WO2019088229A1 - 電気Snめっき鋼板 - Google Patents

電気Snめっき鋼板 Download PDF

Info

Publication number
WO2019088229A1
WO2019088229A1 PCT/JP2018/040727 JP2018040727W WO2019088229A1 WO 2019088229 A1 WO2019088229 A1 WO 2019088229A1 JP 2018040727 W JP2018040727 W JP 2018040727W WO 2019088229 A1 WO2019088229 A1 WO 2019088229A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
content
electroplated
plating
region
Prior art date
Application number
PCT/JP2018/040727
Other languages
English (en)
French (fr)
Inventor
後藤 靖人
雄太 田島
亜暢 小林
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2019517105A priority Critical patent/JP6555455B1/ja
Priority to EP18873736.5A priority patent/EP3705608A4/en
Priority to KR1020207008894A priority patent/KR102412968B1/ko
Priority to CN201880064242.3A priority patent/CN111164239B/zh
Publication of WO2019088229A1 publication Critical patent/WO2019088229A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting

Definitions

  • the present invention relates to an electroplated Sn plate, particularly to an electroplated Sn plate having a low Pb content in the entire electroplated layer.
  • Priority is claimed on Japanese Patent Application No. 2017-211788, filed Nov. 1, 2017, the content of which is incorporated herein by reference.
  • Sn ingots used for plating Sn-plated steel sheets are imported from Southeast Asian countries. Because of the high content of Pb contained in the raw ore, Sn ingots from Southeast Asia contain 100 mass ppm or more of Pb. When the Sn ingot from Southeast Asia is used as it is, the Pb content in the Sn plating layer of the Sn-plated steel sheet, which is a product, can not be 100 mass ppm or less. Therefore, when using Sn ingots from Southeast Asia, the manufacturing cost is increased, but by further performing electrolytic refining, a level that somehow clears the current regulatory value is secured.
  • Patent Document 1 when electrolytically purifying an anode made of Sn ore or crude Sn made of Sn waste material, a part of Pb contained in the anode is dissolved as Pb 2+ in the electrolytic solution, which causes In order to suppress that Pb is mixed in the electrolytic Sn, an electrolytic solution of Sn consisting of silicic hydrofluoric acid or a mixed acid of sulfuric acid and silicic hydrofluoric acid is extracted from the electrolytic cell, and alkaline earth metal carbonate is added to this electrolytic solution.
  • the invention relates to a method of electrorefining a high purity Sn, characterized in that it is added to precipitate Pb in the solution, and the electrolytic solution from which the precipitate has been removed is returned to the electrolytic cell to electrolyse Sn.
  • Patent Document 1 does not describe the Pb content in the Sn-plated steel sheet and the Sn-plated layer.
  • Patent Document 2 discloses a technique of heating and melting an object to be treated consisting of a pure metal or alloy, and bringing at least one of a metal halide and an oxyhalide into contact with the melt to remove Pb in the object to be treated. Is described. However, Patent Document 2 only describes Pb-free solder as a specific object to be treated, and does not describe the Pb content in the Sn plating layer of a Sn-plated steel sheet.
  • Patent Document 3 discloses that, in order to prevent a short between terminals due to whisker growth that is likely to occur when Pb-free Sn plating is performed on an electronic component such as a semiconductor device, adjacent crystal grain boundaries in the Sn plating layer are formed. The invention which makes the angle to make 20 degrees or less is described. However, Patent Document 3 does not originally describe a method for producing Sn plating with extremely low Pb concentration from a plating bath containing Pb.
  • the Pb content of the whole electroplated Sn layer is 50 mass ppm or less, and it can be applied to a steel plate for container
  • An object of the present invention is to provide an electroplated Sn-plated steel sheet. More specifically, an object of the present invention is to provide an electric Sn-plated steel sheet which has a long life and is excellent in corrosion resistance, coating film adhesion and whisker resistance when applied to a container steel sheet.
  • the gist of the present invention is as follows.
  • An electric Sn-plated steel sheet according to an aspect of the present invention is provided on a base steel plate and the base steel plate and has a Sn layer and an alloy layer, and Sn: 10 to 100% by mass, Fe: An electric Sn plating layer containing 0 to 90% by mass, O: 0 to 0.5% by mass, wherein the total Pb content of the electric Sn plating layer is 50 mass ppm or less, the electric Sn plating layer The Pb content of the surface region is 5 mass ppm or more, where t is a thickness of t and a region from the surface of the electric Sn plating layer to (1/10) ⁇ t depth in the thickness direction is a surface region.
  • the value divided by the Pb content / (Sn content + Pb content) of the region may be 1.1 or more.
  • the electric Sn plating steel plate applicable to the steel plate for containers which is 50 mass ppm or less in Pb content of the whole electric Sn plating layer can be provided.
  • the electroplated Sn plated steel sheet according to the present embodiment includes a base steel plate and the base steel plate, and has an Sn layer and an alloy layer, Sn: 10 to 100% by mass, Fe: 0 to 90% by mass And O: 0 to 0.5% by mass, the total content of the electroplated Sn layer is 50 mass ppm or less, and the thickness of the electroplated Sn layer is t
  • the Pb content of the surface region is 5 mass ppm or more, and It is characterized in that the Pb content of the surface layer region is higher than the Pb content of the whole of the electroplated Sn layer.
  • the inventors examined the mechanism by which Pb contained in the Sn ingot is mixed in the electroplated Sn layer. As a result of studies by the present inventors, it is found that Pb exists as metal Pb in the entire electroplated Sn layer, that is, it is electroanalyzed together with Sn based on observation and quantitative measurement of the electrodeposited Sn layer in the depth direction It turned out that it was emitted (co-deposited) and was not necessarily contained in the electroplated Sn layer by simply involving the Sn plating solution.
  • the present inventors prepared a Sn-containing plating solution (PSA plating bath) consisting of p-phenolsulfonic acid, Sn (II) sulfate and an additive, and a Pb-containing plating solution to which Pb acetate was added. The electric potential was changed to form an electroplated Sn layer.
  • PSA plating bath consisting of p-phenolsulfonic acid, Sn (II) sulfate and an additive
  • Pb-containing plating solution to which Pb acetate was added. The electric potential was changed to form an electroplated Sn layer.
  • the Sn plating solution used in the plating step of the electroplated Sn steel sheet supplies Sn 2+ in the form of a sulfuric acid bath using an insoluble anode, and the solubility of Sn and Pb sulfates at 20 ° C. is as follows is there.
  • SnSO 4 18.9 g / 100 g H 2 O (easy soluble)
  • PbSO 4 0.003846 g / 100 g H 2 O (hardly soluble)
  • Crown ethers consist of cyclic polyether chains and can selectively interact with some heavy metal ions. Crown ether has vacancies consisting of ether oxygen atoms in its molecule, and incorporates and binds heavy metal ions in this. Thus, selective interactions occur when the size of the heavy metal ion matches the size of the vacancy of the crown ether. In order to selectively remove the lead ion (Pb 2+ ) in the Sn plating solution, it is sufficient to use a crown ether whose pore size is adjusted to match the size of the lead ion.
  • methacrylate, polystyrene packed in a column, and passing Sn plating solution through the column to selectively remove lead ions (Pb 2+ ).
  • the Sn plating solution to be a base is p-phenolsulfonic acid: 115 g / L, EN-10 (Ethoxylated ⁇ -Naphthol): 5 g / L, ENSA (Ethoxylated ⁇ -Naphthol Sulphonic Acid): 5 g / L, SnSO 4 : 36 g / L (20 g / L in Sn 2+ conversion), and added to this in the form of acetate Pb so as to be 13 mg / L (650 ppm in Pb / Sn conversion) in Pb 2+ conversion.
  • a total of 200 L of the above-mentioned Sn plating solution was passed through the column filled with crown ether, and component analysis was performed for every 20 L of the passed Sn plating solution.
  • the present inventors reduce the occurrence of blackening by reducing the Pb content of the entire electroplated Sn layer, and further whisker resistance by concentrating Pb in the surface region. Was newly discovered to improve.
  • the present inventors also newly found that the coating film adhesion is improved by providing a gradient to the Pb content in the electroplated Sn layer.
  • the electroplated Sn-plated steel sheet according to the present embodiment is made based on the above knowledge.
  • the electric Sn plated steel sheet according to the present embodiment will be described in detail.
  • the base steel plate of the electroplated Sn plated steel plate according to the present embodiment is not particularly limited, and a steel plate used as a base steel plate of a general container steel plate defined in JIS G 3303: 2017 may be used.
  • Steel plates can be used.
  • the electroplated Sn layer according to the present embodiment is present on the surface side of the electroplated Sn layer, and is present on the base steel plate side of the electroplated Sn layer and the Sn layer containing a large amount of Sn, and Fe of the base steel plate is electrically And an alloy layer (Fe—Sn layer) diffused in the Sn plating layer.
  • the definitions of the electroplated Sn layer, the Sn layer and the alloy layer will be described later.
  • the Pb content of the entire electroplated Sn layer is 50 mass ppm or less. If the Pb content of the entire electroplated Sn layer is more than 50 mass ppm, the Pb content regulation value predicted in the future can not be satisfied, and the desired characteristics (long life, corrosion resistance) as a steel plate for container are obtained. I can not
  • the Pb content of the entire electroplated Sn layer is preferably 40 mass ppm or less, 30 mass ppm or less, 20 mass ppm or less, or 10 mass ppm or less. Although it is possible to make the Pb content of the whole electroplated Sn layer less than 5 mass ppm, in order to cause an increase in cost in actual operation, the lower limit of the Pb content of the whole electroplated tin layer is 5 mass ppm Good.
  • the Pb content in the surface layer region is 5 mass ppm or more, and the Pb content in the surface layer region is higher than the Pb content in the entire electric Sn plating layer.
  • the upper limit of the Pb content in the surface layer region may be 60 mass ppm.
  • the surface layer region refers to a region from the surface of the electroplated Sn layer to the (1/10) ⁇ t depth in the thickness direction, where t is the thickness of the electroplated Sn layer. Further, in the present embodiment, a region other than the surface region of the electroplated Sn layer is referred to as a deep region.
  • the deep region of the electroplated Sn layer when reduced, when the thickness of the electroplated Sn layer is t, (1/10) ⁇ t depth to surface thickness in the thickness direction from the surface of the electroplated Sn layer It is an area of t depth in the direction.
  • the electric Sn plating layer according to the present embodiment is the Pb content in the surface region of the electric Sn plating layer / (Sn content + Pb content), and the Pb content in the deep region of the electric Sn plating layer / (Sn content + Pb
  • the value divided by the content may be 1.1 or more.
  • a value obtained by dividing the Pb content / (Sn content + Pb content) of the surface region of the electroplated Sn layer by the Pb content / (Sn content + Pb content) of the deep region of the electroplated Sn layer 1.1 By setting it as the above, the coating film adhesiveness of an electric Sn plating steel plate can be improved more.
  • the electroplated Sn layer according to the present embodiment contains Sn: 10 to 100% by mass, Fe: 0 to 90% by mass, and O: 0 to 0.5% by mass as elements other than Pb.
  • the remainder consists of impurities.
  • impurity means a substance which is mixed from Sn ingots as a raw material or a manufacturing environment and the like, and is acceptable within a range which does not adversely affect the electroplated Sn steel sheet according to the present embodiment.
  • the electroplated Sn layer according to the present embodiment optionally, one of a group consisting of Ca: 0.1 to 10 mass ppm, Sr: 0.1 to 10 mass ppm, and Ba: 0.1 to 10 mass ppm. Or you may further contain 2 or more types.
  • the electroplated Sn layer contains one or more of the above groups, the Pb content of the entire electroplated Sn layer can be further reduced.
  • the electroplated Sn plated steel sheet according to the present embodiment has the Fe-Ni layer, Ni between the electroplated Sn layer and the base steel plate, strictly between the alloy layer (Fe-Sn layer) and the base steel plate. It may further include one or more of an -Sn layer and an Fe-Ni-Sn layer. When the electroplated Sn layer further includes one or more of these layers, the can life can be extended when the electroplated Sn steel sheet is used as a beverage can or a can and a dense alloy layer Since the formation has a barrier effect, the corrosion resistance can be improved.
  • FIGS. 2A and 2B The components of the electroplated Sn layer can be analyzed by Glow Discharge-Mass Spectrometry (GD-MS) analysis.
  • GD-MS analysis is an analysis method that tracks the change in composition from the surface of the plating layer to the depth direction with the passage of discharge time.
  • FIG. 2A shows the results of No. 1 example. It is a graph obtained by carrying out GD-MS analysis about 16 electric Sn plating steel plates.
  • the graph of FIG. 2A represents the change of the content of Fe, Sn, Pb and O from the surface side of the electroplated Sn layer on the left end side of the horizontal axis toward the base steel plate side of the right end side.
  • the mass ppm on the vertical axis is the scale on the left for Fe and Sn, and the scale for the right on Pb and O.
  • the graph of FIG. 2B is obtained by extracting the Sn content and the Pb content of FIG. 2A, calculating the Pb / (Sn + Pb) value, and graphing the change from the surface of the electroplated Sn layer to the depth direction. .
  • the electroplated Sn layer Define.
  • an element is not detected for several minutes after discharge, this region is not included in the electroplated Sn layer.
  • a region in which the Sn content is higher than the Fe content in the electroplated Sn layer is defined as the Sn layer, and a region other than the Sn layer in the electroplated Sn layer is defined as the alloy layer (Fe-Sn layer) (See Figure 2A).
  • a region in which 10 to 90% by mass of Fe and 10 to 90% by mass of Ni is defined as an Fe-Ni layer
  • a region in which 10 to 90% by mass of Ni and 10 to 90% by mass of Sn is defined as a Fe-Ni-Sn layer.
  • the Pb content of the whole of the electroplated Sn layer is the Pb content of the whole of the electroplated Sn layer including the Sn layer and the alloy layer, obtained by GD-MS analysis.
  • the Pb content in the surface layer region is the Pb content in the region from the surface of the electroplated Sn layer to the (1/10) ⁇ t depth obtained by GD-MS analysis.
  • the Pb content / (Sn content + Pb content) of the surface layer region of the electroplated Sn layer is the Pb content (% by mass) of the surface region, the Sn content (% by mass) and the Pb content (mass) of the surface region Divide by the sum of%).
  • the Pb content / (Sn content + Pb content) in the deep region of the electroplated Sn layer refers to the Pb content (mass%) in the deep region, the Sn content (mass%) in the deep region, and the Pb content It is obtained by dividing by the sum of the amounts (% by mass).
  • the Ca content, the Sr content, and the Ba content in the electroplated Sn layer are obtained by dissolving the electroplated Sn layer using an acid containing an inhibitor and dissolving the resulting solution into an ICP-MS (Inductively Coupled Plasma -Obtained by analysis by Mass Spectrometry).
  • electro Sn plating is applied to a base steel plate having the above-described chemical composition.
  • the electro Sn plating is performed using a Sn plating solution in which the Pb 2+ concentration is reduced by the crown ether method.
  • Electrolytic degreasing may be performed prior to the electro Sn plating.
  • the electric Sn plating step in which a plurality of electrodes (10 passes) are passed at high speed, the current density of the first to ninth passes is made constant, and the current density of the tenth pass (final pass) is increased to apply electro Sn plating.
  • the Pb content of the surface layer region of the electroplated Sn layer can be adjusted by adjusting the increase width of the current density in the tenth pass.
  • the electroplated Sn plated steel sheet according to the present embodiment can be manufactured.
  • carbonates of alkaline earth metals may be added to the Sn plating solution.
  • the yield of Pb 2+ removal by the crown ether method can be improved, and the Pb content of the whole of the electroplated Sn layer can be further reduced.
  • Ni pre-plating or Fe—Ni pre-plating may be applied as a pretreatment of the electro Sn plating. This makes it possible to form one or more of the Fe—Ni layer, the Ni—Sn layer, or the Fe—Ni—Sn layer between the base steel plate and the electroplated Sn layer.
  • Example 1 On the actual operation scale, the effect of the decrease of the Pb content in the electroplated Sn layer by the crown ether method was investigated.
  • the components of the Sn plating solution are Sn 2+ : 20 g / L, Pb 2+ : 5 mg / L (250 ppm in terms of Pb / Sn), EN: 5 g / L, ENSA: 5 g / L, PSA: 100 g / L, temperature: 45 It was ° C.
  • the crown ether supported resin in this example, silica gel was used) was packed into the column and passed through the Sn plating solution. The Sn plating solution was transferred to the plating cell, circulated in the plating cell, and returned to the column. This was repeated.
  • the flow rate (L / hr) of the Sn plating solution at this time depends on the resin volume (L), but as a result of preliminary studies, the flow rate of the Sn plating solution was set to 60 L / hr for 1 L of resin. .
  • FIG. 3A shows the result of GD-MS analysis of an electroplated Sn layer prepared with a Sn plating solution of Pb 2+ : 0.1 mg / L by the crown ether method, and was prepared using an untreated Sn plating solution
  • FIG. 3A shows the result of GD-MS analysis of the electroplated Sn layer (comparative example) in FIG. 3A.
  • Example 2 The following experiment was conducted on the assumption that the electroplated Sn plated steel sheet according to the present invention is applied to the production of a tin as a beverage can material and a can material.
  • a steel plate composed of C: 0.03% by mass, Al: 0.005% by mass, Mn: 0.03% by mass and the balance of Fe and impurities was used.
  • the components of the Sn plating solution are: Sn 2+ : 20 g / L, Pb 2+ : 5 mg / L (250 ppm in terms of Pb / Sn), EN: 5 g / L, ENSA: 5 g / L, PSA: 100 g / L, Temperature : 45 ° C.
  • the Pb 2+ concentration of this Sn plating solution was reduced by the crown ether method, and an electric Sn plating layer was formed through an electric Sn plating step described later with an optional Pb 2+ concentration.
  • the Pb 2+ concentration could be reduced to 0.05 mg / L at laboratory scale.
  • a current of 10 A / dm 2 ⁇ 10 sec was applied to a cathode side with a 10% NaOH solution at 60 ° C. in an electrolytic degreasing process of the steel plate. Then, after dipping for 10 sec in 10% H 2 SO 4 at normal temperature for acid pickling, use a Sn plating solution of 5A / dm 2 to aim for # 25 tinplate (Sn adhesion amount of 2.8 g / m 2 ). Electric Sn plating was performed.
  • the current density of the final pass in 10 passes was changed to form an electro Sn plating layer in which the distribution state of Pb was controlled. That is, the current density of the final pass is increased when Pb is concentrated in the surface region, and conversely, the current density of the final pass is decreased when the Pb content of the surface region is reduced from the Pb content of the entire electroplated Sn layer.
  • the current density was set to 20 A / dm 2 except for the final pass, and the current density was increased to 30 to 60 A / dm 2 in the final pass to perform electro Sn plating.
  • no. 11 and No. For No. 14 the current density was lowered only in the final pass, and No. 37 and No. For 38, the current density was fixed.
  • Ni pre-plating and Fe-20 mass% Ni pre-plating are applied respectively as the pre-treatment of the electro-Sn plating step so that the adhesion amount of Ni: 20 mg / m 2 , An Fe-Ni layer, an Ni-Sn layer (based on Ni 3 Sn 4 ), or an Fe-Ni-Sn layer.
  • the electroplated Sn layer contains Pb, Ca, Sr and Ba shown in Table 1, and consists of Sn: 10 to 100% by mass, Fe: 0 to 90% by mass, O: 0 to 0.5% by mass and the balance impurities It was an electric Sn plating layer.
  • Pb whole plating layer Pb content / mass ppm is the Pb content of the whole electro Sn plating layer
  • the surface layer Pb content / mass ppm is the Pb content of the surface layer region of the electro Sn plating layer.
  • the Pb content / (Sn content + Pb content) of the surface area of the electroplated Sn layer is the surface area of the electroplated Sn layer
  • the value divided by Pb content / (Sn content + Pb content) in other areas (deep area) is 1.1 or more, it is described as " ⁇ ", and the above value is less than 1.1 It described as "x” to.
  • all the examples including the invention examples and the comparative examples had the Sn layer and the alloy layer in the electroplated Sn layer.
  • ATC test By ATC test, the can life at the time of applying an electric Sn plating steel plate to a drink can or a food can was evaluated.
  • ATC test solution (1.5% NaCl + 1.5% corrosion) is applied to an electroplated Sn plate steel sheet in which an alloy layer (Fe-Sn layer) is exposed after reflowing and an electroplated tin plate not reflowed after reflowing. It was immersed in an acid solution, and the corrosion current flowing between both electrodes was measured.
  • the test piece was a 130 mm ⁇ 15 mm strip, which was electrolytically peeled off in a 5% NaOH solution to completely seal the other except for the 5 mm ⁇ 40 mm test surface to prevent current leakage.
  • the test solution was boiled for 2 minutes in a nitrogen atmosphere and cooled to room temperature.
  • an electric Sn-plated steel plate in which an alloy layer (Fe-Sn layer) was exposed after reflowing was connected and incorporated into an electric Sn-plated steel plate which was not detinted after reflow.
  • Stannous chloride 100 ppm in terms of Sn 2+ ) was placed at the bottom of the test tank, and the inside of the test tank was previously made into a nitrogen atmosphere.
  • ATC test solution Transfer the ATC test solution to a test tank so that it does not touch the air, and immerse the electroplated Sn steel sheet with detinned and exposed alloy layer (Fe-Sn layer) after reflow and the electroplated Sn coated steel sheet that is not detinified after reflow
  • the ATC test solution was stirred for 30 minutes to dissolve stannous chloride.
  • ATC test solution After immersing in a nitrogen atmosphere (ATC test solution) for 20 hours, the current value between the de-tinted Sn electroplated steel plate and the non-tin-free electro-tin plated steel sheet was measured, and this was taken as the ATC value. The lower the ATC value, the better the can life.
  • 2 or more points were determined to be pass.
  • the corrosion resistance of the electroplated Sn-plated steel sheet was evaluated by the resistance to blackening resistance test.
  • the corrosion resistance test liquid which mixed 0.1% sodium thiosulfate aqueous solution and 0.1 N sulfuric acid by a volume ratio 1: 2 was used for the sulfuration-proof blackening test.
  • the electric Sn plated steel plate subjected to the above-mentioned # 311 treatment was cut out to ⁇ 35 mm to make a test piece, and this test piece was placed on and fixed to the mouth of a heat resistant bottle containing a corrosion resistance test solution. Thereafter, the heat-resistant bottle was turned upside down so that the test piece and the corrosion resistance test solution were in contact with each other.
  • the corrosion resistance was evaluated based on the proportion of the corroded portion in the area (the opening area of the heat-resistant bottle) where the corrosion resistance test liquid contacts the above test piece.
  • the ratio of the corrosion area to the area in which the test piece comes in contact with the corrosion resistance test solution was rated 1 to 5 points.
  • three or more points were determined to be pass.
  • Excellent score 5 less than 10% in area
  • Score 4 10% or more in area and less than 25%
  • Score 3 25% or more in area and less than 40%
  • Score 2 40% or more in area, less than 55% inferior grade 1: area 55% or more
  • Film adhesion evaluation test A sample was taken from an arbitrary position of the electroplated Sn steel sheet, an acrylic coating was baked and coated on the surface of the electroplated Sn layer, and a tape peeling test was conducted after cooling to room temperature. The tape surface after peeling test is observed, and the adhesion surface of the electro Sn plating is less than 5% of the tape surface (the adhesion surface between the electro Sn plating layer and the tape) is regarded as excellent in paint film adhesion and it is passed It was judged. When the adhesion surface of electroplating was 5% or more of the tape surface (the adhesion surface between the electroplating layer and the tape), the coating adhesion was judged to be inferior as being poor in film adhesion.
  • Whisker resistance evaluation test A sample is taken from an arbitrary position of the electroplated Sn steel sheet, and this sample is left at 40 ° C., 50% RH environment with 5 T bending for 1000 h, and then the outside of the bending portion is 10 mm ⁇ 5 mm by SEM. The range was observed and observed in 3 fields of view, the number of whiskers of 50 ⁇ m or more was counted, and the number was divided by the observation area to obtain a number density. The case where the number of observed whiskers was 10 or less per 1 mm 2 was judged as pass as excellent in whisker resistance, and the case of more than 10 was judged as rejection. In Table 1, what was determined as pass was described as "(circle)", and what was determined as rejection was described as "x".
  • Table 1 The above measurement results and test results are shown in Table 1.
  • the underline in Table 1 indicates that the characteristic is outside the scope of the present invention or is not preferable.
  • No. 1, No. 2, No. No. 3 is an example in which the Pb content of the whole of the electroplated Sn layer is more than 50 mass ppm, and the scores of the ATC test and the anti-sulfur blackening test are low. Sulfurized blackening is caused by the bond between Sn and S, and exposure to high temperature in retort treatment promotes discoloration. When the Pb content in the entire electroplated Sn layer is high, there is a region where the melting point is locally lowered, and the reaction point of color change is increased, which is considered to lead to the appearance change of macro blackening.
  • the Pb content of the entire electroplated Sn layer is 50 mass ppm or less, and the Pb content of the surface layer region is 5 ppm or more and higher than the Pb content of the entire electroplated Sn layer, ATC All the test results of the test, the sulfurization blacking resistance test, the coating film adhesion evaluation test and the whisker resistance evaluation test were good.
  • the Pb content of the entire electroplated Sn layer is 30 mass ppm or less (No. 6)
  • the corrosion resistance is better
  • 20 mass ppm or less No. 7, No. 8, No. 16 to No. .18
  • region of electro tin plating layer is 1.
  • No. No. 19-23 is No. It is an electroplated Sn plated steel sheet prepared by adding 0.01 to 1 g / L of calcium carbonate to a Sn plating solution corresponding to 10. No. No. 10 in comparison with No. 10. The Pb content of the whole of the Sn plated layer of 19 to 23 decreased by about 20%, which suggested that the Pb 2+ yield by the crown ether method was improved. No. 24 to 28 are No. It is an electroplated Sn plated steel sheet prepared by adding 0.01 to 1 g / L of strontium carbonate to a Sn plating solution corresponding to 10. No. No. 10 in comparison with No. 10.
  • the Pb content of the whole of the Sn plated layer of 24 to 28 decreased by about 30%, which suggested that the Pb 2+ yield by the crown ether method was improved.
  • No. Nos. 29 to 33 are No. It is an electroplated Sn plated steel sheet prepared by adding 0.01 to 1 g / L of barium carbonate to a Sn plating solution corresponding to 10. No. No. 10 in comparison with No. 10.
  • the Pb content of the whole of the Sn plated layer of 29 to 33 decreased by about 10%, which suggested that the Pb 2+ yield by the crown ether method was improved.
  • No. No. 34 is no.
  • No. No. 35-38 are No. This is an example in which pre-Ni plating and pre-Fe-20% Ni plating are applied prior to the electro-tin plating corresponding to 9.
  • No. 5 which is an invention example.
  • 35 and No. in No. 36 one or more of the Ni-Fe layer, the Ni-Sn layer, and the Ni-Fe-Sn layer are formed, so that the electroplated Sn layer and the Ni-Fe layer, the Ni-Sn layer, the Ni-Fe layer, It can be seen that the potential difference with the -Sn layer decreases and the ATC value is improved.
  • FIGS. 2A and 2B show the results of GD-MS analysis of the electroplated Sn layer after the electroplated Sn sheet produced in the above example (No. 16) is subjected to a reflow treatment.
  • the graph in FIG. 2A shows the change in content ratio of Fe, Sn, Pb and O from the surface of the electroplated Sn layer on the left end side of the horizontal axis toward the base steel plate side on the right end side of the horizontal axis. .
  • the mass ppm of the vertical axis is on the left scale for Fe and Sn, and on the right scale for Pb and O. According to FIG. 2A, it can be seen that only about 25 ppm by mass of Pb is detected at the outermost surface.
  • the graph of FIG. 2B takes out the Sn content and the Pb content of FIG. 2A, calculates the Pb / (Sn + Pb) value, and plots the change in the depth direction from the surface of the electroplated Sn layer. It is. At this time, the value of Pb / (Sn + Pb) in the surface layer region of the electroplated Sn layer (region from the surface to (1/10) ⁇ t depth in the plate thickness direction (portion surrounded by rectangle in FIG. 2B)) It can be seen that the phenomenon of Pb concentration occurs in the vicinity of the surface.
  • the maximum Pb / (Sn + Pb) value in the surface layer region is about 25 mass ppm while the average Pb / (Sn + Pb) value in the entire electroplated Sn layer is about 15 mass ppm. And a value less than the regulation value of the Pb content predicted in the future, and there was practically no problem.
  • the upper limit of the Pb content in the surface layer region is 60 mass ppm when the Pb content is the upper limit of 50 mass ppm in the whole of the electroplated Sn layer defined by the present invention.
  • the electrodeposited Sn steel sheet in order to reduce the Pb content of the whole of the electroplated Sn layer, is made to have a low Pb content by the complex formation capture and removal method of Pb 2+ ion with crown ether. It does not exclude the use other than the complex formation capture removal method of Pb ⁇ 2+> ion.
  • the electric Sn plated steel sheet according to the present embodiment can provide an electric Sn plated steel sheet applicable to a steel sheet for container, in which the Pb content of the entire electric Sn plated layer is 50 mass ppm or less.

Abstract

この電気Snめっき鋼板は、母材鋼板と、母材鋼板上に配され、Sn層と合金層とを有し、所定の成分を含有する電気Snめっき層と、を備える。電気Snめっき層全体のPb含有量が50質量ppm以下である。電気Snめっき層の厚さをtとし、電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、表層領域のPb含有量が5質量ppm以上であり、かつ、表層領域のPb含有量が電気Snめっき層全体のPb含有量よりも高い。

Description

電気Snめっき鋼板
 本発明は、電気Snめっき鋼板、特に、電気Snめっき層全体のPb含有量が少ない電気Snめっき鋼板に関する。
 本願は、2017年11月1日に、日本に出願された特願2017-211788号に基づき優先権を主張し、その内容をここに援用する。
 近年、健康被害への懸念や環境負荷への対策の面から、工業製品中のPb含有量に対する各種規制が強化されつつある。
 食品用缶詰に使用されるSnめっき鋼板(いわゆるブリキ缶素材)についても例外ではない。例えば、南アフリカ共和国では、缶内に溶出するPb2+の規制の面から、Snめっき層中のPb含有量を100質量ppm以下とする必要があり、同様の規制は、欧州の一部や中国においても導入が検討されている。また、一部の需要家からも、上記と同様の要請がある。
 日本では、Snめっき鋼板のめっきに使用するSnインゴットは、東南アジア諸国から輸入したものが多い。原鉱石に含まれるPb含有量が多いため、東南アジア産のSnインゴットは、100質量ppm以上のPbを含んでいる。東南アジア産のSnインゴットをそのまま使用した場合には、製品であるSnめっき鋼板のSnめっき層中のPb含有量を100質量ppm以下とすることができない。そのため、東南アジア産のSnインゴットを使用する場合には、製造コストが増加するが、電解精製をさらに行うことで、現状の規制値を何とかクリアする水準を確保している。あるいは、輸送距離が長いため、輸送コストが増加するが、Pb含有量の少ない南米産のSnインゴットを購入することで、上記規制に対する問題に対処しているのが実情である。南米産のSnインゴットを使用してブリキを製造した場合のPb含有量は70質量ppm程度であり、現状の規制値を何とかクリアする水準である。
 特許文献1には、Sn鉱石やSn廃材から製造した粗Snからなるアノードを電解精製する際に、該アノードに含まれるPbの一部が、電解液中にPb2+として溶存し、これが原因で電解Sn中にPbが混入することを抑制するために、珪フッ酸または硫酸と珪フッ酸との混酸からなるSnの電解液を電解槽から抜き出し、この電解液にアルカリ土類金属炭酸塩を添加して液中のPbを沈殿させ、この沈殿を除去した電解液を電解槽に戻してSnの電解精製を行うことを特徴とする高純度Snの電解精製方法に関する発明が記載されている。しかし、特許文献1には、Snめっき鋼板およびSnめっき層中のPb含有量に関して記載されていない。
 特許文献2には、純金属あるいは合金からなる被処理物を加熱溶融して、この溶融物に、金属ハロゲン化物とオキシハロゲン化物の少なくとも一方を接触させて被処理物中のPbを除去する技術が記載されている。しかし、特許文献2には、具体的な被処理物としてPbフリーはんだが記載されているに過ぎず、Snめっき鋼板のSnめっき層中のPb含有量について記載されていない。
 特許文献3には、半導体装置のような電子部品にPbフリーのSnめっきを施した場合に生じやすいウィスカーの成長による端子間のショートを防止するために、Snめっき層における隣接する結晶粒界のなす角度を20°以下とする発明が記載されている。しかし、特許文献3には、そもそもPbを含むめっき浴からPb濃度が極めて低いSnめっきを製造する方法について記載されていない。
日本国特開2003-183871号公報 日本国特開2010-111912号公報 日本国特開2009-270154号公報
 本発明では、上記実情と、今後予測される更なるPb含有量規制値の厳格化とに鑑み、電気Snめっき層全体のPb含有量が50質量ppm以下であり、容器用鋼板に適用可能な電気Snめっき鋼板を提供することを課題とする。より詳細には、本発明は、容器用鋼板に適用した場合に、長寿命であり、且つ耐食性、塗膜密着性および耐ウィスカー性に優れる電気Snめっき鋼板を提供することを課題とする。
 本発明の要旨は以下のとおりである。
[1]本発明の一態様に係る電気Snめっき鋼板は、母材鋼板と、前記母材鋼板上に配され、Sn層と合金層とを有し、Sn:10~100質量%、Fe:0~90質量%、O:0~0.5質量%を含有する電気Snめっき層と、を備え、前記電気Snめっき層全体のPb含有量が50質量ppm以下であり、前記電気Snめっき層の厚さをtとし、前記電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、前記表層領域のPb含有量が5質量ppm以上であり、かつ、前記表層領域のPb含有量が前記電気Snめっき層全体の前記Pb含有量よりも高いことを特徴とする。
[2]上記[1]に記載の電気Snめっき鋼板は、前記電気Snめっき層の前記表層領域のPb含有量/(Sn含有量+Pb含有量)を前記電気Snめっき層の前記表層領域以外の領域のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上であってもよい。
[3]上記[1]または[2]に記載の電気Snめっき鋼板は、前記電気Snめっき層が、Ca:0.1~10質量ppm、Sr:0.1~10質量ppmおよびBa:0.1~10質量ppmからなる群のうち1種または2種以上を更に含有してもよい。
[4]上記[1]~[3]のいずれか一項に記載の電気Snめっき鋼板は、前記電気Snめっき層と前記母材鋼板との間に、Fe-Ni層、Ni-Sn層およびFe-Ni-Sn層の1種又は2種以上を更に備えてもよい。
 本発明に係る上記一態様によれば、電気Snめっき層全体のPb含有量が50質量ppm以下である、容器用鋼板に適用可能な電気Snめっき鋼板を提供することができる。
本発明の一例として、実験室規模のクラウンエーテル法によるめっき浴中のPb2+濃度の変化を示すグラフである。 実施例のNo.16の電気Snめっき層のGD-MS解析結果を示すグラフである。 実施例のNo.16のPb/(Sn+Pb)値の電気Snめっき層厚さ方向の変化を示すグラフである。 無処理のSnめっき液を用いて作製した電気Snめっき層のGD-MS解析結果を示すグラフである。 本発明の一例として、クラウンエーテル法で処理したSnめっき液を用いて作製した電気Snめっき層のGD-MS解析結果を示すグラフである。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「超」または「未満」と示す数値には、その値が数値範囲に含まれない。
 本実施形態に係る電気Snめっき鋼板は、母材鋼板と、前記母材鋼板上に配され、Sn層と合金層とを有し、Sn:10~100質量%、Fe:0~90質量%、O:0~0.5質量%を含有する電気Snめっき層と、を備え、前記電気Snめっき層全体のPb含有量が50質量ppm以下であり、前記電気Snめっき層の厚さをtとし、前記電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、前記表層領域のPb含有量が5質量ppm以上であり、かつ、前記表層領域のPb含有量が前記電気Snめっき層全体の前記Pb含有量よりも高いことを特徴とする。
 まず、本発明者らが本実施形態に係る電気Snめっき鋼板を開発するに至った経緯について説明する。
 本発明者らは、Snインゴットに含まれるPbが電気Snめっき層中に混入するメカニズムについて検討した。
 本発明者らの検討の結果、電気Snめっき層について、その深さ方向の観察および定量測定から、Pbは、電気Snめっき層全体に金属Pbとして存在すること、即ち、PbはSnと共に電解析出(共析)しており、単なるSnめっき液の巻き込みによって電気Snめっき層に含有されるわけではないことが判明した。
 本発明者らは、p-フェノールスルフォン酸と硫酸Sn(II)及び添加剤からなるSnめっき液(PSAめっき浴)と、これに酢酸Pbを加えたPb含有めっき液とを用意して、設定電位を変化させて電気Snめっき層を形成した。その結果、SnとPbとで析出電位にほとんど差異はなく、低Pb含有量のSnインゴット(50質量ppm程度)をSn源として使用すれば、電気Snめっき層中のPb含有量を100質量ppm以下(70質量ppm程度)とすることが可能であるが、高Pb含有量(100~300質量ppm程度)のSnインゴットを使用する場合には、実操業に用いるSnめっき液の使用下で、電流密度等のめっき条件を変化させてPbの共析を抑制することは困難であることが判明した。
 電気Snめっき鋼板のめっき工程に使用するSnめっき液は、不溶性陽極を使用した硫酸浴の形態でSn2+を供給しており、20℃におけるSn、Pbの硫酸塩の溶解度は、以下の通りである。
 SnSO:18.9g/100g-HO  (易溶)
 PbSO:0.003846g/100g-HO  (難溶)
 実操業におけるSnめっき液中では、上記のように僅かに溶解したPb2+が、Sn2+と共に電気的に還元されて、電気Snめっき層中に金属Pbとして混入するものと考えられる。上記のように僅かに溶解したPb2+を、Snめっき液中から除去する方法について本発明者らが検討した結果、クラウンエーテルを使用する除去方法が候補として挙げられた。
 クラウンエーテルは環状のポリエーテル鎖から成っており、いくつかの重金属イオンと選択的に相互作用することができる。クラウンエーテルは、分子内にエーテル酸素原子からなる空孔を有しており、この中に重金属イオンを取り込んで結合する。したがって、重金属イオンの大きさとクラウンエーテルの空孔の大きさとが一致する場合に選択的な相互作用が起こる。Snめっき液中の鉛イオン(Pb2+)を選択的に除去するためには、空孔の大きさを鉛イオンの大きさと一致するように調整したクラウンエーテルを用いれば良い。
 例えば、クラウンエーテルの一般構造式(-CH-CH-O-)nにおいて、n=6の、空孔の大きさを制御したクラウンエーテルを樹脂(特に限定するものではないが、例えばシリカゲル、メタクリレート、ポリスチレンから選ぶことができる。)に担持し、カラムに充填して、カラム中にSnめっき液を通過させることにより鉛イオン(Pb2+)の選択的な除去が可能である。
 次に、本発明者らは、実験室規模で、Snめっき液(PSAめっき浴)をクラウンエーテルで処理した場合の、Snめっき液中のPb2+の変化を観察した。
 ベースとなるSnめっき液は、p-フェノールスルフォン酸:115g/L、EN-10(Ethoxylated α-Naphthol):5g/L、ENSA(Ethoxylated α-Naphthol Sulphonic Acid):5g/L、SnSO:36g/L(Sn2+換算で20g/L)からなり、これに、酢酸Pbの形態でPb2+換算で13mg/L(Pb/Sn換算で650ppm)となるように添加して、作製した。
 クラウンエーテルを充填したカラム内に計200Lの上記Snめっき液を通過させ、通過させたSnめっき液20L毎について成分分析を行った。
 Snめっき液中のPb2+濃度の変化を図1に示す。
 図1に示すように、13mg/LであったPb2+は直ちに0.05mg/Lまで減少していることから、Snめっき浴中のPb2+がクラウンエーテルにより除去されたことが分かる。一方、図示していないが、Snめっき液中の他の成分(Sn2+、SO 2-、ENSA、EN)の濃度はほとんど変化していなかったことから、Pb2+だけが選択的に除去されたものと考えられる。
 安定した生産性を確保するために、電気Snめっき層中の均一性を高めることが一般的であるため、電気Snめっき層中のPb含有量は深さ方向において均一に低減される。しかし、本発明者らは、従来技術とは異なり、電気Snめっき層全体のPb含有量を低減させることで黒変の発生が低減され、さらに表層領域にPbを濃化させることで耐ウィスカー性が向上することを新たに知見した。また、本発明者らは、電気Snめっき層中のPb含有量に勾配を付けることで、塗膜密着性が向上することも新たに知見した。
 本実施形態に係る電気Snめっき鋼板は、上記の知見に基づいてなされたものである。以下、本実施形態に係る電気Snめっき鋼板について詳細に説明する。
[母材鋼板]
 本実施形態に係る電気Snめっき鋼板の母材鋼板は特に限定されず、JIS G 3303:2017に規定される一般的な容器用鋼板の母材鋼板として使用される鋼板を使用すればよい。本実施形態では、例えば、C:0.01~0.06質量%、Al:0.001~0.01質量%、Mn:0.01~0.06質量%および残部Feおよび不純物からなる母材鋼板を使用することができる。
[電気Snめっき層]
 本実施形態に係る電気Snめっき層は、電気Snめっき層の表面側に存在し、Snを多く含むSn層と、電気Snめっき層の母材鋼板側に存在し、母材鋼板のFeが電気Snめっき層中に拡散した合金層(Fe-Sn層)とを有する。電気Snめっき層、Sn層および合金層の定義については後述する。
 本実施形態では、電気Snめっき層全体のPb含有量が50質量ppm以下である。電気Snめっき層全体のPb含有量が50質量ppm超である場合、今後予測されるPb含有量規制値を満足できず、また容器用鋼板として所望される特性(長寿命、耐食性)を得ることができない。電気Snめっき層全体のPb含有量は、40質量ppm以下、30質量ppm以下、20質量ppm以下、または10質量ppm以下が好ましい。電気Snめっき層全体のPb含有量を5質量ppm未満とすることは可能であるが、実操業におけるコストの増加を引き起こすため、電気Snめっき層全体のPb含有量の下限を5質量ppmとしてもよい。
 本実施形態に係る電気Snめっき層は、表層領域のPb含有量が5質量ppm以上であり、かつ、表層領域のPb含有量が電気Snめっき層全体のPb含有量よりも高い。表層領域のPb含有量の上限は、60質量ppmとしてもよい。本実施形態において表層領域とは、電気Snめっき層の厚さをtとしたとき、電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域のことをいう。また、本実施形態では、電気Snめっき層の表層領域以外の領域を深部領域と呼称する。電気Snめっき層の深部領域は、還元すると、電気Snめっき層の厚さをtとしたとき、電気Snめっき層の表面から板厚方向に(1/10)×t深さ~表面から板厚方向にt深さの領域である。
 表層領域のPb含有量が電気Snめっき層全体のPb含有量と等しい場合、または表層領域のPb含有量が電気Snめっき層全体のPb含有量よりも低い場合は、電気Snめっき鋼板の塗膜密着性が劣化する。
 本実施形態に係る電気Snめっき層は、電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を、電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)で除した値を1.1以上としてもよい。電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を、電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)で除した値を1.1以上とすることで、電気Snめっき鋼板の塗膜密着性をより向上することができる。
 本実施形態に係る電気Snめっき層は、Pb以外の元素として、Sn:10~100質量%、Fe:0~90質量%、O:0~0.5質量%を含む。残部は不純物からなる。なお、本実施形態において不純物とは、原料としてのSnインゴットまたは製造環境等から混入されるものであって、本実施形態に係る電気Snめっき鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る電気Snめっき層では、任意で、Ca:0.1~10質量ppm、Sr:0.1~10質量ppmおよびBa:0.1~10質量ppmからなる群のうち1種または2種以上を更に含有してもよい。電気Snめっき層が上記群のうち1種または2種以上を含むことで、電気Snめっき層全体のPb含有量をより低減することができる。
 本実施形態に係る電気Snめっき鋼板は、電気Snめっき層と母材鋼板との間に、厳密には合金層(Fe-Sn層)と母材鋼板との間に、Fe-Ni層、Ni-Sn層およびFe-Ni-Sn層の1種又は2種以上を更に備えてもよい。電気Snめっき層がこれらの層の1種又は2種以上を更に備えることで、電気Snめっき鋼板を飲料缶または食缶として使用した場合の缶寿命を長くすることができ、かつ緻密な合金層生成によりバリア効果があるため耐食性を向上することができる。
 次に、本実施形態に係る電気Snめっき層の成分の分析方法について図2Aおよび図2Bを参照しつつ説明する。電気Snめっき層の成分は、GD-MS(Glow Discharge-Mass Spectrometry)解析により分析することができる。GD-MS解析は、放電時間の経過と共に、めっき層の表面から深さ方向への組成の変化を追跡する分析方法である。図2Aは、実施例のNo.16の電気Snめっき鋼板についてGD-MS解析して得られたグラフである。
 図2Aのグラフは、Fe、Sn、Pb及びOの含有量の、横軸左端側の電気Snめっき層の表面側から右端側の母材鋼板側に向かっての変化を表したものである。縦軸の質量ppmは、FeおよびSnについては左側の目盛であり、PbおよびOについては右側の目盛である。
 図2Bのグラフは、図2AのSn含有量およびPb含有量を取り出して、Pb/(Sn+Pb)値を計算し、電気Snめっき層の表面から深さ方向への変化をグラフ化したものである。
 本実施形態では、電気Snめっき鋼板の任意の位置からサンプルを採取し、そのサンプルについて板厚方向にGD-MS解析した際に、表面~Sn含有量が100000ppm以上の領域を電気Snめっき層と定義する。なお、図2Aでは、放電してから数分間は元素が検出されていないが、この領域は電気Snめっき層には含めない。また、電気Snめっき層のうち、Sn含有量がFe含有量よりも多い領域をSn層と定義し、電気Snめっき層のうちSn層以外の領域を合金層(Fe-Sn層)と定義する(図2A参照)。また、Feが10~90質量%、Niが10~90質量%である領域をFe-Ni層と定義し、Niが10~90質量%、Snが10~90質量%である領域をNi-Sn層と定義し、Feが10~80質量%、Niが10~80質量%、Snが10~80質量%である領域をFe-Ni-Sn層と定義する。
 電気Snめっき層全体のPb含有量は、GD-MS解析により得られた、Sn層および合金層を含む電気Snめっき層全体のPb含有量である。表層領域のPb含有量は、GD-MS解析により得られた、電気Snめっき層の表面から(1/10)×t深さまでの領域のPb含有量である。
 電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)は、表層領域のPb含有量(質量%)を、表層領域のSn含有量(質量%)およびPb含有量(質量%)の和で除して得る。同様に、電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)は、深部領域のPb含有量(質量%)を、深部領域のSn含有量(質量%)およびPb含有量(質量%)の和で除して得る。
 電気Snめっき層中のCa含有量、Sr含有量およびBa含有量は、インヒビターを入れた酸を用いて電気Snめっき層を溶解し、溶解して得られた溶液をICP-MS(Inductively Coupled Plasma-Mass Spectrometry)により分析することで得る。
[製造方法]
 本実施形態に係る電気Snめっき鋼板の製造方法の一例について説明する。
 まず、上述した化学組成を有する母材鋼板に電気Snめっきを施す。本実施形態では、クラウンエーテル法によりPb2+濃度を低減したSnめっき液を用いて電気Snめっきを行う。電気Snめっきを行う前に、電解脱脂を行ってもよい。複数の電極間(10パス)を高速通板させる電気Snめっき工程では、1~9パス目の電流密度を一定とし、10パス目(最終パス)の電流密度を上げて電気Snめっきを施す。10パス目の電流密度の上げ幅を調整することにより、電気Snめっき層の表層領域のPb含有量を調整することができる。電気Snめっき工程の後は、母材鋼板にフラックスを塗布した後、Snめっき液の10倍希釈液に浸漬し、ローラー絞り後、冷風乾燥し、リフロー操作として、通電加熱とクエンチ(80℃)を実施する。
 以上の方法により、本実施形態に係る電気Snめっき鋼板を製造することができる。
 本実施形態では、Snめっき液にアルカリ土類金属(Ca、Sr、Ba)の炭酸塩を添加してもよい。これにより、クラウンエーテル法によるPb2+除去の収率を向上させることができ、電気Snめっき層全体のPb含有量をより低減することができる。
 また、本実施形態では、電気Snめっきの前処理として、NiプレめっきまたはFe-Niプレめっきを施してもよい。これにより、母材鋼板と電気Snめっき層との間にFe-Ni層、Ni-Sn層またはFe-Ni-Sn層の1種または2種以上を形成させることができる。
 以下に本発明の実施例について説明するが、実施例での条件は本発明の実施可能性及び効果を確認するために採用した例に過ぎず、本発明はこの条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
[実施例1]
 実操業規模で、クラウンエーテル法による電気Snめっき層中のPb含有量の低下の効果を調査した。
 Snめっき液の成分はSn2+:20g/L、Pb2+:5mg/L(Pb/Sn換算で250ppm)、EN:5g/L、ENSA:5g/L、PSA:100g/Lで、温度:45℃であった。
 クラウンエーテルが担持された樹脂(本実施例ではシリカゲルを用いた)をカラム中に充填し、Snめっき液を通過させた。このSnめっき液はめっきセルに移り、めっきセル内を循環した後にカラムに戻った。これが繰り返された。このときのSnめっき液の通液速度(L/hr)は樹脂体積(L)に依存するが、予備検討の結果、樹脂1Lに対し、Snめっき液の通液速度は60L/hrと設定した。
 実験室規模では、相当の効果が認められたが、実操業規模ではPb2+:0.1mg/Lまでにしか低減しなかった。
 この原因は、実操業ラインでは、既存のスラッジ(SnOが主成分)が多量に存在することから、クラウンエーテルの特性がやや低下したと本発明者らは推測した。しかしながら、通液速度やクラウンエーテルの交換頻度の調整により十分に実操業ラインでも効果を発現することが判明した。
 さらに、クラウンエーテル法によりPb2+を低減したSnめっき液により作製された電気Snめっき層を分析した。
 クラウンエーテル法によりPb2+:0.1mg/LとなったSnめっき液にて作製した電気Snめっき層をGD-MS解析した結果を図3Bに示し、無処理のSnめっき液を用いて作製した電気Snめっき層(比較例)をGD-MS解析した結果を図3Aに示す。
 図3Aに示すように比較例である無処理のSnめっき液で作製した電気Snめっき層からは、Snと共に表面近傍から高い濃度のPbが検出された。一方、クラウンエーテル法で処理したSnめっき液で作製しためっき層からは、図3Bに示すように、Pbが極僅かしか検出されなかった。
[実施例2]
 飲料缶材料および食缶材料としてのブリキの製造に、本発明に係る電気Snめっき鋼板を適用することを想定して、以下の実験を行った。
 母材鋼板として、C:0.03質量%、Al:0.005質量%、Mn:0.03質量%および残部Feおよび不純物からなる鋼板を使用した。
 Snめっき液の成分は、Sn2+:20g/L、Pb2+:5mg/L(Pb/Sn換算で250ppm)、EN:5g/L、ENSA:5g/L、PSA:100g/Lであり、温度:45℃であった。このSnめっき液のPb2+濃度をクラウンエーテル法により低減し、任意のPb2+濃度で逐次、後述する電気Snめっき工程を経て、電気Snめっき層を形成した。Pb2+濃度は、実験室規模では0.05mg/Lまで低減できた。
 電気Snめっき層を形成するための前処理として、鋼板の電解脱脂工程を、60℃の10%NaOH溶液にて10A/dm×10secの電流を鋼板がカソード側となるようにして流した。その後、常温の10%HSOに10sec浸漬して酸洗した後、♯25ブリキ(片面Sn付着量2.8g/m)狙いで、上記Snめっき液を用いて5A/dmにて電気Snめっきを行った。
 電気Snめっき工程において、本実施例では、10パス中の最終パスの電流密度を変化させ、Pbの分布状態を制御した電気Snめっき層を形成した。すなわち、表層領域にPbを濃化させる場合は最終パスの電流密度を上げ、逆に表層領域のPb含有量を電気Snめっき層全体のPb含有量より低減させる場合は最終パスの電流密度を下げた。本実施例では、最終パス以外は電流密度20A/dmとし、最終パスでは電流密度を30~60A/dmに上げて電気Snめっきした。ただし、表1のNo.11およびNo.14については、最終パスのみ電流密度を下げ、No.37およびNo.38については、電流密度を一定とした。
 一部のSnめっき液については、アルカリ土類金属(Ca、Sr、Ba)の炭酸塩を投入した。
 電気Snめっき工程に次いで、フラックス塗布後、上述の電気Snめっき液の10倍希釈液に浸漬し、ローラー絞り後、冷風乾燥したものに、リフロー操作として、通電加熱とクエンチ(80℃)を実施した。以上の方法により、電気Snめっき鋼板を得た。
 一部の電気Snめっき鋼板については、電気Snめっき工程の前処理として、Niプレめっき、Fe-20mass%Niプレめっきを各々Ni:20mg/mの付着量となるように施し、その後リフローにより、Fe-Ni層、Ni-Sn層(NiSn主体)、またはFe-Ni-Sn層を形成した。
 電気Snめっき層の成分分析は上述の方法により行った。なお、GD-MS解析は、電気Snめっき鋼板の端部から30mm離れた位置から30mm×15mmの短冊形のサンプルを採取し、そのサンプルの2箇所についてGD-MS解析を行った。アルカリ土類金属(Ca、Sr、Ba)の微量元素分析はICP-MSにより測定した。電気Snめっき層は、表1に示すPb、Ca、SrおよびBaを含み、Sn:10~100質量%、Fe:0~90質量%、O:0~0.5質量%および残部不純物からなる電気Snめっき層であった。
 表1の「めっき層全体Pb含有量/質量ppm」は電気Snめっき層全体のPb含有量であり、「表層Pb含有量/質量ppm」は電気Snめっき層の表層領域のPb含有量である。表1の「Pb/(Sn+Pb)(表層領域/深部領域)」の欄には、電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を電気Snめっき層の表層領域以外の領域(深部領域)のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上である場合に「○」と記載し、上記値が1.1未満である場合に「×」と記載した。
 表1において、発明例および比較例を含む全ての実施例が、電気Snめっき層中にSn層および合金層を有していた。
 電気Snめっき鋼板について、以下の試験を実施した。
 なお、耐硫化黒変試験(レトルト試験)では、電気Snめっき鋼板の端部から30mm離れた位置から所定の大きさのサンプルを採取し、このサンプルに、50℃の2クロム酸ナトリウム・二水和物の25g/L溶液中で、Pb-Snアノードを用いて5A/dm、10mg/dm狙いで電流を流した(♯311処理)。
 ATC試験(Alloy-Tin Couple Test)
 ATC試験により、電気Snめっき鋼板を飲料缶または食缶に適用した場合の缶寿命を評価した。ATC試験では、リフロー後に脱錫し合金層(Fe-Sn層)を露出した電気Snめっき鋼板とリフロー後に脱錫していない電気Snめっき鋼板をATC試験液(1.5%NaCl+1.5%くえん酸溶液)中に浸漬し、両極間を流れる腐食電流を測定した。試験片は130mm×15mmの短冊形であり、これを5%NaOH溶液中において電解剥離し、5mm×40mmの試験面を残して他を完全にシールし電流が漏洩しないようにした。試験液は窒素雰囲気中で2分間沸騰させ、室温まで冷却した。試験槽中に、リフロー後に脱錫し合金層(Fe-Sn層)を露出した電気Snめっき鋼板と、リフロー後に脱錫していない電気Snめっき鋼板とを接続し組み込んだ。試験槽の底に塩化第一錫(Sn2+換算で100ppm)を入れ、事前に試験槽内を窒素雰囲気にした。ATC試験液を空気に触れないように試験槽に移し、リフロー後に脱錫し合金層(Fe-Sn層)を露出した電気Snめっき鋼板とリフロー後に脱錫していない電気Snめっき鋼板とを浸漬すると同時に30分間ATC試験液を撹拌し、塩化第一錫を溶解した。窒素雰囲気(ATC試験液)中において20時間浸漬した後、脱錫した電気Snめっき鋼板と脱錫していない電気Snめっき鋼板との間の電流値を測定し、これをATC値とした。ATC値が低いほど缶寿命が良好であることを示す。
 本実施例では、上記の方法で測定したATC値(μA/cm)で
優 4点:0.1μA/cm未満
  3点:0.1μA/cm以上、0.2μA/cm未満
  2点:0.2μA/cm以上、0.3μA/cm未満
劣 1点:0.3μA/cm以上、
の4段階で評点をつけた。なお、2点以上で容器用鋼板として使用することが可能であるため、2点以上を合格と判定した。
 耐硫化黒変試験(レトルト試験)
 耐硫化黒変試験により、電気Snめっき鋼板の耐食性を評価した。耐硫化黒変試験には、0.1%チオ硫酸ナトリウム水溶液と0.1N硫酸とを体積比で1:2に混合した耐食性試験液を用いた。前述の#311処理を行った電気Snめっき鋼板をφ35mmに切り出して試験片とし、この試験片を、耐食性試験液を入れた耐熱瓶の口に乗せて固定した。その後、耐熱瓶を逆さにして、試験片と耐食性試験液とが接触するようにした。121℃で60分の熱処理を行った後、耐食性試験液が上記試験片に触れる面積(耐熱瓶の開口部面積)のうち、腐食した部分の割合で耐食性を評価した。
 試験片が耐食性試験液と接触する面積に対する腐食面積の割合で1~5点の評点をつけた。なお、3点以上で容器用鋼板として使用することが可能であるため、3点以上を合格と判定した。
優 評点5:面積10%未満
  評点4:面積10%以上、25%未満
  評点3:面積25%以上、40%未満
  評点2:面積40%以上、55%未満
劣 評点1:面積55%以上
 塗膜密着性評価試験
 電気Snめっき鋼板の任意の位置からサンプルを採取し、電気Snめっき層の表面にアクリル系塗膜を焼き付け塗装し、室温まで冷却後、テープ剥離試験を行った。剥離試験後のテープ面を観察し、電気Snめっきの付着面が、テープ面(電気Snめっき層とテープとの接着面)の5%未満であった場合を塗膜密着性に優れるとして合格と判定した。電気Snめっきの付着面が、テープ面(電気Snめっき層とテープとの接着面)の5%以上であった場合を塗膜密着性に劣るとして不合格と判定した。また、合格と判定した例のうち、電気Snめっきの付着面が、テープ面(電気Snめっき層とテープとの接着面)の3%未満であった場合は、特に塗膜密着性に優れると判断した。表1には、合格と判定したものは「△」と記載し、合格と判定した例のうち特に塗膜密着性に優れるものは「○」と記載し、不合格と判定したものは「×」と記載した。
 耐ウィスカー性評価試験
 電気Snめっき鋼板の任意の位置からサンプルを採取し、このサンプルを5T曲げで40℃、50%RH環境下で1000h放置した後、曲げ部の外側をSEMで10mm×5mmの範囲を観察し、3視野観察して、50μm以上のウィスカーの個数を数え、その個数を観察面積で除して個数密度を得た。観察されたウィスカーが1mmあたり10個以下の場合を耐ウィスカー性に優れるとして合格と判定し、10個超の場合を不合格と判定した。表1には、合格と判定したものは「○」と記載し、不合格と判定したものは「×」と記載した。
 上記の測定結果及び試験結果を表1に示す。なお、表1の下線は本発明の範囲外、または好ましくない特性であることを示す。
Figure JPOXMLDOC01-appb-T000001
 No.1、No.2、No.3は電気Snめっき層全体のPb含有量が50質量ppm超であり、ATC試験および耐硫化黒変試験の評点が低かった例である。硫化黒変はSnとSとの結合に起因するものであり、レトルト処理で高温にさらされることにより変色が促進される。電気Snめっき層全体のPb含有量が高いと、局所的に融点が下がる部位ができ、変色の反応点が増えるため、マクロな黒変という外観変化につながったと推定された。
 一方、本発明例は電気Snめっき層全体のPb含有量が50質量ppm以下であり、表層領域のPb含有量が5ppm以上でありかつ電気Snめっき層全体のPb含有量よりも高いため、ATC試験、耐硫化黒変試験、塗膜密着性評価試験および耐ウィスカー性評価試験のいずれの試験結果も良好であった。
 詳細に見ると、電気Snめっき層全体のPb含有量が30質量ppm以下(No.6)で耐食性がより良好であり、20質量ppm以下(No.7、No.8、No.16~No.18)で極めて良好な耐食性を示した。また、電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上である発明例は、塗膜密着性評価試験において特に良好な結果を示した。
 No.19~23はNo.10に相当するSnめっき液に炭酸カルシウムを0.01~1g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.19~23の電気Snめっき層全体のPb含有量は2割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
 No.24~28はNo.10に相当するSnめっき液に炭酸ストロンチウムを0.01~1g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.24~28の電気Snめっき層全体のPb含有量は3割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
 No.29~33はNo.10に相当するSnめっき液に炭酸バリウムを0.01~1g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.29~33の電気Snめっき層全体のPb含有量は1割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
 No.34は、No.10に相当するSnめっき液に、炭酸カルシウムを0.07g/L、および炭酸ストロンチウムを0.05g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.34の電気Snめっき層全体のPb含有量は3.5割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
 No.35~38はNo.9に相当する電気Snめっきに先立ち、プレNiめっき、プレFe-20%Niめっきを施した例である。発明例であるNo.35およびNo.36では、Ni-Fe層、Ni-Sn層、Ni-Fe-Sn層の1種又は2種以上が形成されたため、電気Snめっき層と上記Ni-Fe層、Ni-Sn層、Ni-Fe-Sn層との間の電位差が小さくなり、ATC値が向上したことが分かる。
 上記実施例(No.16)により作製した電気Snめっき鋼板にリフロー処理を施した後の電気Snめっき層について、GD-MS解析した結果を図2Aおよび図2Bに示す。
 図2Aのグラフは、Fe、Sn、Pb及びOの含有量割合を横軸左端側の電気Snめっき層の表面から横軸右端側の母材鋼板側に向かっての変化を表したものである。縦軸の質量ppmは、FeとSnについては左側の目盛、Pb及びOについては右側の目盛による。図2Aによると、Pbについては最表面で25質量ppm程度が検出されるに過ぎないことが判る。
 図2Bのグラフは、図2AのSn含有量とPb含有量とを取り出して、Pb/(Sn+Pb)値を計算し、電気Snめっき層の表面からの深さ方向への変化をグラフ化したものである。
 このとき、電気Snめっき層の表層領域(表面から板厚方向に(1/10)×t深さまでの領域(図2Bにおいて、矩形で囲まれた部分))で、Pb/(Sn+Pb)の値が上昇、即ち、表面近傍でPbの濃縮現象が発生していることが分かる。
 図2Bの例では、電気Snめっき層全体における平均Pb/(Sn+Pb)値が15質量ppm程度であるのに対して、表層領域における最大Pb/(Sn+Pb)値は25質量ppm程度であり、現状、及び今後予測されるPb含有量の規制値以下の値であり、実質的に問題は無いものであった。
 本発明が規定する、電気Snめっき層全体でPb含有量が50質量ppmの上限値の場合には、表層領域でのPb含有量の上限値は、60質量ppmとなる。
 本発明では、電気Snめっき層全体のPb含有量を低下させるために、クラウンエーテルによるPb2+イオンの錯体形成捕獲除去法で、低Pb含有量とした電気Snめっき鋼板としたが、クラウンエーテルによるPb2+イオンの錯体形成捕獲除去法以外の利用を排除するものではない。
 本実施形態に係る電気Snめっき鋼板は、電気Snめっき層全体のPb含有量が50質量ppm以下である、容器用鋼板に適用可能な電気Snめっき鋼板を提供することができる。また、本実施形態によれば、高コストの低Pb含有量のSnインゴットを使用することなく、従前の東南アジア産等の、比較的Pb含有量の高いSnインゴットを使用しながら、低コストで低Pb含有量とすることができる。そのため、今後、世界中でPbフリー化等の規制が強化されても、対応することができる産業上の意義の大きい発明である。

Claims (4)

  1.  母材鋼板と、
     前記母材鋼板上に配され、Sn層と合金層とを有し、Sn:10~100質量%、Fe:0~90質量%、O:0~0.5質量%を含有する電気Snめっき層と、を備え、
     前記電気Snめっき層全体のPb含有量が50質量ppm以下であり、
     前記電気Snめっき層の厚さをtとし、前記電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、前記表層領域のPb含有量が5質量ppm以上であり、かつ、前記表層領域のPb含有量が前記電気Snめっき層全体の前記Pb含有量よりも高いことを特徴とする電気Snめっき鋼板。
  2.  前記電気Snめっき層の前記表層領域のPb含有量/(Sn含有量+Pb含有量)を前記電気Snめっき層の前記表層領域以外の領域のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上であることを特徴とする請求項1に記載の電気Snめっき鋼板。
  3.  前記電気Snめっき層が、
    Ca:0.1~10質量ppm、
    Sr:0.1~10質量ppmおよび
    Ba:0.1~10質量ppmからなる群のうち1種または2種以上を更に含有することを特徴とする請求項1又は2に記載の電気Snめっき鋼板。
  4.  前記電気Snめっき層と前記母材鋼板との間に、Fe-Ni層、Ni-Sn層およびFe-Ni-Sn層の1種又は2種以上を更に備えることを特徴とする請求項1~3のいずれか1項に記載の電気Snめっき鋼板。
PCT/JP2018/040727 2017-11-01 2018-11-01 電気Snめっき鋼板 WO2019088229A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019517105A JP6555455B1 (ja) 2017-11-01 2018-11-01 電気Snめっき鋼板
EP18873736.5A EP3705608A4 (en) 2017-11-01 2018-11-01 ELECTROLYTIC SN-CLADED STEEL SHEET
KR1020207008894A KR102412968B1 (ko) 2017-11-01 2018-11-01 전기 Sn 도금 강판
CN201880064242.3A CN111164239B (zh) 2017-11-01 2018-11-01 电镀锡钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-211788 2017-11-01
JP2017211788 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019088229A1 true WO2019088229A1 (ja) 2019-05-09

Family

ID=66331998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040727 WO2019088229A1 (ja) 2017-11-01 2018-11-01 電気Snめっき鋼板

Country Status (5)

Country Link
EP (1) EP3705608A4 (ja)
JP (1) JP6555455B1 (ja)
KR (1) KR102412968B1 (ja)
CN (1) CN111164239B (ja)
WO (1) WO2019088229A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493880A (zh) * 2020-04-08 2021-10-12 上海梅山钢铁股份有限公司 一种超低铅冷轧电镀锡钢板及其制造方法
CN113740321A (zh) * 2020-05-29 2021-12-03 上海梅山钢铁股份有限公司 一种冷轧电镀锡钢板镀层中钡含量的检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277416A (zh) * 2020-09-28 2022-04-05 上海梅山钢铁股份有限公司 一种不溶性阳极的甲基磺酸镀层低铅含量镀锡板生产方法及设备
CN113564644A (zh) * 2021-06-29 2021-10-29 武汉钢铁有限公司 一种提高镀层附着力的电镀锡液、制备方法及镀锡板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183871A (ja) 2001-12-14 2003-07-03 Mitsubishi Materials Corp 高純度錫の電解精製方法とその装置
JP2005314750A (ja) * 2004-04-28 2005-11-10 Ishihara Chem Co Ltd スズ又はスズ合金メッキ方法
JP2006519311A (ja) * 2003-02-17 2006-08-24 コミツサリア タ レネルジー アトミーク 表面の被覆プロセス
JP2009270154A (ja) 2008-05-07 2009-11-19 Toyota Motor Corp Snめっき層を有するめっき基材およびめっき層から針状ウィスカが成長するのを抑制する方法
JP2010111912A (ja) 2008-11-06 2010-05-20 Tamura Kaken Co Ltd 鉛を除去する方法、金属再生物および製品
JP2017523300A (ja) * 2014-05-14 2017-08-17 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH 基材の金属表面を被覆する方法及びこの方法により被覆された物品
JP2017211788A (ja) 2016-05-25 2017-11-30 富士通株式会社 情報処理装置、ジョブ投入方法、およびジョブ投入プログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103732A (zh) * 1987-05-25 1988-12-14 北京无线电仪器二厂 锡铈钴电镀液及其配制方法
JPH0678594B2 (ja) * 1987-09-14 1994-10-05 日本鋼管株式会社 耐食性に優れた鉛−錫合金めつき鋼板の製造方法
JPH03191097A (ja) * 1989-12-19 1991-08-21 Nippon Steel Corp 複合電気めっき鋼板
US5346607A (en) * 1992-09-30 1994-09-13 Weirton Steel Corporation Electrolytic tinplating and product
WO1994008075A1 (en) * 1992-10-05 1994-04-14 Usx Engineers And Consultants, Inc. Method of reducing the lead content of electrodeposited tin coatings
US5614328A (en) * 1995-01-19 1997-03-25 The Furukawa Electric Co. Ltd. Reflow-plated member and a manufacturing method therefor
JPH10158886A (ja) * 1996-12-04 1998-06-16 Furukawa Electric Co Ltd:The 半田めっきリードおよびその製造方法
US7391116B2 (en) * 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP5210103B2 (ja) * 2007-09-28 2013-06-12 富士フイルム株式会社 平版印刷版用アルミニウム合金板およびその製造方法
EP2221396A1 (en) * 2008-12-31 2010-08-25 Rohm and Haas Electronic Materials LLC Lead-Free Tin Alloy Electroplating Compositions and Methods
RS53829B1 (en) * 2010-10-06 2015-06-30 Tata Steel Ijmuiden Bv PROCEDURE FOR MANUFACTURING IRON-TIN STEEL ON STEEL PACKING
CN104512923A (zh) * 2013-09-30 2015-04-15 上海梅山钢铁股份有限公司 一种纳米硫酸钡的制备方法
TWI563099B (en) * 2014-11-10 2016-12-21 Nippon Steel & Sumitomo Metal Corp A plated steel and a method of producing thereof
CN110885997A (zh) * 2018-09-10 2020-03-17 上海梅山钢铁股份有限公司 一种冷轧电镀锡钢板的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183871A (ja) 2001-12-14 2003-07-03 Mitsubishi Materials Corp 高純度錫の電解精製方法とその装置
JP2006519311A (ja) * 2003-02-17 2006-08-24 コミツサリア タ レネルジー アトミーク 表面の被覆プロセス
JP2005314750A (ja) * 2004-04-28 2005-11-10 Ishihara Chem Co Ltd スズ又はスズ合金メッキ方法
JP2009270154A (ja) 2008-05-07 2009-11-19 Toyota Motor Corp Snめっき層を有するめっき基材およびめっき層から針状ウィスカが成長するのを抑制する方法
JP2010111912A (ja) 2008-11-06 2010-05-20 Tamura Kaken Co Ltd 鉛を除去する方法、金属再生物および製品
JP2017523300A (ja) * 2014-05-14 2017-08-17 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH 基材の金属表面を被覆する方法及びこの方法により被覆された物品
JP2017211788A (ja) 2016-05-25 2017-11-30 富士通株式会社 情報処理装置、ジョブ投入方法、およびジョブ投入プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705608A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493880A (zh) * 2020-04-08 2021-10-12 上海梅山钢铁股份有限公司 一种超低铅冷轧电镀锡钢板及其制造方法
CN113740321A (zh) * 2020-05-29 2021-12-03 上海梅山钢铁股份有限公司 一种冷轧电镀锡钢板镀层中钡含量的检测方法

Also Published As

Publication number Publication date
EP3705608A1 (en) 2020-09-09
CN111164239A (zh) 2020-05-15
KR20200044915A (ko) 2020-04-29
JPWO2019088229A1 (ja) 2019-11-14
CN111164239B (zh) 2021-11-19
EP3705608A4 (en) 2021-08-11
JP6555455B1 (ja) 2019-08-07
KR102412968B1 (ko) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2019088229A1 (ja) 電気Snめっき鋼板
CN110029381B (zh) 一种高镀锡量镀锡板的生产方法
JP6855833B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
US10865491B2 (en) Sn-based alloy plated steel sheet
TWI633211B (zh) Sn鍍敷鋼板
WO2018087135A1 (en) Method for electroplating an uncoated steel strip with a plating layer
CN116507759A (zh) 表面处理钢板及其制造方法
JP6852454B2 (ja) Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法
CN107208298B (zh) 镀Sn钢板和化学转化处理钢板以及它们的制造方法
KR101986034B1 (ko) 용기용 강판 및 용기용 강판의 제조 방법
KR102599384B1 (ko) Sn계 도금 강판
KR102524705B1 (ko) 표면 처리 강판의 제조 방법 및 표면 처리 강판
TW202124788A (zh) Sn系鍍敷鋼板
JPS6286199A (ja) 耐食性のすぐれたブリキの前処理法
JPH073487A (ja) 高電流密度錫めっき硫酸浴
JP2001011555A (ja) 陰極用アルミニウム合金
JPS62235494A (ja) 耐食性、溶接性及び塗装性能にすぐれたSn系メツキ鋼板の製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517105

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207008894

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873736

Country of ref document: EP

Effective date: 20200602