WO2019091193A1 - 显示面板的驱动方法、显示驱动电路及显示装置 - Google Patents

显示面板的驱动方法、显示驱动电路及显示装置 Download PDF

Info

Publication number
WO2019091193A1
WO2019091193A1 PCT/CN2018/103090 CN2018103090W WO2019091193A1 WO 2019091193 A1 WO2019091193 A1 WO 2019091193A1 CN 2018103090 W CN2018103090 W CN 2018103090W WO 2019091193 A1 WO2019091193 A1 WO 2019091193A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
data
display area
display
pixels
Prior art date
Application number
PCT/CN2018/103090
Other languages
English (en)
French (fr)
Inventor
李亚飞
高博
孙伟
时凌云
张�浩
王光泉
陈明
董学
李越
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/332,947 priority Critical patent/US11176864B2/en
Publication of WO2019091193A1 publication Critical patent/WO2019091193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a driving method of a display panel, a display driving circuit, a display device, and a computer device.
  • the charging time of the display panel is more demanding.
  • VR/AR virtual reality technology
  • the display resolution and the refresh rate requirements will be very high.
  • the existing display mechanism is to scan each row of pixels in the display panel, which cannot meet the requirements of refresh rate and display resolution.
  • Embodiments of the present disclosure provide a driving method of a display panel, a display driving circuit, a display device, and a computer device.
  • the specific scheme is as follows:
  • an embodiment of the present disclosure provides a driving method of a display panel, including:
  • the data driving chip receives the image to be displayed sent by the graphics processor; the image to be displayed includes grayscale data of the high definition display area and the low clear display area;
  • the data driving chip controls each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning according to the position of the high-definition display area;
  • the data driving chip controls each row of sub-pixels including only the low-definition display region in the display panel to perform N-line simultaneous scanning according to the position of the low-definition display region; wherein N is an even number greater than 1.
  • each of the sub-pixels in the adjacent two rows of the display panel is staggered in the column direction by X sub-pixels, 0 ⁇ X ⁇ 1, the display colors of each of the sub-pixels and the adjacent sub-pixels are different.
  • the data driving chip controls, in the display panel, each row of sub-pixels including only the low-definition display area to perform N-line simultaneous scanning, including:
  • the data driving chip pair inputs the same gray scale data into each sub-pixel of the N-line sub-pixels including only the low-definition display area, and the same display color connected to the same data line;
  • the data driving chip pairs only include the sub-pixels in the sub-pixels of the even-numbered rows of the low-definition display area, and adjust and output the corresponding gray-scale data according to the sub-pixel gray scales and weights of the adjacent display colors.
  • the data driving chip controls each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning according to the position of the high-definition display area, including :
  • the data driving chip pairs each of the N rows of sub-pixels including the high-definition display area and the low-definition display area, and the sub-pixels having the same display color connected to the same data line in the low-definition display area input the same gray scale data.
  • the data driving chip controls each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning according to the position of the high-definition display area, and further include:
  • the data driving chip pair includes an HD pixel display region and a low clear display region in each of N rows of sub-pixels, and an even-numbered row of the low-definition display region has an edge sub-pixel in the sub-pixel, which is the same according to adjacent display colors.
  • the sub-pixel gray scale and weight are adjusted and output corresponding gray scale data.
  • the data driving chip controls each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning according to the position of the high-definition display area, including :
  • the data driving chip adjusts and outputs corresponding gray scale data according to gray scale data of the high definition area in the to-be-displayed image for each sub-pixel of the high-definition area in each row of sub-pixels of the display panel.
  • the method before the data driving chip receives the image to be displayed sent by the graphics processor, the method further includes:
  • the graphics processor compresses grayscale data of a low clear display area in the original image according to a set compression ratio
  • the graphics processor combines the grayscale data of the compressed low-definition display area with the grayscale data of the high-definition display area, and sends the data to the data driving chip;
  • the data driving chip stretches the gray scale data of the received low clear display area according to the number of data lines in the display panel and the compression ratio.
  • the compression ratio is longitudinally compressed by N times.
  • the data driving chip stretches the gray scale data of the received low clear display area according to the number of data lines in the display panel and the compression ratio.
  • the data driving chip only horizontally stretches the gray scale data of the received low clear display area according to the number of data lines in the display panel and the horizontal compression ratio in the compression ratio, and the ratio of the horizontal stretching is The number of data lines is proportional to the lateral compression ratio in the compression ratio.
  • an embodiment of the present disclosure further provides a display driving circuit, including: a data driving chip and a graphics processor; wherein
  • the graphics processor is configured to send an image to be displayed to the data driving chip;
  • the image to be displayed includes grayscale data of a high definition display area and a low clear display area;
  • the data driving chip is connected to the graphics processor, and the data driving chip is configured to control, according to the position of the high-definition display area, each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning; Positioning the low-definition display area, controlling each row of sub-pixels including only the low-definition display area in the display panel to perform N-line simultaneous scanning; wherein N is an even number greater than 1.
  • each of the sub-pixels in the adjacent two rows of the display panel is staggered in the column direction by X sub-pixels, 0 ⁇ X ⁇ 1, each of the sub-pixels and the adjacent sub-pixels have different display colors.
  • the data driving chip includes:
  • a first processing module configured to input the same grayscale data for each sub-pixel having the same display color connected to the same data line among every N rows of sub-pixels including only the low-definition display region;
  • a first edge processing module configured to adjust and output corresponding grayscale data according to adjacent sub-pixel grayscales and weights of adjacent display colors for even-numbered rows of sub-pixels in the sub-pixels containing only the low-definition display area .
  • the method further includes:
  • a second processing module configured to: in each of the N rows of sub-pixels including the high-definition display area and the low-definition display area, the sub-pixel input having the same display color connected to the same data line in the low-definition display area is the same Grayscale data.
  • the method further includes:
  • a second edge processing module configured to: in each N rows of sub-pixels including both the high-definition display area and the low-definition display area, the even-numbered rows of the low-definition display area, the edge sub-pixels in the sub-pixel, according to the adjacent Display sub-pixel grayscale and weight adjustment of the same color and output corresponding grayscale data.
  • the data driving chip is specifically configured to, for each sub-pixel of the high-definition region in each row of sub-pixels including the high-definition display region in the display panel, according to The gray scale data of the high definition area in the image to be displayed is adjusted and the corresponding gray scale data is output.
  • the graphics processor includes: a compression module and a fusion module;
  • the compression module is configured to compress gray scale data of a low clear display area in the original image according to a set compression ratio
  • the merging module is configured to merge the grayscale data of the compressed low-definition display area with the grayscale data of the high-definition display area, and then send the data to the data driving chip;
  • the data driving chip further includes: a stretching module configured to stretch grayscale data of the received low clear display area according to the number of data lines and the compression ratio in the display panel.
  • the compression ratio of the compression module is longitudinally compressed by N times.
  • the stretching module is configured to perform only horizontal stretching reception according to the number of data lines in the display panel and the horizontal compression ratio in the compression ratio.
  • the ratio of the horizontal stretch is proportional to the number of the data lines and the horizontal compression ratio in the compression ratio.
  • an embodiment of the present disclosure further provides a display device, including the above display driving circuit provided by the embodiment of the present disclosure, and a display panel.
  • an embodiment of the present disclosure further provides a computer device including a memory, a processor, wherein the memory stores a computer program, the computer program configured to be executed by the processor to implement the embodiments of the present disclosure. The above method.
  • FIG. 1 is a flowchart of a driving method of a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a timing diagram of a clock signal in a driving method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a pixel arrangement of a display panel to which a driving method according to an embodiment of the present disclosure is applied;
  • FIG. 4 is a schematic diagram of another pixel arrangement of a display panel to which the driving method according to an embodiment of the present disclosure is applied;
  • FIG. 5 is a schematic diagram showing a distribution of a high definition display area and a low clear display area of a display panel in a driving method according to an embodiment of the present disclosure
  • FIG. 6 is another flowchart of a driving method of a display panel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a workflow of a graphics processor in a driving method according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a processing flow of gray scale data in a high definition display area in a driving method according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of processing of gray scale data in a low clear display area in a driving method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display driving circuit according to an embodiment of the present disclosure.
  • FIG. 11 is a second schematic diagram of a processing flow of gray scale data in a high definition display area in a driving method according to an embodiment of the present disclosure.
  • a driving method of a display panel provided by an embodiment of the present disclosure, as shown in FIG. 1 includes the following steps:
  • the data driving chip receives the image to be displayed sent by the graphics processor, where the image to be displayed includes grayscale data of the high definition display area and the low clear display area.
  • the data driving chip controls the connected display panel to include each line of sub-pixels of the high-definition display area for progressive scanning according to the position of the high-definition display area.
  • the data driving chip controls each row of sub-pixels including only the low-definition display area in the display panel to perform N-line simultaneous scanning according to the position of the low-definition display area; wherein N is an even number greater than 1.
  • the data driving chip controls the location of the high-definition display area in the image to be displayed.
  • the connected display panel includes sub-pixels of each line of the high-definition display area for progressive scanning, so that the image display of the high-definition display area can be clearly displayed.
  • each row of sub-pixels including only the low-definition display area in the display panel is simultaneously scanned in N lines, wherein N is an even number greater than 1;
  • Progressive scan can speed up the refresh rate of the low clear display area, thereby effectively reducing the number of refresh lines displayed per frame, and effectively reducing the total number of scan lines displayed per frame, which can save the scan time per frame;
  • the charging time of the display panel can be increased to achieve high speed and low power consumption display requirements.
  • step S102 and step S103 are generally performed simultaneously, regardless of the order.
  • the selection of the N-line simultaneous scanning in the step S103 may be various, for example, two-line simultaneous scanning, four-line simultaneous scanning, or eight-line simultaneous scanning, and the like, which is not limited herein.
  • the data driving chip controls each row of sub-pixels including only the low-definition display area to perform four-line simultaneous scanning as an example.
  • the change of the number of scanning lines is performed in the display panel controlled by the data driving chip in steps S102 and S103, mainly by controlling the clock loaded to the display panel.
  • the change in signal is achieved.
  • the data driving chip can simultaneously load the same first clock signal terminal CLK1-4 of the display panel.
  • the clock signal simultaneously loads the second clock signal opposite to the first clock signal to the clock signal terminal CLK5-8 of the display panel to realize that each row of sub-pixels including only the low-definition display areas a1 and a2 are simultaneously scanned every four lines.
  • the data driving chip can sequentially load the first clock signal to the clock signal terminal CLK1-4 of the display panel, and simultaneously display the first clock signal to the display panel.
  • the clock signal terminals CLK5-8 respectively load a second clock signal opposite to the first clock signal of the clock signal terminal CLK1-4 to realize scanning of each row of sub-pixels including the high-definition display region line by line.
  • the sub-pixels in the display panel may be arranged in various manners.
  • the sub-pixels may be aligned in the row direction and the column direction, and each The color of the column sub-pixels is the same.
  • the position of each sub-pixel in each adjacent two rows of sub-pixels in the display panel is shifted by X sub-pixels in the column direction, 0 ⁇ X ⁇ 1, and each sub-pixel and adjacent sub-pixels
  • the display colors of the pixels are different.
  • the data lines also extend from the straight line shown in FIG. 3, and are changed to the fold line extension shown in FIG. 4, and in order to ensure that one data line is connected to only the sub-pixels of the same display color,
  • the data lines are connected to the sub-pixels on both sides through switching transistors.
  • the pixel arrangement shown in FIG. 4 can achieve a display resolution higher than twice the physical resolution by using a specific driving method. Therefore, the pixel arrangement shown in FIG. 4 can save half the number of sub-pixels and half the number of data lines in the case of the same display resolution as the conventional pixel arrangement shown in FIG. 3, thereby effectively reducing the display panel. Process difficulty.
  • the data driving chip controls the display panel to include only the sub-pixels of the low-definition display area for N-line simultaneous scanning, and the following steps may be performed. :
  • the data driving chip pairs the sub-pixels containing only the low-definition display area, and the sub-pixels having the same display color connected to the same data line input the same gray-scale data; that is, when the N-row sub-pixels are simultaneously scanned.
  • a data line is simultaneously turned on with the N sub-pixels of the N display sub-pixels, and the same gray scale data is loaded on the N sub-pixels.
  • a data line connected to the red sub-pixel will be When four rows of sub-pixels are simultaneously scanned, the same grayscale data is loaded on the four red sub-pixels.
  • each row of sub-pixels including only the low-definition display area performs N-line simultaneous scanning, thereby speeding up the refreshing speed of the low-definition display area, thereby effectively reducing the number of refresh lines displayed per frame, and Effectively reduce the total number of scanning lines displayed per frame, save the scanning time per frame, and increase the charging time of the display panel.
  • the data driving chip pair contains only the low clear display area in each N rows of sub-pixels, and the same data.
  • the same gray scale data is input to each sub-pixel with the same display color of the line connection, which can reduce the amount of gray scale data loaded by the data driving chip on the data line, thereby reducing the internal data processing amount of the data driving chip, thereby saving the work of the data driving chip. Consumption.
  • the data driving chip pair includes the same data line in every N rows of sub-pixels including only the low clear display area. While the connected sub-pixels of the same display color input the same grayscale data, the following steps can also be performed:
  • the data driving chip pair adjusts the edge sub-pixels in the even-numbered sub-pixels including only the low-definition display area, and adjusts and outputs corresponding gray-scale data according to the adjacent sub-pixel gray scales and weights of adjacent display colors, that is, the left side of the even-numbered lines
  • the edge sub-pixel B needs to perform edge gray scale data adjustment separately, and the gray scale data assignment of the pixel can be performed according to the weight and gray scale data of the right and upper and lower adjacent sub-pixels B to meet the display requirement.
  • the display panel of the control connection includes each row of sub-pixels of the high-definition display area for progressive scanning, generally including:
  • the data driving chip controls each row of sub-pixels including the high-definition display area and the low-definition display area to perform progressive scan according to the position of the high-definition display area, that is, the data driving chip is controlled in FIG. 5 and includes the high-definition display area b and the low-definition display.
  • Each row of sub-pixels of areas a3 and a4 is progressively scanned.
  • the data driving chip controls each row of sub-pixels including the high-definition display area and the low-definition display area to perform progressive scan according to the position of the high-definition display area, and may also Perform the following steps:
  • the data driving chip inputs the same gray scale data for each sub-pixel of the N-line sub-pixels including the high-definition display area and the low-definition display area, and the same display color connected to the same data line in the low-definition display area.
  • the low-definition display areas a3 and a4 on both sides of the high-definition display area b are also progressively scanned, they are in the line buffer of the low-definition display areas a3 and a4 by the data driving chip.
  • the data driving chip can directly transmit the gray-scale data for display, and the pixel rows in the pixel arrangement shown in FIG.
  • the RGB of the pixel and the grayscale data of the BRG are exchanged and transmitted for display.
  • the data driving chip controls each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning according to the position of the high-definition display area, and further includes:
  • the data driving chip pairs the edge sub-pixels in the even-row sub-pixels of the low-definition display area in every N rows of sub-pixels including the high-definition display area and the low-definition display area, and the sub-pixel gray scales and weights according to the adjacent display colors. Adjust and output the corresponding grayscale data.
  • the data driving chip controls each row of sub-pixels including the high-definition display area in the connected display panel to perform progressive scanning according to the position of the high-definition display area, including:
  • the data driving chip adjusts and outputs corresponding gray scale data according to gray scale data of the high definition area in the image to be displayed on each sub-pixel of the high-definition area in each row of sub-pixels of the display panel.
  • FIG. 8 is taken as an example, and three columns of pixel units in the high-definition display area are used.
  • the gray scale data of the six columns of pixel units in the original image is calculated, and the gray scale data corresponding to the three columns of pixel units in the high definition display area can be converted by the algorithm, and then converted according to the conversion.
  • the gray scale data assigns gray scale data to the actual pixel arrangement of the display panel, thereby realizing the display effect of 6 columns of pixel units through 3 columns of pixel units, that is, achieving a display resolution higher than twice the physical resolution.
  • calculating the gray scale data corresponding to each pixel unit of the high definition display area according to the gray scale data in the original image may be obtained by using the following algorithm:
  • each theoretical pixel unit includes a plurality of theoretical sub-pixels of different colors, and the theoretical brightness value of each theoretical sub-pixel is calculated;
  • Stp2 calculate the actual brightness value of each actual sub-pixel, including:
  • Stp21 finding a first theoretical sub-pixel, the position of the first theoretical sub-pixel in the original image corresponding to the position of the actual sub-pixel to be calculated in the pixel array of the display panel;
  • Stp22 inserting a plurality of virtual sub-pixels of the same color as the first theoretical sub-pixel between the first theoretical sub-pixel and the at least one adjacent theoretical sub-pixel, where the adjacent theoretical sub-pixel is in the row of the first theoretical sub-pixel, a theoretical sub-pixel adjacent to the first theoretical sub-pixel of all theoretical sub-pixels having the same color as the first theoretical sub-pixel;
  • Stp23 adding a part of the theoretical luminance value of the first theoretical sub-pixel to a fraction of the virtual luminance value of the virtual sub-pixel corresponding to the actual sub-pixel to be calculated is the actual sub-pixel to be calculated.
  • An actual luminance value wherein the virtual luminance value of the virtual sub-pixel is a portion of a theoretical luminance value of the first theoretical sub-pixel and a sum of a portion of the corresponding adjacent theoretical sub-pixel;
  • Stp3 input signals to each actual sub-pixel, so that each actual sub-pixel reaches the actual luminance value calculated in step stp2.
  • the following steps may be further included:
  • the graphics processor compresses grayscale data of the low clear display area in the original image according to the set compression ratio.
  • the graphics processor combines the grayscale data of the compressed low-definition display area with the grayscale data of the high-definition display area, and sends the data to the data driving chip.
  • the data driving chip stretches the gray scale data of the received low clear display area according to the number of data lines and the compression ratio in the display panel.
  • the above-mentioned steps S601 and S602 performed in the graphics processor can ensure that the high-definition display area displays data, and the amount of data transmitted from the graphics processor to the data driving chip can be reduced to improve the data transmission speed.
  • the compression ratio in the above step S601 is longitudinally compressed by N times, and the horizontal direction may be compressed by M times; for example, as shown in FIG. 7, the original image received by the graphics processor is The resolution is 4320*4800, and the resolution of the high-definition display area b is determined to be 1440*1600, and the resolution of the low-definition display area a is compressed according to the compression ratio of the vertical four-fold compression and the horizontal three-fold compression, and the compression is low.
  • the resolution of the display area a is 1440*1200.
  • the resolution of the grayscale data of the low clear display area a and the grayscale data of the high definition display area b are 1440*2800.
  • the data driving chip stretches the gray scale data of the received low clear display area according to the number of data lines and the compression ratio in the display panel, including: the data driving chip according to the number and compression of the data lines in the display panel.
  • the lateral compression ratio in the ratio only laterally stretches the gray scale data of the received low clear display area, and the ratio of the lateral stretching is proportional to the number of data lines and the lateral compression ratio in the compression ratio.
  • the ratio of lateral stretching / lateral compression ratio number of original image pixel columns / number of data lines.
  • the number of data lines is the same as the number of columns of the original image, and the data driving chip needs to perform M-fold horizontal stretching, that is, horizontal stretching is required, that is, according to one line
  • M-fold horizontal stretching that is, horizontal stretching is required, that is, according to one line
  • One sub-pixel generates grayscale data of three sub-pixels.
  • the gray scale data is assigned to the three columns of pixel units in the display panel according to the actual pixel arrangement of the display panel.
  • 11 is a gray-scale data of six columns of pixel units in a high-definition display area in an original image, and gray-scale data of six columns of pixel units in a high-definition display area processed by a graphics processor in sequence from left to right.
  • the gray scale data of the column pixel unit is consistent with the gray scale data of the corresponding six columns of pixel units in the original image, and the gray scale data of the six columns of pixel units in the high definition display area processed by the graphics processor is displayed on the display panel. The case where the corresponding three columns of pixel units in the display area are assigned gray scale data.
  • an embodiment of the present disclosure further provides a display driving circuit.
  • the principle of the display driving circuit is similar to the foregoing driving method. Therefore, the implementation of the circuit can be implemented by referring to the implementation of the driving method. I won't go into details here.
  • a display driving circuit includes: a data driving chip 10 and a graphics processor 20;
  • the graphics processor 20 is configured to send an image to be displayed to the data driving chip 10; the grayscale data of the high definition display area a and the low clear display area b are included in the image to be displayed;
  • the data driving chip 10 is connected to the graphics processor 20, and the data driving chip 20 is configured to control the connected display panel to include each row of sub-pixels of the high-definition display area a for progressive scanning according to the position of the high-definition display area a;
  • the position of the area b controls the display sub-pixels of each row of the low-definition display area b to perform N-line simultaneous scanning; wherein N is an even number greater than 1.
  • each sub-pixel of each adjacent two rows of sub-pixels in the display panel is shifted in a column direction by X sub-pixels, 0 ⁇ X ⁇ 1, The display color of each sub-pixel and the adjacent sub-pixels are different.
  • the data driving chip 10 includes:
  • the first processing module 101 is configured to input the same gray scale data for each sub-pixel having the same display color connected to the same data line among every N rows of sub-pixels including only the low-definition display region b.
  • the data driving chip 10 may further include:
  • the first edge processing module 102 is configured to adjust and output corresponding grayscale data according to adjacent sub-pixel grayscales and weights of adjacent display colors for edge sub-pixels in even-row sub-pixels including only the low-definition display region b. .
  • the data driving chip 10 is specifically configured to control each row of the high-definition display area a and the low-definition display area b according to the position of the high-definition display area a.
  • the pixels are progressively scanned.
  • the data driving chip 10 may further include:
  • the second processing module 103 is configured to, for each N rows of sub-pixels including the high-definition display area a and the low-definition display area b, the sub-pixels having the same display color connected to the same data line in the low-definition display area b Enter the same grayscale data.
  • the data driving chip 10 may further include:
  • the second edge processing module 105 is configured to: in every N rows of sub-pixels including the high-definition display area and the low-definition display area, the edge sub-pixels in the even-row sub-pixels of the low-definition display area are the same according to the adjacent display colors Subpixel grayscale and weight adjustment and output corresponding grayscale data.
  • the data driving chip 10 is specifically configured to display, according to each sub-pixel of the high-definition region in each row of sub-pixels of the display panel that includes the high-definition display region, according to the to-be-displayed
  • the gray scale data of the high definition area in the image is adjusted and the corresponding gray scale data is output.
  • the graphics processor 20 includes: a compression module 201 and a fusion module 202;
  • the compression module 201 is configured to compress gray scale data of the low clear display area in the original image according to the set compression ratio
  • the fusion module 202 is configured to combine the gray scale data of the compressed low clear display area with the gray scale data of the high definition display area, and then send the data to the data driving chip;
  • the data driving chip 10 may further include: a stretching module 104 configured to stretch the gray scale data of the received low clear display area according to the number of data lines and the compression ratio in the display panel.
  • a stretching module 104 configured to stretch the gray scale data of the received low clear display area according to the number of data lines and the compression ratio in the display panel.
  • the compression ratio of the compression module 201 is longitudinally compressed by N times.
  • the stretching module 104 is configured to only stretch the received low according to the horizontal compression ratio in the number of data lines and the compression ratio in the display panel.
  • the gray scale data of the display area is clearly displayed, and the ratio of the horizontal stretch is proportional to the number of data lines and the horizontal compression ratio in the compression ratio.
  • an embodiment of the present disclosure further provides a display device, including the above display driving circuit provided by the embodiment of the present disclosure, and a display panel.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a VR device, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display driving circuit provided by the embodiment of the present disclosure
  • a display panel can be any product or component having a display function, such as a mobile phone, a tablet computer, a VR device, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • an embodiment of the present disclosure further provides a computer device including a memory, a processor, and a memory stored with a computer program configured to be executed by a processor to implement the driving method provided by the embodiments of the present disclosure.
  • the computer device can be a mobile phone, a tablet computer, a television, a VR device, or the like.
  • a computer device reference may be made to the embodiment of the foregoing driving method, and details are not described herein again.
  • the driving method, the display driving circuit, the display device and the computer device of the display panel provided by the embodiment of the present disclosure, after the data driving chip receives the image to be displayed sent by the graphics processor, according to the position of the high-definition display area in the image to be displayed,
  • the display panel of the control connection includes each row of sub-pixels of the high-definition display area for progressive scanning to meet the clear display of the high-definition display area; meanwhile, the data driving chip controls the display panel according to the position of the low-definition display area in the image to be displayed.
  • Each row of sub-pixels including only the low-definition display area performs N-line simultaneous scanning; wherein N is an even number greater than 1, thereby effectively reducing the number of refresh lines displayed per frame, and in the case of the same scanning time per frame, it is possible to increase Large display panel charging time to achieve high speed and low power display requirements.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps that are configured to implement the functions specified in one or more blocks of the flowchart or in a block or blocks of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

公开了一种显示面板的驱动方法、显示驱动电路、显示装置及计算机设备,在数据驱动芯片接收图形处理器发送的待显示图像后,根据待显示图像中的高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描;同时,数据驱动芯片根据待显示图像中的低清显示区域的位置,控制显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中N为大于1的偶数。

Description

显示面板的驱动方法、显示驱动电路及显示装置
本申请要求在2017年11月13日提交中国专利局、申请号为201711115424.2、发明名称为“一种显示面板的驱动方法、显示驱动电路及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板的驱动方法、显示驱动电路、显示装置及计算机设备。
背景技术
目前,随着对显示分辨率及刷新率的要求越来越高,对显示面板的充电时间要求更加严苛。尤其是在虚拟现实技术(VR/AR)中,由于需要对人眼注视的区域进行实时分析,之后对人眼需要的视觉敏锐度高的高清成像区域进行渲染,因此,为了达到较好的虚拟现实显示效果,对于显示分辨率和刷新率的要求会非常高,目前现有的显示机制是逐行扫描显示面板中的各行像素,已不能满足刷新率和显示分辨率的要求。
发明内容
本公开实施例提供了一种显示面板的驱动方法、显示驱动电路、显示装置及计算机设备,具体方案如下:
因此,本公开实施例提供了一种显示面板的驱动方法,包括:
数据驱动芯片接收图形处理器发送的待显示图像;所述待显示图像中包含高清显示区域和低清显示区域的灰阶数据;
所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描;
所述数据驱动芯片根据所述低清显示区域的位置,控制所述显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中,N为大于1的 偶数。
可选地,在本公开实施例提供的上述驱动方法中,所述显示面板中每相邻的两行所述亚像素中各所述亚像素之间在列方向错开X个子像素的位置,0<X<1,每个所述亚像素与相邻的各亚像素的显示颜色各不相同。
可选地,在本公开实施例提供的上述驱动方法中,所述数据驱动芯片控制所述显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描,包括:
所述数据驱动芯片对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据;
所述数据驱动芯片对仅包含低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述驱动方法中,所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,包括:
所述数据驱动芯片对同时包含高清显示区域和低清显示区域的每N行亚像素中,在所述低清显示区域中与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。
可选地,在本公开实施例提供的上述驱动方法中,所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,还包括:
所述数据驱动芯片对同时包含高清显示区域和低清显示区域的每N行亚像素中,所述低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述驱动方法中,所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,包括:
所述数据驱动芯片对显示面板中包含高清显示区域的各行亚像素中的所述高清区域的各个亚像素,根据所述待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述驱动方法中,在所述数据驱动芯片接收图形处理器发送的待显示图像之前,所述方法还包括:
所述图形处理器按设定的压缩比例压缩原始图像中的低清显示区域的灰阶数据;
所述图形处理器将压缩后的所述低清显示区域的灰阶数据与所述高清显示区域的灰阶数据融合后发送至所述数据驱动芯片;
所述数据驱动芯片根据显示面板中数据线的数量和所述压缩比例,拉伸接收到的所述低清显示区域的灰阶数据。
可选地,在本公开实施例提供的上述驱动方法中,所述压缩比例中纵向压缩N倍。
可选地,在本公开实施例提供的上述驱动方法中,所述数据驱动芯片根据显示面板中数据线的数量和所述压缩比例,拉伸接收到的所述低清显示区域的灰阶数据,包括:
所述数据驱动芯片根据显示面板中数据线的数量和所述压缩比例中的横向压缩比例,仅横向拉伸接收到的所述低清显示区域的灰阶数据,所述横向拉伸的比例与所述数据线的数量及所述压缩比例中的横向压缩比例成正比。
另一方面,本公开实施例还提供了一种显示驱动电路,包括:数据驱动芯片和图形处理器;其中,
所述图形处理器,被配置为向数据驱动芯片发送待显示图像;所述待显示图像中包含高清显示区域和低清显示区域的灰阶数据;
所述数据驱动芯片与所述图形处理器连接,所述数据驱动芯片被配置为根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描;根据所述低清显示区域的位置,控制所述显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中,N为大于 1的偶数。
可选地,在本公开实施例提供的上述显示驱动电路中,所述显示面板中每相邻的两行所述亚像素中各所述亚像素之间在列方向错开X个子像素的位置,0<X<1,每个所述亚像素与相邻的各亚像素的显示颜色各不相同。
可选地,在本公开实施例提供的上述显示驱动电路中,所述数据驱动芯片包括:
第一处理模块,被配置为对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据;
第一边缘处理模块,被配置为对仅包含低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,还包括:
第二处理模块,被配置为对同时包含高清显示区域和低清显示区域的每N行亚像素中,在所述低清显示区域中与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,还包括:
第二边缘处理模块,被配置为对同时包含高清显示区域和低清显示区域的每N行亚像素中,所述低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,所述数据驱动芯片具体被配置为对显示面板中包含高清显示区域的各行亚像素中的所述高清区域的各个亚像素,根据所述待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,所述图形处理器,包括:压缩模块和融合模块;其中,
所述压缩模块,被配置为按设定的压缩比例压缩原始图像中的低清显示区域的灰阶数据;
所述融合模块,被配置为将压缩后的所述低清显示区域的灰阶数据与所述高清显示区域的灰阶数据融合后发送至所述数据驱动芯片;
所述数据驱动芯片,还包括:拉伸模块,被配置为根据显示面板中数据线的数量和所述压缩比例,拉伸接收到的所述低清显示区域的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,所述压缩模块的所述压缩比例中纵向压缩N倍。
可选地,在本公开实施例提供的上述显示驱动电路中,所述拉伸模块,被配置为根据显示面板中数据线的数量和所述压缩比例中的横向压缩比例,仅横向拉伸接收到的所述低清显示区域的灰阶数据,所述横向拉伸的比例与所述数据线的数量及所述压缩比例中的横向压缩比例成正比。
另一方面,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示驱动电路,以及显示面板。
另一方面,本公开实施例还提供了一种计算机设备,包括存储器,处理器;所述存储器存储有计算机程序,所述计算机程序被配置为由所述处理器执行以实现本公开实施例提供的上述方法。
附图说明
图1为本公开实施例提供的显示面板的驱动方法的流程图;
图2为本公开实施例提供的驱动方法中的时钟信号的时序图;
图3为本公开实施例提供的驱动方法适用的显示面板的像素排布示意图;
图4为本公开实施例提供的驱动方法适用的显示面板的另一像素排布示意图;
图5为本公开实施例提供的驱动方法中显示面板的高清显示区域和低清显示区域分布示意图;
图6为本公开实施例提供的显示面板的驱动方法的另一流程图;
图7为本公开实施例提供的驱动方法中图形处理器的工作流程示意图;
图8为本公开实施例提供的驱动方法中高清显示区域的灰阶数据的处理 流程示意图之一;
图9为本公开实施例提供的驱动方法中低清显示区域的灰阶数据的处理流程示意图;
图10为本公开实施例提供的显示驱动电路的结构示意图;
图11为本公开实施例提供的驱动方法中高清显示区域的灰阶数据的处理流程示意图之二。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面结合附图,对本公开实施例提供的显示面板的驱动方法、显示驱动电路及显示装置的具体实施方式进行详细地说明。显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
本公开实施例提供的一种显示面板的驱动方法,如图1所示,包括以下步骤:
S101、数据驱动芯片接收图形处理器发送的待显示图像;待显示图像中包含高清显示区域和低清显示区域的灰阶数据;
S102、数据驱动芯片根据高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描;
S103、数据驱动芯片根据低清显示区域的位置,控制显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中,N为大于1的偶数。
具体地,在本公开实施例提供的上述显示面板的驱动方法中,在数据驱动芯片接收图形处理器发送的待显示图像后,由于数据驱动芯片根据待显示图像中的高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,因此,可以满足高清显示区域的成像清晰显示。并且,由于数据驱动芯片同时根据待显示图像中的低清显示区域的位置,控制显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描,其中N 为大于1的偶数;相对于逐行扫描,可以加快低清显示区域的刷新速度,由此有效减小每帧显示的刷新行数,并有效减小每帧显示的整体扫描行数,可以节省每帧扫描时间;而在同等每帧扫描时间的情况下,可以增大显示面板的充电时间,以实现高速且低功耗显示需求。
具体地,在本公开实施例提供的上述显示面板的驱动方法中,步骤S102和步骤S103一般同时进行,不分先后顺序。且在步骤S103中对于N行同时扫描的选择可以有多种,例如两行同时扫描、四行同时扫描或八行同时扫描等,在此不做限定。下面以数据驱动芯片控制仅包含低清显示区域的各行亚像素进行四行同时扫描为例进行说明。
具体地,在本公开实施例提供的上述显示面板的驱动方法中,步骤S102和步骤S103中数据驱动芯片控制连接的显示面板中进行扫描行数的变化,主要是通过控制向显示面板加载的时钟信号的变化实现的。具体地,如图2和图5所示,在仅包含低清显示区域a1和a2的各行亚像素进行扫描时,数据驱动芯片可以对显示面板的时钟信号端CLK1-4同时加载相同的第一时钟信号,同时对显示面板的时钟信号端CLK5-8加载与第一时钟信号相反的第二时钟信号,以实现仅包含低清显示区域a1和a2的各行亚像素以每4行同时扫描。在包含高清显示区域b的各行亚像素进行扫描时,如图2中虚线框所示,数据驱动芯片可以对显示面板的时钟信号端CLK1-4依次时加载第一时钟信号,同时对显示面板的时钟信号端CLK5-8分别加载与时钟信号端CLK1-4的第一时钟信号相反的第二时钟信号,以实现包含高清显示区域的各行亚像素逐行进行扫描。
可选地,在本公开实施例提供的上述驱动方法中,显示面板中亚像素的排列方式可以有多种,例如图3所示,亚像素可以在行方向和列方向均对齐排列,且每列亚像素的显示颜色均相同。又如图4所示,显示面板中每相邻的两行亚像素中各亚像素之间在列方向错开X个子像素的位置,0<X<1,每个亚像素与相邻的各亚像素的显示颜色各不相同,此时,数据线也从图3所示的直线延伸,变更为图4所示的折线延伸,且为了保证一条数据线与仅与 相同显示颜色的亚像素连接,数据线会分别和两侧的亚像素通过开关晶体管连接。
具体实施时,图4所示的像素排布在显示时采用特定的驱动方法能够实现高于物理分辨率一倍的显示分辨率。因此,图4所示的像素排布可以在与图3所示的传统像素排布同等显示分辨率的情况下,节省一半的亚像素数量和一半的数据线数量,由此有效降低显示面板的工艺难度。
可选地,在本公开实施例提供的上述驱动方法中,在执行步骤S103数据驱动芯片控制显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描的同时,还可以执行以下步骤:
数据驱动芯片对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据;即,在N行亚像素同时进行扫描时,一条数据线会同时与这N行亚像素中的N个显示颜色相同的亚像素导通,对这N个亚像素加载相同的灰阶数据,例如,一条与红色亚像素连接的数据线会在四行亚像素同时扫描时,对四个红色亚像素加载相同的灰阶数据。
具体地,在数据驱动芯片控制显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描,加快低清显示区域的刷新速度,由此有效减小每帧显示的刷新行数,并有效减小每帧显示的整体扫描行数,节省每帧扫描时间,增大显示面板的充电时间的基础上,数据驱动芯片对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据,可以降低数据驱动芯片对数据线加载的灰阶数据量,由此减少数据驱动芯片内部数据处理量,以节省数据驱动芯片的功耗。
在图4所示的像素排布结构基础上,在本公开实施例提供的上述显示面板的驱动方法中,数据驱动芯片对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据的同时,还可以执行以下步骤:
数据驱动芯片对仅包含低清显示区域的偶数行亚像素中的边缘亚像素, 根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据,即对偶数行的左侧边缘亚像素B需要单独进行边缘灰阶数据调整,可以按照其右侧和上下相邻的三个亚像素B的权重和灰阶数据,进行像素的灰阶数据赋值,以满足显示要求。
可选地,在本公开实施例提供的上述驱动方法中,如图5所示,由于高清显示区域b一般仅在显示面板的中间部分,不会覆盖整行亚像素,因此步骤S102数据驱动芯片根据高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,一般包括:
数据驱动芯片根据高清显示区域的位置,控制同时包含高清显示区域和低清显示区域的各行亚像素进行逐行扫描,即数据驱动芯片控制在图5中的同时包含高清显示区域b和低清显示区域a3和a4的各行亚像素进行逐行扫描。
可选地,在本公开实施例提供的上述驱动方法中,数据驱动芯片根据高清显示区域的位置,控制同时包含高清显示区域和低清显示区域的各行亚像素进行逐行扫描的同时,还可以执行以下步骤:
数据驱动芯片对同时包含高清显示区域和低清显示区域的每N行亚像素中,在低清显示区域中与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。如图5所示,虽然在高清显示区域b两侧的低清显示区域a3和a4也为逐行扫描,但是通过数据驱动芯片对低清显示区域a3和a4的线缓存(line buffer)中的一行像素内容读出四行,分别给低清显示区域a3和a4中的四行亚像进行显示,可以降低数据驱动芯片对数据线加载的灰阶数据量,由此减少数据驱动芯片内部数据处理量,以节省数据驱动芯片的功耗。具体地,对于低清显示区域a3和a4中奇数行的亚像素,数据驱动芯片可以直接发送灰阶数据进行显示,对于图4所示的像素排布中的偶数行需要对应做像素调整,将像素内的RGB与BRG的灰阶数据进行调换后发送进行显示。
可选地,在本公开实施例提供的上述驱动方法中,数据驱动芯片根据高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,还包括:
数据驱动芯片对同时包含高清显示区域和低清显示区域的每N行亚像素中,低清显示区域的偶数行亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述驱动方法中,数据驱动芯片根据高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,包括:
数据驱动芯片对显示面板中包含高清显示区域的各行亚像素中的高清区域的各个亚像素,根据待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据。
在具体实施时,对于高清区域的各个亚像素,根据待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据具体为:以图8为例,高清显示区域中的3列像素单元在原始图像中对应6列像素单元,根据原始图像中的6列像素单元的灰阶数据进行计算,通过算法可以换算得到高清显示区域中的3列像素单元分别对应的灰阶数据,然后根据换算的灰阶数据对显示面板的实际像素排布进行灰阶数据赋值,从而通过3列像素单元实现6列像素单元的显示效果,即实现高于物理分辨率一倍的显示分辨率。
具体地,根据原始图像中的灰阶数据计算高清显示区域各像素单元分别对应的灰阶数据可以采用如下算法获得:
Stp1、将原始图像划分为理论像素单元,每个理论像素单元包括多个颜色不同的理论亚像素,计算每个理论亚像素的理论亮度值;
Stp2、计算每个实际亚像素的实际亮度值,包括:
Stp21、找出第一理论亚像素,该第一理论亚像素在原始图像中的位置与待计算的实际亚像素在显示面板的像素阵列中的位置相对应;
Stp22、在第一理论亚像素与至少一个相邻理论亚像素之间插入多个与该第一理论亚像素同色的虚拟亚像素,相邻理论亚像素为第一理论亚像素所在的行中,与该第一理论亚像素颜色相同的所有理论亚像素中与该第一理论亚像素邻近的理论亚像素;
Stp23、将第一理论亚像素的理论亮度值的一部分与位置与待计算的实际亚像素相对应的虚拟亚像素的虚拟亮度值的一分部相加所得的值即为待计算的实际亚像素的实际亮度值,其中,虚拟亚像素的虚拟亮度值为该第一理论亚像素的理论亮度值的一部分以及相应的相邻理论亚像素的一部分之和;
Stp3、向各个实际亚像素输入信号,以使各实际亚像素达到步骤stp2中所计算得到的实际亮度值。可选地,在本公开实施例提供的上述驱动方法中,如图6所示,在数据驱动芯片接收图形处理器发送的待显示图像之前,还可以包括以下步骤:
S601、图形处理器按设定的压缩比例压缩原始图像中的低清显示区域的灰阶数据;
S602、图形处理器将压缩后的低清显示区域的灰阶数据与高清显示区域的灰阶数据融合后发送至数据驱动芯片;
S603、数据驱动芯片根据显示面板中数据线的数量和压缩比例,拉伸接收到的低清显示区域的灰阶数据。
具体地,通过上述在图形处理器中执行的步骤S601和S602可以保证高清显示区域显示数据的同时,可以使从图形处理器到数据驱动芯片的传输数据量较小,以提高数据传输速度,从而可以支持更高图像输出帧频,降低GPU的输出延迟,提升了用户体验。
可选地,在本公开实施例提供的上述驱动方法中,上述步骤S601中压缩比例中纵向压缩N倍,横向可以是压缩M倍;例如图7所示,图形处理器接收到的原始图像的分辨率为4320*4800,确定其中高清显示区域b的分辨率为1440*1600,将低清显示区域a的分辨率按照纵向四倍压缩且横向三倍压缩的压缩比例进行压缩,压缩后的低清显示区域a的分辨率为1440*1200。执行上述步骤S602之后,低清显示区域a的灰阶数据与高清显示区域b的灰阶数据融合后分辨率为1440*2800。
对应地,上述步骤S603数据驱动芯片根据显示面板中数据线的数量和压缩比例,拉伸接收到的低清显示区域的灰阶数据,包括:数据驱动芯片根据 显示面板中数据线的数量和压缩比例中的横向压缩比例,仅横向拉伸接收到的低清显示区域的灰阶数据,横向拉伸的比例与数据线的数量及压缩比例中的横向压缩比例成正比。其中,横向拉伸的比例/横向压缩比例=原始图像像素列数/数据线条数。
以图3所示的像素排布为例,数据线的数量和原始图像的列数一致,数据驱动芯片需要进行M倍的横向拉伸,即需要横向3倍拉伸,即根据一行中的一个亚像素生成三个亚像素的灰阶数据。
以图4所示的像素排布为例,数据线的数量比原始图像的列数减少一半,数据驱动芯片需要进行M/2倍的横向拉伸,即需要横向1.5倍拉伸,即根据一行中的两个亚像素生成三个亚像素的灰阶数据。图9示出了低清显示区域中的四个像素单元经过1.5倍横向拉伸变为六个像素单元的灰阶数据,之后根据显示面板的实际像素排布向六个像素单元进行灰阶数据赋值,使N=4行亚像素使用相同一行灰阶数据进行驱动显示的过程。图8示出了原始图像中高清显示区域中的六列像素单元的灰阶数据,根据显示面板的实际像素排布对显示面板中的三列像素单元进行灰阶数据赋值的情况。图11从左至右依次示出了原始图像中高清显示区域中的六列像素单元的灰阶数据,经图形处理器处理后的高清显示区域中的六列像素单元的灰阶数据(该六列像素单元的灰阶数据与原始图像中对应的六列像素单元的灰阶数据一致),以及根据图形处理器处理后的高清显示区域中的六列像素单元的灰阶数据对显示面板的高清显示区域中对应的三列像素单元进行灰阶数据赋值的情况。
基于同一发明构思,本公开实施例还提供了一种上述显示驱动电路,由于该显示驱动电路解决问题的原理与前述一种驱动方法相似,因此该电路的实施可以参见驱动方法的实施,重复之处不再赘述。
具体地,本公开实施例提供的一种显示驱动电路,如图10所示,包括:数据驱动芯片10和图形处理器20;其中,
图形处理器20,被配置为向数据驱动芯片10发送待显示图像;待显示图像中包含高清显示区域a和低清显示区域b的灰阶数据;
数据驱动芯片10与图形处理器连接20,数据驱动芯片20被配置为根据高清显示区域a的位置,控制连接的显示面板中包含高清显示区域a的各行亚像素进行逐行扫描;根据低清显示区域b的位置,控制显示面板中仅包含低清显示区域b的各行亚像素进行N行同时扫描;其中,N为大于1的偶数。
可选地,在本公开实施例提供的上述显示驱动电路中,显示面板中每相邻的两行亚像素中各亚像素之间在列方向错开X个子像素的位置,0<X<1,每个亚像素与相邻的各亚像素的显示颜色各不相同。
可选地,在本公开实施例提供的上述显示驱动电路中,如图10所示,数据驱动芯片10包括:
第一处理模块101,被配置为对仅包含低清显示区域b的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,如图10所示,数据驱动芯片10,还可以包括:
第一边缘处理模块102,被配置为对仅包含低清显示区域b的偶数行亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,数据驱动芯片10,具体被配置为根据高清显示区域a的位置,控制同时包含高清显示区域a和低清显示区域b的各行亚像素进行逐行扫描。
可选地,在本公开实施例提供的上述显示驱动电路中,如图10所示,数据驱动芯片10,还可以包括:
第二处理模块103,被配置为对同时包含高清显示区域a和低清显示区域b的每N行亚像素中,在低清显示区域b中与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,如图10所示,数据驱动芯片10,还可以包括:
第二边缘处理模块105,被配置为对同时包含高清显示区域和低清显示区 域的每N行亚像素中,低清显示区域的偶数行亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,数据驱动芯片10,具体被配置为对显示面板中包含高清显示区域的各行亚像素中的高清区域的各个亚像素,根据待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,如图10所示,图形处理器20,包括:压缩模块201和融合模块202;其中,
压缩模块201,被配置为按设定的压缩比例压缩原始图像中的低清显示区域的灰阶数据;
融合模块202,被配置为将压缩后的低清显示区域的灰阶数据与高清显示区域的灰阶数据融合后发送至数据驱动芯片;
数据驱动芯片10,还可以包括:拉伸模块104,被配置为根据显示面板中数据线的数量和压缩比例,拉伸接收到的低清显示区域的灰阶数据。
可选地,在本公开实施例提供的上述显示驱动电路中,压缩模块201的压缩比例中纵向压缩N倍。
可选地,在本公开实施例提供的上述显示驱动电路中,拉伸模块104,被配置为根据显示面板中数据线的数量和压缩比例中的横向压缩比例,仅横向拉伸接收到的低清显示区域的灰阶数据,横向拉伸的比例与数据线的数量及压缩比例中的横向压缩比例成正比。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示驱动电路,以及显示面板。该显示装置可以为:手机、平板电脑、VR设备、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述显示驱动电路的实施例,重复之处不再赘述。
基于同一发明构思,本公开实施例还提供了一种计算机设备,包括存储器,处理器,存储器存储有计算机程序,计算机程序被配置为由处理器执行 以实现本公开实施例提供的驱动方法。计算机设备可以是手机、平板电脑、电视机、VR设备等。该计算机设备的实施例可以参见上述驱动方法的实施例,在此不再赘述。
本公开实施例提供的上述显示面板的驱动方法、显示驱动电路及显示装置和计算机设备,在数据驱动芯片接收图形处理器发送的待显示图像后,根据待显示图像中的高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,以满足高清显示区域的成像清晰显示;同时,数据驱动芯片根据待显示图像中的低清显示区域的位置,控制显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中N为大于1的偶数,由此有效减小每帧显示的刷新行数,在同等每帧扫描时间的情况下,可以增大显示面板的充电时间,以实现高速且低功耗显示需求。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种显示面板的驱动方法,其中,包括:
    数据驱动芯片接收图形处理器发送的待显示图像;所述待显示图像中包含高清显示区域和低清显示区域的灰阶数据;
    所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描;
    所述数据驱动芯片根据所述低清显示区域的位置,控制所述显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中,N为大于1的偶数。
  2. 如权利要求1所述的驱动方法,其中,所述显示面板中每相邻的两行所述亚像素中各所述亚像素之间在列方向错开X个子像素的位置,0<X<1,每个所述亚像素与相邻的各亚像素的显示颜色各不相同。
  3. 如权利要求2所述的驱动方法,其中,所述数据驱动芯片控制所述显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描,包括:
    所述数据驱动芯片对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据;
    所述数据驱动芯片对仅包含低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
  4. 如权利要求1所述的驱动方法,其中,所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,包括:
    所述数据驱动芯片对同时包含高清显示区域和低清显示区域的每N行亚像素中,在所述低清显示区域中与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。
  5. 如权利要求4所述的驱动方法,其中,所述数据驱动芯片根据所述高 清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,还包括:
    所述数据驱动芯片对同时包含高清显示区域和低清显示区域的每N行亚像素中,所述低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
  6. 如权利要求2所述的驱动方法,其中,所述数据驱动芯片根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描,包括:
    所述数据驱动芯片对显示面板中包含高清显示区域的各行亚像素中的所述高清区域的各个亚像素,根据所述待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据。
  7. 如权利要求1-6任一项所述的驱动方法,其中,在所述数据驱动芯片接收图形处理器发送的待显示图像之前,所述方法还包括:
    所述图形处理器按设定的压缩比例压缩原始图像中的低清显示区域的灰阶数据;
    所述图形处理器将压缩后的所述低清显示区域的灰阶数据与所述高清显示区域的灰阶数据融合后发送至所述数据驱动芯片;
    所述数据驱动芯片根据显示面板中数据线的数量和所述压缩比例,拉伸接收到的所述低清显示区域的灰阶数据。
  8. 如权利要求7所述的驱动方法,其中,所述压缩比例中纵向压缩N倍。
  9. 如权利要求8所述的驱动方法,其中,所述数据驱动芯片根据显示面板中数据线的数量和所述压缩比例,拉伸接收到的所述低清显示区域的灰阶数据,包括:
    所述数据驱动芯片根据显示面板中数据线的数量和所述压缩比例中的横向压缩比例,仅横向拉伸接收到的所述低清显示区域的灰阶数据,所述横向拉伸的比例与所述数据线的数量及所述压缩比例中的横向压缩比例成正比。
  10. 一种显示驱动电路,其中,包括:数据驱动芯片和图形处理器;其 中,
    所述图形处理器,被配置为向数据驱动芯片发送待显示图像;所述待显示图像中包含高清显示区域和低清显示区域的灰阶数据;
    所述数据驱动芯片与所述图形处理器连接,所述数据驱动芯片被配置为根据所述高清显示区域的位置,控制连接的显示面板中包含高清显示区域的各行亚像素进行逐行扫描;根据所述低清显示区域的位置,控制所述显示面板中仅包含低清显示区域的各行亚像素进行N行同时扫描;其中,N为大于1的偶数。
  11. 如权利要求10所述的显示驱动电路,其中,所述显示面板中每相邻的两行所述亚像素中各所述亚像素之间在列方向错开X个子像素的位置,0<X<1,每个所述亚像素与相邻的各亚像素的显示颜色各不相同。
  12. 如权利要求11所述的显示驱动电路,其中,所述数据驱动芯片包括:
    第一处理模块,被配置为对仅包含低清显示区域的每N行亚像素中,与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据;
    第一边缘处理模块,被配置为对仅包含低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
  13. 如权利要求12所述的显示驱动电路,其中,所述数据驱动芯片,还包括:
    第二处理模块,被配置为对同时包含高清显示区域和低清显示区域的每N行亚像素中,在所述低清显示区域中与同一数据线连接的显示颜色相同的各亚像素输入相同的灰阶数据。
  14. 如权利要求13所述的显示驱动电路,其中,所述数据驱动芯片,还包括:
    第二边缘处理模块,被配置为对同时包含高清显示区域和低清显示区域的每N行亚像素中,所述低清显示区域的偶数行所述亚像素中的边缘亚像素,根据邻近的显示颜色相同的亚像素灰阶和权重调整并输出相应的灰阶数据。
  15. 如权利要求11所述的显示驱动电路,其中,所述数据驱动芯片具体被配置为对显示面板中包含高清显示区域的各行亚像素中的所述高清区域的各个亚像素,根据所述待显示图像中高清区域的灰阶数据调整并输出相应的灰阶数据。
  16. 如权利要求10-15任一项所述的显示驱动电路,其中,所述图形处理器,包括:压缩模块和融合模块;其中,
    所述压缩模块,被配置为按设定的压缩比例压缩原始图像中的低清显示区域的灰阶数据;
    所述融合模块,被配置为将压缩后的所述低清显示区域的灰阶数据与所述高清显示区域的灰阶数据融合后发送至所述数据驱动芯片;
    所述数据驱动芯片,还包括:拉伸模块,被配置为根据显示面板中数据线的数量和所述压缩比例,拉伸接收到的所述低清显示区域的灰阶数据。
  17. 如权利要求16所述的显示驱动电路,其中,所述压缩模块的所述压缩比例中纵向压缩N倍。
  18. 如权利要求17所述的显示驱动电路,其中,所述拉伸模块,被配置为根据显示面板中数据线的数量和所述压缩比例中的横向压缩比例,仅横向拉伸接收到的所述低清显示区域的灰阶数据,所述横向拉伸的比例与所述数据线的数量及所述压缩比例中的横向压缩比例成正比。
  19. 一种显示装置,其中,包括如权利要求10-18任一项所述的显示驱动电路,以及显示面板。
  20. 一种计算机设备,其中,包括:
    存储器,处理器;
    所述存储器存储有计算机程序,所述计算机程序被配置为由所述处理器执行以实现如权利要求1-9任一项所述的方法。
PCT/CN2018/103090 2017-11-13 2018-08-29 显示面板的驱动方法、显示驱动电路及显示装置 WO2019091193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/332,947 US11176864B2 (en) 2017-11-13 2018-08-29 Method for driving a display panel, display drive circuit and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711115424.2A CN107767808B (zh) 2017-11-13 2017-11-13 一种显示面板的驱动方法、显示驱动电路及显示装置
CN201711115424.2 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019091193A1 true WO2019091193A1 (zh) 2019-05-16

Family

ID=61272337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103090 WO2019091193A1 (zh) 2017-11-13 2018-08-29 显示面板的驱动方法、显示驱动电路及显示装置

Country Status (3)

Country Link
US (1) US11176864B2 (zh)
CN (1) CN107767808B (zh)
WO (1) WO2019091193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961479B2 (en) 2020-12-22 2024-04-16 Beijing Boe Optoelectronics Technology Co., Ltd. Display device and method for driving the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129795A1 (de) * 2017-06-30 2019-01-03 Lg Display Co., Ltd. Anzeigevorrichtung und gate-treiberschaltkreis davon, ansteuerungsungsverfahren und virtuelle-realität-vorrichtung
CN107767808B (zh) 2017-11-13 2020-09-08 北京京东方光电科技有限公司 一种显示面板的驱动方法、显示驱动电路及显示装置
CN108597435B (zh) * 2018-04-28 2021-10-29 京东方科技集团股份有限公司 用于控制显示面板的显示的方法及其装置、显示装置
CN109064976A (zh) * 2018-11-01 2018-12-21 京东方科技集团股份有限公司 显示面板的驱动方法、驱动电路及显示装置
CN109658900B (zh) * 2019-02-28 2021-01-01 京东方科技集团股份有限公司 显示面板的驱动方法、补偿电路及驱动装置、显示装置
CN111199713A (zh) * 2020-03-05 2020-05-26 苹果公司 具有多个刷新率模式的显示器
KR20220128549A (ko) * 2021-03-12 2022-09-21 삼성디스플레이 주식회사 데이터 드라이버 및 데이터 드라이버를 포함하는 표시 장치
CN113470570B (zh) * 2021-07-15 2022-11-22 中科芯集成电路有限公司 一种led显示驱动芯片sram控制方法
CN114217691B (zh) * 2021-12-13 2023-12-26 京东方科技集团股份有限公司 一种显示器驱动方法、装置、电子设备及智能显示系统
CN114783360A (zh) * 2022-04-20 2022-07-22 京东方科技集团股份有限公司 栅极驱动控制方法及其系统、显示驱动系统、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207195A1 (en) * 2008-02-20 2009-08-20 Oqo, Inc. Screen condensation with heterogeneous display resolution
CN105915907A (zh) * 2016-06-07 2016-08-31 北京圣威特科技有限公司 全景图的压缩和解压方法、装置及系统
CN106920501A (zh) * 2017-05-12 2017-07-04 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN106935224A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN107093410A (zh) * 2017-06-20 2017-08-25 武汉华星光电技术有限公司 液晶显示亮度调控方法、装置以及液晶显示屏
CN107195278A (zh) * 2017-07-18 2017-09-22 京东方科技集团股份有限公司 一种显示面板的显示方法、显示面板及显示装置
CN107767808A (zh) * 2017-11-13 2018-03-06 北京京东方光电科技有限公司 一种显示面板的驱动方法、显示驱动电路及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114941A (ja) * 2003-10-06 2005-04-28 Sharp Corp 液晶表示装置
CN106530994B (zh) * 2016-12-30 2018-12-28 上海天马有机发光显示技术有限公司 一种消除显示图形彩边的方法及显示装置
CN107068035B (zh) * 2017-04-06 2020-12-18 京东方科技集团股份有限公司 一种显示方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207195A1 (en) * 2008-02-20 2009-08-20 Oqo, Inc. Screen condensation with heterogeneous display resolution
CN105915907A (zh) * 2016-06-07 2016-08-31 北京圣威特科技有限公司 全景图的压缩和解压方法、装置及系统
CN106920501A (zh) * 2017-05-12 2017-07-04 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN106935224A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN107093410A (zh) * 2017-06-20 2017-08-25 武汉华星光电技术有限公司 液晶显示亮度调控方法、装置以及液晶显示屏
CN107195278A (zh) * 2017-07-18 2017-09-22 京东方科技集团股份有限公司 一种显示面板的显示方法、显示面板及显示装置
CN107767808A (zh) * 2017-11-13 2018-03-06 北京京东方光电科技有限公司 一种显示面板的驱动方法、显示驱动电路及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961479B2 (en) 2020-12-22 2024-04-16 Beijing Boe Optoelectronics Technology Co., Ltd. Display device and method for driving the same

Also Published As

Publication number Publication date
US20210174724A1 (en) 2021-06-10
CN107767808B (zh) 2020-09-08
CN107767808A (zh) 2018-03-06
US11176864B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2019091193A1 (zh) 显示面板的驱动方法、显示驱动电路及显示装置
US10657872B2 (en) Display device
US10553145B2 (en) Pixel structure, display panel and driving method thereof
TWI435297B (zh) 影像顯示裝置及驅動影像顯示裝置之方法
EP2339570B1 (en) Liquid crystal display with RGBW pixels and dynamic backlight control
US10410602B2 (en) Display device and method of driving display panel
US9747859B2 (en) Liquid crystal display using a gate sharing structure
KR20140104624A (ko) 표시장치, 데이터 처리장치 및 그 방법
US9697795B2 (en) Video processing device and method
US20090102777A1 (en) Method for driving liquid crystal display panel with triple gate arrangement
CN100543830C (zh) 液晶显示器件的驱动装置及方法
US9058785B2 (en) Image displaying method for display device
WO2016192367A1 (zh) 阵列基板及显示装置
US10559244B2 (en) Electronic apparatus, display driver and method for generating display data of display panel
CN105632424A (zh) 一种扩展显示灰阶数的色彩增强算法及控制装置
CN102968948A (zh) 驱动电路、显示器和驱动显示器的方法
JP2014232321A (ja) 液晶表示装置及びその表示方法
KR20110138677A (ko) 타이밍 컨트롤 유닛 및 이를 이용하는 디스플레이 장치 및 방법
US9117386B2 (en) Method for driving display panel and display apparatus applying the same
KR20160007970A (ko) 표시 장치 및 그것의 구동 방법
CN100568912C (zh) 抖动矩阵设置方法及相应的帧速率控制方法
WO2018040403A1 (zh) 用于3d显示的液晶面板、驱动方法及像素优化方法
CN110599968A (zh) 一种低色偏像素矩阵显示方法及装置
CN109949766A (zh) 一种像素矩阵驱动方法及显示装置
US20160284287A1 (en) Display apparatus and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18875220

Country of ref document: EP

Kind code of ref document: A1