二天线阵列移相器进行单向调节。
在第一方面的一种可能的实现方式中,第一主动齿轮和第二主动齿轮均为齿条,第一主动齿轮以及第二主动齿轮同步运动且做直线运动。第一主动齿轮的齿条长度大于第二主动齿轮的齿条长度。
在此基础上,通过设置第一主动齿轮以及第二主动齿轮均为齿条,当驱动轴转动时,带动第一主动齿轮和第二主动齿轮同步进行直线运动,便于对第一天线阵列移相器和第二天线阵列移相器的运动进行控制。通过设置第一主动齿轮的齿条长度大于第二主动齿轮的齿条长度,可以实现对第一天线阵列移相器的相位调节幅度,大于对第二天线阵列移相器的的相位调节幅度,从而实现对不同天线阵列移相器的独立调节以及控制不同天线阵列移相器的调节幅度。
在第一方面的一种可能的实现方式中,第一主动齿轮为矩形齿条,矩形齿条上设置有正向齿条和反向齿条;第二主动齿轮上设置有正向齿条或反向齿条。
在此基础上,通过将第一主动齿轮设置为矩形齿条,有利于布置正向齿条和反向齿条,通过设置正向齿条和反向齿条,有利于实现第一从动齿轮的正向转动和反向转动,从而实现对第一天线阵列移相器的双向调节。通过在第二主动齿轮上设置正向齿条或者反向齿条中的一种,可以实现在驱动轴单向转动时,第二从动齿轮也单向转动,从而实现对第二天线阵列移相器的单向调节。
在第一方面的一种可能的实现方式中,第一主动齿轮与第二主动齿轮一体成型。
在此基础上,通过将第一主动齿轮和第二主动齿轮一体成型,有利于实现第一主动齿轮与第二主动齿轮的同步运动。同时,驱动轴带动其中一个齿轮移动,即可实现第一主动齿轮和第二主动齿轮的同步运动,简化了连接结构,可以实现布局更简单。
在第一方面的一种可能的实现方式中,第一主动齿轮和/或第二主动齿轮上设置有连接块,连接块与驱动轴螺纹连接。
在此基础上,通过在第一主动齿轮和/或第二主动齿轮上设置连接块,连接块与驱动轴螺纹连接,当驱动轴转动时,可以实现连接块沿着驱动轴的轴线进行直线运动,从而带动第一主动齿轮和/或第二主动齿轮进行直线运动,当第一主动齿轮和第二主动齿轮连接在一起或一体成型时,只用在其中一个主动齿轮上设置连接块,即可实现第一主动齿轮和第二主动齿轮同步进行直线运动。
在第一方面的一种可能的实现方式中,第一从动齿轮组包括两个第一从动齿轮,两个第一从动齿轮关于第一主动齿轮的中心对称设置,第一主动齿轮上设置有半圈与第一从动齿轮相啮合的轮齿。第二主动齿轮上与第二从动齿轮相啮合的轮齿的总长度 小于第二主动齿轮的周长。
在此基础上,通过将两个第一从动齿轮对称设置在第一主动齿轮的两侧,并且在第一主动齿轮上设置半圈轮齿,实现第一主动齿轮只与其中一个第一从动齿轮相啮合,并实现当第一主动齿轮转一圈时,其中一个第一从动齿轮正向转动,另一个第一从动齿轮反向转动。通过设置第二主动齿轮上与第二从动齿轮相啮合的轮齿的总长度小于第二主动齿轮的周长,即第二主动齿轮上设置有部分轮齿,第二从动齿轮与第二主动齿轮进行部分啮合,第二主动齿轮转动一圈时,未设置轮齿的部分不能带动第二从动齿轮转动,从而实现对第二天线阵列移相器的相位调节幅度进行控制,且第二主动齿轮与第二从动齿轮部分啮合,第二主动齿轮沿某个方向转动时,只能带动第二从动齿轮单向转动。
在第一方面的一种可能的实现方式中,第一主动齿轮与第二主动齿轮的规格相同。
在此基础上,通过将第一主动齿轮和第二主动齿轮设置为规格相同,方便布局,且容易对阵列移相器的调节幅度进行控制。
在第一方面的一种可能的实现方式中,第一从动齿轮和第二从动齿轮均为锥齿轮。
通过将第一从动齿轮和第二从动齿轮设置为锥齿轮,可以更好地与对应的第一主动齿轮和第二主动齿轮进行配合,锥齿轮可以改变动力的传动方向,便于根据驱动轴和阵列移相器的位置进行结构布局。
在第一方面的一种可能的实现方式中,第一主动齿轮与驱动轴以及第二主动齿轮与驱动轴均通过蜗轮蜗杆传动。
通过蜗轮蜗杆传动的方式实现驱动轴与第一主动齿轮以及驱动轴与第二主动齿轮之间的传动,这样的布置方式有利于充分利用空间,同时改变动力的传动方向。
在第一方面的一种可能的实现方式中,第一传动结构包括第一传动轴,第一传动轴与第一从动齿轮组传动连接;第二传动结构包括第二传动轴,第二传动轴与第二从动齿轮传动连接。第一传动轴上设置有一对或多对输出齿轮,第二传动轴上设置有一对或多对输出齿轮。
在此基础上,通过设置第一传动轴,并在第一传动轴上设置输出齿轮,该输出齿轮与第一天线阵列移相器相啮合,以便将第一从动齿轮组的动力传递到第一天线阵列移相器;通过设置第二传动轴,并在第二传动轴上设置输出齿轮,该输出齿轮与第二天线阵列移相器相啮合,以便将第二从动齿轮的动力传递到第二天线阵列移相器。
第二方面,提供一种天线。该天线包括第一天线阵列移相器、第二天线阵列移相器以及如上述第一方面所提供的天线齿轮箱传动机构,第一天线阵列移相器与第一从动齿轮组传动连接,第二天线阵列移相器与第二从动齿轮传动连接。上述天线具有与前述实施例提供的天线齿轮箱传动机构相同的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的天线齿轮箱传动机构应用场景示意图之一;
图2为本申请实施例提供的天线齿轮箱传动机构的结构示意图之一;
图3为本申请实施例提供的天线齿轮箱传动机构的结构示意图之二以及应用场景示意图之二;
图4为图2所示天线齿轮箱传动机构中第一传动结构的爆炸示意图;
图5为图2所示天线齿轮箱传动机构中第二传动结构的爆炸示意图。
图中:10-驱动轴;20-第一主动齿轮;201-正向齿条;202-反向齿条;21-第一涡轮;22-第一主动轮齿;30-第二主动齿轮;31-第二涡轮;32-第二主动轮齿;40-第一从动齿轮;50-第二从动齿轮;60-第一传动轴;70-第二传动轴;80-输出齿轮;90-连接块;100-第一天线阵列移相器;110-第二天线阵列移相器;120-蜗杆;131-第一上固定座;132-第一下固定座;141-第二上固定座;142-第二下固定座。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述和所附权利要求书中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
还应理解,本文中所使用的术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
应理解,说明书通篇中提到的“一个实施例”、“一实施例”、“一种可能的实现方式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在本申请一实施例中”、“一种可能的实现方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
为了解决现有技术中双驱动电机布局困难的问题,本申请实施例提供一种天线齿轮箱传动机构,以实现通过单电机传动控制天线上、下阵列的相位调节功能,下面结合图1至图5对本申请实施例进行说明。
参考图1、图2和图3,图1为本申请实施例提供的天线齿轮箱传动机构应用场景示意图之一,图2为本申请实施例提供的天线齿轮箱传动机构的结构示意图之一,图2所示的天线齿轮箱传动机构应用于图1所提供的应用场景中,图3为本申请实施例提供的天线齿轮箱传动机构的结构示意图之二以及应用场景示意图之二。
如图1、图2和图3所示,在本申请一实施例中,提供一种天线齿轮箱传动机构。该传动结构包括:驱动轴10、第一传动结构和第二传动结构,第一传动结构包括第一主动齿轮20和第一从动齿轮组,第一从动齿轮组包括至少一个第一从动齿轮40。
本申请实施例中,第一从动齿轮组包括一个第一从动齿轮40和两个第一从动齿轮40的情况,第一从动齿轮40的数量设置情况可以根据实际的布局要求以及第一天线阵列移相器100的运动需求情况进行确定。第一主动齿轮20与驱动轴10传动连接,驱动轴10是驱动电机的动力输出轴,将第一主动齿轮20与第一从动齿轮组啮合,可以将驱动电机的动力传递到第一从动齿轮组上,第一从动齿轮组将动力再通过传动结构传递到第一天线阵列移相器100上。
需要说明的是,第一主动齿轮20与第一从动齿轮组啮合是指第一主动齿轮20与第一从动齿轮组中的第一从动齿轮40啮合。当第一从动齿轮组只包括一个第一从动齿轮40时,第一主动齿轮20与该第一从动齿轮40啮合;当第一从动齿轮组包括多个第一从动齿轮40时,第一主动齿轮20与第一从动齿轮组中的其中一个第一从动齿轮40啮合。
第二传动结构包括第二主动齿轮30和第二从动齿轮50,第二从动齿轮50用于与第二天线阵列移相器110传动连接。第二主动齿轮30与驱动轴10传动连接,实现将驱动电机的动力传递到第二主动齿轮30,第二主动齿轮30运动时,第二主动齿轮30与第二从动齿轮50啮合或者分离。
需要说明的是,第二主动齿轮30与第二从动齿轮50啮合或者分离,是指第二主动齿轮30运动时,第二从动齿轮50与第二主动齿轮30之间不会一直处于啮合的状态,而是在啮合状态和分离状态之间不断切换,即第二主动齿轮30与第二从动齿轮50之间处于部分啮合的状态。因此,第二从动齿轮50通过传动结构与第二天线阵列移相器110传动连接时,只能将驱动电机上的部分动力传递给第二天线阵列移相器110。
本申请实施例中,第一传动结构和第二传动结构主要通过齿轮传动的形式来实现,但并不限定第一传动结构和第二传动结构的实现形式,也可以采用齿轮传动、链传动或带传动中的一种或多种组合的方式进行等效变换。
本申请实施例中的天线齿轮箱传动机构主要应用于天线中,用于将驱动电机的动力传递到天线中的天线阵列移相器,本申请实施例中的天线包括第一天线阵列移相器100和第二天线阵列移相器110。其中,第一传动结构中的第一从动齿轮组用于与第一天线阵列移相器100传动连接,第二传动结构中的第二从动齿轮50用于与第二天线阵列移相器110传动连接。第一传动结构和第二传动结构为两个独立的传动结构,第一传动结构和第二传动结构的动力来源可以为同一个驱动电机。
本申请实施例中,通过设置第一传动结构和第二传动结构,第一传动结构中的第一从动齿轮组与天线上的第一天线阵列移相器100传动连接,第二传动结构中的第二从动齿轮50与天线上的第二天线阵列移相器110传动连接,分别实现对第一天线阵列移相器100和第二天线阵列移相器110的独立控制;通过将第一主动齿轮20和第二主动齿轮30与同一个驱动轴10传动连接,实现只布置一个驱动电机即可带动第一传动结构和第二传动结构独立运动,从而带动第一天线阵列移相器100和第二天线阵列移相器110进行独立的相位调节;通过设置第一主动齿轮20与第一从动齿轮组啮合,设置第二主动齿轮30与第二从动齿轮50啮合或分离,第一主动齿轮20可以将驱动轴10的全部动力传给第一从动齿轮组,而第二主动齿轮30可以在与第二从动齿轮50啮合时将驱动轴10的部分动力传给第二从动齿轮50,从而实现单驱动电机对第一天线阵列移相器100和第二阵列移相器独立的相位调节幅度的控制,即实现单驱动电机控制第一天线阵列移相器100和第二阵列移相器进行不同的相位调节。
本申请实施例中,第一从动齿轮组与第一天线阵列移相器100之间可以通过齿轮传动的方式实现动力传递,第二从动齿轮50与第二天线阵列移相器110之间也可以通过齿轮传动的方式实现动力传递。除齿轮传动的方式外,第一从动齿轮组与第一天线阵列移相器100之间,以及第二从动齿轮50与第二天线阵列移相器110之间也可以通过其他方式进行动力传递,如链传动、带传动,或者多种传动方式的组合,如齿轮传动与链传动的组合,或者齿轮传动与带传动的组合等等,本领域技术人员可以根据设计、布局等需求进行选择或组合。下面以齿轮传动为例,介绍本申请实施例中,第一从动齿轮组与第一天线阵列移相器100之间,以及第二从动齿轮50与第二天线阵列移相器110之间的动力传递形式。
如图1或图3所示,第一从动齿轮组中的第一从动齿轮40固定在第一传动轴60上,第一传动轴60上设置有与第一传动轴60不可相对旋转的输出齿轮80,即输出齿轮80可以是固定设置在第一传动轴60上。第一天线阵列移相器100上设置有与第一传动轴60上的输出齿轮80相啮合的轮齿,第一传动轴60上输出齿轮80的个数与第一天线阵列移相器100中移相器的数量相对应。当第一从动齿轮40转动时,第一从动齿轮40带动第一传动轴60转动,第一传动轴60带动其上的输出齿轮80转动,输出齿轮80与第一天线阵列移相器100啮合,而第一天线阵列移相器100是滑动连接在天线的支撑装置中的。因此,转动的输出齿轮80带动第一天线阵列移相器100前后滑动,实现相位调节。
如图1或图3所示,第二从动齿轮50固定在第二传动轴70上,第二传动轴70上设置有与第二传动轴70不可相对旋转的输出齿轮80,即输出齿轮80可以是固定设置在第二传动轴70上。第二天线阵列移相器110上设置有与第二传动轴70上的输出齿轮80相啮合的轮齿,第二传动轴70上输出齿轮80的个数与第二天线阵列移相器110中移相器的数量相对应。当第二从动齿轮50转动时,第二从动齿轮50带动第二传动轴70转动,第二传动轴70带动其上的输出齿轮80转动,输出齿轮80与第二天线阵列移相器110啮合,而第二天线阵列移相器110是滑动连接在天线的支撑装置中的。因此,转动的输出齿轮80带动第二天线阵列移相器110前后滑动,实现相位调节。
在本申请一实施例中,第二主动齿轮30上设置有部分轮齿。通过在第二主动齿轮 30上设置部分轮齿,使得第二主动齿轮30与第二从动齿轮50部分啮合,从而实现第二主动齿轮30在运动时,第二主动齿轮30与第二从动齿轮50实现啮合或分离。由于第二从动齿轮50是由第二主动齿轮30带动,其本身不具有动力,因此,一般在第二从动齿轮50上设置有完整的轮齿,以保证第二从动齿轮50能与第二主动齿轮30上设置有轮齿的部分进行啮合,实现动力的部分传递。
在本申请一实施例中,当驱动轴10沿预设方向转动时,第一从动齿轮40实现正向转动和反向转动,第二从动齿轮50实现正向转动或反向转动。
需要说明的是,当驱动轴10沿预设方向转动时,第一从动齿轮40实现正向转动和反向转动,是指第一从动齿轮40先进行正向转动,再进行反向转动;或者,第一从动齿轮40先进行反向转动,再进行正向转动。第二从动齿轮50实现正向转动或反向转动,是指当驱动轴10只沿一个方向转动时,第二从动齿轮50只会单向转动,该单向运动可以是正向运动也可以是反向运动。
本申请实施例通过设置第一从动齿轮40可以实现正向转动和反向转动,可以实现在驱动轴10沿一个方向转动时,对与第一传动结构相连的第一天线阵列移相器100进行双向调节,即第一天线阵列移相器100可以进行往复运动实现相位调节。通过设置第二从动齿轮50实现正向转动或反向转动,可以实现在驱动轴10沿一个方向转动时,对与第二传动结构相连的第二天线阵列移相器110进行单向调节,即第二天线阵列移相器110沿一个方向进行移动。
在本申请一实施例中,参考图2,图2为本申请实施例提供的天线齿轮箱传动机构的结构示意图之一。如图2所示,第一主动齿轮20和第二主动齿轮30均为齿条,第一主动齿轮20以及第二主动齿轮30同步运动且做直线运动。第一主动齿轮20的齿条长度大于第二主动齿轮30的齿条长度。
本申请实施例中,第一主动齿轮20和第二主动齿轮30均设置为齿条的形式,由于第一主动齿轮20和第二主动齿轮30均传动连接在驱动轴10上,驱动轴10转动时,可以带动第一主动齿轮20和第二主动齿轮30同步运动。而第一主动齿轮20和第二主动齿轮30均为齿条,因此,设置第一主动齿轮20和第二主动齿轮30的运动形式为直线运动,这样便于带动第一从动齿轮组和第二从动齿轮50进行运动。
通过设置第一主动齿轮20以及第二主动齿轮30均为齿条,当驱动轴10转动时,带动第一主动齿轮20和第二主动齿轮30同步进行直线运动,便于对第一天线阵列移相器100和第二天线阵列移相器110的运动进行控制。通过设置第一主动齿轮20的齿条长度大于第二主动齿轮30的齿条长度,可以实现对第一天线阵列移相器100的相位调节幅度,大于对第二天线阵列移相器110的的相位调节幅度,从而实现对不同天线阵列移相器的独立调节以及控制不同天线阵列移相器的调节幅度。
在本申请一实施例中,第一主动齿轮20与第二主动齿轮30一体成型。如图2所示,由于第一主动齿轮20和第二主动齿轮30均设置为齿条,且第一主动齿轮20和第二主动齿轮30均由驱动轴10带动,同步进行直线运动。因此,可以将第一主动齿轮20和第二主动齿轮30一体成型,这样设置可以提高生产第一主动齿轮20和第二主动齿轮30时的效率,有利于实现第一主动齿轮20与第二主动齿轮30的同步运动。同时,可以简化第一主动齿轮20和第二主动齿轮30与驱动轴10传动连接时的连接结 构,通过一个传动连接结构即可实现驱动轴10带动第一主动齿轮20和第二主动齿轮30同步进行运动,可以简化布局。
在本申请一实施例中,第一主动齿轮20和/或第二主动齿轮30上设置有连接块90,连接块90与驱动轴10螺纹连接。第一主动齿轮20和第二主动齿轮30与驱动轴10之间可以通过多种形式实现传动连接,如齿轮传动、链传动、带传动或螺纹传动等方式,由于本申请实施例中,第一主动齿轮20和第二主动齿轮30为齿条形式,因此,本实施例中采用螺纹传动的形式进行传动连接。具体的,在驱动轴10上设置有外螺纹,在第一主动齿轮20和/或第二主动齿轮30上设置有连接块90,连接块90上设置有与驱动轴10上的外螺纹相配合的内螺纹,螺纹的设计要求以驱动轴10转动时,连接块90可以沿驱动轴10的轴线进行前后移动为准。
当第一主动齿轮20和第二主动齿轮30设计为一体成型时,在第一主动齿轮20或第二主动齿轮30上设置一个连接块90,即可实现驱动轴10带动第一主动齿轮20和第二主动齿轮30沿着驱动轴10的轴线进行同步的直线运动。当第一主动齿轮20和第二主动齿轮30为独立的两个齿轮时,可以在第一主动齿轮20和第二主动齿轮30上分别设置一个连接块90,两个连接块90均与驱动轴10螺纹连接,也可以实现驱动轴10带动第一主动齿轮20和第二主动齿轮30沿着驱动轴10的轴线进行同步的直线运动。
在本申请一实施例中,第一主动齿轮20为矩形齿条,矩形齿条上设置有正向齿条201和反向齿条202;第二主动齿轮30上设置有正向齿条或反向齿条。
如图2所示,本申请实施例中,第一从动齿轮组包括一个第一从动齿轮40。第一主动齿轮20上设置有正向齿条201和反向齿条202,正向齿条201和反向齿条202分别位于矩形齿条内侧的上、下侧。第二主动齿轮30上只设置有正向齿条或者反向齿条,即只在一侧设置了齿条。第一主动齿轮20的齿条长度包括正向齿条201的长度和反向齿条202的齿条长度,由于第一主动齿轮20的齿条长度大于第二主动齿轮30的齿条长度,当第一主动齿轮20和第二主动齿轮30的运动行程与第一主动齿轮20的齿条长度相等时,在第二主动齿轮30的部分行程内,第二从动齿轮50处于停止状态。下面以第二主动齿轮30的齿条长度与第一主动齿轮20的正向齿条201的长度相等为例,对第一主动齿轮20和第一从动齿轮组、第二主动齿轮30和第二从动齿轮50的运动状态进行说明。
如图2所示,设定第一主动齿轮20靠近驱动轴10的方向为向下,第一主动齿轮20远离驱动轴10的方向为向上。当驱动轴10沿预设方向转动时,会带动与驱动轴10螺纹连接的连接块90沿着驱动轴10的轴线进行向下的直线运动,连接块90带动第一主动齿轮20和第二主动齿轮30沿着驱动轴10的轴线进行向下的直线运动,可以通过控制驱动轴10的转动,使得第一主动齿轮20和第二主动齿轮30的运动行程为第一主动齿轮20的齿条长度。在第一主动齿轮20向下运动的过程中,第一从动齿轮40先与正向齿条201啮合,带动第一传动轴60逆时针转动,然后第一从动齿轮40与反向齿条202啮合,带动第一传动轴60顺时针转动,第一传动轴60通过其上固定设置的输出齿轮80带动第一天线阵列移相器100进行上下移动,以实现天线的相位调节。与此同时,在第二主动齿轮30向下运动的过程中,第二从动齿轮50与第二主动齿轮30 上的轮齿进行啮合,第二主动齿轮30带动第二从动齿轮50顺时针转动或者逆时针转动,第二从动齿轮50带动第二传动轴70转动,第二传动轴70通过其上固定设置的输出齿轮80带动第二天线阵列移相器110进行移动,由于第二从动齿轮50沿一个方向转动,因此第二天线阵列移相器110只会沿一个方向移动。第二从动齿轮50的转动方向取决于第二主动齿轮30上设置的齿条是正向齿条还是反向齿条。
由于第二主动齿轮30的齿条长度与第一主动齿轮20的正向齿条201的长度相等,因此,当第二主动齿轮30的运动行程超过正向齿条201的长度时。此时,第二主动齿轮30上没有与第二从动齿轮50相啮合的轮齿,使得第二从动齿轮50处于停止状态,第二天线阵列移相器110也停止移动。而第一主动齿轮20与第一从动齿轮40一直处于啮合状态,会带动第一从动齿轮40一直转动,实现对第一天线阵列移相器100的位置调节。
需要说明的是,可以通过调节驱动轴10的转动方向,如调节驱动轴10沿与预设方向相反的方向转动,实现反向调节第一天线阵列移相器100和第二天线阵列移相器110的位置,从而实现反向调节天线的相位变化。
在本申请实施例中,通过将第一主动齿轮20设置为矩形齿条,有利于布置正向齿条201和反向齿条202,通过设置正向齿条201和反向齿条202,有利于实现第一从动齿轮40的正向转动和反向转动,从而实现对第一天线阵列移相器100的双向调节。通过在第二主动齿轮30上设置正向齿条或者反向齿条中的一种,可以实现在驱动轴10单向转动时,第二从动齿轮50也单向转动,从而实现对第二天线阵列移相器110的单向调节。
参考图3、图4和图5,图3为本申请实施例提供的天线齿轮箱传动机构的结构示意图之二以及应用场景示意图之二,图4为图2所示天线齿轮箱传动机构中第一传动结构的爆炸示意图,图5为图2所示天线齿轮箱传动机构中第二传动结构的爆炸示意图。如图3、图4和图5所示,在本申请一实施例中,第一从动齿轮组包括两个第一从动齿轮40,两个第一从动齿轮40关于第一主动齿轮20的中心对称设置,第一主动齿轮20上设置有半圈与第一从动齿轮40相啮合的轮齿。第二主动齿轮30上与第二从动齿轮50相啮合的轮齿的总长度小于第二主动齿轮30的周长。
在第一主动齿轮20上设置半圈与第一从动齿轮40相啮合的轮齿,然后将两个第一从动轮设置在第一主动齿轮20的两侧,并且两个第一从动轮关于第一主动轮的中心对称设置。当第一主动齿轮20转动一周时,第一主动齿轮20会分别与两个第一从动轮进行啮合,由于两个第一从动齿轮40是设置在第一主动齿轮20的两侧,因此两个第一从动齿轮40的转动方向是相反的。由于第二主动齿轮30上与第二从动齿轮50相啮合的轮齿的总长度小于第二主动齿轮30的周长,即第二主动齿轮30转动一周时,第二主动齿轮30与第二从动齿轮50部分啮合。
本申请实施例通过将两个第一从动齿轮40对称设置在第一主动齿轮20的两侧,并且在第一主动齿轮20上设置半圈轮齿,实现第一主动齿轮20只与其中一个第一从动齿轮40相啮合,并实现当第一主动齿轮20转一圈时,其中一个第一从动齿轮40正向转动,另一个第一从动齿轮40反向转动。通过设置第二主动齿轮30上与第二从动齿轮50相啮合的轮齿的总长度小于第二主动齿轮30的周长,即第二主动齿轮30 上设置有部分轮齿,第二从动齿轮50与第二主动齿轮30进行部分啮合,第二主动齿轮30转动一圈时,未设置轮齿的部分不能带动第二从动齿轮50转动,从而实现对第二天线阵列移相器110的相位调节幅度进行控制,且第二主动齿轮30与第二从动齿轮50部分啮合,第二主动齿轮30沿某个方向转动时,只能带动第二从动齿轮50单向转动。
本申请实施例中的天线齿轮箱传动机构主要应用于天线中,用于将驱动电机的动力传递到天线中的天线阵列移相器,本申请实施例中的天线包括第一天线阵列移相器100和第二天线阵列移相器110。其中,第一传动结构中的第一从动齿轮组用于与第一天线阵列移相器100传动连接,第二传动结构中的第二从动齿轮50用于与第二天线阵列移相器110传动连接。
在本申请一实施例中,第一主动齿轮20与驱动轴10以及第二主动齿轮30与驱动轴10均通过蜗轮蜗杆传动。通过蜗轮蜗杆传动的方式实现驱动轴10与第一主动齿轮20以及驱动轴10与第二主动齿轮30之间的传动,这样的布置方式有利于充分利用空间,同时改变动力的传动方向。
如图3、图4所示,在第一主动齿轮20上设置有第一涡轮21,在驱动轴10的一端设置有蜗杆120,第一主动齿轮20与驱动轴10通过蜗轮蜗杆传动连接。在第一主动齿轮20的上表面设置有半圈第一主动轮齿22,第一主动齿轮20的两侧分别设置有与第一主动轮齿22相啮合的第一从动齿轮40,两个第一从动齿轮40不可相对旋转的连接在第一传动轴60上,可以将两个第一从动齿轮40均固定设置在第一传动轴60上。第一传动轴60上设置有一组或者多组不可相对旋转的输出齿轮80,输出齿轮80与第一天线阵列移相器100啮合,输出齿轮80的数量与第一天线阵列移相器100上阵列移相器的数量相关。
当驱动轴10沿预设方向转动时,驱动轴10通过蜗轮蜗杆结构带动第一主动齿轮20转动,第一主动齿轮20转动一圈的过程中,会带动两个第一从动齿轮40转动,两个第一从动齿轮40的转动方向相反。由于两个第一从动齿轮40均固定在第一传动轴60上,因此,在第一主动齿轮20转动一圈的过程中,第一传动轴60会先正转再反转(或者先反转再正转),第一传动轴60上的输出齿轮80带动第一天线阵列移相器100进行移动。在第一主动齿轮20转动一圈的过程中,第一天线阵列移相器100会进行往复运动,实现对天线的相位进行调节。
如图3、图5所示,在第二主动齿轮30上设置有第二涡轮31,在驱动轴10的另一端设置有蜗杆120,第二主动齿轮30与驱动轴10通过蜗轮蜗杆传动连接。在第二主动齿轮30的上表面设置有部分第二主动轮齿32,本申请实施例中以在第二主动齿轮30的上表面设置有半圈第二主动轮齿32为例进行说明。第二主动齿轮30的一侧设置有与第二主动轮齿32相啮合的第二从动齿轮50,第二从动齿轮50固定连接在第二传动轴70上。第二传动轴70上设置有一组或者多组不可相对旋转的输出齿轮80,输出齿轮80与第二天线阵列移相器110啮合,输出齿轮80的数量与第二天线阵列移相器110上阵列移相器的数量相关。
当驱动轴10沿预设方向转动时,驱动轴10通过蜗轮蜗杆结构带动第二主动齿轮30转动。由于第二主动齿轮30的上表面只设置有半圈第二主动轮齿32,因此第二主 动齿轮30转动一圈时,在其中半圈的转动过程中,第二主动齿轮30与第二从动齿轮50处于啮合状态,带动第二从动齿轮50转动,第二从动齿轮50带动第二传动轴70转动,第二传动轴70上设置的输出齿轮80带动第二天线阵列移相器110进行移动。由于只设置有一个第二传动齿轮,因此第二传动轴70的方向只与驱动轴10的转动方向相关,即在驱动轴10方向确定时,第二传动轴70的转动方向确定,第二天线阵列移相器110的移动方向确定,且为单向移动。在另外半圈的转动过程中,第二主动齿轮30无轮齿与第二从动齿轮50啮合,第二主动齿轮30与第二从动齿轮50处于分离状态,第二从动齿轮50停止转动,第二天线阵列移相器110也处于停止状态。因此,第二天线阵列移相器110的位移情况与第二主动齿轮30上设置的第二主动轮齿32的长度有关。
本申请实施例中,可以通过调节驱动轴10的转动方向,例如调节驱动轴10沿与预设方向相反的方向转动,即可以调节第一天线阵列移相器100和第二天线阵列移相器110进行反向移动。
本申请实施例中,为了固定第一传动结构和第二传动结构,还设置有相应的固定座。具体的,设置有第一上固定座131和第一下固定座132用于固定第一传动结构,设置有第二上固定座141和第二下固定座142用于固定第二传动结构,第一上固定座131和第一下固定座132之间可以采用螺栓结构进行连接,第二上固定座141和第二下固定座142之间可以采用螺栓结构进行连接。第一上固定座131和第一下固定座132的内部结构与第一传动结构相适配,第二上固定座141和第二下固定座142的内部结构与第二传动结构相适配。
在本申请一实施例中,第一主动齿轮20与第二主动齿轮30的规格相同。通过将第一主动齿轮20和第二主动齿轮30设置为规格相同,方便布局,且容易对阵列移相器的调节幅度进行控制。
在本申请一实施例中,上第一从动齿轮40和第二从动齿轮50均为锥齿轮。将第一从动齿轮40和第二从动齿轮50设置为锥齿轮,可以更好地使第一从动齿轮40与第一主动齿轮20上的第一主动轮齿22进行配合,以及更好地使第二从动齿轮50与第二主动齿轮30上的第二主动轮齿32进行配合,锥齿轮可以改变动力的传动方向,便于根据驱动轴10和阵列移相器的位置进行结构布局。
基于同一发明构思,本申请一实施例提供一种天线。该天线包括第一天线阵列移相器100、第二天线阵列移相器110以及如任意一实施例所提供的天线齿轮箱传动机构,第一天线阵列移相器100与第一从动齿轮组传动连接,第二天线阵列移相器110与第二从动齿轮50传动连接。第一天线阵列移相器100与第一从动齿轮组传动连接,以及第二天线阵列移相器110与第二从动齿轮50传动的传动连接结构可以参照前述实施例中所介绍的内容。上述天线具有与前述实施例提供的天线齿轮箱传动机构相同的技术效果,此处不再赘述。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲 解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种天线齿轮箱传动机构以及天线,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种天线齿轮箱传动机构,其特征在于,包括:驱动轴、第一传动结构和第二传动结构;
    所述第一传动结构包括第一主动齿轮和第一从动齿轮组,所述第一从动齿轮组包括至少一个第一从动齿轮,所述第二传动结构包括第二主动齿轮和第二从动齿轮,所述第一主动齿轮和所述第二主动齿轮均与所述驱动轴传动连接;
    所述第一从动齿轮组用于与第一天线阵列移相器传动连接,所述第二从动齿轮用于与第二天线阵列移相器传动连接;
    所述第一主动齿轮与所述第一从动齿轮组啮合,所述第二主动齿轮运动时,所述第二主动齿轮与所述第二从动齿轮啮合或者分离。
  2. 根据权利要求1所述的传动机构,其特征在于,所述第二主动齿轮上设置有部分轮齿。
  3. 根据权利要求1或2所述的传动机构,其特征在于,当所述驱动轴沿预设方向转动时,所述第一从动齿轮实现正向转动和反向转动,所述第二从动齿轮实现正向转动或反向转动。
  4. 根据权利要求1至3任意一项所述的传动机构,其特征在于,所述第一主动齿轮和所述第二主动齿轮均为齿条,所述第一主动齿轮以及所述第二主动齿轮同步运动且做直线运动;
    所述第一主动齿轮的齿条长度大于所述第二主动齿轮的齿条长度。
  5. 根据权利要求4所述的传动机构,其特征在于,所述第一主动齿轮为矩形齿条,所述矩形齿条上设置有正向齿条和反向齿条;所述第二主动齿轮上设置有正向齿条或反向齿条。
  6. 根据权利要求4或5所述的传动机构,其特征在于,所述第一主动齿轮与所述第二主动齿轮一体成型。
  7. 根据权利要求6所述的传动机构,其特征在于,所述第一主动齿轮和/或所述第二主动齿轮上设置有连接块,所述连接块与所述驱动轴螺纹连接。
  8. 根据权利要求1至3任意一项所述的传动机构,其特征在于,所述第一从动齿轮组包括两个所述第一从动齿轮,所述两个所述第一从动齿轮关于所述第一主动齿轮的中心对称设置,所述第一主动齿轮上设置有半圈与所述第一从动齿轮相啮合的轮齿;
    所述第二主动齿轮上与所述第二从动齿轮相啮合的轮齿的总长度小于所述第二主动齿轮的周长。
  9. 根据权利要求8所述的传动机构,其特征在于,所述第一主动齿轮与所述第二主动齿轮的规格相同。
  10. 根据权利要求8或9所述的传动机构,其特征在于,所述第一从动齿轮和所述第二从动齿轮均为锥齿轮。
  11. 根据权利要求8至10任意一项所述的传动机构,其特征在于,所述第一主动齿轮与所述驱动轴以及所述第二主动齿轮与所述驱动轴均通过蜗轮蜗杆传动。
  12. 根据权利要求1至11任意一项所述的传动机构,其特征在于,所述第一传动结构包括第一传动轴,所述第一传动轴与所述第一从动齿轮组传动连接,所述第二传 动结构包括第二传动轴,所述第二传动轴与所述第二从动齿轮传动连接;
    所述第一传动轴上设置有一对或多对输出齿轮,所述第二传动轴上设置有一对或多对所述输出齿轮。
  13. 一种天线,其特征在于,包括第一天线阵列移相器、第二天线阵列移相器以及权利要求1至12中任意一项所述的天线齿轮箱传动机构,所述第一天线阵列移相器与所述第一从动齿轮组传动连接,所述第二天线阵列移相器与所述第二从动齿轮传动连接。
PCT/CN2020/141858 2020-12-30 2020-12-30 一种天线齿轮箱传动机构以及天线 WO2022141325A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080107281.4A CN116458005A (zh) 2020-12-30 2020-12-30 一种天线齿轮箱传动机构以及天线
EP20967664.2A EP4258477A4 (en) 2020-12-30 2020-12-30 ANTENNA GEARBOX TRANSMISSION MECHANISM AND ANTENNA
BR112023013097A BR112023013097A2 (pt) 2020-12-30 2020-12-30 Mecanismo de transmissão da caixa de engrenagens de antena e antena
PCT/CN2020/141858 WO2022141325A1 (zh) 2020-12-30 2020-12-30 一种天线齿轮箱传动机构以及天线
US18/344,335 US20230352830A1 (en) 2020-12-30 2023-06-29 Antenna gearbox transmission mechanism and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141858 WO2022141325A1 (zh) 2020-12-30 2020-12-30 一种天线齿轮箱传动机构以及天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,335 Continuation US20230352830A1 (en) 2020-12-30 2023-06-29 Antenna gearbox transmission mechanism and antenna

Publications (1)

Publication Number Publication Date
WO2022141325A1 true WO2022141325A1 (zh) 2022-07-07

Family

ID=82260063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141858 WO2022141325A1 (zh) 2020-12-30 2020-12-30 一种天线齿轮箱传动机构以及天线

Country Status (5)

Country Link
US (1) US20230352830A1 (zh)
EP (1) EP4258477A4 (zh)
CN (1) CN116458005A (zh)
BR (1) BR112023013097A2 (zh)
WO (1) WO2022141325A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073583A (zh) * 2023-03-07 2023-05-05 中兴通讯股份有限公司 一种电调天线下倾角调节装置及电调天线系统
WO2024020804A1 (en) * 2022-07-26 2024-02-01 Rfs Technologies, Inc. Movement controlling apparatus, antenna and method of operating movement controlling apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058387A (ko) * 2000-12-29 2002-07-12 구관영 틸팅각 조정이 가능한 기지국용 배열 안테나
CN103855471A (zh) * 2014-02-27 2014-06-11 京信通信技术(广州)有限公司 移相系统
CN108321538A (zh) * 2018-03-14 2018-07-24 武汉虹信通信技术有限责任公司 天线方位角转换调节装置
CN111180893A (zh) * 2020-01-06 2020-05-19 武汉虹信通信技术有限责任公司 传动装置及电调天线
CN211404742U (zh) * 2019-12-13 2020-09-01 京信通信技术(广州)有限公司 天线、传动装置及输出机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505978B1 (ko) * 2002-08-17 2005-08-04 주식회사 엘지텔레콤 수평빔 가변 안테나 시스템과 그 구동방법
DE102011009600B3 (de) * 2011-01-27 2012-03-15 Kathrein-Werke Kg Mobilfunkantenne mit Multi-Strahlformeinrichtung
CN110931980B (zh) * 2019-12-12 2021-06-11 罗森伯格技术有限公司 一种移相器传动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058387A (ko) * 2000-12-29 2002-07-12 구관영 틸팅각 조정이 가능한 기지국용 배열 안테나
CN103855471A (zh) * 2014-02-27 2014-06-11 京信通信技术(广州)有限公司 移相系统
CN108321538A (zh) * 2018-03-14 2018-07-24 武汉虹信通信技术有限责任公司 天线方位角转换调节装置
CN211404742U (zh) * 2019-12-13 2020-09-01 京信通信技术(广州)有限公司 天线、传动装置及输出机构
CN111180893A (zh) * 2020-01-06 2020-05-19 武汉虹信通信技术有限责任公司 传动装置及电调天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4258477A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020804A1 (en) * 2022-07-26 2024-02-01 Rfs Technologies, Inc. Movement controlling apparatus, antenna and method of operating movement controlling apparatus
CN116073583A (zh) * 2023-03-07 2023-05-05 中兴通讯股份有限公司 一种电调天线下倾角调节装置及电调天线系统

Also Published As

Publication number Publication date
BR112023013097A2 (pt) 2023-11-14
EP4258477A4 (en) 2024-01-03
US20230352830A1 (en) 2023-11-02
CN116458005A (zh) 2023-07-18
EP4258477A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2022141325A1 (zh) 一种天线齿轮箱传动机构以及天线
WO2019091239A1 (zh) 一种天线移相器传动装置
US7938033B2 (en) Geared, continuously variable speed transmission
CN109216925B (zh) 天线电下倾角调节的传动装置
CN109449597B (zh) 电调天线传动切换装置
CN108891310B (zh) 电机共用的汽车座椅调节系统
CN207559071U (zh) 一种天线移相器传动装置
WO2021135403A1 (zh) 天线、传动装置及切换机构
JP2016517824A (ja) ギアおよびレバーの伝動システムおよび方法
WO2024093185A1 (zh) 传动装置及天线系统
WO2023174033A1 (zh) 电调天线驱动装置及电调天线
CN109347247B (zh) 电调天线传动装置
WO2023137981A1 (zh) 传动切换装置、驱动装置和基站天线
US9506545B2 (en) Continuously variable transmission having a periodic displacement waveform with a constant velocity portion
CN112886250B (zh) 一种换挡式电调天线传动装置及基站天线
CN114465005A (zh) 一种电下倾角调整装置及基站天线
CN113067153B (zh) 一种旋向可选的控制机构及天线电下倾角控制装置
CN113540796A (zh) 多频天线、选频调相机构及装置
CN112909546A (zh) 一种多系统天线电下倾角控制装置及天线
CN111211420B (zh) 多频电调天线下倾角的调节装置
CN210006921U (zh) 一种多频电调天线远距离传动切换和自锁装置
CN216903355U (zh) 一种电下倾角调整装置及基站天线
CN101725683A (zh) 偏心式三组联动减速器
WO2007118351A1 (fr) Régulateur de vitesse dynamique
CN115986410A (zh) 选频移相装置及多频天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107281.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202337043682

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023013097

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020967664

Country of ref document: EP

Effective date: 20230704

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023013097

Country of ref document: BR

Free format text: APRESENTAR NOVA FOLHA DE RESUMO, ADAPTADA A INSTRUCAO NORMATIVA INPI 031/2013, ART. 22, III.

ENP Entry into the national phase

Ref document number: 112023013097

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230629