WO2019090956A1 - 海上自航式火箭发射和火箭回收平台 - Google Patents

海上自航式火箭发射和火箭回收平台 Download PDF

Info

Publication number
WO2019090956A1
WO2019090956A1 PCT/CN2018/000300 CN2018000300W WO2019090956A1 WO 2019090956 A1 WO2019090956 A1 WO 2019090956A1 CN 2018000300 W CN2018000300 W CN 2018000300W WO 2019090956 A1 WO2019090956 A1 WO 2019090956A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
rocket
water tank
deck
positioning
Prior art date
Application number
PCT/CN2018/000300
Other languages
English (en)
French (fr)
Inventor
曹伟华
Original Assignee
曹伟华
曹兰兰
马洪玉
张超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曹伟华, 曹兰兰, 马洪玉, 张超 filed Critical 曹伟华
Publication of WO2019090956A1 publication Critical patent/WO2019090956A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/50Vessels or floating structures for aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41FAPPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
    • F41F3/00Rocket or torpedo launchers
    • F41F3/04Rocket or torpedo launchers for rockets

Definitions

  • the invention belongs to a space carrier
  • the rocket When the rocket is launched, the propellant will generate a large amount of toxic and harmful substances, which will affect the terrestrial environment. If the rocket is off, it will be dangerous if it falls on the land. Therefore, the rocket's flight route is considerably restricted. The transmitter will be limited.
  • the equator is the closest to the geosynchronous orbit. Therefore, launching a satellite to the high seas near the equator can maximize the use of the Earth's rotation energy to increase the rocket's driving force, greatly improving the carrying capacity, while the rocket is flying close to the orbit. Accurate, no need for secondary rail change, saving fuel.
  • the high seas near the equator are uninhabited, and the launching rockets are not subject to safety restrictions. They will not affect the living environment and have a high probability of launch.
  • the invention can overcome the deficiencies of the background art and provides two large or super large offshore floating platforms, one is a rocket launching platform (having a launching platform; a rocket assembling and storing platform; a command and control platform), and the other is a rocket recycling platform (can Recycling vertical parachute rockets; vertical fuel recoil rockets and gliding rockets can carry high-frequency launch rockets and recovery rockets at sea.
  • a rocket launching platform having a launching platform; a rocket assembling and storing platform; a command and control platform
  • rocket recycling platform can Recycling vertical parachute rockets; vertical fuel recoil rockets and gliding rockets can carry high-frequency launch rockets and recovery rockets at sea.
  • OBJECT OF THE INVENTION To provide a simple structure, easy to manufacture (not modified by ship or drilling platform), use a cheap marine rocket launching platform and rocket recovery platform, launch rockets and recover rockets to the high seas near the equator, greatly reducing launch risk and launch cost. Increase the transmission frequency and success rate.
  • One of the important technologies for launching rockets and recovering rockets at sea is the three-dimensional stability of the platform. It includes up and down fluctuations and shaking caused by surges, including horizontal displacement generated by huge ocean currents.
  • the invention adopts a submersible floating ballast tank dive and a two-dimensional multi-point propulsion method to ensure that the platform achieves the required three-dimensional stability.
  • This platform has no hull cabin, and uses the best floating low-density rigid polyurethane foam (referred to as PU hard foam) to make a permanent buoyancy deck body, with steel slab as the outer shell and surface joint mechanism, combined with submersible Ballast tanks and space trusses hold up the deck.
  • PU hard foam the best floating low-density rigid polyurethane foam
  • the unit module is made. After the module is shipped to the sea, like the splicing foam floor mat, the module is spliced and enlarged as needed to form a large or super large water platform with permanent floating.
  • the platform can be fixed at some point unattended, or it can be installed with several conventional engine propellers to move and navigate, both to launch rockets and to recover rockets.
  • connection of the single module is to use the surface connection mechanism slab, and the multiple modules are spliced together as needed to perform arbitrary amplification, as shown in Fig. 3.
  • This splicing and amplifying mode can provide a long taxi track, which is most suitable for recycling gliding rockets (this platform can be placed on land, more suitable for use in water as an airport terminal).
  • the surface connecting mechanism of the invention is superior to the traditional wire type (welding) or point type (bolt or riveting) connection, can fully disperse the stress, and is convenient, fast, rigid and durable.
  • the joint surface is welded after the module is spliced.
  • the platform (module) has a three-layer structure:
  • the first layer is a submerged floating ballast tank with submerged floating function. It consists of several independent closed water tanks. It is usually a hollow closed tank. The displacement > the weight of the whole platform is quite large. Buoyancy, you need to dive into the water tank when you dive.
  • the side façade of the whole water tank is a steel slab connection mechanism, which is resistant to pressure and deformation.
  • the second layer is a space truss welded with steel pipes to connect the deck body supporting the upper layer.
  • the steel pipe is filled with PU hard foaming agent to make it a solid foamed steel pipe, which can increase the rigidity and corrosion resistance of the steel pipe, prevent the resonance noise generated by the steel pipe during vibration, and also have buoyancy.
  • the third layer is a deck body with permanent buoyancy
  • the side façade is a steel slab joint mechanism
  • the content is PU hard foam
  • the electronically controlled electric valve at the bottom of the submerged floating ballast tank is opened, and the seawater is automatically poured into the water tank, and the water tank is dive to the required depth to ensure the stability required of the platform when the rocket is launched.
  • 3 typhoon waves can produce huge changes in buoyancy, which will affect the stability of the platform and even cause damage.
  • the submerged floating ballast tank should be floated up, so that the top deck body is higher than the wave head, avoiding the wave head attacking the platform and ensuring safety.
  • the huge ocean current will cause horizontal displacement of the platform, and the platform will be dynamically positioned by satellite positioning and computer remote control.
  • the electronically controlled electric propulsion system directly behind the platform allows the platform to move back and forth.
  • the multi-point electric propulsion system on the left and right sides can move the platform laterally.
  • the platform can be rotated horizontally 360 degrees in situ (only the navigation propellers on the left and right sides are driven, and the propulsion is reversed). To adjust the direction of the runway when the gliding rocket is recovered.
  • the invention adopts a multi-point propulsion mode in which the whole process is reduced to zero, and the conventional conventional engine is used as the navigation power.
  • several propulsion systems are installed on the left and right sides of the platform (half of the propellers on the left and right sides are installed on the upper bottom of the water tank for lateral launching of the rocket during launch positioning) , adjust the positioning, called the positioning thruster.
  • the other half is installed on the left and right sides of the water tank, the bottom of the water tank, used for forward and backward propulsion, called the navigation propeller).
  • the platform When the transfer is self-propelled, the platform is all floating, and the main propellers at the rear and the propulsion propellers on the left and right sides are simultaneously advanced.
  • the dragon boat is as fast as the paddle rowing, which can avoid the high, large, difficult and expensive large engine problems and achieve high sailing speed. More importantly, several engines that were blown up during the war also sailed, with high survivability and safety.
  • the designed displacement of the submersible floating ballast tank should be > the heavy displacement of the entire platform.
  • the buoyancy of the water when it is emptied can completely float and lift the platform.
  • each unit module is composed of dozens of small water tanks that are independently sealed.
  • the buoyancy of the entire water tank cannot be lost due to damage to some small water tanks.
  • the deck of the third floor is a floating foam entity that is not afraid of air leakage, is not afraid of water intake, and has permanent buoyancy. It can provide sufficient rocket launch and emergency safe buoyancy.
  • the anti-sink airbag has a civil inflatable anti-sinking airbag, and a military-type foam solid solid airbag that is never sunken. The airbag can quickly release and float the entire platform in case of emergency.
  • the whole platform is surrounded by an external floating deck, which is convenient for installing multi-point propellers. It can also suppress the waves and reflect the waves to prevent the high waves from splashing on the deck.
  • the platform is fixed. Need to be fixed at a certain place (not too deep sea area), using spiral self-tapping geological anchor pile (Hebei province Huangqi soil-soil spiral self-tapping anchor, Wuxi submarine rock spiral self-tapping anchor pile) and anchor cable fixed platform
  • the platform will not sink, and there are multiple anti-sink measures such as deck body with permanent buoyancy.
  • the platform can adjust the draught depth and stability according to the need to dive or float.
  • the platform has left, right and rear three-point multi-point propulsion system, which can perform dynamic positioning before and after, combined with the dive function of the submerged floating ballast tank, the platform can ensure the three-dimensional stability required for rocket launching or recycling. .
  • the platform has high-speed self-propelled capability of three-point multi-point advancement.
  • the first is the bow type 1 module, Figure 7.
  • the utility model is characterized in that the submerged floating ballast water tank (1) has a bow type with an arc upturned for easy navigation.
  • the second type is a 2nd edge sealing module with an outer floating deck.
  • the third type is the No. 3 module with four sides of the ⁇ connection plate.
  • Figure 2, Figure 8. It is used as an intermediate module of the platform, which can be spliced and enlarged at will.
  • This platform can be spliced and enlarged at will, without tonnage limitation, draught depth and stability are adjustable, buoyancy stress is particularly balanced, can be used as a rocket launching platform; can be used as a rocket assembly and storage platform; can be used as a command and control, living base (can be used as an airport base ). It can recycle vertical parachute rockets; it can recover vertical fuel recoil rockets or gliding rockets. It is the ideal offshore mobile or fixed rocket launch and recovery platform. It can greatly reduce the risk and cost of rocket launch and increase the frequency and success rate of launch.
  • FIG. 1 is a bird's eye view of the platform.
  • (1) is a submersible floating ballast tank. (2) It is a truss. (3) It is a deck body with permanent buoyancy.
  • Figure 2 is a plan view of the submerged floating ballast tank (1) and the deck body (3).
  • Figure 3 is a plan view of the nine modules after splicing. The splicing of other modules is similar.
  • Figure 4 is a top plan view of the end cap on the raft for connection.
  • Fig. 5 is a plan view showing the connection and arrangement of four congruent-type slabs of the connecting mechanism.
  • the gap between the four corners adjacent to the seesaw is intentionally left to indicate the connection mode of the seesaw, not the head-to-head docking, in the manner and order shown, the top side of the head is perpendicular to each other, forming a Square, welded with high strength welding, can not be a little deformed.
  • Figure 6 is a cross-sectional view of the attachment mechanism locking system (6), the bead lock on the rafter.
  • 1 is the ball lock body on the hoe and the compression spring and the ball in the lock.
  • 2 is the ball lock lock hole in the gutter.
  • Figure 7 is a vertical elevational view of the No. 1 bow module.
  • (1) is a submersible floating ballast tank.
  • (2) It is a truss.
  • (3) is the top deck body.
  • (5) is the connection mechanism seesaw.
  • (8) is the outer floating deck.
  • Figure 8 is a vertical elevational view of the intermediate module No. 3.
  • Figure 9 is a vertical elevational view of the edge sealing module of the No. 2 outboard floating deck.
  • (1) is a submersible floating ballast tank.
  • (2) It is a truss.
  • (3) is the top deck body.
  • (5) is the connection mechanism seesaw.
  • (8) is the outer floating deck.
  • Figure 10 is a plan view of the edge sealing module of the No. 2 out-of-plane floating deck.
  • the platform is made up of a number of modules or a single module.
  • the size and size of each module can be determined according to the application, load capacity and sea conditions in the sea area as well as production processing capacity and transportation lifting conditions.
  • the unit module size is 30 meters long, 30 meters wide, and 18 meters high.
  • the submerged floating ballast water tank is 30 meters long, 30 meters wide and 6 meters high.
  • the water tank displacement of this size is about 5,000 tons when it is fully dive.
  • the upper deck body is 30 meters long by 30 meters wide by 3 meters high.
  • the displacement of this size buoyancy deck is about 2700 tons.
  • the buoyancy of the anti-sink airbag is even greater.
  • the connecting mechanism of the present invention is a rigid ⁇ structure, which is commonly known as Wannian in history.
  • the size of the crucible depends on the size of the crucible 0.1mm-1mm.
  • cockroaches There are many kinds of cockroaches, here is the case of the dovetail.
  • the board that has flaws on the same flat layout is named as a seesaw.
  • the length, width, thickness and size of the raft can be determined according to different needs and lifting and transportation conditions. ⁇ and ⁇ can be widened without such intensive.
  • the edges and corners of the hoe and the groove are rounded to facilitate splicing insertion and dispersion stress.
  • the grooving is vertical.
  • the end of the seesaw connecting the upper end of the bottom is called the upper end of the seesaw, and the opposite end is called the lower end.
  • the upper and lower ends of the cymbal are made of larger sloping slopes for easy insertion during splicing.
  • a large ball lock is used (it can also be manually operated by a telescopic reed lock, which is convenient for description.
  • the ball lock is used for positioning and locking.
  • the ball-locking body is made on all the other hoes.
  • drill a concentric hole larger than the diameter of the ball 1mm in the same direction can not be drilled transparent, to leave a spherical thickness of 1-2mm, as a limited ball, do not let the ball out.
  • a turnbuckle is added to the large hole to make the cover nut of the bead lock.
  • the beads are made of high hardness material.
  • the bead spring should use the strongest spring steel, which has permanent and strong elasticity. After the hole is punched, put the ball into the ball, press the spring, and screw the cover to form the body of the ball lock. 1 in Figure 6.
  • the ball lock can be set a lot.
  • the ball lock will automatically catch the positioning.
  • the pressure of the spring is against the ball, and the bead is pressed against the lock hole, so that the cymbals are tightly coupled and the two modules are locked.
  • the role of the guiding groove is to enable the initial insertion of the module, and the insertion can be smoothly and without resistance.
  • the water tank is a flat square with a length of 30 meters, a width of 30 meters and a height of 6 meters.
  • the four side elevations are 30 meters long in the horizontal direction.
  • the width (vertical, height of the box) is 6 meters of congruence.
  • the seesaw, the cymbals and cymbals on the rafters are arranged side by side, the sills are used vertically, and the squats face outwards, with the plane facing inwards.
  • the connection of the four fascia plates must be assembled in a 90° side-to-head manner as shown in Figure 5. (Operation as shown in Figure 5 of the specification and the accompanying drawings).
  • the upper and lower bases are welded in a square surrounded by a seesaw.
  • Thicker deck steel is used on the upper bottom of the tank because he has to weld the truss to cover the entire weight.
  • the four side façades are welded with a slab, and a flat square box of 30 meters long, 30 meters wide, and 6 meters high is formed, and the bottom is welded in the box body.
  • a flat square box of 30 meters long, 30 meters wide, and 6 meters high is formed, and the bottom is welded in the box body.
  • 25 small water tanks of 6 meters long by 6 meters wide by 6 meters high and independently sealed are formed to form a submerged floating ballast tank (1) of the whole module.
  • each water tank has a water inlet and a water outlet, and the water inlet and the water outlet are equipped with electric valves for watering and draining the water tank.
  • an input level probe controller (manufactured by Wuxi, China) is installed at the bottom of each small water tank. This level probe controller controls the pump to control the hover.
  • a normally open exhaust duct is installed on the top of each tank to serve as a cable duct to the top deck.
  • the inner wall of the water tank is sprayed with polyurea anti-corrosion and anti-leak coating.
  • This polyurea leak-proof coating has excellent adhesion and strong plugging pull. It is currently the best anti-corrosion and leak-proof coating.
  • the height and span of the truss are determined by the use. Heavy-duty steel for load-bearing beams and load-bearing columns of trusses,
  • a sufficient angle flange is installed to fasten the connection after splicing.
  • the truss at the rocket launch point is subject to special emphasis.
  • the bottom deck is paved.
  • the module joints and the truss joints are welded after the modules are spliced.
  • the deck body (3) can be directly mounted on the truss, or it can be hoisted on the truss later, and the latter will be described as an example.
  • the dimensions of the cabinet are 30 meters long, 30 meters wide and 3 meters high (the size is determined by the required buoyancy).
  • the four side elevations of the cabinet are conical slabs that are 30 meters long in the horizontal direction and 3 meters high in the vertical direction (the height of the box).
  • the cymbals and cymbals on the rafters are arranged side by side, and the sills are Used vertically, facing outwards, facing inwards.
  • the connection of the four fascia plates must be assembled in a 90° side-to-head manner as shown in Figure 5. (Operation as shown in Figure 5 of the specification and the accompanying drawings).
  • the upper and lower bases are welded in a square surrounded by a seesaw.
  • the four side façades are welded with a slab, and a square box of 30 m ⁇ 30 m ⁇ 3 m is enclosed, and the bottom is welded in the box.
  • a low-density rigid polyurethane foaming agent (PU hard foam) is sprayed on the inner wall of each small box with a high-pressure polyurethane sprayer for waterproof sealing. After the PU hard foam is foamed and hardened, the PU hard foam is sprayed multiple times to the full box from the bottom of the box. Each spraying is carried out after the last foaming and hardening.
  • the PU hard foam seal may be sprayed on the inner wall of the tank, and then filled with a finished PU rigid foam block or an EPS (polyphenyl foam) closed cell foam block.
  • the method is to spray a thin layer of PU foaming agent as a bonding caulking agent, then lay a layer of foam block, and then spray a layer of PU foaming agent, thereby repeatedly filling the box space like brickwork (all Both PU rigid foam and EPS foam must be flame retardant). Then, put a sufficient thickness of heat-insulating and flame-retardant asbestos board, refractory bricks, etc., and finally lay the deck.
  • the rocket launch base has both solid and hollow.
  • the solid launching base should be further fireproof and high temperature resistant on the paved asbestos board and refractory brick deck.
  • a vent hole is reserved to allow the high-temperature gas emitted by the rocket to rush into the sea surface from the vent hole.
  • the modules are divided into three types according to their use. They must be processed separately as needed during production.
  • the four sides of the No. 1 bow module have a bow type that is floating outside the arc (the deck of the bow can be made upturned, which is good for the plane to take off), and the other three side façades are connecting mechanisms ⁇ Board (5). As shown in Figure 7.
  • Module No. 2 is a top deck with a side arc-shaped floating deck (8) and the remaining three side facades are fascia (5). As shown in Figure 9.
  • Module 3 is an intermediate module.
  • the four side façades are all fascia connection mechanisms (5). As shown in Figure 8.
  • positioning thrusters are installed on the dive floating ballast tank decks on the left and right sides of the platform to enable the platform to move left and right to ensure accurate positioning.
  • anti-sink rescue airbag is two other patented products, there are civilian-type inflatable, there are military-type foam solid solid airbags that are not afraid of air leakage, can be optional.
  • the space truss should be wider and higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Abstract

一种海上自航式火箭发射和火箭回收平台,底层为潜浮压载水柜(1),中层是桁架(2),顶层是有永久浮力的甲板体(3),所述水柜(1)注水后能下潜到一定的深度,提供发射火箭所需要的三维稳度,单元模块用钢质榫卯板做连接机构,可到海上任意拼接放大,调整潜浮压载水柜(1)里面的水量,平台能半潜、上浮和悬停,避开台风大浪的侵袭,正后方的主推进系统和左右两侧的多处定位推进系统结合卫星定位,能抵抗洋流做二维定位,能调整回收滑翔火箭的跑道方向,能高速度自航。

Description

海上自航式火箭发射和火箭回收平台 技术领域
本发明属于航天运载设备
背景技术
1、在陆地用火箭发射卫星,发射距离远,燃料消耗大,运载能力小,入轨角度有限,成功的风险大,成本高。
2、火箭在发射时推进剂燃烧会产生大量的有毒有害物质,会对居住的陆地环境造成影响;火箭子级脱如果落掉在陆地上会产生危险,所以火箭的飞行路线受到相当大的限制,发射机会受限。
3、赤道是距离地球同步轨道最近的地方,所以到赤道附近的公海上发射卫星,能最大限度的利用地球自转的能量增加火箭的推动力,大大提高运载能力,同时火箭飞行距离近,入轨准确,不需要二次变轨,节约燃料。
4、赤道附近公海无人居住,发射火箭不受安全限制,不会对居住环境造成影响,发射几率高。
5、在陆地上无法回收火箭,不能重复使用。
本发明能克服背景技术的不足,提供两种大型或超大型海上浮动平台,一种是火箭发射平台(有发射平台;火箭组装和存放平台;指挥测控平台),一种是火箭回收平台(能回收垂直伞降火箭;垂直燃料反冲火箭和滑翔降落火箭)能在海上进行高频率发射火箭和回收火箭。
发明内容
发明目的:提供结构简单、制造容易(不是用船或者钻井平台改装)使用廉价的海上火箭发射平台和火箭回收平台,到赤道附近的公海上发射火箭和回收火箭,大大降低发射风险和发射成本,提高发射频率和成功率。
技术方案:海上发射火箭和回收火箭的重要技术之一是平台的三维立体稳度,他包括浪涌产生的上下浮动和摇晃,包括巨大的洋流产生的水平位移。本发明采用潜浮压载水柜下潜和二维多点推进方法,确保平台达到所需的三维稳度。
1、采用永远不沉的浮力甲板体。本平台无船体船舱,用漂浮性最好的低密度硬质聚氨酯泡沫(简称PU硬泡),做成永久性浮力甲板体,用钢质榫卯板做外壳兼面式连接机构,结合潜浮压载水柜和空间式桁架托起甲板。在陆地工厂做成这样的单元模块,模块运到海上以后像拼接泡沫地垫一样,将模块按需拼接放大,组成具有永久漂浮性的大型或超大型水上平台。平台可以固定在某一处无人值守,也可以安装数多个常规发动机推进器移动航行,既可以发射火箭,又可以回收火箭。
2、单体模块的连接是采用面式连接机构榫卯板,按需要将多个模块拼接在一起,进行任意放大,如图3。
这种任意拼接放大模式,无吨位限制,可以提供很长的滑行跑道,最适用于回收滑翔式火箭(此平台可以安放在陆地、更适合放在水里做空港码头)。
本发明的面式连接机构,优于传统的线式(焊接)或者点式(螺栓或铆接)连接,能充分分散应力,拼接方便快捷、刚性,牢固耐用。
为了确保连接牢固,模块拼接以后要对接缝表面进行焊接。
3、平台(模块)有三层结构:
第一层是有潜浮功能的潜浮压载水柜,由数多个彼此独立的密闭小水柜组成,平时全部是中空的密闭箱体,排水量>整体平台的重排水量,具有相当大的浮力,需要下潜时给水柜注水就能下潜。整体水柜的侧立面是钢质榫卯板连接机构,耐压抗形变。
第二层是用钢管焊接成的空间式桁架,用来连接支撑上层的甲板体。钢管内注满PU硬泡发泡剂,使其成为泡沫实芯钢管,能增加钢管的刚性强度和耐腐蚀性,能防止震动时钢管产生的共鸣噪音,同时还有浮力。
第三层是有永久浮力的甲板体,其侧立面是钢质榫卯板连接机构,内容物是PU硬泡,设计排水量≥整个平台的重排水量(包括火箭发射时的反冲推力),确保平台任何时候都不会沉没。
4、能下潜到一定的深度悬停,提供火箭发射时需要的稳度。
根据阿基米德定律可知,当物体全部没入水中,体积不再发生变化时,其浮力不再发生变化。用投入式液位控制器(无锡造),控制水柜里面的水量,进而控制水柜的下潜、上浮、或者悬停在一定位置,避开浪涌产生的巨大浮力变化对平台的影响,使平台更平稳安全。
发射火箭时,打开潜浮压载水柜底部的电控电动阀门,海水会自动灌入水柜,水柜下潜至需要的深度,以保证平台在火箭发射时需要的稳度。
5、有四种潜浮悬停工作模式。
①实心的火箭发射底座。下潜到甲板体的下底紧贴海水面悬停。甲板体提供大部分发射时所需要的浮力和应急时的浮力。
②空心带排气孔的火箭发射底座。下潜到甲板体下底距离水面有一定的高度时悬停(高出水面一些),让火箭产生的高温气体冲向海水,让海水吸收火箭发射时的高温能量,避免烧毁其他设备。
③台风大浪能产生巨大的浮力变化,会影响平台稳定甚至造成破坏。此时的潜浮压载水柜要上浮一些,让顶层的甲板体高于浪头,避开浪头对平台的侵袭,确保安全。
④自航移动时,关闭进水阀门,打开排水阀门和排水泵,排空水柜中的水,平台整体上浮,最大限度减小航行阻力。
6、采用正后方的前进或者后退(倒车)推进和左右两侧横向定位推进的多点位推进方式,确保平台水平方向的二维稳定性。
巨大的洋流会使平台发生水平位移,采用卫星定位和电脑遥控对平台实施动态定位。平台正后方的电控电动推进系统,可使平台前后移动,左右两侧的多点位电动推进系统可使平台左右横向移动。
7、平台可以原地360度水平转动,(只开动左右两侧的航行推进器,反向推进)。以调整回收滑翔式火箭时的跑道方向。
8、本发明采用化整为零,化难为易的多点位推进方式,用成熟的常规发动机做航行动力。除了在平台正后方安装多个主推进以外,还在平台左右两侧安装数多个推进系统(左右两侧的推进器有一半安装在水柜上底之上,用于火箭发射定位时左右横向推进,调整定位,叫定位推进器。另一半安装在水柜左右两侧,水柜的底部,用于前后推进,叫做航行推进器)。转场自航时,平台全体上浮,后面的主推进器和左右两侧的航行推进器同时推进。就像龙舟赛的龙舟多桨划行一样快速移动,既能避开高、大、难、贵的大型发动机难题,又能达到很高的航行速度。更重要的是,战时炸毁几个发动机也照样航行,有很高的生存能力和安全性。
9、有多重防沉安全功能。
①潜浮压载水柜的设计排水量要>整个平台的重排水量。其排空水时的浮力,完全可以浮起平台航行移动。
另外采用化整为零的方式,每个单元模块的潜浮压载水柜都有数十个彼此独立密闭的小水柜组合而成。不能因为部分小水柜损坏而失去整个水柜的浮力。
②第三层的甲板体是不怕漏气、不怕进水、具有永久浮力的漂浮性泡沫实体,能提供足够的火箭发射和应急安全浮力。
③平台安装足够的防沉安全气囊(我们另有防沉救生安全气囊技术)作为足够的储备浮力。防沉安全气囊有民用的充气防沉气囊,有军用型永远不沉的泡沫实心固体气囊,可选择使用。安全气囊在应急时能快速释放浮起整个平台。
10、平台整体四周采用外飘甲板,便于安装多点推进器,还能压制浪头,反射浪花,防止拥高的浪花溅上甲板。
11、平台的固定。需要固定在某一处时(不太深的海域),采用螺旋自攻式地质锚桩(河北省黄骅产土质螺旋自攻地锚,无锡产海底岩石螺旋自攻锚桩)和锚缆固定平台
有益效果
1、平台不会沉没,有永久浮力的甲板体等多重防沉措施。
2、制造使用成本低廉,没有舰船或者传统钻井平台那么复杂的结构和复杂的设备。不移动时,不消耗任何燃料能源。
3、高度的模块化设计,构造简单,易于生产。有铣床、刨床、焊机和聚氨酯高压发泡机就能生产出成品模块。安装更是简单,就像拼接泡沫地垫一样,用起吊设备吊起来,由上向下沿着榫卯轨道槽插入即可。
4、平台能根据需要下潜或上浮调整吃水深度和稳度。
5、平台有左、右、后三面多点位推进系统,能进行前后左右的动态定位,结合潜浮压载水柜的下潜功能,平台能确保火箭发射或者回收所需要的三维立体稳度。
6、平台有三面多点位推进的高速自航能力。
7、具有方便灵活的使用方式。模块有三种型号,根据不同需要选择不同型号任意拼接。
第一种是船头型1号模块,图7。其特点是,潜浮压载水柜(1)有一面是圆弧上翘的船头型,便于航行。
第二种是一面带外飘甲板的2号封边模块。图9,图10。是做为平台周围封边用。
第三种是四面全是榫卯连接板的3号模块。图2,图8。是做为平台的中间模块,可以任意拼接放大,
8、具有强大的使用功能。这个平台可以任意拼接放大,没有吨位限制,吃水深度和稳度可调,浮力应力特别均衡,能做火箭发射平台;能做火箭组装存放平台;能做指挥测控、生活基地(能做空港海港基地)。能回收垂直伞降火箭;能回收垂直燃料反冲式火箭或者滑翔式火箭。是最理想的海上移动或者固定的火箭发射和回收平台。能大大降低火箭发射的风险和成本,提高发射的频率和成功率。
需要自航的移动平台,就在前方安装1号船头模块,在尾部和左右两侧的外飘甲板上,安装数十个常规推进器同时推进,犹如龙舟赛上的龙舟多桨划行一样,巨大的装备也能高速机动航行。可以安装核电站,有核电站的强大电能,可以设置油电混合动力推进系统辅助移动航行,能使平台有很高的航速,成为海上可移动的火箭发射和回收基地。
9、简单的构造、低廉的造价、强大的使用功能,不会沉没的优良品质,优于任何舰船和钻井平台的改装品。是国家应该广泛应用和战略储备的重要装备(平时储存起来,需要时运到到海上快速拼接使用)。
说明书附图:共有说明书附图10幅,共10页。
附图说明:图1是平台鸟瞰图。
图中(1)是潜浮压载水柜。(2)是桁架。(3)是有永久浮力的甲板体。
图2是潜浮压载水柜(1)和甲板体(3)的俯视图。
图3是九个模块拼接以后的俯视图。其他模块的拼接以此类推。
图4是连接用的榫卯板上端端头俯视图。
图5是连接机构四块全等型榫卯板组装连接方式俯视图。四个角相邻榫卯板相接处的缝隙是特意留出来指示榫卯板的连接方式,不是头对头的对接,是按着图示的方式、顺序,头顶侧相互垂直接,围成一个正方形,用高强度保护焊焊接,不能有一点形变。
图6是连接机构锁紧系统(6),榫卯板上碰珠锁处剖面图。
①是榫头上的碰珠锁主体及锁膛内的压缩弹簧和碰珠。②是榫槽内碰珠锁锁孔。
图7是1号船头模块竖剖正视图。
图中(1)是潜浮压载水柜。(2)是桁架。(3)是顶层甲板体。(5)是连接机构榫卯板。(8)是外飘甲板。
图8是3号中间模块竖剖正视图。
图中(1)是潜浮压载水柜。(2)是桁架。(3)是顶层甲板体。(5)是连接机构榫卯板。
图9是2号带外飘甲板的封边模块竖剖正视图。
图中(1)是潜浮压载水柜。(2)是桁架。(3)是顶层甲板体。(5)是连接机构榫卯板。(8)是外飘甲板。
图10是2号带外飘甲板的封边模块俯视图。
图中(4)是顶层甲板。(8)是外飘的甲板。
具体实施方式
平台是由众多个模块拼接而成,也可以单个模块使用。每个模块的大小尺寸可根据用途、载重量和所在海域的海况以及生产加工能力、运输吊装条件来决定。为了叙述方便具体,这里以单元模块尺寸长30米×宽30米×高18米为例进行说明。
潜浮压载水柜整体长30米×宽30米×高6米,这个尺寸的水柜排水量全部下潜时约为5000多吨。
上层甲板体的整体长30米×宽30米×高3米,这个尺寸的浮力甲板体排水量约为2700吨
打开防沉安全气囊的浮力则更大。
1、做模块连接机构一榫卯板。
本发明的连接机构是刚性的榫卯结构,历史上俗称万年牢。用较厚的(厚度>30mm)耐腐蚀、抗形变的高强度钢板,用刨床、铣床,在同一个版面上(不是在端头)加工出榫(又叫做榫头)和卯(又叫做榫槽)榫的尺寸要<卯的尺寸0.1mm-1mm。
榫卯有许多种,这里以燕尾榫卯为例。这里把这种在同一个平面版面上有榫卯的板,命名为榫卯板。榫卯板的长、宽、厚度以及榫卯的大小尺寸,可根据不同需要和吊装、运输条件而定。榫和卯可以加宽,无需这样密集。
把卯头和榫槽的棱角都加工成圆的,便于拼接插入和分散应力。
榫卯板使用时榫槽是上下方向竖着的。这里把连接上底一端的榫卯板端头叫做榫卯板的上端头,相对的一端叫做下端头。
上下端头的榫卯都做较大一些的倒楞斜面,以便于拼接时顺利插入。
2、做定位锁系统。
为了安装拼接时能准确到位并防止拼接后相邻模块的上下窜动,要进一步锁紧相接的模块,这里用大型碰珠锁(也可以用伸缩式舌簧锁人工操作,为叙述方便,这里用碰珠锁)进行定位锁紧。
除了拐角处的榫头以外,在其余所有榫头上做碰珠锁主体。在榫卯板的榫头背面,钻一个通透的圆孔,圆孔直径略小于碰珠直径0.1mm。再在同一个圆心,同一个方向钻一个大于碰珠直径1mm的同心圆孔,不能钻成通透的,要留出1-2mm的球面型厚度,作为限定碰珠,不让碰珠出去。在大孔内加 工出螺丝扣,用来做碰珠锁的盖板螺母。碰珠用高硬度材质。碰珠弹簧要用最强的弹簧钢,具有永久性、强弹力。打好孔以后,放入碰珠,压入弹簧,拧上盖板,构成碰珠锁主体。图6中的①。
在与碰珠对应的榫槽内做出锁孔,其锁孔直径<碰珠直径2-3mm=锁孔深度,图6中的②。为了强有力地锁紧相连的模块,碰珠锁可以设置很多。
当两个模块上下插入拼接到位时,碰珠锁会自动卡住定位,弹簧的压力顶住碰珠,碰珠顶住锁孔,使榫卯紧密结合,将两个模块锁紧。
在榫卯板下端的榫槽内,由端头处开始,做出由深到浅的碰珠导引槽,端头导引槽最深处的深度
=碰珠的半径。导引槽的作用在于能使模块拼接的初始阶段,榫卯能轻松无阻力地顺利插入。
3、做出第一层潜浮压载水柜。
水柜是长30米×宽30米×高6米的扁方体,四个侧立面是水平方向长是30米,宽(竖向,箱体的高)是6米的全等的榫卯板,榫卯板上的榫和卯是左右排列、榫槽是竖着用的,榫卯朝外,平面朝里。四块榫卯板的连接组装方式必须严格按照图5所标示的90°侧对头焊接。(按照说明书附图5所示和附图说明操作)。
上下底是镶嵌在榫卯板围成的正方形内焊接。
水柜的上底要用较厚的甲板钢,因为他要焊接桁架承接上面的全部重量。
首先用榫卯板焊好四个侧立面,围成长30米×宽30米×高6米的扁方形箱体,在箱体内镶嵌焊出下底。在下底上焊出25个6米长×6米宽×6米高,彼此独立密闭的小水柜,组成整体模块的潜浮压载水柜(1)。
每个小水柜的底都有进水口和排水口,进水口和排水口都安装电动阀门,用来给水柜注水和排水。
另外在每个小水柜底部安装一个投入式液位探头控制器(中国无锡制造)。这个液位探头控制器是控制水泵掌控悬停的。
每个小水柜顶部安装一个常开的排气管道兼作电缆管廊直通顶层甲板。
水柜内壁喷涂聚脲防腐防漏涂料。这种聚脲防漏涂料具有极强的附着力和极强的堵漏拉力。是目前最好的防腐防漏涂料。
4、在潜浮压载水柜(1)的上底做出空间式桁架(2)。
桁架的高度和跨度,因用途来确定。桁架的承重横梁和承重立柱用加重型钢材,
其他的用普通的,所有钢管焊接完以后,都要注入足量的发泡剂,使其成为泡沫实心钢管。
桁架四周边缘的模块与模块之间的连接处,要安装足够的柱角法兰盘,用来拼接之后的连接紧固。
火箭发射点处的桁架要做特别加重处理。
空间式桁架做好以后,铺装底层甲板。
为了使连接更牢固,模块拼接后对模块接缝、桁架接头进行焊接。
5、做出甲板体(3)。
甲板体(3)可以直接在桁架上做,也可以做好以后吊装在桁架上,这里以后者为例进行说明。
先做出箱体。箱体的尺寸为长30米,宽30米,高3米(尺寸根据不同所需的浮力确定)。箱体的四个侧立面是水平方向长30米,竖直方向高3米(箱体的高)的全等的榫卯板,榫卯板上的榫和卯是左右排列、榫槽是竖着用的,榫卯朝外,平面朝里。四块榫卯板的连接组装方式必须严格按照图5所标示的90°侧对头焊接。(按照说明书附图5所示和附图说明操作)。上下底是镶嵌在榫卯板围成的正方形内焊接。
首先用榫卯板焊好四个侧立面,围成个30米×30米×3米的正方形箱体,在箱体内镶嵌焊出下底。
在下底上焊接出25个6米长×6米宽×3米高的无盖箱体(像田字格栅一样)。
分别在每个小箱体内壁用高压聚氨酯喷涂机喷涂一层低密度硬质聚氨酯发泡剂(简称PU硬泡)进行防水密封。等PU硬泡发泡硬化以后,再从箱体底部开始,多次分层喷涂PU硬泡至满箱。每一次喷涂都要等上一次的发泡结束硬化以后进行。
另外,也可以在箱体内壁喷涂PU硬泡密封以后,用成品PU硬泡泡沫块或者EPS(聚苯泡沫)闭孔泡沫块体进行填充。其方法是喷涂一薄层PU发泡剂作为粘接填缝剂,然后铺一层泡沫块体,再喷涂一层PU发泡剂,以此反复像砌砖一样填满箱体空间(所有的PU硬泡和EPS泡沫都必须是阻燃的)。然后铺上足够厚度的隔热阻燃的石棉板、耐火砖等,最后铺上甲板。
6、火箭发射基座。
火箭发射基座有实心的和空心的两种。实心的发射基座应该在铺装好的石棉板、耐火砖甲板上再做进一步的防火耐高温处理。
空心的发射基座要在做顶层甲板体(3)时,预留出排气孔,让火箭发射时的高温气体从排气孔冲入海面。
7、模块按用途分为三种型号,生产时要按需分别加工。
1号船头模块的四个侧面,有一个面是圆弧外飘的船头型(船头的甲板可以做成上翘的,利于飞机起飞),其余三个侧立面是连接机构榫卯板(5)。如图7。
2号模块是顶层甲板有一侧面是圆弧外飘甲板(8),其余三个侧立面是榫卯板(5)。如图9.
3号模块是中间模块。四个侧立面均为榫卯板连接机构(5)。如图8。
8、多点推进系统。
除了在平台尾部安装多个主推进系统以外,还在平台左右两侧外飘甲板上安装数多套推进系统,就像龙舟赛上的龙舟有几十个桨划行一样,能让装备快速的移动航行。
另外在平台左右两侧的潜浮压载水柜甲板上,安装数个定位推进器,使平台能够左右移动,确保定位准确。
9、防沉救生安全气囊是另外两项专利产品,有民用型充气的,有军用型不怕漏气的泡沫实心固体气囊,可以选装。
10、如果做为半潜船运送大型舰艇或者隐蔽型的航母编队母港(航母等舰船可以进入平台的甲板下面隐蔽停靠),空间式桁架要做得跨度更宽、更高一些。

Claims (10)

  1. 海上自航式火箭发射和火箭回收平台,有三层结构,第一层是潜浮压载水柜(1),第二层是空间式桁架(2),第三层是有永久浮力的甲板体(3);其特征是,用漂浮性泡沫做内容物,用钢板做外壳,构成有永久浮力的甲板体,结合潜浮压载水柜和高高的桁架,做成单元模块,用面式连接机构榫卯板(5)将众多的模块拼接放大;采用给潜浮压载水柜注水、排水的方法,让水柜下潜、悬停、上浮,进而调整平台的吃水深度和平台的稳度,能避开浪涌的影响;包括模块连接的定位锁紧机构①+②,三方面多处自航推进系统,三方面多处定位推进器的二维动态定位系统,圆弧外飘式甲板(8),以及悬停控制器、实心泡沫钢管和碰珠导引槽。
  2. 如权利要求书1所述潜浮压载水柜(1),是由众多彼此独立密闭的小水柜组成,每个小水柜都有自己独立的给排水和潜浮悬停系统,单体模块水柜的侧立面是榫卯板连接机构。
  3. 如权利要求书1所述空间式桁架(2)是用钢管焊接的钢结构支撑骨架,钢管内注满了低密度、硬质聚氨酯泡沫,有浮力、防腐、降噪功能。
  4. 如权利要求书1所述的面式连接机构榫卯板(5),是在同一个板面上(不是端头)加工出众多联排的、榫和卯,构成榫卯板,两块榫卯板面通过榫卯结合,构成整个板面的钢性牢固连接。
  5. 如权利要求书1所述定位锁紧机构①+②,是安装在榫头内的大型碰珠锁或伸缩型舌簧锁,包括榫槽内的锁孔。
  6. 如权利要求书1所述三方面多处自航推进系统,是在平台尾部安装多个主推进系统以外,在平台左右两侧还有众多个推进装置,像赛龙舟的众多个桨。
  7. 如权利要求书1所述三方面多处定位推进器的二维动态定位系统,是在平台左右两侧多个点位安装多个对向推进器,在电脑操控下向左或者向右推进,使平台除了能前后移动以外,还能左右移动定位。
  8. 如权利要求书1所述悬停控制器,是投入式液位控制器。
  9. 如权利要求书1所述碰珠导引槽,是在榫卯板下端榫槽内,从端头开始由深到浅的圆弧形凹槽。
  10. 如权利要求书1所述具有永久浮力的甲板体(3)的侧立面是连接机构榫卯板(5),内容物是具有永久漂浮性的泡沫实体,泡沫上面是隔热的石棉板,最上层是甲板。
PCT/CN2018/000300 2017-11-08 2018-08-17 海上自航式火箭发射和火箭回收平台 WO2019090956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711136792.5 2017-11-08
CN201711136792.5A CN109747787A (zh) 2017-11-08 2017-11-08 海上自航式火箭发射和火箭回收平台

Publications (1)

Publication Number Publication Date
WO2019090956A1 true WO2019090956A1 (zh) 2019-05-16

Family

ID=66401872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000300 WO2019090956A1 (zh) 2017-11-08 2018-08-17 海上自航式火箭发射和火箭回收平台

Country Status (2)

Country Link
CN (1) CN109747787A (zh)
WO (1) WO2019090956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116608743A (zh) * 2023-07-20 2023-08-18 中国万宝工程有限公司 一种回收装置及试验弹的回收方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113464B (zh) * 2020-09-22 2022-06-14 中国船舶科学研究中心 一种自航式海上无人火箭发射平台及发射方法
CN112727638A (zh) * 2020-12-29 2021-04-30 西安中科宇航动力技术有限公司 一种用于液体火箭发动机的榫卯式机架

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2642669Y (zh) * 2003-09-18 2004-09-22 袁晓纪 可下潜的水上浮动机场
CN102145736A (zh) * 2011-03-03 2011-08-10 叶剑 半潜自航式多功能海工平台及其模块的组合
CN102862656A (zh) * 2012-10-22 2013-01-09 东莞市科旺网络能源有限公司 一种模块化水上平台
CN203819476U (zh) * 2013-02-05 2014-09-10 “罗杰莫斯”科研生产中心有限责任公司 浮台
US9168987B1 (en) * 2014-01-16 2015-10-27 Sergey Sharapov Geographically stable floating platform structure
CN205632948U (zh) * 2016-05-17 2016-10-12 孙亚非 一种人工浮岛结构
CN206068092U (zh) * 2016-09-12 2017-04-05 东莞市中上模具塑胶科技有限公司 一种浮箱组装式水上移动平台
CN107140139A (zh) * 2017-05-23 2017-09-08 江苏科技大学 一种适用于超深水钻井平台的组合式浮箱防撞装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071991A (ja) * 1999-09-08 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd セミサブ浮体式構造物並びに大型海洋構造物及び大型海洋構造物の建造方法
CN1354112A (zh) * 2000-11-20 2002-06-19 龙炳勋 海上平台
CN101234662A (zh) * 2008-01-24 2008-08-06 许是勇 一种浮动式酒店
CN103010412A (zh) * 2012-12-06 2013-04-03 广东明阳风电产业集团有限公司 一种可坐底桁架式海上风机安装驳船
CN103112553B (zh) * 2013-02-04 2015-11-25 大连海事大学 自航式半潜维修船及使用方法
CN107200095A (zh) * 2016-03-18 2017-09-26 曹伟华 双翼船

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2642669Y (zh) * 2003-09-18 2004-09-22 袁晓纪 可下潜的水上浮动机场
CN102145736A (zh) * 2011-03-03 2011-08-10 叶剑 半潜自航式多功能海工平台及其模块的组合
CN102862656A (zh) * 2012-10-22 2013-01-09 东莞市科旺网络能源有限公司 一种模块化水上平台
CN203819476U (zh) * 2013-02-05 2014-09-10 “罗杰莫斯”科研生产中心有限责任公司 浮台
US9168987B1 (en) * 2014-01-16 2015-10-27 Sergey Sharapov Geographically stable floating platform structure
CN205632948U (zh) * 2016-05-17 2016-10-12 孙亚非 一种人工浮岛结构
CN206068092U (zh) * 2016-09-12 2017-04-05 东莞市中上模具塑胶科技有限公司 一种浮箱组装式水上移动平台
CN107140139A (zh) * 2017-05-23 2017-09-08 江苏科技大学 一种适用于超深水钻井平台的组合式浮箱防撞装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116608743A (zh) * 2023-07-20 2023-08-18 中国万宝工程有限公司 一种回收装置及试验弹的回收方法

Also Published As

Publication number Publication date
CN109747787A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US5979354A (en) Submarine
CN106080988B (zh) 一种多体极地航行船
WO2019090956A1 (zh) 海上自航式火箭发射和火箭回收平台
US10899422B2 (en) Autonomous submersible offshore marine platform
CN109466728A (zh) 应用于大深度潜水器的无动力下潜上浮运动方法及系统
CN101585397A (zh) 低燃料消耗的商业船舶
US9446825B1 (en) Self-propelled, catamaran-type, dual-application, semisubmersible ship with hydrodynamic hulls and columns
CN102658858A (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台
US4615292A (en) Submersible twin-hull watercraft
WO2016124011A1 (zh) 中深水半潜式钻井平台
CN107249978B (zh) 使用可浮动海上仓库的方法
CN113320655B (zh) 一种半潜式平台底部的浮箱及其设计方法
US9227703B2 (en) Buoyant structure for petroleum drilling, production, storage and offloading
Sharma et al. Issues in offshore platform research-Part 1: Semi-submersibles
CN109677567A (zh) 一种海上卫星发射和火箭回收平台
CN105644705A (zh) 一种小水线面双体平台
US20150166149A1 (en) Semisubmersible with tunnel structure
CN102530187B (zh) 不沉没不摆舵调头能左右位移横行的高速双头船
US3495562A (en) Mobile undersea habitat and method of use thereof
CN107097914A (zh) 大型水上浮式结构
EP3626594B1 (en) Large floating structure, and basic module of very large floating structure
CN108248781A (zh) 一种浮岛式海洋装备
CN207737469U (zh) 一种用于边际油田开发的动力定位小型fpso
CN1376616A (zh) 一种具超机动性的潜水船
CN113148036B (zh) 在远海礁滩上快速建设人工岛的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876336

Country of ref document: EP

Kind code of ref document: A1