WO2019091035A1 - 一种模拟沥青路面现场就地热再生工况条件下取样方法 - Google Patents
一种模拟沥青路面现场就地热再生工况条件下取样方法 Download PDFInfo
- Publication number
- WO2019091035A1 WO2019091035A1 PCT/CN2018/080666 CN2018080666W WO2019091035A1 WO 2019091035 A1 WO2019091035 A1 WO 2019091035A1 CN 2018080666 W CN2018080666 W CN 2018080666W WO 2019091035 A1 WO2019091035 A1 WO 2019091035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- asphalt
- pavement
- asphalt pavement
- wall
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
Definitions
- the invention relates to a sampling method for on-site heat regeneration of an asphalt pavement on an asphalt pavement site. Specifically, it is a sampling method for simulating the on-site thermal regeneration conditions of asphalt pavements.
- the asphalt pavement After a long period of air, rain, ultraviolet light, alternating temperature and wheel load, the asphalt pavement will cause aging and form a variety of road diseases.
- the traditional maintenance method is milling and resurfacing, but this method is used. More, more investment, milling produces a lot of waste, waste resources, pollute the environment.
- On-site heat regeneration (HIR) is a 100% in-situ recycling of old asphalt concrete pavement materials by on-site heating, simmering, spraying regenerant and/or hot asphalt, mixing, paving, rolling and other processes. No waste is generated, the construction speed is fast, the traffic impact is small, and the efficiency is high.
- the asphalt pavement geothermal regeneration technology has the advantages of energy saving, environmental protection, high construction quality and long service life of the pavement.
- the mix ratio design of the recycled mixture plays a decisive role in the quality control after the geothermal regeneration construction.
- the sampling of the original road surface is a sample to judge the degree of aging of the original road surface, and the test determines the amount of regenerant added and the amount of new material added, and completes the premise of the mix design of the recycled mixture.
- on-site sampling methods for old asphalt mixtures at home and abroad include pavement cutting method, core sampling method, and broken sampling method, such as the Chinese invention patent document “A Carbon Emission Evaluation Method for Asphalt Surface Construction” (Publication No.: CN107122591A), "A device and method for detecting rutting performance of a solid road surface” (publication number: CN106872298A), "a dry mixed waste rubber powder modified waste edible oil heat-recycled asphalt mixture and a preparation method thereof" (publication number: CN106633950A), “A method for producing hot mixed asphalt concrete produced by the factory” (publication number: CN105601176A), all of which are sampled by a conventional core sampling method and a broken sampling method.
- Chinese invention patent document “A Carbon Emission Evaluation Method for Asphalt Surface Construction” Publication No.: CN107122591A
- a device and method for detecting rutting performance of a solid road surface publication number: CN106872298A
- the traditional method of sampling only considers the natural aging during the use of the road surface, and does not consider the secondary aging of the original pavement asphalt caused by the heating during the geothermal regeneration construction.
- the amount of regenerant added by the sample is not enough to fully compensate and recover.
- the invention solves the above-mentioned defects in the prior art, and proposes a sampling method for simulating the on-site thermal regeneration condition of the asphalt pavement, and sampling under the condition of the geothermal regeneration condition on the simulated asphalt pavement, not only avoiding the natural road surface conditions. Aging, also taking into account the aging caused by the road surface thermal regeneration construction process. Hot melt softening sampling is used without changing the properties of the mixture.
- the main task of the invention is to adapt to the characteristics of the in situ heat regeneration technology, and to provide a sampling method and a specific implementation method for the simulated working condition dedicated to the in situ heat regeneration project.
- the sampling method of the simulated working condition of the present invention is used to sample the old asphalt mixture of the original pavement, without destroying the aggregate and gradation of the original asphalt mixture, and the addition amount of the regenerant determined by the indoor test analysis is fully considered.
- the secondary aging caused by the heating of the geothermal regeneration construction can restore the performance of the aged asphalt to the optimum state.
- the mixing ratio of the recycled asphalt mixture can be controlled to ensure the construction quality and extend the service life of the road.
- the invention simulates a sampling method under the condition of on-site thermal regeneration condition of asphalt pavement, and the steps are as follows:
- Step 1 Select the sampling point of the asphalt pavement mixture in the asphalt pavement area to be repaired.
- Step 2 According to the thermal regeneration construction design scheme of the asphalt pavement, obtain the simulation parameters:
- the heating wall heating strength Q (or heating temperature) in the construction design.
- Asphalt pavement equipment (heating car) heating parameters heating cycle number n (ie: number of heating cars, heating car has two heating walls before and after), a heating cycle, heating temperature of the front heating wall T1, heating wall heating interval
- the heating time T2 after the time t1, the heating wall, and the heating time t2 of the two heating cycles form a heating cycle.
- T1, T2 can be calculated according to the set heating vehicle construction traveling speed and the length of the heating wall
- t1 can be calculated according to the spacing between the adjacent sides of the two heating walls and the set heating vehicle construction traveling speed.
- T2 can be calculated according to the distance between the rear heating wall of the front heating wall and the front heating wall of the rear heating car and the set heating speed of the heating vehicle.
- Asphalt pavement heat recovery vehicle heating parameters heating duration of the heating wall of the hot regenerator car Ta, the last post-heating car heating wall and the heat regeneration car heating wall heating interval ta; (ta after heating the car heating wall behind the heat The distance between the front side of the regenerative vehicle heating wall and the vehicle walking speed is determined).
- Step 3 Simulate heating the asphalt pavement at the selected sampling pavement according to the parameters determined in step 2:
- small intermittent heating equipment existing equipment, the same heating method and heating wall as the heating equipment and regeneration equipment in the construction
- the asphalt pavement is heated by n heating cycles.
- the heating of the Ta time is performed once more.
- step 4 the sampled surface is loosely sampled.
- the method of the invention simulates the heating intensity and mode of the heating equipment used in the in-situ heat regeneration construction unit on site, and the heating intensity and mode of the regenerative equipment used to heat the asphalt pavement to simulate the secondary aging of the asphalt pavement caused by the in-situ heat regeneration construction process. .
- the unrolled original asphalt mixture was sampled using a non-forced loosening method.
- the invention adopts the invention to carry out the loose sampling after the original road surface is heated, and completely simulates the heating control state during the local heat regeneration construction, and the sample obtained by the method fully considers the aging of the original road surface by the in-situ heat regeneration construction.
- the secondary aging caused by the asphalt, the amount of the regenerant added by the test is exactly the same as the amount actually added during the construction, and the performance of the aged asphalt can be restored to the optimum state.
- the high temperature state of the original asphalt mixture is sampled by non-forced loosening, which will not destroy the gradation of the recovered old asphalt mixture sample.
- the gradation (test gradation) obtained by the indoor test using the asphalt mixture sample is completely consistent with the actual gradation of the original asphalt mixture, and the mix ratio of the recycled mixture determined by the test grading and the actual post-construction regeneration
- the mixing ratio of the mixture is consistent, and the performance of the asphalt mixture in the local heat regeneration construction can be controlled, the construction quality is ensured, and the service life of the road is prolonged.
- Figure 1 Schematic diagram of the layout and walking of the heated and regenerative vehicles on the asphalt pavement thermal regeneration construction site.
- FIG. 2 is a schematic view showing the arrangement of an asphalt pavement thermal regeneration construction equipment.
- the project-on-site geothermal recovery unit consists of three heating equipment (heating vehicles), one regenerative equipment (heat-recycling vehicle), and auxiliary equipment such as paving and rolling.
- the implementation steps of the sampling analysis using the sampling method include the following:
- the front heating wall of the heating vehicle, the rear heating wall and the distance between the two heating vehicles, the heating duration of one heating cycle is determined as T1 and the heating intermittent time t1, the heating duration T2 and The duration of the heating interval t2.
- the length of the front and rear heating walls of the heating car is 1.8m, based on the normal running speed of 4m/min during construction.
- the distance between the front wall of the heated front wall and the front wall of the heating wall is 4.07m, and the construction equipment includes 3 heating equipments.
- the heating duration of the front heating wall is T1 for 27s and intermittent time t1 for 61s, and the heating wall is heated.
- the duration T2 is 27 s and the heating intermittent time t2 is 150 s. According to the number of heating devices, the number of heating cycles was determined to be 3 times.
- the calculation determines the heating duration Ta of the regeneration apparatus and the heating intermittent time ta.
- the distance between the rear of the heating wall and the front wall of the heating regenerator heating wall is: 10m, and the heating wall length of the regenerative equipment is 1m. Therefore, the heating vehicle heating and heat regeneration vehicle heat regeneration vehicle heating interval time ta is 150S, heating duration Ta It is 15S. According to one regenerative equipment, it is determined that the number of times of the simulated heat recovery vehicle is one.
- the heating procedure for on-site thermal regeneration simulation sampling using the small heating equipment is as follows: heating 27S, intermittent 61S, heating 27S, intermittent 150S, heating 27S, intermittent 61S, heating 27S, intermittent 150S, heating 27S, Intermittent 61S, heating 27S, intermittent 150S, heating 15S.
- test section construction was carried out according to the mix design of the recycled mixture determined by the two sampling methods. After the construction, the test analysis of the on-site reclaimed mixture and the indoor test regenerative mixture was carried out. The comparison results are as follows:
- the amount of regenerant added is tested in the test section, and the indexes of the reclaimed asphalt mixture after the construction are closer to the indexes of the sample obtained by the sampling method of the present invention. It is more instructive to use the simulated working condition sampling method combined with the indoor test analysis to determine the mix mix design.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Road Repair (AREA)
- Road Paving Structures (AREA)
- Road Paving Machines (AREA)
Abstract
一种模拟沥青路面现场就地热再生工况条件下取样方法,其步骤是:在拟修复路面区域内选定沥青路面混合料取样点。根据沥青路面热再生施工设计方案获取模拟参数。在选定的沥青路面混合料取样点处,按照确定的模拟参数,对沥青路面模拟加热。在此工况条件下对路面翻松取样。该方法翻松取样,完全模拟就地热再生施工时的加热控制状态,采用该方法取得的样品充分考虑了就地热再生施工对原路面老化沥青造成的二次老化,以此样品进行试验确定的再生剂添加量与施工时实际需要的添加量完全一致,可将老化沥青的性能恢复至最佳状态,不破坏回收的旧沥青混合料样品的级配,试验得到的级配与原路面沥青混合料的真实级配完全一致。
Description
本发明涉及一种沥青路面现场就地热再生旧路面沥青混合料取样方法。具体说是一种模拟沥青路面现场就地热再生工况条件下取样方法。
沥青路面在经过长时间的空气、雨水、紫外线、温度交替、车轮荷载的共同作用后会产生老化,形成各种各样的路病,传统的养护方法是铣刨重铺,但这种方法工序多、投资大、铣刨产生大量废料、浪费资源、污染环境。就地热再生(HIR)是通过现场加热、耙松、喷洒再生剂和(或)热沥青、拌和、摊铺、碾压等工序,一次性实现旧沥青混凝土路面材料的100%就地再生利用,不产生废料,施工速度快,交通影响小、效率高。与传统铣刨重铺工艺相比,沥青路面就地热再生技术具有节能、环保、施工质量高、路面使用寿命长等优点。
沥青路面就地热再生技术施工前,需要根据对原路面沥青混合料的室内试验分析结果进行再生混合料配合比设计,再生混合料的配合比设计对于就地热再生施工后的质量控制起决定性作用。而对原路面进行取样是样品判断原路面的老化程度,进行试验确定再生剂添加量和新料添加量,完成再生混合料配合比设计的前提。
目前,国内外对于旧沥青混合料现场取样方法包括路面切割法、钻心取样法、破碎取样法等,如中国发明专利文献《一种沥青面层施工碳排放评价方法》(公开号:CN107122591A)、《一种用于实体路面抗车辙性能的检测装置及方法》(公开号:CN106872298A)、《一种干拌法废胶粉改性废食用油热再生沥青混合料及其制备方法》(公开号:CN106633950A)、《一种厂拌热再生沥青混凝土生产方法》(公开号:CN105601176A),均采用传统的钻芯取样法和破碎取样法等进行取样。中国专利文献《沥青路面就地热再生工程取样段落确定方法》(公开号CN104504216A)主要是对取样段落确定方法进行了改进,但对具体的取样方法并未研究改进。而专利文献《一种自清洁沥青混合料取样装置》和《一种沥青混合料抽提试验取样方法》(公开号:CN105203744A),主要是针对现场和拌合场等地点的热态沥青混合料进行取样的。对于就地热再生施工前的处于常温状态的原路面老化沥青混合料,仍需要采用传统取样方法进行。传统取样本身存在一些缺点和不足,具体表现如下:
传统方法取样只考虑了路面使用过程中的自然老化,并未考虑就地热再生施工时加热造成的原路面沥青二次老化,采用该样品经试验确定的再生剂添加量不足以完全弥补、恢复发生二 次老化后的原路面老化沥青的性能;
由于采用强制破碎方式,会打碎旧沥青混合料中的集料,且打碎的比例是随机的,不可控的,破坏了原路面的级配。采用该沥青混合料样品经室内试验得到的级配(试验级配)与原路面沥青混合料的真实级配不符,依据该试验级配进行再生混合料配合比设计,其结果与施工中的实际工况不符,无法保证再生施工质量。
发明内容
本发明针对现有技术存在的上述缺陷足,提出了一种模拟沥青路面现场就地热再生工况条件下取样方法,在模拟沥青路面现场就地热再生工况条件下进行取样,既顾忌到了路面自然老化,也考虑到了路面热再生施工过程中造成的老化。采用热熔软化取样,不改变混合料性状。
本发明主要任务是适应就地热再生技术工艺特点,提供一种专用于就地热再生工程的模拟工况取样方法及具体实施手段。在就地热再生工程中,通过本发明模拟工况取样方法进行原路面旧沥青混合料取样,不破坏原路面沥青混合料的集料和级配,结合室内试验分析确定的再生剂添加量充分考虑了就地热再生施工加热造成的二次老化,可将老化沥青性能恢复至最佳状态。就地再生施工后,实现再生沥青混合料的配合比可控,保证施工质量,延长道路使用寿命。
本发明模拟沥青路面现场就地热再生工况条件下取样方法,其步骤是:
步骤1,在拟修复的沥青路面区域内,选定沥青路面混合料取样点。
步骤2,根据沥青路面热再生施工设计方案,获取模拟参数:
施工设计方案中加热墙加热强度Q(或称为加热温度)。
沥青路面设备(加热车)加热参数:加热循环次数n(即:加热车数量,加热车具有前后两个加热墙),一个加热循环内,前加热墙的加热持续时间T1、前后加热墙加热间歇时间t1、后加热墙的加热持续时间T2、两个加热循环加热间歇时间t2,形成一个加热循环。T1,T2可以根据设定的加热车施工行进速度和加热墙的长度算得,t1可以根据两个加热墙相邻边的间距和设定的加热车施工行进速度算得。t2可以根据前加热车的后加热墙后边与后加热车的前加热墙前边的间距和设定的加热车施工行进速度算得。
沥青路面热再生车加热参数:热再生车加热墙的加热持续时间Ta,最后一辆后加热车后加热墙与热再生车加热墙加热间隔时间ta;(ta通过后加热车加热墙后边与热再生车加热墙前边的间距和车辆行走速度确定)。
步骤3,在选定的取样路面处,按照步骤2确定的参数,对沥青路面模拟加热:
采用小型间歇式加热设备(现有设备,与施工中加热设备和再生设备采用相同的加热方式,含有加热墙),首先设定加热墙加热强度Q。
按照设计参数T1,t1,T2,t2,对沥青路面进行n个加热循环的加热。
间隔ta时间后,再进行一次Ta时间的加热。
从而完成了模拟沥青路面现场就地热再生加热工况条件。
步骤4,对取样点路面翻松取样。
本发明方法,在现场模拟就地热再生施工机组所用加热设备的加热强度及方式、所用的再生设备加热强度及方式,对沥青路面进行加热,模拟就地热再生施工过程中造成的沥青路面二次老化。采用非强制翻松方式对翻松后的原路面沥青混合料进行取样。
与现有技术相比,采用该发明对原路面循环加热后进行翻松取样,完全模拟就地热再生施工时的加热控制状态,采用该方法取得的样品充分考虑了就地热再生施工对原路面老化沥青造成的二次老化,以此样品进行试验确定的再生剂添加量与施工时实际需要的添加量完全一致,可将老化沥青的性能恢复至最佳状态。同时在原路面沥青混合料的高温状态采用非强制翻松方式取样,不会破坏回收的旧沥青混合料样品的级配。因此,采用该沥青混合料样品经室内试验得到的级配(试验级配)与原路面沥青混合料的真实级配完全一致,以此试验级配确定的再生混合料配合比与实际施工后再生混合料的配合比一致,可实现就地热再生施工的沥青混合料性能可控,保证施工质量,延长道路使用寿命。
图1沥青路面热再生施工现场加热车和热再生车布置及行走示意图。
图2是沥青路面热再生施工设备布置示意图。
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
工程一就地热再生机组包含由3台加热设备(加热车)、1台再生设备(热再生车)及摊铺、碾压等辅助设备。采用该取样方法进行取样分析的实现方法步骤包括如下:
1、现场采用修路王(现有设备)进行模拟现场加热(设计加热强度Q)。
2、根据沥青路面热再生施工设计方案,获取模拟参数:
根据路面热再生施工设计方案以及加热车的前加热墙、后加热墙及两个加热车的车距,计算确定1个加热循环的加热持续时间为T1和加热间歇时间t1、加热持续时间T2和加热间歇时间t2的时长。以施工期间的正常行驶速度4m/min计,加热车前后加热墙的长度1.8m,
加热车前加热墙后边与后加热墙前边间距为4.07m,施工设备中包括3台加热设备计,经计算,前加热墙加热持续时间分别T1为27s、间歇时间t1为61s,后加热墙加热持续时间T2为27s、加热间歇时间t2为150s。根据加热设备为3台,确定加热循环次数为3次。
计算确定再生设备的加热持续时间Ta和加热间歇时间ta。后加热车加热墙后边与热再生车加热墙前边的间距是:10m,再生设备的加热墙长为1m,故加热车加热与热再生车热再生车加热间歇时间ta为150S,加热持续时间Ta为15S。根据再生设备为1台,确定模拟热再生车加热次数为1次。
3、因此,采用小型加热设备进行该工程就地热再生现场加热模拟取样的加热程序如下:加热27S,间歇61S,加热27S,间歇150S,加热27S,间歇61S,加热27S,间歇150S,加热27S,间歇61S,加热27S,间歇150S,加热15S。
4、翻松取样。
分别采用两种取样方法对工程一旧沥青混合料(普通沥青混合料)进行取样回收沥青,本发明取样方法回收的沥青样品记为回收沥青A,传统取样方法回收的沥青样品记为回收沥青B,分别测定回收沥青A、B的三大指标,试验结果如下表:
表1两种取样方法分别回收的旧沥青三大指标性能对比
试验项目 | 回收沥青A | 回收沥青B | 试验方法 |
针入度25℃,100g,5s,0.1mm | 20.3 | 24.6 | T0604-2011 |
软化点T R&B℃ | 65.3 | 62.3 | T0604-2011 |
延度15℃,5cm/min,cm | 10.2 | 15.3 | T0605-2011 |
根据回收沥青A、B自身的性能指标结合经验预估,分别对回收沥青A中添加3%、6%、9%的再生剂,对回收沥青B添加2%、4%、6%的再生剂,再生试验结果如下表所示:
表2两种取样方法分别回收的旧沥青再生试验结果对比
采用上述再生沥青拌合混合料,进行马歇尔击实试验,试验结果如表3所示。
表3掺加不同用量再生剂后的体积性能指标试验结果
根据老化沥青掺加不同掺量的再生剂的性能试验结果以及原路面料中掺加不同掺量再生剂的马歇尔试验结果,综合确定采用传统取样样品试验确定再生剂用量为4%,而采用本发明取样方法样品试验确定的再生剂添加量为6%,后者比前者再生剂添加量绝对增加量2%,相对增加量为50%。
分别按照两种取样方法确定的再生混合料配合比设计进行试验段施工,施工后进行现场再生混合料与室内试验再生混合料指标的试验分析对比,对比结果如下表:
表4不同取样方法现场施工与室内试验再生混合料体积性能指标试验结果
按照两种取样方法得到的样品确定的再生剂添加量分别进行试验段施工,其施工后再生沥青混合料的各项指标与本发明取样方法得到的样品进行再生混合料试验验证的指标更为贴近,采用模拟工况取样方法结合室内试验分析确定的再生混合料配合比设计更有指导意义。
Claims (1)
- 一种模拟沥青路面现场就地热再生工况条件下取样方法,其步骤是:步骤1,在拟修复的沥青路面区域内,选定沥青路面混合料取样点;步骤2,根据沥青路面热再生施工设计方案,获取以下模拟参数:加热车加热参数:加热循环次数n,加热墙加热强度Q;一个加热循环内的前加热墙的加热持续时间T1、前后加热墙加热间歇时间t1、后加热墙的加热持续时间T2、两个加热循环加热间歇时间t2;沥青路面热再生车加热参数:热再生车加热墙的加热持续时间Ta,最后一辆后加热车后加热墙与热再生车加热墙加热间隔时间ta;步骤3,在选定的取样路面处,按照步骤2确定的参数,对沥青路面模拟加热:采用小型间歇式加热设备,首先设定加热墙加热强Q;按照设计参数T1,t1,T2,t2,对沥青路面进行n个加热循环的加热;间隔ta时间后,再进行一次Ta时间的加热;从而完成模拟沥青路面现场就地热再生加热工况条件;步骤4,对取样点路面翻松取样。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711082488.7A CN107860600A (zh) | 2017-11-07 | 2017-11-07 | 一种模拟沥青路面现场就地热再生工况条件下取样方法 |
CN201711082488.7 | 2017-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019091035A1 true WO2019091035A1 (zh) | 2019-05-16 |
Family
ID=61701054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/080666 WO2019091035A1 (zh) | 2017-11-07 | 2018-03-27 | 一种模拟沥青路面现场就地热再生工况条件下取样方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107860600A (zh) |
WO (1) | WO2019091035A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107860600A (zh) * | 2017-11-07 | 2018-03-30 | 英达热再生有限公司 | 一种模拟沥青路面现场就地热再生工况条件下取样方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101819108A (zh) * | 2010-05-27 | 2010-09-01 | 长沙理工大学 | 现场热再生实验用老化沥青的制备方法 |
FR2949260B1 (fr) * | 2009-08-21 | 2013-07-05 | Eurl Jean Mainguet | Dispositif de collecte d'echantillon de produits, notamment des produits chimiques |
CN103342499A (zh) * | 2013-06-27 | 2013-10-09 | 南京道润交通科技有限公司 | 一种新型复合型再生改性剂及就地热再生方法 |
CN107227671A (zh) * | 2017-06-30 | 2017-10-03 | 海环科技集团股份有限公司 | 一种就地热再生的施工工艺 |
CN107860600A (zh) * | 2017-11-07 | 2018-03-30 | 英达热再生有限公司 | 一种模拟沥青路面现场就地热再生工况条件下取样方法 |
-
2017
- 2017-11-07 CN CN201711082488.7A patent/CN107860600A/zh active Pending
-
2018
- 2018-03-27 WO PCT/CN2018/080666 patent/WO2019091035A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2949260B1 (fr) * | 2009-08-21 | 2013-07-05 | Eurl Jean Mainguet | Dispositif de collecte d'echantillon de produits, notamment des produits chimiques |
CN101819108A (zh) * | 2010-05-27 | 2010-09-01 | 长沙理工大学 | 现场热再生实验用老化沥青的制备方法 |
CN103342499A (zh) * | 2013-06-27 | 2013-10-09 | 南京道润交通科技有限公司 | 一种新型复合型再生改性剂及就地热再生方法 |
CN107227671A (zh) * | 2017-06-30 | 2017-10-03 | 海环科技集团股份有限公司 | 一种就地热再生的施工工艺 |
CN107860600A (zh) * | 2017-11-07 | 2018-03-30 | 英达热再生有限公司 | 一种模拟沥青路面现场就地热再生工况条件下取样方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107860600A (zh) | 2018-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3970404A (en) | Method of reconstructing asphalt pavement | |
CN106145777B (zh) | 温拌再生沥青混合料及其制备方法 | |
CN103013144B (zh) | 沥青路面原位温拌再生剂、其制备方法及其施工方法 | |
CN104762863A (zh) | 一种用于水泥混凝土路面薄层罩面的沥青混合料及其制备与施工方法 | |
CN112227143A (zh) | 一种沥青混合料路面热再生施工方法 | |
ES2712963T3 (es) | Unidad móvil de procesamiento por microondas para el reciclaje de pavimento y la producción de pavimento asfáltico | |
CN104692766A (zh) | 一种可在寒冷地区使用的路面和裂缝快速修复材料及其制备方法 | |
CN103132420A (zh) | 一种旧水泥混凝土路面的修复改造方法 | |
CN107366211A (zh) | 一种沥青混凝土就地热再生分层往复加热工艺 | |
CN104062190A (zh) | 一种新旧路面联结层材料的抗剪性能检测方法 | |
CN103015303B (zh) | 一种修复沥青路面表面构造和裂缝的施工方法 | |
CN109653052A (zh) | 一种温拌型沥青就地热再生施工方法 | |
WO2019091035A1 (zh) | 一种模拟沥青路面现场就地热再生工况条件下取样方法 | |
CN108301279A (zh) | 一种热固性材料改性沥青混凝土路面施工方法 | |
CN102352596A (zh) | 沥青路面深度车辙热再生修复方法 | |
CN108487018A (zh) | 基于表层预热的微波加热沥青路面修复方法 | |
CN105199666B (zh) | 一种道路密封胶生产及其施工工艺 | |
CN205576675U (zh) | 一种基于双层冷再生层的路面 | |
CN109881569A (zh) | 一种沥青路面坑槽修补方法 | |
CN101817985A (zh) | 改性沥青再生剂及其制备方法和应用 | |
CN205443886U (zh) | 一种沥青路面加热铣刨机 | |
CN103342499A (zh) | 一种新型复合型再生改性剂及就地热再生方法 | |
CN101255675A (zh) | 沥青路面就地热再生车 | |
CN114960329A (zh) | 低温条件下泡沫沥青网格穿插流水施工的路面修复方法 | |
CN204780556U (zh) | 多功能沥青路面热修补机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18875619 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18875619 Country of ref document: EP Kind code of ref document: A1 |