WO2019087366A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2019087366A1
WO2019087366A1 PCT/JP2017/039813 JP2017039813W WO2019087366A1 WO 2019087366 A1 WO2019087366 A1 WO 2019087366A1 JP 2017039813 W JP2017039813 W JP 2017039813W WO 2019087366 A1 WO2019087366 A1 WO 2019087366A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
container
positive electrode
tank
negative electrode
Prior art date
Application number
PCT/JP2017/039813
Other languages
English (en)
French (fr)
Inventor
淳夫 池内
清明 林
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780005366.XA priority Critical patent/CN109997269B/zh
Priority to EP17882270.6A priority patent/EP3706222A4/en
Priority to PCT/JP2017/039813 priority patent/WO2019087366A1/ja
Priority to AU2017378609A priority patent/AU2017378609B2/en
Priority to KR1020187017369A priority patent/KR102427531B1/ko
Priority to US16/067,190 priority patent/US10950879B2/en
Priority to JP2018524501A priority patent/JP6948596B2/ja
Priority to TW107127068A priority patent/TWI785084B/zh
Publication of WO2019087366A1 publication Critical patent/WO2019087366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to redox flow batteries.
  • a redox flow battery (RF battery) is known as one of the large-capacity storage batteries for storing electric power derived from natural energy such as solar power generation and wind power generation.
  • the RF battery includes a cell stack having a plurality of battery cells, each electrode electrolyte tank for storing each electrode electrolyte, a supply conduit for supplying each electrode electrolyte to the battery cell, and each electrode electrolyte from the battery cell.
  • An exhaust conduit for exhausting and a pump for circulating each polar electrolyte are provided (Patent Document 1).
  • the redox flow battery of the present disclosure is A positive electrode tank container storing a positive electrode electrolyte tank for storing a positive electrode electrolyte;
  • a battery cell having a positive electrode, a negative electrode, and a diaphragm, a positive electrode circulation mechanism for supplying and circulating the positive electrode electrolyte to the battery cell, and a negative electrode circulation mechanism for supplying and circulating the negative electrode electrolyte to the battery cell
  • a battery device container containing the
  • FIG. 1 It is a fragmentary sectional view which shows the outline of the state cut
  • FIG. 1 It is a schematic block diagram of the redox flow cell concerning an embodiment. It is a schematic sectional drawing of the cell stack in the battery apparatus container with which the redox flow battery which concerns on embodiment is equipped. It is a schematic block diagram of the cell stack with which the redox flow battery concerning an embodiment is equipped. It is a fragmentary sectional view showing an outline of an arrangement part of connection structure with which a redox flow battery concerning a modification is equipped. It is a fragmentary sectional view showing an outline of another example of an arrangement place of connection structure with which a redox flow battery concerning a modification is equipped.
  • the redox flow battery (RF battery) is usually assembled by connecting the cell stack, the respective polar electrolyte tanks, the respective conduits and the like at the installation site.
  • RF battery redox flow battery
  • a sufficient working space can not always be secured, and the assembly work may be complicated. Therefore, it is necessary to assemble the RF battery in one container (for example, a container) capable of collectively storing the RF battery in advance in a factory or the like capable of securing a sufficient working space, and transport the entire container to the installation place investigated.
  • the redox flow battery is A positive electrode tank container storing a positive electrode electrolyte tank for storing a positive electrode electrolyte;
  • a battery cell having a positive electrode, a negative electrode, and a diaphragm, a positive electrode circulation mechanism for supplying and circulating the positive electrode electrolyte to the battery cell, and a negative electrode circulation mechanism for supplying and circulating the negative electrode electrolyte to the battery cell
  • a battery device container containing the
  • design changes such as battery capacity and battery output can be easily performed.
  • the battery cells and the like, the positive electrode electrolyte tank and the negative electrode electrolyte tank are housed in different containers. Exchange of the container itself is easy, and replacement of a member (battery cell or electrolyte tank) requiring a design change can be performed by replacing the container itself storing the member. If the tank container or the battery device container itself is replaced with a container having a different size, the amount of electrolytic solution and the number of battery cells stored inside can be changed to change the battery capacity and battery output of the RF battery.
  • the positive electrode circulation mechanism and the negative electrode circulation mechanism each have an electrode supply conduit for supplying the electrode electrolyte to the battery cell, and an electrode discharge conduit for discharging the electrode electrolyte from the battery cell.
  • the positive and negative electrode electrolyte tanks and the negative electrode electrolyte tank respectively transmit the positive and negative electrode electrolyte tubes from the positive electrode electrolyte tank to the positive electrode supply conduit, and discharge the negative electrode electrolyte from the positive electrode electrolyte tank.
  • Each electrode return pipe returning from the conduit to each of the electrode electrolyte tanks Furthermore, it is possible to include a connection structure for detachably connecting each of the respective pole supply conduits and the respective pole discharge conduits, and each of the respective pole forward pipes and the respective pole return pipes.
  • design changes such as battery capacity and battery output can be easily performed. It is because when the design change such as the battery capacity and the battery output occurs and the container itself is replaced, the tubes can be easily removed from each other. Usually, since the connection between the flow channels of the electrolytic solution can not be detached by means of an adhesive or fusion bonding, once the flow channels are connected to each other, the removing operation between the pipes tends to be very complicated.
  • the battery device container may be placed on the roof of at least one of the positive electrode tank container and the negative electrode tank container.
  • the installation area of a redox flow battery can be made small by laminating
  • the contact area A of the containers can be increased as compared to the case where the three containers of the positive electrode tank container, the negative electrode tank container, and the battery device container are arranged on the same plane at intervals. Therefore, as compared with the total surface area Sa (total surface area of each container) of the three containers when the three containers are arranged on the same plane at a distance from each other, the battery device container is a positive electrode tank container and a negative electrode tank container.
  • the total surface area Sb of the three containers when placed on at least one of the roofs can be reduced by the area of the contact area A.
  • the total surface area Sb is determined by “the total surface area Sa ⁇ the contact area A”.
  • the center of gravity is on the lower side as compared to the case where the upper and lower sides are piled upside down, even if the containers are stacked Stable installation of RF battery. Moreover, the deformation of the lower container can be suppressed.
  • the battery device container straddles between the positive electrode tank container and the negative electrode tank container, and is evenly mounted on the roofs of the positive electrode tank container and the negative electrode tank container.
  • the battery device container since the battery device container is evenly placed on the roofs of both tank containers, the battery device container can be stably placed.
  • the positive electrode tank container and the negative electrode tank container are arranged in parallel so that their longitudinal directions are parallel to each other while spacing them from each other.
  • the battery device container may be placed so that the longitudinal direction thereof is orthogonal to the longitudinal direction of the positive electrode tank container and the negative electrode tank container.
  • the contact area A of the three containers is easily increased, the total surface area Sb can be easily reduced and the surface area reduction rate Sc can be easily increased.
  • the positive electrode tank container and the negative electrode tank container are arranged in parallel so that the longitudinal directions are parallel to each other and the side surfaces of the positive electrode tank container and the negative electrode tank container are in contact with each other.
  • the battery device container may be placed so that the longitudinal direction thereof is parallel to the longitudinal direction of the positive electrode tank container and the negative electrode tank container.
  • the contact area A of the three containers can be easily increased, so the total surface area Sb can be easily reduced and the surface area reduction rate Sc can be easily increased.
  • the contact area A of the three containers can be increased as compared with the redox flow battery of the above (5) in which the tank containers are spaced apart from each other.
  • the side surfaces of both tank containers are in contact with each other, and the battery device container is placed so that the longitudinal direction thereof is parallel to the longitudinal direction of both tank containers.
  • the contact area A of the three containers can be increased as compared with the redox flow battery of the above (5) in which only a part of the bottom of the battery device container is in contact with the tank container.
  • Each of the positive electrode circulation mechanism and the negative electrode circulation mechanism has a positive electrode pump and a negative electrode pump for circulating the respective electrode electrolytes, When the inside of the battery device container is viewed from the side, the positive electrode pump and the negative electrode pump are disposed at symmetrical positions with respect to the center of the battery device container in the left-right direction.
  • This charge / discharge uses an electrolyte containing, as an active material, an ion whose valence changes due to oxidation / reduction (for example, vanadium ion, titanium ion, manganese ion, etc.) as a positive electrode electrolyte and a negative electrode electrolyte, And the redox potential of the ions contained in the negative electrode electrolyte.
  • an electrolyte containing, as an active material, an ion whose valence changes due to oxidation / reduction (for example, vanadium ion, titanium ion, manganese ion, etc.) as a positive electrode electrolyte and a negative electrode electrolyte, And the redox potential of the ions contained in the negative electrode electrolyte.
  • the RF battery 1 comprises a battery cell 200 (FIG. 10, FIG. 11), a positive electrode electrolyte tank 30 (FIG. 9), a negative electrolyte tank 40, a positive circulation mechanism 230, a negative circulation mechanism 240, and a control unit. And 260.
  • the respective polar electrolyte tanks 30, 40 store the respective polar electrolytes.
  • the respective pole circulation mechanisms 230 and 240 supply and circulate each pole electrolyte to the battery cell 200.
  • the controller 260 controls the circulation of each polar electrolyte in each polar circulation mechanism 230, 240.
  • One of the features of the RF battery 1 is the battery device container 2 containing the battery cell 200, the pole circulation mechanisms 230 and 240, and the control unit 260 inside, and the positive electrode tank container containing the positive electrolyte tank 30 inside. 3 and the negative electrode tank container 4 for housing the negative electrode electrolyte tank 40 therein, and these three containers 2, 3 and 4 are respectively constituted by separate members (FIGS. 1 to 6, FIGS. 9). The details will be described below.
  • the solid arrows in FIGS. 7 to 11 indicate the flow of the electrolyte.
  • the battery device container 2 accommodates the battery cell 200, the pole circulation mechanisms 230 and 240, and the control unit 260 inside. Details of the storage members in the battery device container 2 will be described later.
  • the positive electrode tank container 3 accommodates the positive electrode electrolyte tank 30 therein, and the negative electrode tank container 4 accommodates the negative electrode electrolyte tank 40 therein.
  • the battery device container 2, the positive electrode tank container 3, and the negative electrode tank container 4 are configured as separate members. Therefore, design changes such as battery capacity and battery output can be easily performed. This is because the battery cells 200 and the like, the positive electrode electrolyte tank 30, and the negative electrode electrolyte tank 40 are accommodated in different containers.
  • the battery device container 2 and the tank containers 3 and 4 themselves are replaced with containers having different sizes, the battery capacity and the battery output of the RF battery 1 can be changed.
  • Replacement of the container itself is easy, and replacement of the components (battery cells 200 and the respective polar electrolyte tanks 30, 40) requiring design change can be performed by replacing the container itself storing the components.
  • each container 2, 3, 4 typically includes a dry container.
  • the shape of each container 2, 3, 4 typically includes a rectangular shape.
  • Each of the containers 2, 3 and 4 has a rectangular bottom to be installed, a rectangular ceiling facing the bottom, both side surfaces connecting the bottom and the long sides of the ceiling, and a bottom And both end surface portions connecting short sides of the ceiling portion. Doors that can be opened and closed so as to allow the worker to access the inside of the container are provided on the side surface portion and the end surface portion (not shown).
  • the material of each container 2, 3, 4 is, for example, steel (for example, general structural rolled steel SS400).
  • each of the containers 2, 3, and 4 can be appropriately selected according to the battery capacity, battery output, and the like of the RF battery 1.
  • the large (small) capacity RF battery 1, the large (small) tank containers 3 and 4, and the large output (small) RF battery 1, the large (small) battery equipment container 2 Be By doing so, it is possible to increase (or reduce) the amount of each of the electrode electrolytes and the number of battery cells that can be stored in each of the containers 2, 3, and 4.
  • Each of the containers 2, 3 and 4 can use containers for international cargo according to ISO standards (for example, ISO 1496-1: 2013 etc.).
  • Each container 2, 3, 4 is typically a 20-foot container or a 40-foot container, a 45-foot container, a 20-foot high-cube container taller than them, a 40-foot high-cube container, a 45-foot high-cube container Etc. can be used.
  • the sizes of the three containers 2, 3 and 4 may be the same size.
  • the size of both tank containers 3 and 4 is made larger than that of both containers 3 and 4 shown in FIGS.
  • the sizes of the container 2 and the two tank containers 3 and 4 may be different from each other.
  • the battery device container 2 and the two tank containers 3 and 4 are containers of different sizes, as shown in FIGS. 2, 4 and 6, the battery device container 2 is a container smaller than the two tank containers 3 and 4 Can be used.
  • the arrangement of the three containers 2, 3, 4 may be arranged on the same plane, or, as shown in FIGS. 1 to 6, the containers may be arranged to overlap each other in the vertical direction.
  • the installation area of the RF battery 1 can be reduced.
  • the contact area A of containers can be enlarged compared with the case (it may be called a plane type hereafter) which arrange
  • the total surface area Sb can be reduced by the contact area A.
  • the total surface area Sb is determined by “the total surface area Sa ⁇ the contact area A”. Therefore, it is easy to increase the surface area reduction ratio Sc (%) obtained by “ ⁇ 1 ⁇ (total surface area Sb) / (total surface area Sa) ⁇ ⁇ 100”.
  • the number of stages is two, and two tank containers 3 and 4 are disposed on the lower side, one battery device container 2 on the upper side, positive tank container 3 and negative tank It is preferable to mount so as to overlap on the roof of at least one of the containers 4.
  • the center of gravity is on the lower side as compared to the case where the upper and lower sides are stacked upside down. Therefore, even if these containers 2, 3 and 4 are stacked, the RF battery 1 can be stably installed. Moreover, the deformation of the lower containers (tank containers 3 and 4) can be suppressed.
  • the upper battery device container 2 is preferably mounted evenly on the roofs of the positive electrode tank container 3 and the negative electrode tank container 4, straddling between the lower positive electrode tank container 3 and the negative electrode tank container 4.
  • the overlapping area of the battery device container 2 and the positive electrode tank container 3 and the overlapping area of the battery device container 2 and the negative electrode tank container 4 are substantially the same.
  • the battery device container 2 can be stably placed on the roofs of both the tank containers 3 and 4.
  • the manner in which the containers 2, 3 and 4 are stacked can be appropriately selected according to the installation location of the RF battery 1 and the like. For example, cross type (FIGS. 1 and 2), parallel type (FIGS. 3 and 4), colinear type (FIG. 5, FIG. 6) etc. are mentioned.
  • Cross type In the cross type, as shown in FIGS. 1 and 2, two tank containers 3 and 4 are arranged side by side in parallel so that their longitudinal directions are parallel to each other, and one battery container 2 is two tank containers 3 , 4 on the roof, so that the longitudinal direction of the battery device container 2 and the longitudinal direction of the two tank containers 3 and 4 intersect (here, orthogonally).
  • this cross type makes it easy to increase the contact area A of the three containers as compared to the above flat type, so it is easy to reduce the total surface area Sb and to easily increase the surface area reduction ratio Sc.
  • the side surfaces of the two tank containers 3, 4 face each other.
  • the lower two tank containers 3 and 4 are preferably disposed at predetermined intervals between the side surfaces facing each other.
  • the predetermined distance is, for example, a distance such that one battery device container 2 placed on the roof of both tank containers 3 and 4 does not protrude outside in the parallel direction in both tank containers 3 and 4.
  • the region surrounded by the outlines of both tank containers 3 and 4 is substantially “(length along the longitudinal direction of battery device container 2) ⁇ (long direction of both tank containers 3 and 4) Length) can be used.
  • the installation area of the RF battery 1 can be reduced.
  • a part (central part in the longitudinal direction) of the bottom of the battery device container 2 can not be stacked on the roof of the tank containers 3 and 4, the four corners of the battery device container 2 It can be placed on the roof.
  • the four corners of the battery device container 2 can be placed on the roofs of the two tank containers 3 and 4 to make the battery device container 2 two tank containers 3 and 4 It can be stably placed on the roof of
  • the mounting location of the two tank containers 3 and 4 on the roof of the battery device container 2 may be at the center in the longitudinal direction of the tank containers 3 and 4, the tank container 3 as shown in FIG. It is preferable that one end face side of the longitudinal direction 4 (the back side in the drawing of FIG. 1 and FIG. 2) is preferable. That is, the battery device container 2 is placed close to one end side of the tank containers 3 and 4 in the longitudinal direction.
  • the long sides of the battery device container 2 are arranged to overlap on the short sides of the two tank containers 3 and 4.
  • the short sides of the battery device container 2 overlap the long sides in the outer side in the parallel direction in the respective tank containers 3 and 4.
  • two corners of the four corners of the battery device container 2 and one corner of each of the tank containers 3 and 4 can be overlapped, so that the battery device container 2 is divided into two tank containers 3 and 4. It can be stably placed on the roof.
  • the worker can easily access the inside of the battery device container 2 from one side (the front side of the sheet of FIG. 1 and FIG. 2) of the battery device container 2 and maintenance in the battery device container 2 can be easily performed. Since the battery device container 2 is placed close to one end side of the two tank containers 3 and 4 in the longitudinal direction (the back side in FIG. 1 and FIG. 2), the two tank containers 3 and 4 are It is because the space which an operator mounts can be widely secured on the roof of the other end side. On the roofs of both tank containers 3 and 4, it is preferable to arrange a work floor which spans both tank containers 3 and 4 so that the worker can easily work.
  • a scaffold of a predetermined height (work Should be temporarily installed.
  • each tank container 3 and 4 it is preferable to cover the exposed part of the outer periphery of each tank container 3 and 4 with a heat insulating material (not shown). If so, it is easy to suppress the temperature change of the electrolyte solution due to the external environment. For example, it is preferable to cover the outer periphery (including the side surfaces facing each other) except the area overlapping the battery device container 2 in each of the tank containers 3 and 4 with a heat insulating material (not shown).
  • the lower two tank containers 3 and 4 are substantially in contact with each other across substantially the entire sides without leaving any space between the opposing sides. It is preferable to arrange in. Then, the footprint of the RF battery 1 can be made smaller than the above-mentioned cross type.
  • the contact area A of the three containers 2, 3 and 4 can be compared with the above-mentioned crossing type in which the two tank containers 3 and 4 are spaced apart from each other. It can be enlarged.
  • the substantially entire area of the bottom of the battery device container 2 can be brought into contact with both tank containers 3 and 4, only a part of the bottom of the battery device container 2 is brought into contact with both tank containers 3 and 4
  • the contact area A of the three containers 2, 3 and 4 can be increased as compared to the crossing type.
  • the substantially entire area of the bottom of the battery device container 2 is stacked on the roofs of both the tank containers 3 and 4, the battery device container 2 can be stably placed.
  • the worker can access the inside from the both sides of the battery device container 2, it is not necessary to temporarily set up a scaffold such as the above-mentioned cross type.
  • a work space can be secured on the roofs of the tank containers 3 and 4 on the outer side (opposite sides opposite to each other) in the parallel direction. And since the space between the mutually opposing side surfaces of two tank containers 3 and 4 can be reduced, it is not necessary to arrange a heat insulating material in the opposite side surface, and the work which covers a heat insulating material can be simplified. Cost can be reduced.
  • the mounting location on the roof of the two tank containers 3 and 4 in the battery device container 2 is Similar to the above-described parallel type, it is preferable that one end face side of the tank containers 3 and 4 in the longitudinal direction (the back side in the drawing of FIG. 4) be used.
  • one short side of the battery device container 2 is arranged to overlap on the short sides of the two tank containers 3 and 4.
  • reinforcing beams 3b and 4b for reinforcing the respective ceilings at locations overlapping the other short sides of the battery device container 2 in the ceilings of the respective tank containers 3 and 4.
  • reinforcing columns at locations (on the same plane of the reinforcing beams 3b and 4b) corresponding to the other short sides of the battery device container 2 on both side surfaces of the tank containers 3 and 4, respectively.
  • FIG. 4 only the reinforcing pillars 4 c in one side surface portion of the negative electrode tank container 4 are shown, and the reinforcing pillars in the other side surface portion (the opposite side to the positive electrode tank container 3) The pillars are not shown.
  • the short sides of the battery device container 2 overlap the ceilings of the tank containers 3 and 4. It is preferable to provide a reinforcement beam at the location. Furthermore, it is preferable to provide a reinforcement pillar in the location corresponding to each short side of the battery apparatus container 2 in the both sides
  • the lower two tank containers 3 and 4 are substantially the same as the above-mentioned parallel type, and the end surfaces of each tank container 3 and 4 substantially extend over the entire area without leaving any space between them. It is preferable to arrange so that it may touch. Then, the installation area of the RF battery 1 can be reduced as in the parallel type described above. In order to bring the end faces of the two tank containers 3 and 4 into contact with each other, a substantially entire area of the bottom of the battery device container 2 is brought into contact with the two tank containers 3 and 4.
  • the contact area A of 4 can be increased.
  • the battery device container 2 can be stably placed. Since the space between the mutually opposing end faces of the two tank containers 3 and 4 can be reduced, the heat insulating material may not be disposed on the opposite end faces.
  • the RF battery 1 includes respective pole circulation paths for circulating respective polar electrolytes between the battery device container 2 and the respective tank containers 3 and 4. As shown in FIG. 7 and FIG. 8 (appropriately FIG. 9 and FIG. 10), each pole circulation path is composed of each pole supply conduit 231, 241 and each pole discharge conduit 232, 242, each pole forward pipe 31, 41 and each A pole return pipe 32, 42 and a connection structure 5 are provided.
  • the respective pole electrolyte tanks corresponding to the overlapping portion of the bottom plate 2b constituting the bottom portion of the battery device container 2 and the top plates 3u and 4u constituting the ceiling portion of the respective tank containers 3 and 4 correspond to the overlapping portion
  • the top plates 30u and 40u constituting the ceiling portions 30 and 40 through holes for inserting the respective circulation paths are formed, and both through holes overlap so as to face each other (FIG. 7, Figure 8).
  • Each pole supply conduit 231, 241 supplies each pole electrolyte to each pole cell 202, 203, and each pole discharge conduit 232, 242 discharges each pole electrolyte from each pole cell 202, 203.
  • the respective pole supply conduits 231, 241 and the respective pole discharge conduits 232, 242 are arranged in the battery device container 2 in this example.
  • One end of each pole supply conduit 231, 241 is connected to each pole forward tube 31, 41, and the other end of each pole supply conduit 231, 241 is connected to each pole cell 202, 203.
  • One end of each pole discharge conduit 232, 242 is connected to each pole cell 202, 203, and the other end of each pole discharge conduit 232, 242 is connected to each pole return pipe 32, 42.
  • Each pole forward pipe 31, 41 sends each pole electrolyte to each pole supply conduit 231, 241, and each pole return pipe 32, 42 sends each pole electrolyte from each pole discharge conduit 232, 242 to each pole electrolyte Return to the tank 30, 40.
  • the pole forward pipes 31 and 41 and the pole return pipes 32 and 42 are provided so as to protrude from the insides of the polar electrolyte tanks 30 and 40 to the outside of the tank containers 3 and 4 in this example, and It is disposed to extend through the inside of the battery device container 2.
  • an intervening member for example, a rubber nozzle that fills the gap so as not to leak Is provided.
  • the pole forward pipes 31 and 41 and the pole return pipes 32 and 42 are fixed to the top plates 3 u and 4 u of the tank containers 3 and 4 so as not to be displaced in the longitudinal direction.
  • the flanges (not shown) attached to the pole forward pipes 31, 41 and the pole return pipes 32, 42 are screwed around the through holes in the top plates 3u, 4u of the tank containers 3, 4, respectively. It can do by stopping.
  • each of the pole forward pipes 31 and 41 opens into each of the polar electrolytes in each of the polar electrolyte tanks 30 and 40.
  • the position along the height direction of one end face portion of each pole forward passage pipe 31, 41 is lower than the lowest liquid level (not shown) of each polar electrolyte tank 30, 40.
  • the other end face of each pole forward pipe 31, 41 is connected to each pole supply conduit 231, 241 in the battery device container 2 in this example.
  • connection points (connection structure 5) of the pole forward pipes 31, 41 and the pole supply conduits 231, 241 are disposed in the battery device container 2 in this example.
  • connection points (connection structure 5) of the pole return pipes 32 and 42 and the pole discharge conduits 232 and 242 are disposed in the battery device container 2 in this example.
  • each of the conduits 231, 232, 241, 242, the forward and reverse pipes 31, 41, and the reverse return pipes 32, 42 may be a material which does not react with the electrolytic solution and is excellent in resistance to the electrolytic solution. Specifically, materials such as polypropylene (PP), polyvinyl chloride (PVC), polyethylene (PE), polytetrafluoroethylene (PTFE), and rubber can be mentioned.
  • PP polypropylene
  • PVC polyvinyl chloride
  • PE polyethylene
  • PTFE polytetrafluoroethylene
  • each of the conduits 231, 232, 241, 242, each of the pole forward pipes 31, 41, and each of the pole return paths 32, 42 covers the metal tubular member and the contact portion with the electrolytic solution in the tubular portion.
  • a tube with a coating layer may be utilized.
  • a stainless steel pipe can be used as the tubular member.
  • the material of the coating layer may be the above-mentioned resin or rubber.
  • connection structure 5 connects the respective pole supply conduits 231, 241 and the respective pole discharge conduits 232, 242 to the respective pole forward pipes 31, 41 and the respective pole return pipes 32, 42.
  • the arrangement location of both connection structures 5 of the positive side conduits 231 and 232 and the reciprocating tubes 31 and 32 and the arrangement location of both connection structures 5 of the negative electrodes side 241 and 242 and the reciprocating tubes 41 and 42 In the present example, as described above, the inside of the battery device container 2 is set as described above, but it is not particularly limited, and can be appropriately selected as shown in the modified examples described later.
  • connection structure 5 of each pole (the connection of each pole forward pipe 31, 41 and each pole supply conduit 231, 241, each pole return pipe 32, 42 and each pole discharge conduit 232, 242) is detachable. Is preferred. Then, design changes such as battery capacity and battery output can be easily performed. It is because when the design change such as the battery capacity and the battery output occurs and the container itself is replaced, the tubes can be easily removed from each other. Usually, the connection between the flow channels of the electrolytic solution is connected so as not to be removable by fusion or the like. Therefore, if the pipes are connected to each other, the disassembling operation is likely to be very complicated.
  • connection structure 5 of each pole is preferably telescopic. Then, the pole forward pipes 31 and 41 are connected to the pole supply conduits 231 and 241, and when connecting the pole return pipes 32 and 42 to the pole discharge conduits 232 and 242, the pipes are aligned with each other. Since it is easy, the connection work of pipes can be made easy. For example, a flexible joint can be used as the connection structure 5 of each pole.
  • a valve 6 is provided to open and close the passage.
  • the type of the valve 6 can be appropriately selected, and examples thereof include a butterfly valve, a gate valve, a globe valve, a ball valve, a diaphragm valve and the like.
  • the battery cell 200, the positive electrode circulation mechanism 230, and the negative electrode circulation mechanism 240 are housed inside the battery device container 2 (FIG. 9).
  • the battery cell 200 is divided into a positive electrode cell 202 and a negative electrode cell 203 by a diaphragm 201 which allows hydrogen ions to permeate (FIGS. 10 and 11).
  • the positive electrode 204 is contained in the positive electrode cell 202, and the positive electrode electrolyte is circulated by the positive electrode circulation mechanism 230.
  • the negative electrode 205 is contained in the negative electrode cell 203, and the negative electrode electrolyte is circulated by the negative electrode circulation mechanism 240.
  • the battery cell 200 is generally formed inside a structure called a cell stack 250 shown in the lower part of FIG. 9, FIG. 10 and FIG.
  • the number of cell stacks 250 may be singular or plural. In this example, the case where the number of cell stacks 250 is two is illustrated (FIG. 9).
  • the arrangement position of the cell stack 250 is preferably at the longitudinal center of the battery device container 2.
  • the plurality of cell stacks 250 are preferably arranged at symmetrical positions with respect to the longitudinal center of the battery device container 2. Then, it can suppress that the gravity center of the battery apparatus container 2 is biased.
  • Each cell stack 250 is configured by sandwiching a laminated body called a sub-stack 251 (the lower side of FIG. 11) by two end plates 253 from both sides thereof and tightening both end plates 253 by a tightening mechanism 254. .
  • the lower part of FIG. 11 exemplifies a mode in which a plurality of sub stacks 251 are provided.
  • the sub stack 251 includes a cell frame 210 having a bipolar plate 211 and a frame 212 surrounding an outer peripheral edge thereof, a positive electrode 204, a diaphragm 201, and a negative electrode 205, as shown in FIGS. A plurality of layers are stacked in this order, and a supply / discharge plate 252 (the lower part of FIG.
  • the frame 212 of the cell frame 210 includes a liquid supply manifold 213 and a liquid supply slit 214 for supplying the electrolytic solution to the inside of the battery cell 200, a drainage manifold 215 for discharging the electrolytic solution to the outside of the battery cell 200, and a drainage liquid. And a slit 216.
  • An annular seal member 220 such as an O-ring or a flat packing is disposed in an annular seal groove between the frame bodies 212 to suppress leakage of the electrolytic solution from the battery cell 200.
  • the positive electrode circulation mechanism 230 and the negative electrode circulation mechanism 240 respectively include a positive electrode supply conduit 231 and a negative electrode supply conduit 241, a positive electrode discharge conduit 232 and a negative electrode discharge conduit 242, and a positive electrode pump 233 and a negative electrode pump 243 (FIG. 9).
  • Each pole supply conduit 231, 241 and each pole discharge conduit 232, 242 are as described above.
  • Each pole pump 233, 243 circulates each pole electrolyte. Specifically, in the operation of charging and discharging, each pole electrolyte is transferred from each pole electrolyte tank 30, 40 by each pole pump 233, 243 to each pole forward pipe 31, 41 and each pole supply conduit 231, 241. And is supplied to the respective pole cells 202, 203, and from the respective pole cells 202, 203 through the respective pole discharge conduits 232, 242 and the respective pole return path pipes 32, 42. Are circulated to the respective pole cells 202 and 203. At the time of standby where charging and discharging are not performed, the respective pole pumps 233 and 243 are stopped, and each pole electrolyte is not circulated.
  • each pole pump 233, 243 can be selected appropriately, and for example, a self-priming pump can be used.
  • Each pole pump 233, 243 is provided in the middle of each pole supply conduit 231, 241 in this example.
  • the positive electrode pump 233 and the negative electrode pump 243 are preferably arranged at symmetrical positions with respect to the center of the battery device container 2 in the longitudinal direction. Then, it can suppress that the gravity center of the battery apparatus container 2 is biased.
  • control unit 260 the heat exchanger 270, and the like can be further housed inside the battery device container 2.
  • the control unit 260 controls the circulation of the respective polar electrolytes in the positive electrode circulation mechanism 230 and the negative electrode circulation mechanism 240.
  • the control unit 260 has a pump control unit that controls each pole pump provided in each pole circulation mechanism.
  • the control unit 260 can use, for example, a computer.
  • the control unit 260 may be disposed outside the three containers 2 to 4.
  • the heat exchanger 270 cools each polar electrolyte. Cooling of each of the polar electrolytes may be natural cooling or may be forced cooling by a cooling mechanism (not shown) such as a fan provided separately. In this example, the number of heat exchangers 270 is plural (two), and each polar electrolyte is cooled individually.
  • the arrangement location of each heat exchanger 270 is in the middle of each pole discharge conduit 232, 242 in this example, but may be in the middle of each pole supply conduit 231, 241. Since each electrode electrolyte generates heat in response to the cell reaction, the electrode electrolyte can be favorably cooled by setting the position of each heat exchanger 270 in the middle of each electrode discharge conduit 232, 242.
  • the heat exchanger 270 for cooling the positive electrode electrolyte and the heat exchanger 270 for cooling the negative electrode electrolyte are preferably disposed at symmetrical positions across the center of the battery device container 2 in the longitudinal direction. Then, it can suppress that the gravity center of the battery apparatus container 2 is biased.
  • Each of the polar electrolyte tanks 30, 40 is a box-like container, and the shape thereof is the same as the shape of each of the tank containers 3, 4, in this case, a rectangular solid.
  • the size of each polar electrolyte tank 30, 40 is slightly smaller than that of each tank container 3, 4.
  • the constituent material of each of the polar electrolyte tanks 30, 40 may be the same resin or rubber as that of the coating layer such as the positive electrode supply conduit 231 described above.
  • the connection of the pole forward pipes 31 and 41 and the pole return paths 32 and 42 to the electrolyte tanks 30 and 40 is performed by connecting the pole forward pipes 31 and 41 and the pole return paths 32 and 42 and the pole electrolyte tanks 30. , 40 through the through holes described above.
  • the interposed members are attached to the pole forward pipes 31 and 41 and the pole return pipes 32 and 42 so as not to be displaced in the longitudinal direction of the pole forward pipes 31 and 41 and the pole return pipes 32 and 42.
  • a vapor communication pipe (a positive gas phase insertion pipe and a negative gas phase insertion pipe) for communicating the gas phases of the respective electrolytic solution tanks 30 and 40 and each electrode
  • a pressure adjustment mechanism for adjusting the pressure of the gas phase of the electrolytic solution tanks 30 and 40 can be accommodated (both not shown).
  • One end of the positive electrode vapor phase penetration tube is open to the vapor phase portion of the positive electrode electrolyte tank 30, and one end of the negative electrode vapor phase penetration tube is open to the vapor phase portion of the negative electrode electrolyte tank 30.
  • the other end of the positive electrode gas phase penetration tube and the other end of the negative electrode gas phase penetration tube are connected inside one tank container or outside both tank containers 3 and 4.
  • a detachable connection structure similar to the connection structure 5 described above, or an expandable connection structure can be adopted.
  • the pressure control mechanism can use a known pressure control bag that expands and contracts in accordance with the pressure change of the gas phase of each of the polar electrolyte tanks 30 and 40.
  • the pressure adjustment mechanism may be provided either inside or outside of each of the polar electrolyte tanks 30 and 40.
  • Design change procedure The design change of the RF battery 1 can be performed, for example, as follows.
  • the battery device container 2 moved to the predetermined position is placed on both of the newly installed tank containers 3 and 4.
  • the movement of each container itself can be performed using a suitable crane or the like.
  • the conduits 231, 232, 241, 242, the pole forward pipes 31, 41, and the pole return pipes 32, 42 are connected by the connection structure 5 in the battery device container 2 to construct an electrolyte circulation path. (FIG. 7, FIG. 8).
  • the battery device container 2 of the RF battery 1 of FIGS. 1 to 6 may be replaced with a larger (small) battery device container 2 (not shown).
  • a larger (small) battery device container 2 (not shown).
  • both tank containers 3 both tank containers 3 . It is good to widen the space between 4 (narrow).
  • the lower side of the battery device container 2 between the two tank containers 3 and 4 is a separately empty container for supporting the battery device container 2 from below.
  • An appropriate mount having the same support strength as the container may be disposed.
  • both the tank containers 3 and 4 are not moved. It can be used as it is.
  • the subsequent connection between the tubes is similar to the change of the battery capacity.
  • the battery output can be increased by increasing the number without changing the size of the battery device container 2.
  • the battery output can be increased by increasing the number of battery modules by adding three containers 2, 3, and 4 as one battery module.
  • each battery module is the above flat type, provided with a plurality of battery modules and each battery module is any of the cross type, the parallel type and the colinear type.
  • the contact area A between containers can be increased. Therefore, the total surface area Sb can be easily reduced, and the surface area reduction rate Sc can be easily increased.
  • the arrangement form of the plurality of battery modules may be arranged between the adjacent battery modules at any intervals, regardless of whether it is the cross type, the parallel type, or the co-linear type.
  • the adjacent battery modules may be arranged so as to be in contact with each other without substantially leaving a space between the matching battery modules.
  • the longitudinal directions of the battery device containers 2 are aligned in the same straight line, and the end surfaces of the battery device containers 2 in adjacent battery modules substantially face each other across Contact). It is mentioned that the side surfaces of the tank containers 3 and 4 in adjacent battery modules substantially face each other (contact) over the entire area.
  • the longitudinal directions of the tank containers 3 and 4 in each battery module are aligned in the same straight line, and the end surfaces of the tank containers 3 and 4 in adjacent battery modules are substantially It can be mentioned that the entire area is opposed (contacted).
  • the side surfaces of the battery device container 2 in the adjacent battery modules may be substantially in contact with each other over substantially the entire area, or substantially opposed over the entire area, but without being in contact with each other, there is an interval therebetween It is also good.
  • the arrangement form may be, for example, the following three forms (a) to (c) as in the case of the cross type.
  • (A) Arrange each battery module along the parallel direction of the tank containers 3 and 4.
  • (B) The respective battery modules are arranged along the direction orthogonal to both the parallel direction and the vertical direction of the tank containers 3 and 4.
  • (C) Both the above (a) and the above (b).
  • the side surfaces of the tank containers 3 and 4 in adjacent battery modules are substantially opposed (contacted) over the entire area.
  • the side surfaces of the battery device containers 2 in the adjacent battery modules substantially face each other across the entire area, but there is a space between them.
  • the side surfaces of the three containers 2, 3 and 4 in adjacent battery modules are substantially opposed (contacted) over the entire area.
  • the longitudinal directions of the three containers 2, 3 and 4 in each battery module are aligned in the same straight line, and the end surfaces of the tank containers 3 and 4 in adjacent battery modules are It is possible to face (contact) substantially the entire area.
  • the end faces of the battery device containers 2 in the adjacent battery modules substantially face each other across the entire area, but there is a gap between them.
  • the RF battery 1 according to the first embodiment is a storage battery for stabilizing the fluctuation of the power generation output, storing power when surplus of generated power, load leveling, etc. for the generation of natural energy such as solar power generation and wind power generation.
  • the RF battery 1 of the first embodiment can be used as a storage battery that is juxtaposed to a general power plant and is intended to prevent voltage sags and blackouts and load leveling.
  • the amount of electrolytic solution and the number of battery cells housed inside can be changed to change the battery capacity of the RF battery 1 and the battery You can change the output.
  • the battery cells 200 and so on, the positive electrode electrolyte tank 30, and the negative electrode electrolyte tank 40 are accommodated in mutually different containers 2, 3, 4, so that the degree of freedom of installation layout is high. Even if it is necessary to replace only the battery cell 200 or only each of the electrode electrolyte tanks 30, 40 due to aged deterioration, etc. instead of changing the design, replace the containers 2, 3 and 4 with containers of the same size. You can do it easily.
  • connection locations of the connection structure 5 for the positive side conduits 231 and 232 and the reciprocating tubes 31 and 32 and the connection for the negative side conduits 241 and 242 and the reciprocating tubes 41 and 42 The RF battery 1 according to the embodiment is different from the RF battery 1 according to the embodiment in that the arrangement location of the structure 5 is not in the battery device container 2 but in the positions shown in (1) to (4) below.
  • differences from the first embodiment will be mainly described, and the description of the same configuration will be omitted.
  • the arrangement place of the connection structure 5 on the positive electrode side will be described, but the arrangement place of the connection structure 5 on the negative electrode side is the same position as the arrangement place of the connection structure 5 on the positive electrode side can do.
  • connection structure 5 between the positive electrode conduits 231 and 232 and the reciprocating tubes 31 and 32 may be disposed outside the three containers 2 to 4 as shown in FIG. 12 and FIG.
  • through holes for inserting the positive electrode forward passage pipe 31 and the positive electrode return passage pipe 32 are not formed in the bottom plate 2 b of the battery device container 2 and the top plate 3 u of the positive electrode tank container 3.
  • Through holes are formed in the end plates and side plates constituting the end face portion and the side face portion of the battery device container 2 through which the positive electrode supply conduit 231 and the positive electrode discharge conduit 232 are inserted.
  • Through holes are formed in the side plates and the end plates constituting the side surface portion and the end surface portion of the positive electrode tank container 3 through which the positive electrode forward pipe 31 and the positive electrode return pipe 32 are inserted.
  • a through hole for inserting the positive electrode forward pipe 31 and the positive electrode return pipe 32 is not formed.
  • the side plate or end plate of the battery device container 2 is formed with a through hole through which the positive electrode supply conduit 231 and the positive electrode discharge conduit 232 are inserted.
  • the top plate 3 u of the positive electrode tank container 3 is formed with a through hole through which the positive electrode forward pipe 31 and the positive electrode return pipe 32 are inserted.
  • the positive electrode forward pipe 31 is drawn out of the positive electrode tank container 3 through the above-mentioned through hole of the positive electrode tank container 3 and is connected to the connection structure 5. .
  • the positive electrode supply conduit 231 is drawn into the battery device container 2 from the connection structure 5 through the through hole of the battery device container 2.
  • the positive electrode discharge conduit 232 is drawn out of the battery device container 2 through the through hole of the battery device container 2 and is connected to the connection structure 5.
  • the positive electrode return pipe 32 is drawn into the positive electrode tank container 3 from the connection structure 5 through the through hole of the positive electrode tank container 3. As shown in FIG.
  • the arrangement location of the two connection structures 5 is outside the end plate or side plate of the battery device container 2 (outside the side plate or end plate of the positive electrode tank container 3) or as shown in FIG. It can be outside the side plate or the end plate of the battery device container 2 and above the top plate 3 u of the positive electrode tank container 3.
  • connection structure 5 of one of the conduits 231, 232 of the positive electrode and the reciprocating tubes 31, 32 is disposed in one of the battery device container 2 or the positive electrode tank container 3, and the other connection structure 5 is It may be arranged outside the three containers 2 to 4.
  • connection structure 5 may be disposed in the battery device container 2 or, although not shown, may be disposed in the positive electrode tank container 3. Good.
  • One of the connection structures 5 may be a connection structure 5 for connecting the positive electrode supply conduit 231 and the positive electrode forward pipe 31 as shown in FIG. 14, or as shown in FIG. It is good also as the connection structure 5 which connects 32 and.
  • through holes are formed in the bottom plate 2b of the battery device container 2 and the top plate 3u of the positive electrode tank container 3 for inserting the positive electrode forward pipe 31 (positive electrode return pipe 32).
  • the end plate or the side plate of the battery device container 2 is formed with a through hole through which the positive electrode discharge conduit 232 (positive electrode supply conduit 231) is inserted.
  • the side plate and the end plate of the positive electrode tank container 3 are formed with through holes through which the positive electrode return pipe 32 (positive electrode forward pipe 31) is inserted.
  • the positive electrode forward pipe 31 and the positive electrode supply conduit 231 are as described in the above embodiment with reference to FIG. 7. That is, the positive electrode forward pipe 31 is drawn from the inside of the positive electrode tank container 3 through the through holes of the positive electrode tank container 3 and the battery device container 2 into the battery device container 2 and connected to the connection structure 5.
  • the positive electrode supply conduit 231 is connected to the connection structure 5 and disposed in the battery device container 2.
  • the positive electrode discharge conduit 232 and the positive electrode return pipe 32 are as described above with reference to FIG.
  • the positive electrode forward pipe 31 and the positive electrode supply conduit 231 are as described above with reference to FIG.
  • the positive electrode discharge conduit 232 and the positive electrode return pipe 32 are as described with reference to FIG. 7 in the above embodiment. That is, the positive electrode discharge conduit 232 is disposed in the battery device container 2 and connected to the connection structure 5.
  • the positive electrode return pipe 32 is drawn from the connection structure 5 into the positive electrode tank container 3 through the through holes of the battery device container 2 and the positive electrode tank container 3.
  • connection structure 5 between the positive electrode supply conduit 231 (positive electrode discharge conduit 232) and the positive electrode forward pipe 31 (positive electrode return pipe 32) is inside the battery device container 2.
  • the location of the connection structure 5 between the positive electrode return pipe 32 (positive electrode forward pipe 31) and the positive electrode discharge conduit 232 (positive electrode supply conduit 231) is the outside of the end plate or side plate of the battery device container 2 (positive tank container 3 Outside the side plate or end plate).
  • connection structure 5 between the positive electrode conduits 231 and 232 and the reciprocating tubes 31 and 32 may be disposed in the positive electrode tank container 3 although not shown.
  • connection structure 5 of one of the conduits 231, 232 of the positive electrode and the reciprocating tubes 31, 32 is not shown, but is disposed in the battery device container 2, and the other connection structure 5 is a positive electrode tank container It may be arranged in three.
  • P1 Three containers all 20 feet container P2: All three containers 20 feet high cube container P3: Battery equipment container 20 feet container, two tank containers 40 feet container P4: Battery equipment container 20 feet high cube Container, two tank containers are 40 feet high cube container P5: All three containers are 40 feet containers P6: Three containers are all 40 feet high cube containers P7: Battery equipment containers are 20 feet high cube containers, two tank containers There is a 45ft high cube container
  • the contact area A of the intersection type, the parallel type, and the straight line type is compared with the contact area of the plane type regardless of the combination of three containers P1 to P7. You are big. This is because the contact area of the planar type is 0 (zero). Therefore, the total surface area Sb of the cross type, the parallel type, and the co-linear type is smaller than the total surface area Sa of the planar type regardless of which of the three containers is P1 to P7. That is, the surface area reduction rate Sc of the cross type, the parallel type, and the co-linear type can be increased even if the combination of the three containers is any of P1 to P7. Specifically, the surface area reduction rate Sc can be 5% or more. In particular, since the contact area A can be increased compared to the cross type in the parallel type and the co-linear type, the total surface area Sb can be reduced and the surface area reduction ratio Sc can be increased.
  • each battery module is disposed along the parallel direction of the tank containers. Specifically, the longitudinal directions of the battery device containers are aligned in the same straight line, and the end surfaces of the battery device containers in the adjacent battery modules are substantially in contact with each other over the entire area. The side surfaces of the tank containers in adjacent battery modules are substantially in contact with each other over the entire area.
  • each battery module is disposed along the parallel direction of the tank container. Specifically, side surfaces of tank containers in adjacent battery modules are substantially in contact with each other over the entire area. Although the side surfaces of the battery device containers in the adjacent battery modules substantially face each other across the entire area, they are spaced apart without being in contact with each other.
  • each battery module is the above-mentioned same straight line type
  • each battery module is arranged along a direction orthogonal to both the series direction and the vertical direction of the tank container. Specifically, the side surfaces of each of the three containers in adjacent battery modules are substantially in contact with each other over the entire area.
  • the surface area reduction rate Sc of the cross type, the parallel type, and the co-linear type is larger as the number of battery modules is increased.
  • the contact area A can be increased, the total surface area Sb can be reduced, and the surface area reduction rate Sc can be increased.
  • the surface area reduction rate Sc can be 50% or more, depending on the laminated type and the number of battery modules.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

正極電解液を貯留する正極電解液タンクを収納した正極タンクコンテナと、負極電解液を貯留する負極電解液タンクを収納した負極タンクコンテナと、正極電極、負極電極、及び隔膜を有する電池セルと、前記正極電解液を前記電池セルに供給して循環させる正極循環機構と、前記負極電解液を前記電池セルに供給して循環させる負極循環機構とを収納した電池機器コンテナとを備えるレドックスフロー電池。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関する。
 太陽光発電や風力発電といった自然エネルギー由来の電力を蓄電する大容量の蓄電池の一つに、レドックスフロー電池(RF電池)が知られている。RF電池は、複数の電池セルを有するセルスタックと、各極電解液を貯留する各極電解液タンクと、各極電解液を電池セルに供給する供給導管と、各極電解液を電池セルから排出する排出導管と、各極電解液を循環するポンプとを備える(特許文献1)。
特開2012-099368号公報
 本開示のレドックスフロー電池は、
 正極電解液を貯留する正極電解液タンクを収納した正極タンクコンテナと、
 負極電解液を貯留する負極電解液タンクを収納した負極タンクコンテナと、
 正極電極、負極電極、及び隔膜を有する電池セルと、前記正極電解液を前記電池セルに供給して循環させる正極循環機構と、前記負極電解液を前記電池セルに供給して循環させる負極循環機構とを収納した電池機器コンテナとを備える。
実施形態に係るレドックスフロー電池の交差タイプの概略斜視図である。 実施形態に係るレドックスフロー電池の交差タイプの別の例を示す概略斜視図である。 実施形態に係るレドックスフロー電池の平行タイプの概略斜視図である。 実施形態に係るレドックスフロー電池の平行タイプの別の例を示す概略斜視図である。 実施形態に係るレドックスフロー電池の同一直線タイプの概略斜視図である。 実施形態に係るレドックスフロー電池の同一直線タイプの別の例を示す概略斜視図である。 図1に示すレドックスフロー電池のVII-VII切断線で切断した状態の概略を示す部分断面図である。 図1に示すレドックスフロー電池のVIII-VIII切断線で切断した状態の概略を示す部分断面図である。 実施形態に係るレドックスフロー電池の概略構成図である。 実施形態に係るレドックスフロー電池に備わる電池機器コンテナ内のセルスタックの概略断面図である。 実施形態に係るレドックスフロー電池に備わるセルスタックの概略構成図である。 変形例に係るレドックスフロー電池に備わる接続構造の配置箇所の概略を示す部分断面図である。 変形例に係るレドックスフロー電池に備わる接続構造の配置箇所の別の例の概略を示す部分断面図である。 変形例に係るレドックスフロー電池に備わる接続構造の配置箇所の他の例の概略を示す部分断面図である。 変形例に係るレドックスフロー電池に備わる接続構造の配置箇所の更に他の例の概略を示す部分断面図である。
 [本開示が解決しようとする課題]
 レドックスフロー電池(RF電池)は、通常、その設置場所でセルスタックと各極電解液タンクと各導管となどを接続して組立てている。設置場所では十分な作業スペースを確保できるとは限らず、組立て作業が煩雑になる場合がある。そこで、予め、作業スペースを十分に確保可能な工場などで、RF電池を一括して収納可能な1つの容器(例えば、コンテナ)内でRF電池を組立て、その容器ごと設置場所へ運搬することを検討した。しかし、設置後に電池容量や電池出力などの設計変更が生じた場合、1つの容器に纏めて収納しているため、容器の容量に制約されることで大容量の電解液タンクに交換したりセル数の多いセルスタックに交換したりすることが難しい。
 そこで、電池容量や電池出力の設計変更を容易に行えるレドックスフロー電池を提供することを目的の一つとする。
 [本開示の効果]
 本開示によれば、電池容量や電池出力の設計変更を容易に行える。
 《本発明の実施形態の説明》
 最初に本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係るレドックスフロー電池は、
 正極電解液を貯留する正極電解液タンクを収納した正極タンクコンテナと、
 負極電解液を貯留する負極電解液タンクを収納した負極タンクコンテナと、
 正極電極、負極電極、及び隔膜を有する電池セルと、前記正極電解液を前記電池セルに供給して循環させる正極循環機構と、前記負極電解液を前記電池セルに供給して循環させる負極循環機構とを収納した電池機器コンテナとを備える。
 上記の構成によれば、電池容量や電池出力などの設計変更を容易に行える。電池セルなどと正極電解液タンクと負極電解液タンクとを互いに異なるコンテナに収納しているからである。コンテナ自体の交換は容易であり、設計変更の必要な部材(電池セルや電解液タンク)の交換は、その部材を収納するコンテナ自体を交換することで行える。タンクコンテナや電池機器コンテナ自体をサイズの異なるコンテナに交換すれば、内部に収納される電解液量や電池セル数を変えられてRF電池の電池容量や電池出力を変えられる。詳しくは後述するが、例えば、電池容量を増加(減少)する場合、両タンクコンテナをより大きな(小さな)タンクコンテナと交換することが挙げられ、電池出力を増加(減少)する場合、電池機器コンテナをより大きな(小さな)電池機器コンテナと交換することが挙げられる。
 (2)上記レドックスフロー電池の一形態として、
 前記正極循環機構及び前記負極循環機構はそれぞれ、前記各極電解液を前記電池セルに供給する各極供給導管、及び前記各極電解液を前記電池セルから排出する各極排出導管を有し、
 前記正極電解液タンク及び前記負極電解液タンクはそれぞれ、前記各極電解液を前記各極電解液タンクから前記各極供給導管に送る各極往路管、及び前記各極電解液を前記各極排出導管から前記各極電解液タンクに戻す各極復路管を有し、
 更に、前記各極供給導管及び前記各極排出導管のそれぞれと、前記各極往路管及び前記各極復路管のそれぞれとを着脱自在に接続する接続構造を有することが挙げられる。
 上記の構成によれば、電池容量や電池出力などの設計変更を容易に行える。電池容量や電池出力などの設計変更が生じてコンテナ自体を交換する際、各管同士を容易に取り外せるからである。通常、電解液の流通管同士の接続は、接着剤や融着などにより着脱できないように接続されるため、流通管同士を一旦接続すると管同士の取り外し作業が非常に煩雑になり易い。
 (3)上記レドックスフロー電池の一形態として、
 前記電池機器コンテナは、前記正極タンクコンテナ及び前記負極タンクコンテナの少なくとも一方の屋根上に載置されることが挙げられる。
 上記の構成によれば、各コンテナ同士の少なくとも一部を積み重ねて配置することで、レドックスフロー電池の設置面積を小さくできる。
 また、正極タンクコンテナ、負極タンクコンテナ、及び電池機器コンテナの3つのコンテナを互いに間隔を空けて同一平面上に配置する場合に比較して、コンテナ同士の接触面積Aを大きくできる。そのため、3つのコンテナを互いに間隔を空けて同一平面上に配置したときの3つのコンテナの合計表面積Sa(各コンテナの表面積の合計)に比較して、電池機器コンテナを正極タンクコンテナ及び負極タンクコンテナの少なくとも一方の屋根上に載置したときの3つのコンテナの合計表面積Sbを接触面積Aの分だけ小さくできる。合計表面積Sbは、「上記合計表面積Sa-上記接触面積A」で求められる。そのため、「{1-(合計表面積Sb)/(合計表面積Sa)}×100」で求める表面積削減率Sc(%)を大きくし易い。それにより、外部環境による電解液の温度変化を抑制するために各タンクコンテナの外周の露出箇所を覆う断熱材を削減できる上に、断熱材を覆う作業を簡略化できてコストを低減できる。
 更に、比較的重いタンクコンテナを下にし、その上に比較的軽い電池機器コンテナを載置することで、上下を逆に重ねる場合に比較して、重心が下側にあるためコンテナを重ねてもRF電池を安定して設置できる。その上、下側のコンテナの変形を抑制できる。
 (4)上記(3)の上記レドックスフロー電池の一形態として、
 前記電池機器コンテナは、前記正極タンクコンテナと前記負極タンクコンテナとの間を跨ぎ、前記正極タンクコンテナと前記負極タンクコンテナの両屋根上に均等に載置されていることが挙げられる。
 上記の構成によれば、電池機器コンテナを両タンクコンテナの屋根上に均等に載置しているため、電池機器コンテナを安定して載置できる。
 (5)上記(4)のレドックスフロー電池の一形態として、
 前記正極タンクコンテナ及び前記負極タンクコンテナは、互いの間隔を空けると共に、互いに長手方向が平行となるように並列配置され、
 前記電池機器コンテナは、その長手方向が前記正極タンクコンテナ及び前記負極タンクコンテナの長手方向と直交するように載置されることが挙げられる。
 上記の構成によれば、3つのコンテナの接触面積Aを大きくし易いため、合計表面積Sbを小さくし易く、表面積削減率Scを大きくし易い。
 (6)上記(4)のレドックスフロー電池の一形態として、
 前記正極タンクコンテナ及び前記負極タンクコンテナは、互いに長手方向が平行で、かつ互いの側面同士が接するように並列配置され、
 前記電池機器コンテナは、その長手方向が前記正極タンクコンテナ及び前記負極タンクコンテナの長手方向と平行となるように載置されることが挙げられる。
 上記の構成によれば、上記(5)のレドックスフロー電池に比較して、3つのコンテナの接触面積Aを大きくし易いため、合計表面積Sbを小さくし易く、表面積削減率Scを大きくし易い。両タンクコンテナの側面同士を接触させることで、両タンクコンテナの互いの間隔を空ける上記(5)のレドックスフロー電池に比較して、3つのコンテナの接触面積Aを大きくできる。加えて、両タンクコンテナの側面同士が接触すると共に、電池機器コンテナをその長手方向が両タンクコンテナの長手方向と平行となるように載置することで、電池機器コンテナの底部全域に亘って両タンクコンテナと接触させられるので、電池機器コンテナの底部の一部のみ両タンクコンテナと接触させる上記(5)のレドックスフロー電池に比較して、3つのコンテナの接触面積Aを大きくできる。
 (7)上記(4)~上記(6)のいずれか1つのレドックスフロー電池の一形態として、
前記正極循環機構及び前記負極循環機構はそれぞれ、前記各極電解液を循環させる正極ポンプ及び負極ポンプを有し、
 前記電池機器コンテナ内を側面視したとき、前記正極ポンプと前記負極ポンプとは、前記電池機器コンテナの左右方向の中央を挟んで対称の位置に配置されることが挙げられる。
 上記の構成によれば、電池機器コンテナの内部部材が左右均等に収納されているため、電池機器コンテナの重心が偏ることを抑制し易い。
 《本発明の実施形態の詳細》
 本発明の実施形態に係るレドックスフロー(RF)電池の詳細を以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。実施形態に係るRF電池は、代表的には、交流/直流変換器を介して発電部(例えば、太陽光発電装置や風力発電装置、その他一般の発電所など)と負荷(需要家など)との間に接続され、発電部で発電した電力を充電して蓄え、蓄えた電力を放電して負荷に供給する。この充放電は、酸化還元により価数が変化するイオン(例えばバナジウムイオン、チタンイオン、マンガンイオンなど)を活物質として含有する電解液を正極電解液と負極電解液とに使用し、正極電解液に含まれるイオンの酸化還元電位と負極電解液に含まれるイオンの酸化還元電位との差を利用して行う。
 《RF電池》
 図1~図11を参照して、実施形態に係るRF電池1を説明する。このRF電池1は、電池セル200(図10、図11)と、正極電解液タンク30(図9)と、負極電解液タンク40と、正極循環機構230と、負極循環機構240と、制御部260とを備える。各極電解液タンク30、40は、各極電解液を貯留する。各極循環機構230、240は、各極電解液を電池セル200に供給して循環させる。制御部260は、各極循環機構230、240における各極電解液の循環を制御する。RF電池1の特徴の一つは、電池セル200、各極循環機構230、240、及び制御部260を内部に収納する電池機器コンテナ2と、正極電解液タンク30を内部に収納する正極タンクコンテナ3と、負極電解液タンク40を内部に収納する負極タンクコンテナ4とを備え、これら3つのコンテナ2、3、4がそれぞれ別部材で構成されている点にある(図1~図6、図9)。以下、詳細に説明する。図7~図11における黒塗り矢印は、電解液の流れを示す。
 〔電池機器コンテナ・各極タンクコンテナ〕
 電池機器コンテナ2は、上述のように電池セル200と各極循環機構230、240と制御部260とを内部に収納する。電池機器コンテナ2内の収納部材の詳細は、後述する。正極タンクコンテナ3は、正極電解液タンク30を内部に収納し、負極タンクコンテナ4は、負極電解液タンク40を内部に収納する。これら電池機器コンテナ2と正極タンクコンテナ3と負極タンクコンテナ4とは、互いに別部材で構成されている。そのため、電池容量や電池出力などの設計変更を容易に行える。電池セル200などと正極電解液タンク30と負極電解液タンク40とを互いに異なるコンテナに収納しているからである。そのため、詳しくは後述するが、電池機器コンテナ2やタンクコンテナ3、4自体をサイズの異なるコンテナに交換すれば、RF電池1の電池容量や電池出力を変えられる。コンテナ自体の交換は容易であり、設計変更の必要な部材(電池セル200や各極電解液タンク30、40)の交換は、その部材を収納するコンテナ自体を交換することで行える。
  [各コンテナの概要]
 各コンテナ2、3、4の種類は、代表的には、ドライコンテナが挙げられる。各コンテナ2、3、4の形状は、代表的には、直方体状が挙げられる。各コンテナ2、3、4は、設置対象に設置される矩形状の底部と、底部と対向配置される矩形状の天井部と、底部と天井部の長辺同士を繋ぐ両側面部と、底部と天井部の短辺同士を繋ぐ両端面部とを備える。側面部と端面部とには、作業者がコンテナ内部にアクセス可能なように開閉自在な扉が設けられている(図示略)。各コンテナ2、3、4の材質は、例えば、鋼(例えば、一般構造用圧延鋼材 SS400)が挙げられる。
 各コンテナ2、3、4のサイズは、RF電池1の電池容量や電池出力などに応じて適宜選択できる。大(小)容量のRF電池1とする場合、大きな(小さな)タンクコンテナ3、4とし、出力の大きな(小さな)RF電池1とする場合、大きな(小さな)電池機器コンテナ2とすることが挙げられる。そうすれば、各コンテナ2、3、4に収納可能な各極電解液量や電池セル数を多く(少なく)できるからである。各コンテナ2、3、4は、ISO規格(例えば、ISO 1496-1:2013など)に準拠した国際海上貨物用コンテナが利用できる。各コンテナ2、3、4は、代表的には、20フィートコンテナや40フィートコンテナ、45フィートコンテナ、それらよりも高さの高い20フィートハイキューブコンテナや40フィートハイキューブコンテナ、45フィートハイキューブコンテナなどが利用できる。
 各コンテナ2、3、4のサイズは、例えば、図1、図3、及び図5に示すように、3つのコンテナ2、3、4のサイズを同じサイズとしてもよい。また、図2、図4、及び図6に示すように、両タンクコンテナ3、4のサイズを図1、図3、及び図5に示す両コンテナ3、4に比較して大きくし、電池機器コンテナ2と両タンクコンテナ3、4のサイズは互いに異なるサイズとしてもよい。電池機器コンテナ2と両タンクコンテナ3、4とを異なるサイズのコンテナとする場合、図2、図4、図6に示すように、電池機器コンテナ2は、両タンクコンテナ3、4よりも小さいコンテナを利用できる。
  [3つのコンテナの配置形態]
 3つのコンテナ2、3、4の配置は、同一平面上に配置してもよいし、図1~図6に示すように、コンテナ同士を鉛直方向の上下に重ねるように配置してもよい。コンテナ同士を重ねれば、RF電池1の設置面積を小さくできる。また、3つのコンテナ2,3,4を互いに間隔を空けて同一平面上に配置する場合(以下、平面タイプということがある)に比較して、コンテナ同士の接触面積Aを大きくできる。そのため、平面タイプにおける3つのコンテナ2,3,4の合計表面積Sa(各コンテナ2,3,4の表面積の合計)に比較して、コンテナ同士を重ねたときの3つのコンテナ2,3,4の合計表面積Sbを接触面積Aの分だけ小さくできる。合計表面積Sbは、「上記合計表面積Sa-上記接触面積A」で求められる。そのため、「{1-(合計表面積Sb)/(合計表面積Sa)}×100」で求める表面積削減率Sc(%)を大きくし易い。それにより、外部環境による電解液の温度変化を抑制するために各タンクコンテナ3,4の外周の露出箇所を覆う断熱材を削減できる上に、断熱材を覆う作業を簡略化できてコストを低減できる。
 3つのコンテナ2、3、4を重ねる場合、段数を2段とし、下側に2つのタンクコンテナ3、4を配置して、上側に1つの電池機器コンテナ2を、正極タンクコンテナ3及び負極タンクコンテナ4の少なくとも一方の屋根上に重なるように載置することが好ましい。このように、比較的重いタンクコンテナ3、4を下にし、その上に比較的軽い電池機器コンテナ2を載置することで、上下を逆に重ねる場合に比較して、重心が下側にあるため、これらのコンテナ2、3、4を重ねてもRF電池1を安定して設置できる。その上、下側のコンテナ(タンクコンテナ3、4)の変形を抑制できる。
 上側の電池機器コンテナ2は、下側の正極タンクコンテナ3と負極タンクコンテナ4との間を跨ぎ、正極タンクコンテナ3と負極タンクコンテナ4の両屋根上に均等に載置することが好ましい。均等に載置とは、RF電池1を上面視したとき、電池機器コンテナ2と正極タンクコンテナ3との重複面積と、電池機器コンテナ2と負極タンクコンテナ4との重複面積とが実質的に同一であることを言う。そうすれば、電池機器コンテナ2を両タンクコンテナ3、4の屋根上に安定して載置できる。コンテナ2、3、4の重ね方は、RF電池1の設置箇所などに応じて適宜選択でき、例えば、交差タイプ(図1、図2)、平行タイプ(図3、図4)、同一直線タイプ(図5、図6)などが挙げられる。
   (交差タイプ)
 交差タイプは、図1、図2に示すように、2つのタンクコンテナ3、4をその長手方向が互いに平行となるように左右に並列配置し、1つの電池機器コンテナ2を2つのタンクコンテナ3、4の屋根上に、電池機器コンテナ2の長手方向と2つのタンクコンテナ3、4の長手方向とが交差(ここでは直交)するように載置する重ね方である。詳しくは後述するが、この交差タイプは、上記平面タイプに比較して、3つのコンテナの接触面積Aを大きくし易いため、合計表面積Sb小さくし易く、表面積削減率Scを大きくし易い。このタイプの場合、2つのタンクコンテナ3、4の側面同士が互いに対向する。
 下側の2つのタンクコンテナ3、4は、互いに対向する側面同士の間に所定の間隔を空けて配置することが好ましい。所定の間隔とは、両タンクコンテナ3、4の屋根上に載置する1つの電池機器コンテナ2が両タンクコンテナ3、4における並列方向の外側にはみ出さないような間隔が挙げられる。特に、上記間隔は、RF電池1を上面視したとき、電池機器コンテナ2の各短辺と各タンクコンテナ3、4における並列方向の外側の長辺とが重なる程度の間隔とすることが好ましい。そうすれば、両タンクコンテナ3、4の輪郭線で囲まれる領域を、実質的に「(電池機器コンテナ2の長手方向に沿った長さ)×(両タンクコンテナ3、4の長手方向に沿った長さ)」とすることができる。そのため、RF電池1の設置面積を小さくできる。その上、電池機器コンテナ2の底部の一部(長手方向の中央部分)をタンクコンテナ3、4の屋根上に重ねられないものの、電池機器コンテナ2の四つの角部をタンクコンテナ3、4の屋根上に載置できる。通常、コンテナの角部は強度が高いため、電池機器コンテナ2の4つの角部を2つのタンクコンテナ3、4の屋根上に載置できることで、電池機器コンテナ2を2つのタンクコンテナ3、4の屋根上に安定して載置できる。
 電池機器コンテナ2における2つのタンクコンテナ3、4の屋根上での載置箇所は、タンクコンテナ3、4の長手方向の中央でもよいが、図1(図2)に示すようにタンクコンテナ3、4の長手方向の一方の端面部側(図1、図2の紙面奥側)が好ましい。即ち、電池機器コンテナ2をタンクコンテナ3、4の長手方向の一端側に寄せて載置する。具体的には、RF電池1を上面視したとき、2つのタンクコンテナ3、4の短辺上に電池機器コンテナ2の長辺が重なるように配置する。このとき、各タンクコンテナ3、4における並列方向の外側の長辺上に電池機器コンテナ2の各短辺が重なる。それにより、電池機器コンテナ2の4つの角部のうち2つの角部と、各タンクコンテナ3、4の1つの角部とを重ねられるため、電池機器コンテナ2を2つのタンクコンテナ3、4の屋根上に安定して載置できる。
 その上、作業者が電池機器コンテナ2の一方の側面(図1、図2の紙面手前側)から電池機器コンテナ2内にアクセスし易く、電池機器コンテナ2内のメンテナンスを容易に行える。電池機器コンテナ2を2つのタンクコンテナ3、4の長手方向の一端側(図1、図2の紙面奥側)に寄せて載置しているため、2つのタンクコンテナ3、4の長手方向の他端側の屋根上には、作業者が載るスペースを広く確保できるからである。両タンクコンテナ3、4の屋根上には、作業者が作業し易いように、両タンクコンテナ3、4を架け渡す作業床を配置することが好ましい。電池機器コンテナ2の他方の側面(図1、図2の紙面奥側)から電池機器コンテナ2内にアクセスする場合には、電池機器コンテナ2の他方の側面側に所定の高さの足場(作業台)を仮設すればよい。
 なお、電池機器コンテナ2の上記載置箇所を2つのタンクコンテナ3、4の長手方向の中央とする場合には、電池機器コンテナ2の両側面からその内部にアクセスできる。この場合、補強柱を各タンクコンテナ3、4における電池機器コンテナ2の短辺に重なる箇所に設けることが好ましく、特に、各タンクコンテナ3、4における電池機器コンテナ2の角部に重なる箇所に設けることが好ましい。各タンクコンテナ3、4の長手方向の中央は、その角部ほど強度が高くないためである。
 各タンクコンテナ3,4の外周の露出箇所は、断熱材(図示略)で覆うことが好ましい。そうすれば、外部環境による電解液の温度変化を抑制し易い。例えば、各タンクコンテナ3,4における電池機器コンテナ2と重複する領域を除く外周(互いに対向する側面を含む)を断熱材(図示略)で覆うことが好ましい。
   (平行タイプ)
 平行タイプは、図3、図4に示すように、2つのタンクコンテナ3、4をその長手方向が互いに平行となるように並列配置し、1つの電池機器コンテナ2を2つのタンクコンテナ3、4の屋根上に、電池機器コンテナ2の長手方向と2つのタンクコンテナ3、4の長手方向とが互いに平行となるように載置(所謂、俵積み)する重ね方である。詳しくは後述するが、この平行タイプは、上記交差タイプに比較して、3つのコンテナの接触面積Aを大きくできるため、合計表面積Sbを小さくし易く、表面積削減率Scを大きくし易い。このタイプの場合、上述の交差タイプと同様、2つのタンクコンテナ3、4の側面同士が互いに対向する。
 下側の2つのタンクコンテナ3、4は、上述の交差タイプとは異なり、互いに対向する側面同士の間に実質的に間隔を空けることなく互いの側面同士が実質的に全域に亘って接するように配置することが好ましい。そうすれば、RF電池1の設置面積を上述の交差タイプよりも更に小さくできる。2つのタンクコンテナ3,4の側面同士を接触させることで、2つのタンクコンテナ3,4の互いの間隔を空ける上記交差タイプに比較して、3つのコンテナ2,3,4の接触面積Aを大きくできる。その上、電池機器コンテナ2の底部の実質的に全域に亘る領域を両タンクコンテナ3,4と接触させられるので、電池機器コンテナ2の底部の一部のみ両タンクコンテナ3,4と接触させる上記交差タイプに比較して、3つのコンテナ2,3,4の接触面積Aを大きくできる。このように電池機器コンテナ2の底部の実質的に全域に亘る領域を両タンクコンテナ3、4の屋根上に重ねられるため、電池機器コンテナ2を安定して載置できる。また、作業者が電池機器コンテナ2の両側面からその内部にアクセスできるため、上述の交差タイプのような足場を仮設しなくてもよい。各タンクコンテナ3、4における並列方向の外側(互いの対向側とは反対側)の屋根上には、作業スペースを確保できるからである。そして、2つのタンクコンテナ3、4の互いに対向する側面同士の間の空間を低減できるため、その対向する側面には断熱材を配置しなくてもよく、断熱材を覆う作業を簡略化できる上に、コストを低減できる。
 例えば、図4のように両タンクコンテナ3、4のサイズを電池機器コンテナ2のサイズよりも大きくする場合、電池機器コンテナ2における2つのタンクコンテナ3、4の屋根上での載置箇所は、上述の平行タイプと同様、タンクコンテナ3、4の長手方向の一方の端面部側(図4の紙面奥側)が好ましい。具体的には、RF電池1を上面視したとき、2つのタンクコンテナ3、4の短辺上に電池機器コンテナ2の一方の短辺が重なるように配置する。この場合、各タンクコンテナ3、4の天井部における電池機器コンテナ2の他方の短辺に重なる箇所には、各天井部を補強する補強梁3b、4bを設けることが好ましい。更に、各タンクコンテナ3、4の両側面部における電池機器コンテナ2の他方の短辺に対応する箇所(補強梁3b、4bの同一平面上)には、それぞれ補強柱を設けることが好ましい。図4では、負極タンクコンテナ4の一方の側面部における補強柱4cのみ示しており、その他方の側面部(正極タンクコンテナ3との対向側)における補強柱と正極タンクコンテナ3の両側面部における補強柱とは図示を省略している。
 なお、2つのタンクコンテナ3、4の屋根上における長手方向の中央に電池機器コンテナ2を載置する場合、各タンクコンテナ3、4の天井部には、電池機器コンテナ2の各短辺が重なる箇所に補強梁を設けることが好ましい。更に、各タンクコンテナ3、4の両側面部には、電池機器コンテナ2の各短辺に対応する箇所にそれぞれ補強柱を設けることが好ましい。
   (同一直線タイプ)
 同一直線タイプは、図5、図6に示すように、2つのタンクコンテナ3、4をその長手方向が同一直線状に並ぶように直列に配置し、1つの電池機器コンテナ2を2つのタンクコンテナ3、4の屋根上に、電池機器コンテナ2の長手方向と両タンクコンテナ3、4の長手方向とが同一直線状に並ぶように載置する重ね方である。詳しくは後述するが、この同一直線タイプは、上記交差タイプに比較して、3つのコンテナの接触面積Aを大きくできるため、合計表面積Sbを小さくし易く、表面積削減率Scを大きくし易い。このタイプの場合、2つのタンクコンテナ3、4の端面同士が互いに対向する。3つのコンテナ2、3、4はその長手方向が全て同一直線状に並ぶ。
 下側の2つのタンクコンテナ3、4は、上述の平行タイプと同様、各タンクコンテナ3、4の端面同士の間に実質的に間隔を空けることなく互いの端面同士が実質的に全域に亘って接するように配置することが好ましい。そうすれば、上述の平行タイプと同様、RF電池1の設置面積を小さくできる。2つのタンクコンテナ3,4の端面同士を接触させる上に、電池機器コンテナ2の底部の実質的に全域に亘る領域を両タンクコンテナ3,4と接触させられる。よって、2つのタンクコンテナ3,4の互いの間隔を空けると共に電池機器コンテナ2の底部の一部のみ両タンクコンテナ3,4と接触させる上記交差タイプに比較して、3つのコンテナ2,3,4の接触面積Aを大きくできる。このように電池機器コンテナ2の底部の実質的に全域に亘る領域を両タンクコンテナ3、4の屋根上に重ねられるため、電池機器コンテナ2を安定して載置できる。2つのタンクコンテナ3、4の互いに対向する端面同士の間の空間を低減できるため、その対向する端面には断熱材を配置しなくてもよい。作業者が電池機器コンテナ2の両側面からその内部にアクセスする場合には、足場を仮設するとよい。
  [コンテナ間の電解液の循環形態]
 RF電池1は、電池機器コンテナ2と各タンクコンテナ3、4との間で各極電解液を循環させる各極循環路を備える。各極循環路は、図7、図8(適宜図9、図10)に示すように、各極供給導管231、241及び各極排出導管232、242と、各極往路管31、41及び各極復路管32、42と、接続構造5とを備える。本例では、電池機器コンテナ2の底部を構成する底板2bと各タンクコンテナ3、4の天井部を構成する天板3u、4uの互いに重なる箇所と、その重なる箇所に対応する各極電解液タンク30、40の天井部を構成する天板30u、40uとには、各循環路を挿通する貫通孔が形成されていて、両貫通孔同士は、互いに臨むように重複している(図7、図8)。
   (各極供給導管・各極排出導管)
 各極供給導管231、241は、各極電解液を各極セル202、203に供給し、各極排出導管232、242は、各極電解液を各極セル202、203から排出する。各極供給導管231、241及び各極排出導管232、242は、本例では、電池機器コンテナ2内に配置されている。各極供給導管231、241の一端は、各極往路管31、41に接続され、各極供給導管231、241の他端は、各極セル202、203に接続される。各極排出導管232、242の一端は、各極セル202、203に接続され、各極排出導管232、242の他端は、各極復路管32、42に接続される。
   (各極往路管・各極復路管)
 各極往路管31、41は、各極電解液を各極供給導管231、241に送り、各極復路管32、42は、各極電解液を各極排出導管232、242から各極電解液タンク30、40内に戻す。各極往路管31、41及び各極復路管32、42は、本例では、各極電解液タンク30、40内から各タンクコンテナ3,4外に突出して設けられており、上記貫通孔を通って電池機器コンテナ2内に亘って配置されている。各極往路管31、41及び各極復路管32、42と各極電解液タンク30、40の貫通孔との間には、その間から液漏れしないようにその間を埋める介在部材(例えば、ゴムノズル)が設けられている。この各極往路管31、41及び各極復路管32、42は、その長手方向に位置ずれしないように、各タンクコンテナ3、4の天板3u、4uに固定される。この固定は、例えば、各極往路管31、41及び各極復路管32、42に取り付けたフランジ(図示略)を、各タンクコンテナ3、4の天板3u、4uにおける貫通孔の周囲にネジ止めすることで行える。
 各極往路管31、41の一端面部は、各極電解液タンク30、40内の各極電解液中に開口する。各極往路管31、41の一端面部の高さ方向に沿った位置は、各極電解液タンク30、40の最低液面レベル(図示略)よりも下方とする。各極往路管31、41の他端面部は、本例では電池機器コンテナ2内で各極供給導管231、241に接続される。このように、各極往路管31、41と各極供給導管231、241との接続箇所(接続構造5)は、本例では電池機器コンテナ2内に配置される。
 各極復路管32、42の一端面部は、各極電解液タンク30、40の気相部分に開口する。各極復路管32、42の一端面部の高さ方向に沿った位置は、各極電解液タンク30、40の最高液面レベル(図7~図9の二点鎖線)よりも上方とする。各極復路管32、42の他端面部は、本例では電池機器コンテナ2内で各極排出導管232、242に接続される。このように、各極復路管32、42と各極排出導管232、242との接続箇所(接続構造5)は、本例では電池機器コンテナ2内に配置される。
 各導管231、232、241、242、各極往路管31、41、及び各極復路管32、42の材質は、電解液と反応せず、電解液に対する耐性に優れる材料が挙げられる。具体的には、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)、及びゴムなどの材料が挙げられる。その他、各導管231、232、241、242、各極往路管31、41、及び各極復路管32、42は、金属製の管状部材と、その管状部のうち電解液との接触箇所を覆うコーティング層とを備える管を利用してもよい。管状部材は、例えば、ステンレス鋼管が利用できる。コーティング層の材料は、上述の樹脂やゴムが挙げられる。
   (接続構造)
 接続構造5は、各極供給導管231、241及び各極排出導管232、242のそれぞれと、各極往路管31、41及び各極復路管32、42のそれぞれとを接続する。正極側の各導管231,232と往復管31,32との両接続構造5の配置箇所と、負極側の各導管241,242と往復管41,42との両接続構造5の配置箇所とは、本例では、上述のように電池機器コンテナ2内としているが、特に限定されず、後述する変形例に示すように適宜選択できる。
 各極の接続構造5(各極往路管31、41と各極供給導管231、241との接続、各極復路管32、42と各極排出導管232、242との接続)は、着脱自在であることが好ましい。そうすれば、電池容量や電池出力などの設計変更を容易に行える。電池容量や電池出力などの設計変更が生じてコンテナ自体を交換する際、各管同士を容易に取り外せるからである。通常、電解液の流通管同士の接続は、融着などにより着脱できないように接続される。そのため、管同士を接続すると分解作業が非常に煩雑になり易い。
 各極の接続構造5は、伸縮自在であることが好ましい。そうすれば、各極往路管31、41と各極供給導管231、241とを接続、各極復路管32、42と各極排出導管232、242とを接続する際、管同士を位置合わせし易いため、管同士の接続作業を容易にできる。各極の接続構造5は、例えば、フレキシブルジョイントが利用できる。
 ここでは、接続構造5(フレキシブルジョイント)と各極供給導管231、241との間と、接続構造5(フレキシブルジョイント)と各極排出導管232、242との間のそれぞれには、各極の循環路を開閉するバルブ6を介在している。バルブ6の種類は、適宜選択でき、例えばバタフライバルブ、ゲートバルブ、グローブバルブ、ボールバルブ、ダイヤフラムバルブなどが挙げられる。
 〔電池機器コンテナの収納部材〕
 電池機器コンテナ2の内部には、上述したように、電池セル200、正極循環機構230、及び負極循環機構240が収納される(図9)。
  [電池セル]
 電池セル200は、水素イオンを透過させる隔膜201で正極セル202と負極セル203とに分離されている(図10、図11)。正極セル202には、正極電極204が内蔵され、正極循環機構230により正極電解液が循環し、負極セル203には、負極電極205が内蔵され、負極循環機構240により負極電解液が循環する。
  [セルスタック]
 電池セル200は、通常、図9、図10、及び図11の下図に示すセルスタック250と呼ばれる構造体の内部に形成される。セルスタック250の数は、単数でもよいし複数でもよい。本例では、セルスタック250の数が2つの場合を例示している(図9)。セルスタック250の数を単数とする場合、セルスタック250の配置箇所は、電池機器コンテナ2の長手方向の中央が好ましい。セルスタック250の数を複数とする場合、複数のセルスタック250は、電池機器コンテナ2の長手方向の中央を挟んで対称の位置に配置することが好ましい。そうすれば、電池機器コンテナ2の重心が偏ることを抑制できる。
 各セルスタック250は、サブスタック251(図11の下図)と呼ばれる積層体を、その両側から2枚のエンドプレート253で挟み込み、両エンドプレート253を締付機構254により締め付けることで構成されている。図11の下図では、複数のサブスタック251を備える形態を例示している。サブスタック251は、図10、及び図11の上図に示すように、双極板211及びその外周縁部を囲む枠体212を有するセルフレーム210、正極電極204、隔膜201、及び負極電極205を、この順番で複数積層してなり、その積層体の両端に給排板252(図11の下図(図10では省略))が配置される。隣接するセルフレーム210の双極板211の間に一つの電池セル200が形成され、双極板211を挟んで表裏に、隣り合う電池セル200の正極電極204(正極セル202)と負極電極205(負極セル203)とが配置される。セルフレーム210の枠体212は、電池セル200の内部に電解液を供給する給液マニホールド213及び給液スリット214と、電池セル200の外部に電解液を排出する排液マニホールド215、及び排液スリット216とを有する。各枠体212間には、環状のシール溝にOリングや平パッキンなどの環状のシール部材220が配置され、電池セル200からの電解液の漏洩を抑制している。
  [正極循環機構・負極循環機構]
 正極循環機構230及び負極循環機構240はそれぞれ、正極供給導管231及び負極供給導管241と、正極排出導管232及び負極排出導管242と、正極ポンプ233及び負極ポンプ243とを備える(図9)。各極供給導管231、241及び各極排出導管232、242は上述した通りである。
   (各極ポンプ)
 各極ポンプ233、243は、各極電解液を循環させる。具体的には、充放電を行う運転時、各極ポンプ233、243により、各極電解液は、各極電解液タンク30、40から各極往路管31、41と各極供給導管231、241とを流通して各極セル202、203に供給され、各極セル202、203から各極排出導管232、242と各極復路管32、42とを流通して各極電解液タンク30、40に排出されることで各極セル202、203に循環される。充放電を行わない待機時、各極ポンプ233、243が停止され、各極電解液は循環されない。各極ポンプ233、243の種類は、適宜選択でき、例えば自吸式ポンプが利用できる。各極ポンプ233、243は、本例では各極供給導管231、241の途中に設けられている。この正極ポンプ233と負極ポンプ243とは、電池機器コンテナ2の長手方向の中央を挟んで対称の位置に配置することが好ましい。そうすれば、電池機器コンテナ2の重心が偏ることを抑制できる。
  [その他]
 電池機器コンテナ2の内部には、更に、制御部260、熱交換器270などを収納できる。
   (制御部)
 制御部260は、正極循環機構230、及び負極循環機構240における各極電解液の循環を制御する。この制御部260は、具体的には、各極循環機構に備わる各極ポンプを制御するポンプ制御部を有する。制御部260は、例えば、コンピュータなどが利用できる。なお、制御部260は、3つのコンテナ2~4の外に配置してもよい。
   (熱交換器)
 熱交換器270は、各極電解液を冷却する。各極電解液の冷却は、自然放冷による冷却でもよいし、別途設けられたファンなどの冷却機構(図示略)による強制冷却でもよい。本例では、熱交換器270の数を複数(2つ)とし、各極電解液を個々に冷却する。各熱交換器270の配置箇所は、本例では各極排出導管232、242の途中としているが、各極供給導管231、241の途中としてもよい。各極電解液は、電池反応に伴い発熱するため、各熱交換器270の配置箇所を各極排出導管232、242の途中とすることで、各極電解液を良好に冷却できる。正極電解液を冷却する熱交換器270と負極電解液を冷却する熱交換器270とは、電池機器コンテナ2の長手方向の中央を挟んで対称の位置に配置することが好ましい。そうすれば、電池機器コンテナ2の重心が偏ることを抑制できる。
 〔各タンクコンテナの収納部材〕
 正極タンクコンテナ3及び負極タンクコンテナ4の内部にはそれぞれ、正極電解液タンク30及び負極電解液タンク40と、正極往路管31及び負極往路管41と、正極復路管32及び負極復路管42とが収納される。各極往路管31、41及び各極復路管32、42は上述した通りである。
  [各極電解液タンク]
 各極電解液タンク30、40は、箱状の容器で、その形状は、各タンクコンテナ3、4と同形状、ここでは直方体状である。各極電解液タンク30、40の大きさは、各タンクコンテナ3、4よりも少し小さい。各極電解液タンク30、40の構成材料は、上述の正極供給導管231などのコーティング層と同様の樹脂やゴムが挙げられる。各電解液タンク30、40への各極往路管31、41及び各極復路管32、42の接続は、各極往路管31、41及び各極復路管32、42と各極電解液タンク30、40の貫通孔との間を埋める上述の介在部材により行う。介在部材は、各極往路管31、41及び各極復路管32、42の長手方向に位置ずれしないように、各極往路管31、41及び各極復路管32、42に取り付けられる。
  [その他]
 各極タンクコンテナ3,4の内部には、更に、各極電解液タンク30、40の気相同士を連通する気相連通管(正極気相挿通管及び負極気相挿通管)や、各極電解液タンク30、40の気相の圧力を調整する圧力調整機構を収納できる(いずれも図示略)。正極気相挿通管の一端は、正極電解液タンク30の気相部分に開口し、負極気相挿通管の一端は、負極電解液タンク30の気相部分に開口している。正極気相挿通管の他端と負極気相挿通管の他端とは、一方のタンクコンテナ内、又は両タンクコンテナ3、4外で接続されている。この接続には、上述した接続構造5と同様の着脱自在な接続構造、更には伸縮自在な接続構造を採用できる。圧力調整機構は、各極電解液タンク30,40の気相の圧力変化に追従して膨張及び収縮する公知の圧力調整バッグが利用できる。圧力調整機構は、各極電解液タンク30、40の内外のいずれに設けられていてもよい。
  [設計変更の手順]
 RF電池1の設計変更は、例えば、次のようにして行える。
   (電池容量の変更)
 電池容量を増加(減少)させる場合、図1(図2)、図3(図4)、図5(図6)のそれぞれのRF電池1の両タンクコンテナ3、4のみを、図2(図1)、図4(図3)、図6(図5)に示すように、より大きな(小さな)タンクコンテナ3、4に交換する。まず、設置箇所に設置されているタンクコンテナ3、4の上の電池機器コンテナ2を、両タンクコンテナ3、4の上から両タンクコンテナ3、4と重ならない所定の位置に移動させる。次に、設置箇所を空けるために、設置されている両タンクコンテナ3、4を設置箇所から移動させる。次に、空いた設置箇所に、以前よりも大きな(小さな)両タンクコンテナ3、4を移動させる。そして、所定の位置に移動させた電池機器コンテナ2を、新たに設置した両タンクコンテナ3、4の上に載置する。各コンテナ自体の移動は、適当なクレーンなどを用いて行える。そして、各導管231、232、241、242と各極往路管31、41、及び各極復路管32、42とを電池機器コンテナ2内で接続構造5により接続して電解液の循環路を構築する(図7、図8)。
   (電池出力の変更)
 電池出力を増加(減少)させる場合、図1~図6のRF電池1の電池機器コンテナ2を、図示は省略するが、より大きな(小さな)電池機器コンテナ2に交換することが挙げられる。図1、図2に示すRF電池1の電池出力を増加(減少)させる場合、より大きな(小さな)電池機器コンテナ2を両タンクコンテナ3、4の上に載置する前に、両タンクコンテナ3、4同士の間の間隔を広げる(狭める)とよい。両タンクコンテナ3、4同士の間の間隔を広げる場合、両タンクコンテナ3、4の間における電池機器コンテナ2の下側には、電池機器コンテナ2を下から支持するために別途空のコンテナやコンテナと同様の支持強度を持つ適宜な架台を配置してもよい。図5、図6に示すRF電池1の場合には、両タンクコンテナ3、4の上に載置されている電池機器コンテナ2のみを交換するため、両タンクコンテナ3、4は移動させることなくそのまま使用可能である。その後の各管同士の接続は電池容量の変更と同様である。また、電池出力を増加は、電池機器コンテナ2のサイズを変更せず数を増加することで行える。更に、電池出力を増加は、3つのコンテナ2、3、4を一つの電池モジュールとし、電池モジュールの数を増加(増設)することで行える。
 詳しくは後述するが、複数の電池モジュールを備え、各電池モジュールが上記交差タイプ、上記平行タイプ、上記同一直線タイプのいずれの場合であっても、各電池モジュールが上記平面タイプである場合に比較して、コンテナ同士の接触面積Aを大きくできる。そのため、合計表面積Sbを小さくし易く、表面積削減率Scを大きくし易い。
 複数の電池モジュールの配置形態は、上記交差タイプ、上記平行タイプ、上記同一直線タイプのいずれの場合であっても、隣り合う電池モジュール同士の間に間隔を空けて配置してもよいし、隣り合う電池モジュール同士の間に実質的に間隔を空けることなく隣り合う電池モジュール同士が接触するように配置してもよい。
    〈交差タイプ〉
 上記交差タイプの電池モジュールを複数有する場合、その配置形態は、例えば、以下の(a)~(c)の3つの形態が挙げられる。
 (a)各電池モジュールを、タンクコンテナ3,4の並列方向に沿って配置する。
 (b)各電池モジュールを、タンクコンテナ3,4の並列方向及び上下方向の両方向に直交する方向に沿って配置する。
 (c)上記(a)及び上記(b)の両方とする。
 上記(a)の配置形態の場合、例えば、各電池機器コンテナ2の長手方向が同一直線状に並び、隣り合う電池モジュールにおける電池機器コンテナ2の端面同士が実質的に全域に亘って対向する(接する)ことが挙げられる。隣り合う電池モジュールにおけるタンクコンテナ3,4の側面同士は、実質的に全域に亘って対向する(接する)ことが挙げられる。
 上記(b)の配置形態の場合、例えば、各電池モジュールにおけるタンクコンテナ3,4のそれぞれの長手方向は同一直線状に並び、隣り合う電池モジュールにおけるタンクコンテナ3,4の端面同士は実質的に全域に亘って対向する(接する)ことが挙げられる。隣り合う電池モジュールにおける電池機器コンテナ2の側面同士は、実質的に全域に亘って接していてもよいし、実質的に全域に亘って対向するが、互いに接することなくその間に間隔が空いていてもよい。
    〈平行タイプ〉
 上記平行タイプの電池モジュールを複数有する場合、その配置形態は、例えば、上記交差タイプと同様、以下の(a)~(c)の3つの形態が挙げられる。
 (a)各電池モジュールを、タンクコンテナ3,4の並列方向に沿って配置する。
 (b)各電池モジュールを、タンクコンテナ3,4の並列方向及び上下方向の両方向に直交する方向に沿って配置する。
 (c)上記(a)及び上記(b)の両方とする。
 上記(a)の配置形態の場合、例えば、隣り合う電池モジュールにおけるタンクコンテナ3,4の側面同士が実質的に全域に亘って対向する(接する)ことが挙げられる。隣り合う電池モジュールにおける電池機器コンテナ2の側面同士は、実質的に全域に亘って対向しているが、その間に間隔が空いている。
 上記(b)の配置形態の場合、例えば、各電池モジュールにおける3つのコンテナ3,4のそれぞれの長手方向は同一直線状に並び、隣り合う電池モジュールにおける3つコンテナ2,3,4のそれぞれの端面同士が実質的に全域に亘って対向する(接する)ことが挙げられる。
    〈同一直線タイプ〉
 上記同一直線タイプの電池モジュールを複数有する場合、その配置形態は、例えば、以下の(a)~(c)の3つの形態が挙げられる。
 (a)各電池モジュールを、タンクコンテナ3,4の直列方向及び上下方向の両方向に直交する方向に沿って配置する。
 (b)各電池モジュールを、タンクコンテナ3,4の直列方向に沿って配置する。
 (c)上記(a)及び上記(b)の両方とする。
 上記(a)の配置形態の場合、例えば、隣り合う電池モジュールにおける3つのコンテナ2,3,4のそれぞれの側面同士が実質的に全域に亘って対向する(接する)ことが挙げられる。
 上記(b)の配置形態の場合、例えば、各電池モジュールにおける3つコンテナ2,3,4のそれぞれの長手方向は同一直線状に並び、隣り合う電池モジュールにおけるタンクコンテナ3,4の端面同士が実質的に全域に亘って対向する(接する)ことが挙げられる。隣り合う電池モジュールにおける電池機器コンテナ2の端面同士は、実質的に全域に亘って対向しているが、その間に間隔が空いている。
  [用途]
 実施形態1のRF電池1は、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池に利用できる。また、実施形態1のRF電池1は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした蓄電池として利用できる。
 〔作用効果〕
 実施形態1に係るRF電池1によれば、電池容量や電池出力などの設計変更を容易に行える。電池セル200などと正極電解液タンク30と負極電解液タンク40とを互いに異なるコンテナ2、3、4に収納しているからである。コンテナ自体の交換は容易であり、設計変更の必要な部材(電池セル200や各極電解液タンク30、40)の交換は、その部材を収納するコンテナ2、3、4自体を交換することで行える。タンクコンテナ3、4や電池機器コンテナ2自体をサイズの異なるコンテナ2、3、4に交換すれば、内部に収納される電解液量や電池セル数を変えられてRF電池1の電池容量や電池出力を変えられる。また、電池セル200などと正極電解液タンク30と負極電解液タンク40とを互いに異なるコンテナ2、3、4に収納していることで、設置レイアウトの自由度が高い。設計変更ではなく、経年劣化などにより電池セル200のみや各極電解液タンク30、40のみを交換する必要が生じた場合でも、その交換をコンテナ2、3、4自体を同じサイズのコンテナに交換することで容易に行える。
 《変形例》
 変形例のRF電池は、正極側の各導管231,232と往復管31,32との両接続構造5の配置箇所と、負極側の各導管241,242と往復管41,42との両接続構造5の配置箇所とを、電池機器コンテナ2内とせず、以下の(1)~(4)に示す位置とする点が、実施形態に係るRF電池1と相違する。変形例では、実施形態1との相違点を中心に説明し、同様の構成は説明を省略する。以下の説明では、正極側の上記両接続構造5の配置箇所を説明するが、負極側の上記両接続構造5の配置箇所は、正極側の上記両接続構造5の配置箇所と同様の位置とすることができる。
 (1)正極の各導管231,232と往復管31,32との両接続構造5は、図12や図13に示すように、3つのコンテナ2~4の外に配置されていてもよい。
 図12に示すように、電池機器コンテナ2の底板2b及び正極タンクコンテナ3の天板3uには、正極往路管31及び正極復路管32を挿通する貫通孔が形成されていない。電池機器コンテナ2の端面部や側面部を構成する端板や側板には、正極供給導管231及び正極排出導管232を挿通する貫通孔が形成される。正極タンクコンテナ3の側面部や端面部を構成する側板や端板には、正極往路管31及び正極復路管32を挿通する貫通孔が形成される。
 図13に示すように、電池機器コンテナ2の底板2bには、正極往路管31及び正極復路管32を挿通する貫通孔が形成されていない。電池機器コンテナ2の側板や端板には、正極供給導管231及び正極排出導管232を挿通する貫通孔が形成される。正極タンクコンテナ3の天板3uには、正極往路管31及び正極復路管32を挿通する貫通孔が形成される。
 図12、図13に示すように、正極往路管31は、正極タンクコンテナ3内から正極タンクコンテナ3の上記貫通孔を通って正極タンクコンテナ3外に引き出されて、接続構造5に接続される。正極供給導管231は、この接続構造5から電池機器コンテナ2の上記貫通孔を通って電池機器コンテナ2内に引き入れられる。正極排出導管232は、電池機器コンテナ2内から電池機器コンテナ2の上記貫通孔を通って電池機器コンテナ2外に引き出されて、接続構造5に接続される。正極復路管32は、この接続構造5から正極タンクコンテナ3の上記貫通孔を通って正極タンクコンテナ3内に引き入れられる。両接続構造5の配置箇所は、図12に示すように、電池機器コンテナ2の端板や側板の外側(正極タンクコンテナ3の側板や端板の外側)としたり、図13に示すように、電池機器コンテナ2の側板や端板の外側であって、正極タンクコンテナ3の天板3uの上方としたりすることができる。
 (2)正極の各導管231,232と往復管31,32との一方の接続構造5は、電池機器コンテナ2又は正極タンクコンテナ3の一方のコンテナ内に配置され、他方の接続構造5は、3つのコンテナ2~4外に配置されていてもよい。
 一方の接続構造5は、例えば、図14や図15に示すように、電池機器コンテナ2内に配置されていてもよいし、図示は省略するが、正極タンクコンテナ3内に配置されていてもよい。一方の接続構造5は、図14に示すように、正極供給導管231と正極往路管31とを接続する接続構造5としてもよいし、図15に示すように、正極排出導管232と正極復路管32とを接続する接続構造5としてもよい。
 図14(図15)に示すように、電池機器コンテナ2の底板2b及び正極タンクコンテナ3の天板3uには、正極往路管31(正極復路管32)を挿通する貫通孔が形成される。電池機器コンテナ2の端板や側板には、正極排出導管232(正極供給導管231)を挿通する貫通孔が形成される。正極タンクコンテナ3の側板や端板には、正極復路管32(正極往路管31)を挿通する貫通孔が形成される。
 図14に示すように、正極往路管31と正極供給導管231とは、上述の実施形態で図7を参照して説明した通りである。即ち、正極往路管31は、正極タンクコンテナ3内から正極タンクコンテナ3及び電池機器コンテナ2の上記貫通孔を通って電池機器コンテナ2内に引き出されて、接続構造5に接続される。正極供給導管231は、この接続構造5に接続されて電池機器コンテナ2内に配置される。正極排出導管232と正極復路管32とは、図12を参照して上述した通りである。
 図15に示すように、正極往路管31と正極供給導管231とは、図12を参照して上述した通りである。一方、正極排出導管232と正極復路管32とは、上述の実施形態で図7を参照して説明した通りである。即ち、正極排出導管232は、電池機器コンテナ2内に配置されて接続構造5に接続される。正極復路管32は、接続構造5から電池機器コンテナ2及び正極タンクコンテナ3の上記貫通孔を通って正極タンクコンテナ3内に引き出される。
 正極供給導管231(正極排出導管232)と正極往路管31(正極復路管32)との接続構造5の配置箇所は、図14(図15)に示すように、電池機器コンテナ2内とすることができ、正極復路管32(正極往路管31)と正極排出導管232(正極供給導管231)との接続構造5の配置箇所は、電池機器コンテナ2の端板や側板の外側(正極タンクコンテナ3の側板や端板の外側)とすることができる。
 (3)正極の各導管231,232と往復管31,32との両接続構造5は、図示は省略するが、正極タンクコンテナ3内に配置されていてもよい。
 (4)正極の各導管231,232と往復管31,32との一方の接続構造5は、図示は省略するが、電池機器コンテナ2内に配置され、他方の接続構造5が、正極タンクコンテナ3内に配置されていてもよい。
 《計算例1》
 電池モジュール数を1つとし、上記交差タイプ、上記平行タイプ、及び上記同一直線タイプのそれぞれの場合におけるコンテナ同士の接触面積A、合計表面積Sb、表面積削減率Scを算出した。ここでは、各タイプにおける3つのコンテナの組み合わせは、以下の7パターン(P1~P7)とした。積層する段数は2段であり、下側には2つのタンクコンテナを配置し、上側には1つの電池機器コンテナを、下側の両タンクコンテナの間を跨ぎ、両タンクコンテナの屋根上に均等に載置した。合計表面積Sbは、「上記平面タイプの合計表面積Sa-接触面積A」で求めた。表面積削減率Sc(%)は、「{1-(合計表面積Sb)/(合計表面積Sa)}×100」で求めた。その算出結果を表1に示す。
 P1:3つのコンテナが全て20フィートコンテナ
 P2:3つのコンテナが全て20フィートハイキューブコンテナ
 P3:電池機器コンテナが20フィートコンテナ、2つのタンクコンテナが40フィートコンテナ
 P4:電池機器コンテナが20フィートハイキューブコンテナ、2つのタンクコンテナが40フィートハイキューブコンテナ
 P5:3つのコンテナが全て40フィートコンテナ
 P6:3つのコンテナが全て40フィートハイキューブコンテナ
 P7:電池機器コンテナが20フィートハイキューブコンテナ、2つのタンクコンテナが45フィートハイキューブコンテナ
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの接触面積Aは、3つのコンテナの組み合わせがP1~P7のいずれであっても、上記平面タイプの接触面積に比較して大きい。上記平面タイプの接触面積は、0(ゼロ)であるからである。そのため、上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの合計表面積Sbは、3つのコンテナの組み合わせがP1~P7のいずれであっても、上記平面タイプの合計表面積Saに比較して小さい。即ち、上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの表面積削減率Scは、3つのコンテナの組み合わせがP1~P7のいずれであっても大きくできる。具体的には、表面積削減率Scを5%以上とすることができる。特に、上記平行タイプ及び上記同一直線タイプは、上記交差タイプに比較して、接触面積Aを大きくできるため、合計表面積Sbを小さくできて、表面積削減率Scを大きくできる。
 《計算例2》
 電池モジュール数を2~20の範囲で種々変更し、各電池モジュールが上記交差タイプ、上記平行タイプ、上記同一直線タイプのそれぞれの場合におけるコンテナ同士の接触面積A、合計表面積Sb、表面積削減率Scを算出した。各電池モジュールにおける3つのコンテナの組み合わせは、計算例1における上記P2と上記P4の2種類とした。各電池モジュールにおける3つのコンテナの組み合わせが上記P2の場合の算出結果を表2に示し、上記P4の場合の算出結果を表3に示す。
 各電池モジュールが上記交差タイプである場合、各電池モジュールを、タンクコンテナの並列方向に沿って配置する。具体的には、各電池機器コンテナの長手方向が同一直線状に並び、隣り合う電池モジュールにおける電池機器コンテナの端面同士が実質的に全域に亘って接する。隣り合う電池モジュールにおけるタンクコンテナの側面同士は、実質的に全域に亘って接する。
 各電池モジュールが上記平行タイプである場合、各電池モジュールを、タンクコンテナの並列方向に沿って配置する。具体的には、隣り合う電池モジュールにおけるタンクコンテナの側面同士が実質的に全域に亘って接する。隣り合う電池モジュールにおける電池機器コンテナの側面同士は、実質的に全域に亘って対向するが、互いに接することなく間隔が空いている。
 各電池モジュールが上記同一直線タイプである場合、各電池モジュールを、タンクコンテナの直列方向及び上下方向の両方向に直交する方向に沿って配置する。具体的には、隣り合う電池モジュールにおける3つのコンテナのそれぞれの側面同士が実質的に全域に亘って接する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2,表3に示すように、上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの接触面積Aは、各電池モジュールにおける3つのコンテナの組み合わせがP2,P4のいずれであっても、上記平面タイプの接触面積(=0)に比較して大きく、電池モジュール数が多くなるほど大きい。上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの合計表面積Sbは、各電池モジュールにおける3つのコンテナの組み合わせがP2,P4のいずれであっても、電池モジュール数が同数の場合、上記平面タイプの合計表面積Saに比較して小さい。上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの表面積削減率Scは、各電池モジュールにおける3つのコンテナの組み合わせがP2,P4のいずれであっても大きい。特に、上記交差タイプ、上記平行タイプ、及び上記同一直線タイプの表面積削減率Scは、電池モジュール数を多くするほど大きい。電池モジュール数を増加するほど、接触面積Aを大きくでき、合計表面積Sbを小さくできて、表面積削減率Scを大きくできる。積層タイプや電池モジュール数にもよるが、表面積削減率Scを50%以上とすることもできる。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 レドックスフロー電池(RF電池)
 2 電池機器コンテナ
  2b 底板
  200 電池セル
  201 隔膜
  202 正極セル
   204 正極電極
  203 負極セル
   205 負極電極
  210 セルフレーム
   211 双極板
   212 枠体
   213 給液マニホールド
   214 給液スリット
   215 排液マニホールド
   216 排液スリット
  220 シール部材
  230 正極循環機構
   231 正極供給導管
   232 正極排出導管
   233 正極ポンプ
  240 負極循環機構
   241 負極供給導管
   242 負極排出導管
   243 負極ポンプ
  250 セルスタック
   251 サブスタック
   252 給排板
   253 エンドプレート
   254 締付機構
  260 制御部
  270 熱交換器
 3 正極タンクコンテナ
  3u 天板
  3b 補強梁
  30 正極電解液タンク
  30u 天板
  31 正極往路管
  32 正極復路管
 4 負極タンクコンテナ
  4u 天板
  4b 補強梁
  4c 補強柱
  40 負正極電解液タンク
  40u 天板
  41 正極往路管
  42 正極復路管
 5 接続構造
 6バルブ

Claims (7)

  1.  正極電解液を貯留する正極電解液タンクを収納した正極タンクコンテナと、
     負極電解液を貯留する負極電解液タンクを収納した負極タンクコンテナと、
     正極電極、負極電極、及び隔膜を有する電池セルと、前記正極電解液を前記電池セルに供給して循環させる正極循環機構と、前記負極電解液を前記電池セルに供給して循環させる負極循環機構とを収納した電池機器コンテナとを備えるレドックスフロー電池。
  2.  前記正極循環機構及び前記負極循環機構はそれぞれ、前記各極電解液を前記電池セルに供給する各極供給導管、及び前記各極電解液を前記電池セルから排出する各極排出導管を有し、
     前記正極電解液タンク及び前記負極電解液タンクはそれぞれ、前記各極電解液を前記各極電解液タンクから前記各極供給導管に送る各極往路管、及び前記各極電解液を前記各極排出導管から前記各極電解液タンクに戻す各極復路管を有し、
     更に、前記各極供給導管及び前記各極排出導管のそれぞれと、前記各極往路管及び前記各極復路管のそれぞれとを着脱自在に接続する接続構造を有する請求項1に記載のレドックスフロー電池。
  3.  前記電池機器コンテナは、前記正極タンクコンテナ及び前記負極タンクコンテナの少なくとも一方の屋根上に載置される請求項1又は請求項2に記載のレドックスフロー電池。
  4.  前記電池機器コンテナは、前記正極タンクコンテナと前記負極タンクコンテナとの間を跨ぎ、前記正極タンクコンテナと前記負極タンクコンテナの両屋根上に均等に載置されている請求項3に記載のレドックスフロー電池。
  5.  前記正極タンクコンテナ及び前記負極タンクコンテナは、互いの間隔を空けると共に、互いに長手方向が平行となるように並列配置され、
     前記電池機器コンテナは、その長手方向が前記正極タンクコンテナ及び前記負極タンクコンテナの長手方向と直交するように載置される請求項4に記載のレドックスフロー電池。
  6.  前記正極タンクコンテナ及び前記負極タンクコンテナは、互いに長手方向が平行で、かつ互いの側面同士が接するように並列配置され、
     前記電池機器コンテナは、その長手方向が前記正極タンクコンテナ及び前記負極タンクコンテナの長手方向と平行となるように載置される請求項4に記載のレドックスフロー電池。
  7.  前記正極循環機構及び前記負極循環機構はそれぞれ、前記各極電解液を循環させる正極ポンプ及び負極ポンプを有し、
     前記電池機器コンテナ内を側面視したとき、前記正極ポンプと前記負極ポンプとは、前記電池機器コンテナの左右方向の中央を挟んで対称の位置に配置される請求項4から請求項6のいずれか1項に記載のレドックスフロー電池。
PCT/JP2017/039813 2017-11-02 2017-11-02 レドックスフロー電池 WO2019087366A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201780005366.XA CN109997269B (zh) 2017-11-02 2017-11-02 氧化还原液流电池
EP17882270.6A EP3706222A4 (en) 2017-11-02 2017-11-02 REDOX FLOW BATTERY
PCT/JP2017/039813 WO2019087366A1 (ja) 2017-11-02 2017-11-02 レドックスフロー電池
AU2017378609A AU2017378609B2 (en) 2017-11-02 Redox flow battery
KR1020187017369A KR102427531B1 (ko) 2017-11-02 2017-11-02 레독스 플로우 전지
US16/067,190 US10950879B2 (en) 2017-11-02 2017-11-02 Redox flow battery
JP2018524501A JP6948596B2 (ja) 2017-11-02 2017-11-02 レドックスフロー電池
TW107127068A TWI785084B (zh) 2017-11-02 2018-08-03 氧化還原液流電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039813 WO2019087366A1 (ja) 2017-11-02 2017-11-02 レドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2019087366A1 true WO2019087366A1 (ja) 2019-05-09

Family

ID=66331709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039813 WO2019087366A1 (ja) 2017-11-02 2017-11-02 レドックスフロー電池

Country Status (7)

Country Link
US (1) US10950879B2 (ja)
EP (1) EP3706222A4 (ja)
JP (1) JP6948596B2 (ja)
KR (1) KR102427531B1 (ja)
CN (1) CN109997269B (ja)
TW (1) TWI785084B (ja)
WO (1) WO2019087366A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012787A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018256897B2 (en) * 2017-04-28 2023-12-07 Ess Tech, Inc. Methods and systems for redox flow battery electrolyte hydration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176666A (ja) * 1988-01-06 1989-07-13 Meidensha Corp 電解液循環型電池
JPH02114454A (ja) * 1988-10-24 1990-04-26 Kansai Electric Power Co Inc:The 電解液循環型二次電池
JP2000030729A (ja) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd 電解液流通型二次電池
JP2005243326A (ja) * 2004-02-25 2005-09-08 Kansai Electric Power Co Inc:The ハイブリッド電源システム
JP2012099368A (ja) 2010-11-02 2012-05-24 Sumitomo Electric Ind Ltd セルスタック、セルフレーム、レドックスフロー電池、およびセルスタックの製造方法
JP2015032356A (ja) * 2013-07-31 2015-02-16 富士重工業株式会社 蓄電システム、及びこれを有する車両
WO2015029941A1 (ja) * 2013-08-26 2015-03-05 一般社団法人新エネルギー支援機構 電力エネルギーの輸送システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1051766B1 (en) * 1998-01-28 2001-08-08 Squirrel Holdings Ltd. Redox flow battery system and cell stack
US7740977B2 (en) * 2007-03-26 2010-06-22 Jd Holding Inc. Vanadium redox battery incorporating multiple electrolyte reservoirs
CN103022542A (zh) * 2012-12-13 2013-04-03 朝阳华鼎储能技术有限公司 一种液流框装置及含有该装置的钒电池
US10333159B2 (en) 2014-07-07 2019-06-25 Unienergy Technologies, Llc Charge capacity management in redox flow battery string
GB201511695D0 (en) * 2015-07-03 2015-08-19 Renewable Energy Dynamics Technology Ltd Improvements in redox flow batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176666A (ja) * 1988-01-06 1989-07-13 Meidensha Corp 電解液循環型電池
JPH02114454A (ja) * 1988-10-24 1990-04-26 Kansai Electric Power Co Inc:The 電解液循環型二次電池
JP2000030729A (ja) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd 電解液流通型二次電池
JP2005243326A (ja) * 2004-02-25 2005-09-08 Kansai Electric Power Co Inc:The ハイブリッド電源システム
JP2012099368A (ja) 2010-11-02 2012-05-24 Sumitomo Electric Ind Ltd セルスタック、セルフレーム、レドックスフロー電池、およびセルスタックの製造方法
JP2015032356A (ja) * 2013-07-31 2015-02-16 富士重工業株式会社 蓄電システム、及びこれを有する車両
WO2015029941A1 (ja) * 2013-08-26 2015-03-05 一般社団法人新エネルギー支援機構 電力エネルギーの輸送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706222A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012787A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池
JP7017251B2 (ja) 2019-07-04 2022-02-08 株式会社岐阜多田精機 レドックスフロー電池

Also Published As

Publication number Publication date
US10950879B2 (en) 2021-03-16
CN109997269B (zh) 2022-03-01
JP6948596B2 (ja) 2021-10-13
KR102427531B1 (ko) 2022-08-01
EP3706222A4 (en) 2020-11-18
US20190237781A1 (en) 2019-08-01
TW201919270A (zh) 2019-05-16
TWI785084B (zh) 2022-12-01
AU2017378609A1 (en) 2019-05-16
EP3706222A1 (en) 2020-09-09
CN109997269A (zh) 2019-07-09
KR20200081169A (ko) 2020-07-07
JPWO2019087366A1 (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
US8709629B2 (en) Systems and methods for redox flow battery scalable modular reactant storage
US11276870B2 (en) Flow battery system
WO2019087366A1 (ja) レドックスフロー電池
KR20200086758A (ko) 레독스 플로우 전지
JP5679520B2 (ja) レドックスフロー電池、
JP6677045B2 (ja) レドックスフロー電池用枠体、レドックスフロー電池、及びセルスタック
KR102393561B1 (ko) 레독스 플로우 전지
US20240186543A1 (en) Flow battery system
WO2023243163A1 (ja) タンク、及びレドックスフロー電池システム
JP2024520911A (ja) レドックス・フロー・バッテリ・システムの電極アセンブリおよび方法
WO2019030817A1 (ja) レドックスフロー電池、及びレドックスフロー電池の運転方法
WO2018134927A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524501

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017882270

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017882270

Country of ref document: EP

Effective date: 20180614

ENP Entry into the national phase

Ref document number: 2017378609

Country of ref document: AU

Date of ref document: 20171102

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE