WO2019086042A1 - 魔方、魔方控制方法以及终端 - Google Patents

魔方、魔方控制方法以及终端 Download PDF

Info

Publication number
WO2019086042A1
WO2019086042A1 PCT/CN2018/114150 CN2018114150W WO2019086042A1 WO 2019086042 A1 WO2019086042 A1 WO 2019086042A1 CN 2018114150 W CN2018114150 W CN 2018114150W WO 2019086042 A1 WO2019086042 A1 WO 2019086042A1
Authority
WO
WIPO (PCT)
Prior art keywords
cube
control device
tile
rubik
block
Prior art date
Application number
PCT/CN2018/114150
Other languages
English (en)
French (fr)
Inventor
刘涛
柯富茗
杨若虚
高丽娜
路涛
罗雯
汤晓庆
李芳�
王浩哲
林青
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2019086042A1 publication Critical patent/WO2019086042A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/08Puzzles provided with elements movable in relation, i.e. movably connected, to each other
    • A63F9/0826Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube

Definitions

  • the embodiments of the present invention relate to the field of electronic information technologies, and in particular, to a Rubik's cube, a Rubik's cube control method, and a terminal.
  • the Rubik's Cube is a smart toy made up of multiple small squares (also called tiles).
  • the cube has multiple faces. In the initial state, the colors on the faces of the small squares on the same side of the cube are the same, so that each face of the cube presents a single color, and the colors of the different faces are different.
  • An embodiment of the present application provides a cube, comprising: a plurality of tiles assembled to each other, and a mechanical shaft component that maintains rotation of the plurality of tiles;
  • the mechanical shaft member is provided with a central control device
  • the outer surface of the block is a controllable light-emitting surface
  • the block is provided with a block control device connected to the controllable light-emitting surface
  • the outer surface of the tile is the surface of the tile on the outer surface of the cube;
  • the central control device is configured to determine cube state information, the cube state information is used to represent a relative positional relationship between each tile in the cube, and the cube state information is sent to establish communication with the central control device.
  • a terminal that is connected to receive a control command sent by the terminal, where the control command is generated by the terminal based on the cube state information, and the control command is used to indicate a target light color corresponding to an outer surface of the tile Transmitting the control command to the block control device;
  • the block control device is configured to control, according to the control command, a target light color of light output by the controllable light-emitting surface on the tile to which the block control device belongs.
  • the embodiment of the present application further provides a Rubik's cube control method, which is applied to a terminal, and the terminal establishes a communication connection with the Rubik's Cube, the Rubik's cube includes a plurality of tiles, and the outer surface of the tile is controllable. a surface, wherein an outer surface of the tile is a face on the outer surface of the puzzle in the tile, the method comprising:
  • the control command is sent to the cube to control the light color of the light output by the outer surface of the cube.
  • the embodiment of the present application further provides a Rubik's cube control device, which is applied to a terminal, and the terminal establishes a communication connection with the Rubik's Cube, the Rubik's cube includes a plurality of tiles, and the outer surface of the tile is controlled to emit light. a surface, wherein an outer surface of the tile is a face on the outer surface of the puzzle in the tile, the device comprising:
  • An information acquiring unit configured to acquire Rubik's cube state information sent by the Rubik's Cube, where the Rubik's Cube state information is used to at least represent a relative positional relationship between each tile in the Rubik's Cube;
  • a command generating unit configured to generate a control command for the Rubik's Cube based on the Rubik's Cube state information, where the control command is used to indicate a target light color corresponding to an outer surface of the puzzle block of the Rubik's Cube;
  • a command sending unit configured to send the control command to the cube to control a light color of light output by an outer surface of the block of the cube.
  • the embodiment of the present application further provides a terminal, where the terminal establishes a communication connection with the cube, the cube includes a plurality of tiles, and an outer surface of the tile is a controllable light emitting surface, wherein the tile The outer surface is the surface of the tile on the outer surface of the cube, and the terminal comprises:
  • processor coupled to the processor, the memory having machine readable instructions executable by the processor, the processor executing the machine readable instructions to:
  • Rubik's Cube state information sent by the Rubik's Cube, where the Rubik's Cube state information is used to at least represent a relative positional relationship between each tile in the Rubik's Cube;
  • the control command is sent to the cube by the transmitter to control the light color of the light output by the outer surface of the cube.
  • the embodiment of the present application further provides a non-transitory computer readable storage medium storing machine readable instructions, the machine readable instructions being executable by a processor to perform the following operations:
  • the cube state information is at least used to represent a relative positional relationship between the tiles in the cube, wherein the cube includes a plurality of tiles, and an outer surface of the tile a controllable light-emitting surface, the outer surface of the tile being the surface of the tile on the outer surface of the cube;
  • the control command is sent to the cube to control the light color of the light output by the outer surface of the cube.
  • 1a is a schematic diagram of an implementation environment of a Rubik's cube control method provided by an embodiment of the present application
  • 1b is a schematic structural diagram of a Rubik's cube disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic view showing a connection structure between a central rotating shaft and a center block in a Rubik's cube;
  • Figure 3a shows a schematic cross-sectional view of the cube
  • Figure 3b is a schematic view showing the structure of a bus connecting part connecting the central control device and the surface center control device in the central block in the puzzle;
  • Figure 4a shows a schematic view of the bus contact points provided on the inner side of the central block of the third-order cube
  • Figure 4b is a schematic view showing a distribution of bus contact points on the second inner side of the rib block in the third-order cube in contact with the corner block;
  • Figure 4c is a schematic view showing a distribution of bus contact points on the inner side of the corner blocks in the third-order cube;
  • FIG. 5 is a schematic diagram showing a flow of data of a central control device transmitting data to a control device in each tile;
  • FIG. 6 is a schematic structural diagram of a central control device and a block control device in different types of tiles provided by an embodiment of the present application;
  • FIG. 7a is a schematic flowchart diagram of a Rubik's cube control method provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of a process interaction of an embodiment of a Rubik's cube control method according to the present application.
  • FIG. 8 is a schematic diagram showing the effect of the Rubik's cube after executing the color mixing command
  • Figure 9 is a view showing the relative positional relationship of at least three outer surfaces of at least three tiles satisfying the elimination condition in the game and the light colors of the at least three outer surfaces;
  • FIG. 10a is a schematic structural diagram of an embodiment of a Rubik's cube control device of the present application.
  • FIG. 10b is a schematic structural diagram of an embodiment of a Rubik's cube control device of the present application.
  • FIG. 10c is a schematic structural diagram of an embodiment of a Rubik's cube control device of the present application.
  • FIG. 11 is a schematic diagram showing the structure of an embodiment of a terminal of the present application.
  • the cube of the embodiment of the present application may be any form of Rubik's Cube, such as a third-order cube, a fourth-order cube, a fifth-order cube, and the like.
  • the Rubik's cube of the embodiment of the present application can control the color of each face in the tile; and the Rubik's cube can perform data communication with the terminal, and can control the color of each face in each tile in the Rubik's Cube based on the control command of the terminal.
  • the cube has a plurality of mutually assembled tiles and mechanical spindle components that maintain the plurality of tiles rotating.
  • each tile may have multiple faces.
  • any face that can be exposed on the outer surface of the Rubik's cube or on the outer surface of the Rubik's cube is called an outer surface, and
  • the face in the tile that can be in contact with other tiles is called the inner side.
  • the inner side of the block cannot be exposed on the outer surface of the cube.
  • a central control device is disposed in the mechanical axial component of the cube, and the outer surface of the block is a controllable light-emitting surface, and the block control device connected to the controllable light-emitting surface is disposed in the block.
  • the central control device is configured to determine cube state information, the cube state information is used to represent a relative positional relationship between each tile in the cube, and the cube state information is sent to a terminal that establishes a communication connection with the central control device; a control command sent by the terminal, the control command is generated by the terminal based on the cube state information, and the control command is used to indicate a target light color corresponding to an outer surface of the tile; and the control is sent to the block control device. command;
  • the block control device is further configured to control, according to the control command, a target light color of light output by the controllable light-emitting surface on the tile to which the block control device belongs.
  • the central control device may also generate a control command for controlling the outer surface of the tile to present the corresponding light color as needed, so that the block control device passes the execution central control device.
  • the control command controls the color of the light output by the controllable light-emitting surface on the outer surface of the tile.
  • the central control device can determine the relative positional relationship of each tile in the Rubik's cube in various ways.
  • the inner side of the tile is provided with a bus contact point that is connected to the block control device within the tile via the bus.
  • the bus contact point is used to connect the bus between the block control devices in different tiles.
  • the bus communication between the block control devices of any two blocks in contact with the bus contact points on the inner side faces.
  • the block control device in the tile may be used to determine the adjacent tile to which the adjacent block control device connected to the block control device is connected by the current time, and The tile to which the block control device belongs and the information of the adjacent tile are sent to the central control device.
  • the central control device may determine the cube state information according to the information of the tile and the adjacent tile to which the block control device belongs.
  • the block control devices in any two connected blocks can be connected through the bus contact points on the inner side of the two blocks, so that The block control means within the tile can communicate with the block control means within the adjacent tile to determine adjacent tiles adjacent to the tile.
  • the above is only an example of determining the relative positional relationship of each tile in the Rubik's cube.
  • the block control devices in each block can also communicate through wireless means such as Bluetooth, and determine the distance between each block based on technologies such as Bluetooth ranging, so that Based on the distance between each tile and the relative positional relationship between the six central tiles, the relative positional relationship of each tile in the current cube can be restored.
  • wireless means such as Bluetooth
  • the present application does not limit the specific manner in which the central control device determines the state information of the puzzle.
  • FIG. 1 is a schematic diagram of an implementation environment of a Rubik's cube control method according to an embodiment of the present application.
  • the terminal 20 is integrated with the Rubik's cube control device 21 provided by any embodiment of the present application, and is used to implement the Rubik's cube control method provided by any embodiment of the present application.
  • the terminal 20 and the cube 10 are connected by a network 30, and the network 30 may be a wired network or a wireless network.
  • the Rubik's cube is used as an example.
  • FIG. 1b a schematic diagram of the external structure of a third-order cube is shown.
  • the cube has six faces, and each face of the cube consists of faces of 9 tiles.
  • the Rubik's Cube has a total of 26 tiles. Specifically, the 26 tiles are respectively: 6 center blocks 110, 12 edge blocks 120, and 8 corner blocks 130.
  • the center tile 110 is located at the center of each face, the tiles located around the center tile 110 are ridge blocks 120, and the tiles located at each corner of the cube are angle tiles 130.
  • the Rubik's Cube has a mechanical axis device, wherein the mechanical axis device is used to support the assembly of 26 pieces, and to maintain the Rubik's Cube. The rotation of the tile.
  • the mechanical shaft device is a central rotating shaft
  • the central rotating shaft includes three mutually intersecting shafts
  • each shaft includes two two axial columns on the same straight line, and the three intersecting each other
  • the intermediate portions of the shaft columns are joined to each other to form a shaft connecting body of the central rotating shaft, and each shaft extends from the shaft connecting body to both ends, so that each shaft has two shaft columns capable of connecting the center blocks, and the top end of the shaft column (away from One end of the shaft connector has a shaft end, the end of the shaft is cylindrical, and the center block can be connected to the shaft end of the shaft.
  • FIG. 2 a schematic diagram of connecting six central blocks on a central rotating shaft is shown.
  • the central rotating shaft is connected to six shaft columns 220 through the shaft connecting body 210, wherein each shaft column
  • the shaft end of the 220 can be connected to a center block 110 such that the six center blocks are respectively connected to the six shaft ends corresponding to the six shaft columns 220 of the center shaft.
  • the shaft end of the shaft column 220 may be a cylindrical plug, and the center block has a slot on one side of the center shaft, so that the center is inserted into the slot of the center block to realize the center.
  • the connection of the block to the shaft column. As shown in FIG.
  • the center block 110 is directly coupled to the shaft post 220 of the center shaft so that the center block rotates as the shaft of the center block rotates.
  • the center block has 5 faces (or 5 planes), and the 5 faces are respectively 1
  • each of the rib pieces 120 has a first protruding connecting body, and the rib piece blocks and the center piece piece connected to the central rotating shaft can be assembled and assembled to each other through the first protruding connecting body on the rib piece.
  • a structural schematic view of a first male connector 124 in the rib block 120 is shown in FIG. 4b.
  • the rib piece can be embedded between the two center blocks by the first protruding connecting body.
  • each rib block 120 has two outer surfaces and four inner sides.
  • the corner block Similar to the rib block, the corner block also has a second protruding connecting body which is at an apex angle of the corner block, through which the corner block and the rib can be The pieces are assembled together.
  • a schematic structural view of a second protruding connecting body 133 provided in the corner block 130 is shown.
  • the corner piece can be embedded between the three rib pieces by the second protruding joint.
  • first protruding connecting body and the second protruding connecting body are only for distinguishing the connection between the edge block and the corner block for realizing assembling the edge block or the corner block to the cube. body.
  • the outer surface of each block in the cube is set as a controllable light-emitting surface, and the controllable light-emitting surface has the function of displaying light of different colors, and can be controlled by a control signal.
  • the light color of the light output by the controllable light-emitting surface is such that the outer surface of the tile exhibits a corresponding color.
  • the color of the light that the controllable light emitting surface can output may include: red, yellow, blue, green, purple, white, and the like.
  • controllable light emitting surface may be formed by a Light Emitting Diode (LED), and a light emitting chip for outputting color light may be encapsulated inside the LED by controlling one or more of the LEDs.
  • the lighting of the light-emitting chip can realize that the light output by the LED exhibits different colors.
  • the inside of the shaft connector of the central axis of the cube is a cavity in which a central control device is disposed, and each block is internally provided with block control means, and each block control device is connected to each outer surface of the block to which the block control device belongs via a bus The control light surface is connected.
  • the block control device disposed inside the center block is referred to as a face center control device
  • the block control device disposed inside the edge block is referred to as an edge control device
  • the block control device disposed inside the corner block is referred to as an angle. Control device.
  • the central control device is configured to control the color of the light output by the controllable light-emitting surface of each of the puzzle blocks. For example, the central control device may issue a control signal to each block control device to instruct the block control device in the different tiles to control the switching state of the controllable light-emitting surface and the light color output by the control signal.
  • the assembly between the blocks in the cube is based on The relationship is set between the central control device and the block control device in the cube, and the bus connection relationship between the block control devices.
  • the central control device is only connected to the surface center control device via the bus, and each of the surface center control devices can also be connected to the edge control device disposed in the adjacent edge block of the central tile to which the face center control device belongs.
  • each of the edge control devices can also be connected to the corner control device in the corner block adjacent to the edge block in which the edge control device is located.
  • the central control device can transmit control signals (including control commands and various data) to the six face center control devices, and the face center control device can transmit the control signals to the currently connected edge control device, correspondingly
  • the control device can transmit the control signal to the angle control device connected to the edge control device via the bus, so that the control signal of the central control device is transmitted layer by layer, and the central control device controls all the block control devices in the puzzle.
  • the angle control device can transmit the report data that needs to be reported to the central control device to the edge control device, and the report data collected by the edge control device and the report data transmitted by the angle control device are transmitted to the face center control device, and the face center control is performed.
  • the device can also transmit the reported data transmitted by the edge control device and the reported data collected by the edge control device to the central control device, thereby realizing the layer-by-layer reporting of the data, so that the central control device can acquire the block in any one of the cubes.
  • the data reported in the control unit can also transmit the reported data transmitted by the edge control device and the reported data collected by the edge control device to the central control device, thereby realizing the layer-by-layer reporting of the data, so that the central control device can acquire the block in any one of the cubes.
  • the data reported in the control unit can also transmit the reported data transmitted by the edge control device and the reported data collected by the edge control device to the central control device, thereby realizing the layer-by-layer reporting of the data, so that the central control device can acquire the block in any one of the cubes.
  • the bus may include a communication line and an electrical circuit, so that data transmission and electrical signal transmission can be realized through the bus, thereby ensuring central control device and surface center control device, edge control device and angle
  • the data communication between the control devices can realize the power transmission between the central control device and the surface center control device, the edge control device and the angle control device.
  • the following describes the bus connection between the central control unit and the surface center control unit, the surface center control unit and the edge control unit, and the edge control unit and the angle control unit.
  • the bus connecting the central control device and the surface center control device is disposed inside the shaft column of the central rotating shaft.
  • the shaft column of the central rotating shaft may be an axially penetrating hollow cylinder, and a bus connecting end for connecting the central control device and the surface center control device is disposed inside the shaft column, and the two ends of the bus connecting end are respectively connected to the central control device.
  • Bus and face center control device bus is disposed inside the shaft column of the central rotating shaft.
  • the six central blocks corresponding to the six face center control devices are fixed in the relative position of the cube and are fixedly connected with the shaft column of the central shaft, no matter how the cube is rotated, the shaft block of the center block and the center shaft is connected. They are all connected in a stable manner, so that the bus connecting the central control device and the surface center control device in the shaft connection body passes through the inside of the shaft column of the central shaft, so that the central control device can be ensured during the rotation of the Rubik's cube.
  • the stable connection of the center control device ensures stable data communication and power transmission between the central control unit and the surface center control unit.
  • FIG. 3a a cross-sectional structural diagram of a cube is provided in an embodiment of the present application.
  • the cross-sectional view of Fig. 3a is taken as an example of a cross section of the cube from a central axis of the cube.
  • the cross section of the central axis 200 of the cube and the two intersecting axes of the central axis are shown.
  • the cross section of the four shaft columns 220 and the cross section of the shaft connecting body 210, and the cross sections of the four center blocks 110 respectively connected to the four shaft ends corresponding to the two shaft columns 220, and the embedded center spell can be seen.
  • a central control unit 310 is disposed within the cavity of the spindle connector 210, and a center center control device 320 is disposed within the center panel 110.
  • the two shaft columns 220 of each of the central rotating shafts are respectively connected with a central panel 110, and the central panel 110 is provided with a surface center control device 320, and the inside of the shaft column is hollow, so that A bus connecting the central control unit 310 and the surface center control unit 320 passes through the inside of the shaft post 220.
  • a bus connection member 330 can be disposed inside the shaft column, and the bus connection member can realize the central control device and The bus connection between the center control devices.
  • the bus connection component can provide a bus connection to the bus of the central control unit and the bus of the face center control device.
  • the bus connection component 330 may include: a coaxial ring stud and a stud plug.
  • the central control device and the surface center control device may pass through the coaxial ring stud and the stud plug.
  • Implement a bus connection Specifically, the coaxial annular stud has a slot, and the bus of the central control device can be connected to the bus contact of the inner wall of the slot of the coaxial annular stud, and the bus of the center of the center control device can be connected with the stud plug.
  • the bus contacts are connected such that when the stud plug is inserted into the coaxial ring stud, the bus contact contacts the bus contact to effect a bus connection of the central control unit to the face center control.
  • one end of the coaxial annular stud away from the slot mouth can be connected with the shaft connector, and the same stud plug is not inserted into the coaxial ring screw
  • One end of the column can be fixedly connected to the central block where the face center device is located.
  • FIG. 3b a schematic cross-sectional structural view of a coaxial annular stud and a stud plug is shown.
  • the coaxial annular stud 331 has a stud slot 332, and the stud plug 333 can be inserted.
  • the coaxial annular stud 331 is seated in the slot 332 to enable connection of the stud plug to the coaxial annular stud, and the stud plug can be rotated within the slot of the coaxial annular stud.
  • the inner wall of the slot of the coaxial annular stud is provided with a bus contact 334
  • the outer wall of the stud plug is also provided with a bus contact matching the bus contact 334 on the inner wall of the slot (not shown) Shown, after inserting the stud plug into the slot of the coaxial annular stud, the bus contact 334 on the stud plug contacts the bus contact on the inner wall of the slot of the coaxial annular stud.
  • a slot in the coaxial ring stud may be provided.
  • Other forms of bus contacts such as bus contacts 335 in Figure 3b, correspondingly, bus contacts (which are not shown in Figure 3b) that match the bus contacts 335 are also provided on the outer wall of the stud plug. .
  • any bus contact on the coaxial ring stud is connected to the bus of the central control device, and any bus contact on the stud plug is connected to the bus of the surface center control device, and the stud is The plug is inserted into the slot of the coaxial ring stud to enable a bus connection between the central control unit and the face center control unit.
  • the edge control device is disposed in the edge block, and the inventor has found through research on the cube that the center block is not in the rotated state.
  • the four inner sides are respectively in contact with one inner side of each of the four ribs, and two of the one ribs are respectively in contact with one inner side of each of the two central blocks; and, even in In the process of rotating the cube, at least one inner side of one rib is in contact with one inner side of one center block.
  • a bus contact point is disposed on each inner side surface of the center block, and a bus contact point on the inner side surface of the center block and a face center control in the center block are controlled.
  • the devices are connected by a bus.
  • each inner side surface which can be in contact with the central block in the rib block is also provided with a bus contact point, and a bus contact point on each inner side surface of the rib block which can contact the center block and the The rib control devices in the rib block are connected by a bus.
  • the bus contact point on the inner side of the rib block contacts the bus contact point on the inner side of the center block, thereby
  • the rib control means in the rib block is connected to the bus of the face center control means in the center block via the bus contact point on the inner side of the rib block.
  • the inner side surface of the rib block which can be in contact with the center block is referred to as the first inner side surface of the rib block, and the inner side surface of the rib block which can be in contact with the corner block is called the edge piece.
  • the second inner side of the block as seen in connection with Fig. 1b, has two outer surfaces, two first inner sides and two second inner sides.
  • FIG. 4a shows a schematic view of the bus contact points provided on the inner side of a single center block, as can be seen from FIG. 4a.
  • the center piece 110 has an outer surface 111 and four inner sides 112, wherein the four inner sides of the center block are provided with bus contact points 401 distributed in a line shape, so that each line has multiple The bus contact point increases the contactable area of the bus contact point in the inner side surface, thereby improving the stability of contact between the bus contact point on the inner side of the center block and the bus contact point on the inner side of the rib block.
  • a plurality of bus contact points distributed in a line shape are disposed on different sides of the center block, and bus contact points on different sides are isolated from each other.
  • the central tile shown in FIG. 4a can be regarded as a schematic diagram of the central tile in the top surface of the cube of FIG. 1b.
  • each inner side 112 of each central tile 110 is disposed.
  • the bus contact points on each inner side of the center tile are in contact with the inner side of one of the edge blocks.
  • the distribution form of the bus contact points on the first inner side surface of the rib block which can be in contact with the center block may be similar to the distribution form of the bus contact points on the inner side surface of the center block, so that the rib block
  • the bus contact point on the first inner side surface of the rib block and the bus contact point on the inner side surface of the center block can contact each other, thereby realizing the surface center control device and The bus connection between the edge control devices.
  • Bus contact points 403 distributed in a line shape are provided in the first inner side 122 of the rib block as shown in Fig. 4b.
  • the bus contact point on the inner side of the center block contacts the bus on the first inner side of the rib block
  • the point contact is such that the face center control device 320 is connected to the edge control device 340 via a bus.
  • the angle control device is disposed inside the corner block, the corner block has three outer surfaces and three inner sides, and the inventors have found that each corner is in a state where the cube does not rotate.
  • the three inner sides of the block are respectively in contact with one inner side of the different rib block; and in the Rubik's rotation state, each corner block also has at least two inner sides and an inner side of the rib block (ie, the first The two inner sides are in contact with each other such that the angular control means in the corner block and the edge control means in the edge block can be arranged to achieve a bus connection by the inner side of the corner block contacting the edge block.
  • a bus contact point may be disposed on the second inner side surface of the rib block contacting the corner block, and a bus contact point on the second inner side surface of the rib block and the rib block
  • the edge control devices are connected by a bus.
  • the bus contact points are provided on the four inner sides of the rib block.
  • bus contact points are also provided on the three inner side faces of the corner blocks, and the bus contact points provided on the inner side faces of the corner blocks are also connected to the angle control device in the corner blocks via the bus.
  • the ridge block of FIG. 4b can be regarded as a schematic diagram of the ridge block on the left side of the center block of the top surface of the cube in the cube shown in FIG. 1b.
  • the distribution of the bus contact points 402 on the second inner side 121 of the rib block 120 that can contact the corner blocks forms a plurality of semi-arc lines, and the plurality of semi-arc lines are arranged.
  • An end of the second inner side 121 near the corner block is secured to ensure that the bus contact point 402 on the second inner side 121 is more stably in contact with the bus contact on the inner side of the corner block.
  • the first inner side surface 122 of the rib block 120 capable of being tiled with the center of the face is provided with a bus contact point matching the inner side surface of the face center block, as shown in FIG. 4b, the ridge block 120
  • the bus contact points 403 disposed on the first inner side surface 122 are distributed in the same manner as the bus contact points on the inner side surface of the center block, and the bus contact points 403 and the second inner side surface 121 on the first inner side surface 122 are on the same.
  • the bus contact points 402 are distributed in different forms, and the outer surface 123 of the rib block 120 is a controllable light-emitting surface whose surface is not provided with a bus contact point.
  • FIG. 4c a schematic diagram of the distribution of bus contact points disposed on the inner side of the single corner block is shown.
  • the bus contact point 404 on the inner side 131 of the corner block 130 is also A number of semi-arc lines appear.
  • the bus contact point 404 on the inner side of the corner block is disposed on the inner side of the corner block toward the side of the cube center, that is, the approaching corner block is provided with the second protruding connector.
  • One side of the 133 this design is advantageous for increasing the firm contact of the bus contact points on the inner side of the corner block with the bus contact points on the second inner side of the rib block.
  • the angle control device in the corner block when the cube is not in the rotating state, can be matched with a certain edge by the bus contact point on either inner side of the corner block.
  • the bus contact points on the second inner side of the block are connected such that the angle control device can be connected to the edge control device in the edge block via the bus, so that the angular control device in the corner block can receive the edge control device for transmission.
  • the control signal transmits the data acquired by the angle control device to the edge control device.
  • the corner block is in contact with the second inner side of the rib block, thereby ensuring contact between the corner block and the bus contact point on the rib block, so that the corner
  • the angle control device within the tile can be connected to the edge control device in an edge block at any time via a bus.
  • the bus contact points may be set according to requirements, and only two blocks need to be ensured.
  • the bus contact points on the two inner sides of the contact can be interconnected.
  • a rib block has a first inner side surface that can be in contact with the center piece, and a second inner side surface that can be in contact with the corner piece, wherein the first inner side surface is disposed in the first piece
  • the manner in which the bus contact points on the inner side surface and the second inner side surface are distributed may be the same or different, and is not limited herein.
  • the central control device of the cube has a bus connection with the six face center control devices.
  • the central control device of the Rubik's Cube can issue data such as control commands to the six face center control devices.
  • the six face center control devices can also transmit the reported data to the central control device.
  • the six-face center control device of the Rubik's cube can realize the bus connection with the Rubik's 12 edge control devices, wherein each face center control device can have a bus connection with up to four edge control devices, of course, during the Rubik's cube rotation process, Since the center block may not be in contact with the four ribs at the same time, at this time, the rib control device of one face control device connected by the bus may be three or two. It can be understood that, as the Rubik's cube rotates, the four ridge blocks adjacent to the same center block at different times may be different, so that at different times, the ridge control device of the one-face center control device is also connected via the bus. In the case of FIG. 5, only when the cube does not rotate, any one of the surface center devices transmits a control command to the edge control device as an example.
  • the face center control device can transmit data such as control commands issued by the central control device to the edge control device having the bus connection relationship.
  • each edge control device can have a bus connection with the two angle control devices, and correspondingly, each angle control device can have a bus with the three edge control devices. connection.
  • each edge control device can also have at least one bus connection with one of the angle control devices, and each of the angle control devices can also have a bus connection with at least two of the edge control devices.
  • the edge control device can transmit data such as the control command to the angle control device having the bus connection with the edge control device after receiving the data such as the control command issued by the central control device.
  • each angle control device can have a bus connection with at least two edge control devices, thereby ensuring that each angle control device can receive data such as control commands issued by the central control device.
  • the central control device can transmit the control command downward through the plane center control device, so that the central control device can be in any of the cubes.
  • the control device issues a control command.
  • FIG. 5 is an example in which data such as a control command is sent from the central control device to each tile, but it can be understood that the control device in any tile needs to report data to the central control device. Then, the data can be reported in the reverse process of each layer data transmission process shown in FIG. 5.
  • each angle control device can have a bus connection relationship with the three edge control devices, and in the case where the cube is rotated, each angle control device can also be combined with at least two edge control devices. Has a bus connection relationship. It can be seen that each angle control device can send the report data to be reported to the at least one edge control device having the bus connection relationship, and after receiving the report data transmitted by the angle control device, the edge control device can transmit the report data to the report data. At least one face center control device connected to the edge control device, and the face center control device can transmit the report data of the angle control device to the central control device, thereby realizing reporting data layer by layer from the angle control device to the central control device .
  • the report data to be reported may be directly transmitted to at least one surface center control device having a bus connection relationship with the edge control device, and The report data of the edge control data is transmitted from the face center control device to the central control device.
  • angle control device and the edge control device having the bus connection relationship in the puzzle, the edge control device and the face center control device, and the face center control device and the central control device can mutually transmit data.
  • the central control module is configured to acquire a control command, where the control command carries an identifier of at least one target tile to be controlled in the cube, and at least one outer surface of the target tile to be controlled. An identification of an outer surface of the target, and the control command is used to indicate a target light color to be displayed on the outer surface of the target in the target tile; and transmit the control command to the at least one face center control device.
  • the color of the light to be displayed on the outer surface of the target indicated by the control command is referred to as the target light color.
  • control command may indicate a light output mode of the light color of the target outer surface in addition to the target light color that is required to be displayed on the outer surface of the target, and the light output mode may include: a light output mode.
  • the light output mode may be a lighting mode used when the light is output.
  • the manner in which the target outer surface displays the light color may be constant light, blinking, or the like.
  • the light output moment may be a moment of lighting the controllable light emitting surface of the target outer surface.
  • the light output timings of all the target outer surfaces may be the same or different, and may be set as needed.
  • the duration of the light duration may be the length of time during which the controllable light-emitting surface is illuminated.
  • the controllable light-emitting surface of the plurality of target outer surfaces may be required to sequentially output light, and each output light continues for a preset period of time. , lighting the controllable light surface of the outer surface of the next target.
  • the role of the control command may be different, and the number of identifiers of the target tile included in the control command, and the number of identifiers of the target outer surface to be controlled in the target tile may also be Differently, correspondingly, the color of the light corresponding to the outer surface of each target indicated in the control command may also be different.
  • the control command may be a restore command for restoring the puzzle to the original state.
  • all the tiles in the cube belong to the target tile to be controlled, and the outer surface in each tile is the outer surface to be controlled in the tile.
  • the control command includes a target light color corresponding to each outer surface in each tile.
  • the control command may be a color mixing command for controlling the Rubik's cube from the original state to the color mixing state, wherein the color mixing state may be considered to be that at least one outer surface is present in the Rubik's cube.
  • a plurality of colors specifically, a plurality of target outer surfaces on the same side of the cube, at least some of the target outer surfaces correspond to different target light colors.
  • the outer surface of the tile on the same outer surface of the Rubik's cube can be rendered different colors, thereby achieving the color mixing state of the Rubik's cube.
  • the color mixing command may use all the tiles in the cube as the target tile, and each outer surface of the tile is used as the target outer surface, and the color mixing command may indicate all the tiles in the cube.
  • the outer surface redisplays the color to achieve the color blending state achieved by the rotating cube.
  • the color mixing command may also use a partial tile as a target tile and use all or part of the outer surface of the target tile as the target outer surface, and by controlling the color change of some or all of the outer surfaces of the partial tile. Achieve the purpose of making the Rubik's cube in a state of color mixing.
  • the control command may be a rotation indication command indicating a rotation direction of the Rubik's cube
  • the rotation instruction command may use a part of the puzzle in the puzzle as the target tile, and the target tile may be in the target tile.
  • a portion of the outer surface or all of the outer surface serves as the target outer surface.
  • the control command determines the target outer surface of the target tile or the target tile
  • the user is prompted to rotate the cube by indicating that the target outer surface presents a special light color or a special light color display manner.
  • Direction to prompt the user how to restore the Rubik's Cube to its original state, thus playing the role of the Rubik's Cube teaching or quickly recovering the Rubik's Cube.
  • the special light color can be regarded as different from the original state of the Rubik's cube.
  • the colors of the six colors corresponding to the six faces of the Rubik's Cube for example, the light colors of the six faces of the Rubik's Cube are respectively, red, orange, yellow, Green, purple and white, then the special light color can be blue, gray and so on.
  • the special light color display mode can be different from the preset default light color display mode in the Rubik's cube.
  • the default light color display mode preset in the Rubik's cube can be always bright, then the special light color display mode can be the target spelling.
  • the plurality of target outer surfaces of the block are flashed synchronously or sequentially.
  • the control command indicates the target outer surface of the target tile that needs to be sequentially flashed in order, thereby prompting the user to rotate the target tile in the light blinking direction.
  • a rotation prompt command is generated that includes a target light color and a light output mode corresponding to the at least one target outer surface.
  • control command which are not limited herein.
  • control command carries the identifier of the target tile and the identifier of the target outer surface to be controlled in the target tile, but it can be understood that if the outer surface of each tile in the cube is In the case of a unique identifier, the light color corresponding to each outer surface of the tile may be directly indicated in the control command.
  • control command may carry the identifier of the at least one target outer surface to be controlled and the target outer surface correspondingly. The target light color.
  • the Rubik's Cube needs to know the relative positional relationship of each tile in the Rubik's Cube, that is, the central control device needs to obtain the information of the adjacent tiles adjacent to each tile, thereby obtaining the Rubik's Cube.
  • the relative positional relationship of each piece in the block In the embodiment of the present application, the adjacent blocks of the tiles are referred to as adjacent tiles, and it can be understood that at least one inner side of the tiles and the adjacent tiles are in contact with each other, thereby making the fight
  • the block has a bus connection with two block control devices within adjacent tiles.
  • the block control device in the tile acquires the identifier of the tile in which the block control device is located, and the adjacent tile of the tile in which the block control module is located.
  • the block control device can report the identifier of the tile in which the block control device is located and the identifier of the adjacent tile to the central control device.
  • the central control device can construct the relative positional relationship of each of the puzzle blocks according to each of the tiles and the adjacent tiles adjacent to each tile.
  • the block control device in the tile may actively report the tile in which the block control device is located and the information of the adjacent tile adjacent to the tile.
  • the block control device in the arbitrary tile can determine the adjacent block control device currently connected to the block control device via the bus, thereby determining An adjacent tile to which the adjacent block control device belongs is sent, and the tile to which the block control device belongs and the information of the adjacent tile are sent to the central control device.
  • the identifier of the tile to which the block control device belongs may be built in.
  • the block control device may acquire the phase by communicating with the block control device via the bus to connect the adjacent block control device.
  • the identifier of the adjacent tile to which the neighboring block control device belongs such that each block control device can acquire the identifier of the tile to which it belongs and the identifier of the adjacent tile.
  • each edge control device determines at least one corner tile adjacent to the edge block where the edge control device is located by the identifier of the corner tile reported by the at least one angle control device having the bus connection with the edge control device.
  • the edge control device can report the information of the edge block to which the edge control device belongs and the at least one corner block adjacent to the edge block to the face center control device; meanwhile, the face center control device can determine the current and the The surface center control device obtains the identification of the edge block to which the edge control device belongs by using at least one edge control device connected to the surface control device via the bus, thereby obtaining the center control of the face At least one edge block adjacent to the center tile to which the device belongs.
  • the center piece control device can report the center tile to which the face center control device belongs, the adjacent edge block of the center block, and at least one corner block adjacent to the edge block reported by the edge block to the corner block.
  • Central control unit Central control unit.
  • the central control device can determine the relative positional relationship of each of the puzzle blocks in the Rubik's cube according to the information of the adjacent tiles of each tile reported by the six-face center control device, thereby determining the shape exhibited by the Rubik's cube.
  • the Rubik's Cube can determine the target tile to be controlled and the target outer surface to be controlled in the target tile from the Rubik's Cube according to the required control command.
  • the relative positional relationship can reflect the relative position between the pieces in the Rubik's cube, so that according to the relative positional relationship between the pieces in the Rubik's cube, it can be determined which pieces are adjacent, and each of the Rubik's cubes Which outer surfaces of the tiles are formed by the surface. In this way, according to the relative positional relationship of each piece in the cube, and in combination with the specific requirements of the control command to be generated, the color of the light required to be presented in the target tile, the target outer surface in the target tile, and the target outer surface is determined.
  • the central control module uses all the tiles as the target tile, and the central control module can first determine the colors to be presented on the six outer surfaces of the cube, and then, according to The relative positional relationship of each piece in the cube at the moment, for each outer surface of the cube, determining which outer surfaces of the blocks in the cube are on the outer surface of the cube, and determining the outer surface in the cube
  • the color of the light output from the outer surface of the upper tile is the color that the outer surface of the cube represents.
  • the central control module can construct control commands that include the color of the light corresponding to each outer surface of each tile.
  • the control unit can transmit the control command to the edge control device having the bus connection, and the control command can be transmitted by the edge control device.
  • An angular control device having a bus connection to the edge control device is provided.
  • the target light color of the light outputted by the controllable light-emitting surface on the tile to which the block control device belongs is controlled according to the control command.
  • the block control device controls the controllable light emitting surface of the target outer surface to output the target corresponding to the target outer surface.
  • Light color For example, if the control command carries the identifier of the target outer surface 1 and the outer surface of the tile to which the block control device belongs includes the target outer surface 1, the block control device according to the target light color corresponding to the target outer surface 1 The light color of the light output by the controllable light emitting surface provided on the outer surface of the target is controlled.
  • the block control device controls, according to the control command, light of the light output by the controllable light-emitting surface corresponding to the target outer surface in the tile to which the block control device belongs. Output mode and light color.
  • the block control device needs to execute the control command, and the block control command needs to be forwarded to the outer surface of the tile in which the block control device is located.
  • Other block control devices are sufficient.
  • control command generated by the central control device of the Rubik's cube is described by taking the control command generated by the central control device of the Rubik's cube as an example.
  • control command can also be sent by the terminal to the central control device.
  • a control command is sent to the terminal through a mobile phone, a laptop, or the like.
  • the central control device is further configured to determine the Rubik's Cube state information, which is used to represent the relative positional relationship between the tiles in the Rubik's Cube, for example, Determining the cube state information according to the information of the tile and the adjacent tile to which each block control device belongs; transmitting the cube state information to the terminal that establishes a communication connection with the central control device, and receiving the control command sent by the terminal .
  • the cube state information may be determined by the central control device according to the tiles to which the block control device belongs and the information of the adjacent tiles, and the relative positional relationship of each tile in the cube is determined; The information of the adjacent tiles directly serves as the cube state information.
  • the process of generating the control command by the terminal is similar to the process of generating the control command by the central control device of the Rubik's cube, and details are not described herein; the process of controlling the Rubik's cube by the terminal will be specifically introduced in the form of a step flow.
  • FIG. 6 shows a composition between a central control device and a block control device in different types of tiles provided by an embodiment of the present application. schematic diagram.
  • the central control unit 610 includes a central processing module 611 and a battery module 612 connected to the central processing module via a bus.
  • the central processing module 611 is configured to acquire a control command, where the control command carries an identifier of at least one target tile to be controlled in the puzzle, and at least one target to be controlled in at least one outer surface of the target tile An identification of the surface, and the control command is used to indicate a target light color to be displayed on the outer surface of the target in the target tile; and transmit the control command to the at least one face center control device.
  • the process of obtaining the control command by the central processing module can refer to the related operations of the central control device to determine the control command, and details are not described herein again.
  • the battery module 612 is used to supply power to the central control unit, the surface center control unit, the edge control unit, and the angle control unit.
  • the battery module can be a rechargeable battery.
  • the battery module can supply power to the central control device and each block control device through a bus that communicates between each central control device and each block control device.
  • control command in the case that the control command is generated by the central control device, there may be multiple trigger conditions for triggering the central processing module of the central control device to generate the control command.
  • At least one control button connected to the central processing module in the central control device may be disposed on the central square block of the puzzle, and the central processing module may be triggered to generate different control by touching different control buttons. command.
  • the central control device may further include: an attitude sensing module 613 connected to the central processing module.
  • the attitude sensing module 613 is configured to sense the current posture offset information of the cube, and the posture offset information includes a deviation angle of the cube in the preset three mutually perpendicular coordinate directions. Taking the X, Y and Z axes of the space perpendicular to each other as an example, by obtaining the offset angle of the three coordinate axes of the Rubik's cube offset, the space pose of the Rubik's cube in space can be obtained, thereby facilitating the restoration of each face in the Rubik's cube in space. The orientation.
  • the spatial posture (or relative position of the space) in the space can be truly restored, thereby facilitating the central control device or the terminal.
  • the spatial posture or relative position of the space in the space
  • attitude sensing module is further configured to sense the motion posture information of the Rubik's cube, for example, whether the magic cube is in motion state, motion direction, and motion speed, and the like.
  • the attitude sensing module may include one or more of an acceleration sensor, a gyroscope, and the like for sensing a motion posture.
  • the central processing module may acquire the motion posture information of the Rubik's cube sensed by the gesture sensing module, and when determining that the current motion posture of the Rubik's cube meets the preset condition according to the motion posture information, Then, according to the correspondence between the motion posture and the command, a control command corresponding to the motion posture is triggered. For example, if the current motion posture conforms to the motion posture of the central processing module that triggers the cube to generate the restoration command, the central processing module generates a restoration command.
  • the central control module may include, in addition to the central processing module 611 and the battery module 612, a bus and a central processing module. 611 and a wireless communication module 614 connected to the battery module 612.
  • the wireless communication module 614 is configured to receive a control command sent by the terminal, and transmit the control command to a central processing module of the central control device, so that the central processing module can acquire the control command.
  • the control command may be any one or more of the aforementioned restoration command, color mixing command, and rotation instruction command.
  • the central processing module can also pass the wireless communication module.
  • the cube state information for characterizing the relative positional relationship of each tile in the cube is transmitted to the terminal.
  • the terminal needs to construct a virtual cube, and the constructed cube is consistent with the cube in the real environment, so that the terminal needs to obtain the cube in space.
  • the wireless communication module can also send the posture offset information and the motion posture information of the Rubik's cube sensed by the attitude sensing module to the terminal, so that the terminal determines the spatial relative position of the cube, and according to the cube.
  • the relative position of the space and the relative positional relationship of each piece in the Rubik's cube are used to construct a virtual cube.
  • control devices installed in different types of tiles.
  • the face center control device 620 can be connected to the central control device 610 via a bus. Only one face center control device to which the central control unit is connected is shown in Fig. 6, but it can be understood that in practical applications, the central control device can be fixedly connected to the bus of the four face center control devices. Correspondingly, the face center control device 620 can be connected to the four edge control devices 630 via a bus, and only the connection relationship between the face center control device and one edge control device is shown in FIG.
  • the face center control device 620 may include a first processing module 621, configured to acquire a control command transmitted by the central control device, and transmit the control command to the edge control device connected through the bus; The control command controls the outer surface of the center block where the surface center control device is located to output color light.
  • the identifier of the central tile where the face center control device 620 is located may be preset in the first processing module 621. If the control command includes the identifier of the center tile preset in the first processing module 621, It is stated that the control command includes a command for controlling the color of the light output from the outer surface of the center tile. In this case, the first processing module 621 can parse the target light color corresponding to the identifier of the center tile and the identifier of the outer surface in the center tile from the control command, and control the center tile. The outer surface outputs the target light color.
  • the first processing module 621 can also obtain the report data reported by the edge control device, and transmit the report data reported by the edge control device to the central control device.
  • the report data may include: the face center control device is connected through the bus. The identification of adjacent ribs transmitted by adjacent rib control devices, and the identification of adjacent corner slabs adjacent to adjacent ribs in which the adjacent rib control device is located, and the like.
  • a first light driving module 622 may be further included in the surface center control device 620.
  • the first processing module 621 sends a driving command to the first optical driving module 622 according to the control command, and the driving command is used to drive the controllable light emitting surface output on the target outer surface of the center tile and the The target color light corresponding to the outer surface of the target.
  • the first light driving module 622 drives the controllable light emitting surface on the target outer surface of the center tile to output the target color light according to the driving command.
  • the first light driving module 622 may also have various possibilities according to different controllable light emitting surfaces corresponding to the outer surface of the target. For example, when the controllable light emitting surface of the outer surface of the tile is composed of LED lights, the first The light drive module 622 can be an LED drive module.
  • the edge control device 630 can include a second processing module 631.
  • the second processing module 631 is configured to receive a control command transmitted by the plane center control device 620; the control command is transmitted to at least one corner control device 640 connected to the edge control device 630 via a bus; and according to the control command, The color of the light output by the outer surface of the edge block in which the edge control device 630 is located is controlled.
  • the second processing module 631 is further configured to determine an identifier of at least one adjacent corner tile connected to the edge block where the edge control device 630 is located, and the identifier of the edge tile and the adjacent corner The identification of the tile is reported to the face center control device 620 connected via the bus.
  • the edge control device 630 may further include: a second light driving module 632.
  • the second processing device 631 is further configured to send, according to the control command, a driving command to the second optical driving module 632, the driving command is used to instruct the second optical driving module 632 to drive the target outer surface in the edge block Illumination of the controllable light-emitting surface.
  • the second light driving module 632 is configured to drive, according to the driving command, a controllable light emitting surface output of the target outer surface of the edge block where the edge control device 630 is located corresponding to the target outer surface of the edge block Target light color.
  • the angle control device 640 can include a third processing module 641.
  • the third processing module 641 is configured to receive the control command transmitted by the edge control device 630 connected to the angle control device 640 via the bus; and control the corner block where the angle control device 640 is located according to the control command.
  • the surface outputs light color.
  • the third processing module 641 is further configured to report the identifier of the corner block where the angle control device 640 is located to the edge block connected to the angle control device 640 through the bus.
  • the angle control device 640 may further include: a third optical driving module 642.
  • the third processing module 641 is further configured to send, according to the control command, a driving command to the third optical driving module 642, where the driving command is used to instruct the third optical driving module 642 to drive the target of the corner tile. Luminescence of the controllable light-emitting surface on the outer surface.
  • the third light driving module 642 is configured to drive, according to the driving command, a controllable light emitting surface output of the target outer surface of the corner block where the corner control device 640 is located, corresponding to the target outer surface of the corner tile. Target light color.
  • processing modules of the control devices in different types of tiles are similar, only for the purpose of distinguishing, and the processing modules in the face center control device, the edge control device, and the angle control device are respectively referred to as a first processing module, a second processing module and a third processing module.
  • the function of the light driving module in different control devices is to drive the controllable light emitting surface on the block, just for the convenience of distinguishing, the surface center control device, the edge control device and the light drive module in the angle control device They are referred to as a first optical driving module, a second optical driving module, and a third optical driving module, respectively.
  • the cube is a third-order cube
  • the bus connection relationship between the central control device in the cube and the block control device in each tile and the data transmission process are introduced.
  • the central control device can also be compared with the cube.
  • the block control devices within the six central tiles that are fixed in position are connected by a bus, and the bus connection relationship between the block control devices within the tile is the same.
  • the block control device can be connected through a bus connected to the central control device.
  • the associated tile and the information of the adjacent tile are sent to the central control device; if the block control device is not directly connected to the central control device via the bus, the other block control device connected to the block control device via the bus can be The tile to which the block control device belongs and the information of the adjacent tile are forwarded to the central control device.
  • the central control device can transmit the control command via the bus to the block control device connected to the central control device (ie, the block control device within the six central tiles with fixed relative positions).
  • the block control device is further configured to forward the received control command to the destination block control device corresponding to the block control device, where the target block control device has a bus connection with the block control device in the magic cube, and is not oriented The block control device forwards the block control device of the control command.
  • the fifth-order cube has 8 corner blocks, 36 side blocks, and 54 center blocks.
  • 6 of the 54 center blocks are connected to the central rotating shaft, and the relative positions are fixed. Center block, the position of the other 48 center blocks can be moved.
  • the block control devices in the six central blocks and the block control devices in the other central blocks are also passed through the inner side.
  • the bus contacts are connected to the bus.
  • the central and the block blocks and the block control devices in the corner blocks and the corner blocks are also connected via the bus contacts on the inner side of the contact.
  • control commands of the central control unit are transmitted to the block control devices in the six central blocks connected to the central control unit.
  • the block control devices in the six central blocks transmit control commands to the central block through the bus to connect the other central block inner block control devices; and after the block control devices in the other central tiles receive the control command,
  • the control command is transmitted to the block control device in the edge block connected by the bus, and the block control device in the edge block transmits the control command to the block control device in the corner tile connected through the bus.
  • the above central control device realizes the bus connection through the block control device in the central block and the block control device in other blocks in the Rubik's cube. It can be understood that, in practical applications, the central control device can also communicate via wireless communication. It is connected to the block control device in each tile. For example, a Bluetooth module is disposed in the central control device and each block control device, and data communication between the central control device and each block control device is implemented through the Bluetooth module.
  • the central control module can directly send control commands to the respective block control devices; and each block control device determines the tile in which the block control device is located and the adjacent spelling After the block information, it can also be reported directly to the central control unit.
  • the Rubik's cube of the embodiment of the present application can be controlled by a terminal such as a mobile phone or a tablet computer.
  • the terminal After acquiring the Rubik's Cube state information sent by the central control device of the Rubik's Cube, the terminal generates a control command for the Rubik's Cube based on the Rubik's Cube state information, where the control command is used to indicate the target light color corresponding to the tile in the Rubik's cube; A control command is sent to the cube to control the target light color of the light output from the outer surface of the cube.
  • FIG. 7a is a schematic flowchart diagram of a Rubik's cube control method provided by an embodiment of the present application.
  • the Rubik's cube control method may be performed by a terminal, and the terminal establishes a communication connection with the Rubik's cube.
  • the Rubik's Cube includes a plurality of tiles, and the outer surface of the tile is a controllable light emitting surface, and the outer surface of the tile is The face of the block on the outer surface of the cube.
  • the method includes the following steps.
  • FIG. 7b a schematic diagram of a process interaction of an embodiment of a Rubik's cube control method of the present application is shown.
  • the method of this embodiment may include the following steps.
  • An application for controlling the Rubik's Cube may be run in the terminal.
  • the application is referred to as a Rubik's cube control application.
  • the control of the Rubik's Cube by the Rubik's Cube control application is merely an exemplary implementation.
  • the switch of the battery module of the central control device of the Rubik's cube is turned on to realize power supply to the central control device of the Rubik's cube, thereby starting the central control device.
  • a button for turning on the battery module may be disposed on the cube of the cube, and the power of the battery module may be turned on by touching the button.
  • the Rubik's Cube control application of the terminal sends a communication connection request to the central control device of the Rubik's Cube.
  • the central control device of the Rubik's cube establishes a communication connection with the terminal in response to the communication connection request.
  • the wireless communication module of the central control device can receive the communication connection request sent by the terminal, and the wireless communication module can establish a communication connection between the puzzle and the terminal under the control of the central control module in the central control device.
  • the above is an example of establishing a communication connection with the terminal after the Rubik's cube is started, but it can be understood that the Rubik's cube can establish a communication connection with the terminal at any time after the startup, or at any time after the Rubik's cube is started, that is, the Step S703 and step S704 can be performed at the Rubik's Cube control application of the terminal and at any time after the Rubik's cube is started.
  • the central control device of the Rubik's cube acquires the relative positional relationship of each tile in the Rubik's cube.
  • the central control device of the Rubik's cube determines an initial control command for controlling the Rubik's cube in the original state according to the relative positional relationship of each tile in the Rubik's cube.
  • the original state of the Rubik's cube can be considered as a color of each face of the Rubik's cube, and the colors of different faces are different.
  • the cube may be preset for The Rubik's Cube returns to the original state of the rule, so that after determining the relative positional relationship of each tile in the Rubik's Cube, the Rubik's Cube determines the color of the light to be presented on each side of the Rubik's Cube, and then according to the color of light required for each external surface of the Rubik's Cube. Determine the color of light that is required to be presented on the outer surface of the tile on each side of the cube.
  • the control command generated by the Rubik's Cube for controlling the Rubik's cube in the original state is referred to as an initial control command.
  • the central control device of the Rubik's cube sends the initial control command to the block control device in each block of the Rubik's cube to control the same face of the Rubik's cube to present the same light color, and the different faces of the Rubik's cube present different light colors.
  • steps S706 and S707 are merely an implementation manner of controlling the color of light that may be presented on the outer surface of each tile of the Rubik's cube when the cube is just started, but it is understood that The Rubik's cube and the terminal can establish a communication connection at any time. Therefore, after the Rubik's cube establishes a communication connection with the terminal, if the outer surface of each block of the Rubik's cube has already presented an initial light color, the central control device of the Rubik's cube is not required to be repeated to each The block control device transmits an initial control command, and therefore, the above steps S706 and S707 are optional steps.
  • the initial control command sent by the central control device of the Rubik's cube to each block control device of the Rubik's cube is only an implementation manner.
  • the relative positional relationship of each tile of the Rubik's cube may be directly sent.
  • the terminal After the terminal is given, the terminal sends a control command to the cube to control the color of the light on the outer surface of each block of the cube.
  • the central control device of the Rubik's cube acquires the Rubik's cube state information of the Rubik's cube at the current moment and the color of the light presented by each tile, and sends the Rubik's cube state information and the color of the light currently presented on the outer surface of each tile to the terminal.
  • the cube state information includes: a relative position relationship of each tile in the cube.
  • the relative positional relationship of each piece of the cube in the cube is described as an example.
  • the central control device of the Rubik's cube obtains the information reported by each block control device and the information of the adjacent tiles
  • the central control device of the puzzle may be based on the information of the adjacent tiles of each tile. Determining the relative positional relationship of each tile in the cube, and transmitting the relative position relationship as the cube state information to the terminal; or sending the information of the adjacent tile of each tile directly as the content of the cube state information to The terminal determines, by the terminal, the relative positional relationship of each of the tiles in the cube according to the information of the adjacent tiles of the respective tiles.
  • the cube state information may further include: a posture offset angle of the cube.
  • the attitude offset information is used to characterize the deviation angle of the cube in the preset three mutually perpendicular coordinate directions.
  • sending the information of the light color currently presented on the outer surface of each tile in the puzzle cube to the terminal is an exemplary implementation manner, which is applicable to the case where the cube sends the cube state information to the terminal for the first time, because the subsequent cube The color of the light corresponding to the outer surface of each of the tiles is controlled by the terminal. Therefore, when the cube sends the cube state information to the terminal, the light color corresponding to the outer surface of each tile at the current time of the cube is not required to be sent.
  • the terminal may not need to care about the color of the light currently presented on the outer surface of each tile in the cube. For example, if the terminal needs to control the outer surface of the tile on different faces in the cube to present different colors, the terminal only needs to determine. The relative positional relationship of each tile in the cube can be, therefore, it is an optional operation to send the information of the light color currently presented on the outer surface of each tile in the cube.
  • the Rubik's cube control application of the terminal constructs the same posture and appearance as the Rubik's cube according to the relative positional relationship of each tile in the Rubik's cube, the color of light presented by the outer surface of each tile, and the posture offset angle of the Rubik's cube.
  • the virtual cube The virtual cube.
  • the virtual cube includes a plurality of virtual tiles, and the plurality of virtual tiles have a one-to-one correspondence with the plurality of tiles in the cube, that is, each virtual tile represents a tile in the cube. And different virtual tiles represent different tiles in the cube.
  • the terminal can store the correspondence between each virtual tile and each tile in the cube.
  • each virtual tile in the virtual cube is consistent with the relative positional relationship of each tile in the cube
  • the posture offset information corresponding to the virtual cube is consistent with the posture offset information corresponding to the cube.
  • the terminal can control the color of the light presented by the outer surface of each virtual tile in the virtual cube.
  • the color of the light exhibited by the outer surface of the virtual tile is made to coincide with the color of the light exhibited by the outer surface of the tile corresponding to the outer surface of the virtual tile in the cube.
  • the virtual corner tile a1 in the virtual cube corresponds to the corner tile b1 in the cube
  • the first outer surface a11 of the virtual corner block a1 corresponds to the first outer surface b11 of the corner tile b1
  • the first The outer surface a11 coincides with the color of the light exhibited by the first outer surface b11.
  • the terminal can construct a virtual cube which is completely consistent with the cube in the real space, so that the relative positional relationship of each virtual tile in the virtual cube, the virtual tile, the orientation of the virtual cube, and the like can accurately reflect the cube.
  • the posture and appearance which facilitates subsequent determination of the control command against the Rubik's Cube according to the virtual Rubik's Cube.
  • the virtual cube may also be displayed in the display interface of the terminal. And if the displayed virtual cube is a two-dimensional graphic, the virtual cube displayed in the display interface is consistent with the cube seen by the user holding the cube in the real environment.
  • the Rubik's cube control application of the terminal determines, according to the virtual cube, the target outer surface of at least one target to be adjusted in the at least one target tile in the cube, and the target to be adjusted on the target outer surface of the target tile. Light color and generate control commands.
  • the control command carries an identifier of at least one target tile of the color to be adjusted in the cube, an identifier of the at least one target outer surface to be controlled in the target tile, and a target light color corresponding to each target outer surface.
  • control command may also only carry the identifier of the at least one target outer surface to be controlled in the puzzle and the outer surface of each target. Corresponding target light color.
  • the process of determining the control command according to the virtual cube may be: determining, from the virtual cube, the virtual tile to be controlled and the virtual outer surface to be controlled in the virtual tile, and correspondingly according to the virtual cube and the puzzle block. a relationship, determining a target tile corresponding to the virtual tile to be controlled, and a target outer surface in the target tile corresponding to the virtual outer surface to be controlled in the virtual tile, and determining a target light color corresponding to the virtual outer surface as the The target light color of the target outer surface corresponding to the virtual outer surface.
  • the terminal can directly determine at least one target outer surface to be controlled (or at least one target tile to be controlled from the outer surface corresponding to each tile of the cube based on the cube state information) At least one target outer surface) and a target light color corresponding to each target outer surface, and generate a control command.
  • the control command generated by the terminal may include several cases of the control command generated by the central control device.
  • the control command may be a restore command.
  • the user may send a restore command to the terminal by touching a designated button on the terminal to trigger the terminal to generate the restore command.
  • the terminal detects the restoration command, the plurality of outer surfaces corresponding to all the tiles in the cube can be determined as the target outer surface, and the target light color corresponding to each target outer surface is determined based on the cube state information, thereby generating control
  • the command based on the control command, can make the target light colors corresponding to the outer surface of the target on the same surface of the Rubik's cube have the same color, and the target light colors corresponding to the outer surface of the target on different faces of the Rubik's cube are different.
  • the control command may be a color mixing command.
  • the user triggers the terminal to generate a color mixing command by inputting a color mixing command, and the color mixing command is used to control a plurality of target outer surfaces on the same surface of the puzzle, and at least a part of the target outer surface corresponds to a different target light color.
  • the terminal detects the color mixing instruction, the plurality of outer surfaces corresponding to each piece of the cube are determined as the target outer surface to be controlled, and the target corresponding to each target outer surface is respectively determined based on the cube state information.
  • the color of the light is such that each side of the cube can present a variety of light colors.
  • the terminal may further generate a control command for prompting the direction of rotation of the cube. Specifically, based on the cube state information and the preset cube recovery algorithm, determining a plurality of target tiles required to rotate the cube to the original state, and a rotation direction of the plurality of target tiles; according to the plurality of target tiles The direction of rotation, from the outer surfaces of the plurality of target tiles, determining at least one target outer surface required to indicate the direction of rotation, and a target light color and light output mode corresponding to the at least one target outer surface.
  • the terminal can also achieve the purpose of the game by controlling the change of the color of the light output by some or all of the outer surfaces of some of the tiles in the puzzle.
  • the follow-up will be introduced in conjunction with the game scene.
  • the Rubik's Cube control application of the terminal sends the control command to the central control device of the Rubik's Cube.
  • the Rubik's cube control application of the terminal sends the control command to the wireless communication module in the central control device of the Rubik's cube, and after the wireless communication module receives the control command, transmits the control command to the central processing in the central control device. Module.
  • the terminal may be based on the target light color corresponding to the outer surface of each target indicated in the control command, so that the subsequent cube does not need to send the light color corresponding to the outer surface of each tile in the cube.
  • the terminal can determine the color of the light currently presented by the outer surface of each tile in the cube according to the control command that has been issued and the target light color corresponding to the outer surface of each target of each tile in the recorded cube.
  • the central control device of the cube sends the control command to the block control device in each of the puzzle blocks, so that the block control device in the tile adjusts the color of the light output on the outer surface of the tile based on the control command.
  • the central control device of the Rubik's cube sends the control command to each block control device, and the process of the block control device executing the control command can be referred to the related description, and details are not described herein again.
  • the Rubik's cube control application of the terminal updates the color of the light presented by the outer surface of the virtual puzzle of the virtual cube according to the control command, so that each face of the virtual cube is consistent with each face of the cube.
  • the Rubik's Cube control application of the terminal updates the color of the light presented on the outer surface of the virtual tile in the virtual cube according to the control command, so that the updated virtual cube and the control are controlled according to the control.
  • the posture and appearance of the Rubik's cube after the command is updated remain the same.
  • the step S713 may be performed simultaneously with the step S711 or S712, or may be performed after the step S711, and is not limited herein.
  • the central control device of the Rubik's cube detects the updated Rubik's Cube state information of the Rubik's Cube when it detects that the Rubik's Cube has a change in the motion posture.
  • the Rubik's cube state information of the Rubik's Cube is referred to as the updated Rubik's Cube state information.
  • the updated cube state information includes: a relative position relationship of each tile in the cube and a posture offset information of the cube after the cube motion posture is changed.
  • the central processing module acquires the relative positional relationship of each of the currently determined tiles, and triggers the attitude sensing module to determine the posture offset of the current cube. information.
  • the central control device of the Rubik's Cube may analyze whether the Rubik's Cube satisfies the rotation condition according to the motion posture information acquired by the Rubik's Cube, and if so, perform an operation of acquiring the updated Rubik's Cube state information.
  • the Rubik's cube may further determine whether the Rubik's Cube completes the rotation according to the information of the tile and the adjacent tile reported by each block control device, and if so, the acquired update will be obtained.
  • the cube state information is sent to the terminal; otherwise, it waits for the cube to complete the rotation.
  • the number of adjacent tiles adjacent to the puzzle block in the cube is reduced. For example, when the cube is not rotated, each corner tile has 3 adjacent adjacent edge blocks, and the cube During the rotation process, there may be a case where the corner tile has only two adjacent edge blocks. In this case, it can be determined that the cube is still in a rotating state and the rotation is not completed.
  • S715 The central control device of the Rubik's cube sends the currently updated updated Rubik's Cube state information to the Rubik's Cube control application of the terminal.
  • the Rubik's cube control application of the terminal updates the relative positional relationship of each virtual tile in the virtual cube and the offset pose information corresponding to the virtual cube by using the updated cube state information.
  • the subsequent can continue to determine the tile to be controlled in the cube and the outer surface to be controlled in the tile according to the virtual cube, thereby generating a control command.
  • the terminal only needs to store the updated cube state information sent by the central control device of the cube, without performing step S716.
  • the central control device can determine to reflect each spell in the cube.
  • the cube state information of the relative positional relationship of the block, and the cube state information is sent to the terminal, so that the terminal can determine the outer surface to be controlled in the cube of the cube according to the cube state information of the cube, and send a control command to the cube.
  • the control command can be used to indicate the color of the target light corresponding to the outer surface of the cube of the puzzle, thereby realizing the color of the outer surface of the tile of the control cube, which is convenient for randomly transforming the outer surface of the cube of the puzzle.
  • the color increases the function of the Rubik's Cube, realizes the controllability of the Rubik's Cube, and also helps to increase the fun of the Rubik's Cube.
  • the terminal controls the Rubik's Cube to increase the function and fun of the Rubik's Cube.
  • the following two scenarios are used to control the Rubik's Cube.
  • the virtual cube is constructed based on the Rubik's Cube state information sent by the Rubik's Cube.
  • the terminal may determine a color mixing command according to the virtual cube, and send the color mixing command to the cube to control the color of the light on the outer surface of the tile on the same side of the cube, so that the cube is the same
  • the outer surface of the tile on the face can take on a variety of different light colors.
  • the colors of each tile of each virtual tile in the virtual cube are updated.
  • FIG. 8 shows a schematic diagram of the effect of the Rubik's Cube (or the virtual cube) after executing the color mixing command.
  • the white, black, straight stripes, curved stripes, and the outer surface of the tile are presented. Circles and boxes represent different light colors, as can be seen from Figure 8, the color of the outer surface of each tile on each face of the virtual cube is not exactly the same.
  • the terminal can determine, according to the Rubik's cube reduction algorithm, which target tiles need to be rotated and the direction of rotation of the target tiles if the cube is restored to the original state in the cube state shown in FIG.
  • the terminal In the outer surface of the target tile, at least one target outer surface required to prompt the rotation direction, and a target light color and a light output mode corresponding to the at least one target outer surface are determined, thereby generating a rotation prompt command and transmitting to the puzzle.
  • the tile needs to be rotated in the direction indicated by the arrow in FIG. 8, and the target tile is the rightmost layer of the target tile in the cube, as shown in FIG.
  • the output block 801, the tile 802 and the tile 803 are in the same layer of tiles, and at least the rotation direction prompt needs to be output on the outer surface of the target tile in the target tile, that is, at least the tile 801 and the tile are required.
  • the target light color for indicating the direction of rotation and the light output mode are output on the outer surface of the arrow 802 and the arrow 803, for example, the tile 801, the tile 802, and the tile 803 can be controlled to sequentially illuminate the same or different colors. In order to realize the purpose of blinking the three tiles in order from the direction of the arrow, the user is prompted.
  • the central control device of the cube sends the Rubik's cube state information after the Rubik's cube is rotated to the terminal, and the terminal updates the virtual cube according to the Rubik's state information and the light color corresponding to each tile recorded by the terminal. And continue to prompt the user in the following, or re-control the Rubik's face in a state of color mixing as needed.
  • the user can trigger the terminal to generate a restore command through the "one-click restore" command set on the terminal, and send the restore command to the puzzle, so that The Rubik's Cube and the virtual Rubik's Cube are restored to the initial state, so that the user's unnecessary operations improve the learning efficiency of the Rubik's Cube.
  • the Rubik's cube can be used as a game's manipulator by rotating the Rubik's cube so that the outer surfaces of the tiles of the same color in the Rubik's Cube are adjacent.
  • the terminal may detect, according to the obtained Rubik's cube state information of the Rubik's cube, whether there are at least two target outer surfaces having the same light color and the positional relationship satisfying the preset condition in each piece of the Rubik's cube at the current time; if yes, determining the at least The target light color needs to be adjusted to the outer surface of the two targets to achieve the purpose of the user to eliminate the game through the Rubik's cube.
  • the color of the target light corresponding to the outer surfaces of the at least two targets is not completely the same.
  • the terminal may construct a virtual cube and control the color of the light presented by the outer surface of each virtual tile in the virtual cube, and the terminal according to the outer surface of each virtual tile in the virtual cube.
  • the color of the light controls the light color of the light output from the outer surface of each block of the cube.
  • the type of light color exhibited by the outer surface of each tile can be set as needed.
  • the outer surface of all the tiles in the cube can only present one of three light colors, of course, light.
  • the type of color can be set according to the needs of the game.
  • the virtual cube is updated synchronously. If the terminal determines the relative positional relationship of each virtual tile in the virtual cube and the light color of the outer surface of the virtual tile, it is determined that at least three virtual tiles currently exist.
  • the three outer surfaces are adjacent to each other and the output light colors are consistent, and then the at least three outer surfaces are determined to satisfy the elimination condition in the game.
  • the at least three outer surfaces may exhibit a pattern including, but not limited to, “L”. a pattern shape such as "ten", "X”, “slash”, “vertical line”, etc., for example, referring to FIG. 9, which shows at least three outer surfaces of at least three tiles satisfying the elimination condition in the game in the puzzle.
  • the outer surface of the tile is a kind of horizontal bar representing the outer surface of the tile
  • the outer surface framed by the dashed line is to satisfy the elimination condition. Three outer surface.
  • the user's game score is determined according to the number corresponding to the at least three outer surfaces, and is randomly selected in the virtual cube
  • the at least three outer surfaces are assigned different kinds of light colors, and the magic cube is synchronously controlled so that the cube is consistent with the appearance of the virtual cube.
  • the embodiment of the present application further provides a Rubik's cube control device.
  • FIG. 10a a schematic structural diagram of an embodiment of a Rubik's cube control apparatus of the present application is shown.
  • the apparatus may be applied to a terminal, and the terminal establishes a communication connection with the Rubik's cube, and the Rubik's cube includes multiple spells.
  • a block, and an outer surface of the block is a controllable light-emitting surface, wherein an outer surface of the block is a face on the outer surface of the cube in the block, wherein the specific composition of the cube can be implemented in the foregoing
  • the related introduction of the example will not be repeated here.
  • the device may include:
  • the information acquiring unit 1001 is configured to acquire the cube state information sent by the cube, and the cube state information is used to at least represent a relative positional relationship between the tiles in the cube.
  • a command generating unit 1002 configured to generate, according to the cube state information, a control command for the cube, the control command being used to indicate a target light color corresponding to an outer surface of the cube of the cube;
  • the command sending unit 1003 is configured to send the control command to the cube to control the light color of the light output by the outer surface of the block of the cube.
  • the command generating unit 1002 includes:
  • a target determining subunit configured to determine, according to the cube state information, at least one target outer surface to be controlled and a target corresponding to the target outer surface from a plurality of outer surfaces corresponding to each tile of the cube Light color
  • a command generating subunit configured to generate a control command for the cube, the control command including an identifier of the at least one target outer surface and a target light color corresponding to each of the at least one target outer surface.
  • the target determining subunit may include:
  • a complex atom unit configured to determine a plurality of outer surfaces corresponding to each tile of the cube as a target outer surface to be controlled when detecting a restoration instruction, and determine each target separately based on the cube state information
  • the target light color corresponding to the outer surface wherein the target light surface corresponding to the target outer surface on the same surface of the cube is the same color, and the target light color corresponding to the target outer surface on different faces of the cube is different.
  • the target determining subunit includes:
  • a color mixing subunit configured to determine, when the color mixing instruction is detected, a plurality of outer surfaces corresponding to each piece of the puzzle cube as a target outer surface to be controlled, and determine, based on the cube state information, respectively The target light color corresponding to the outer surface of the target, wherein, among the plurality of target outer surfaces on the same side of the cube, at least part of the target outer surface corresponds to a different target light color.
  • the target determining subunit includes:
  • a rotation determining subunit configured to determine, according to the cube state information and a preset cube restoration algorithm, a plurality of target tiles required to restore the cube to the original state, and rotation of the plurality of target tiles a direction, wherein the original state of the cube is the same color for each face of the cube, and the colors of the different faces of the cube are different;
  • a rotation target determining subunit configured to determine, according to a rotation direction of the plurality of target tiles, at least one target outer surface required to prompt the rotation direction from the outer surfaces of the plurality of target tiles, and Determining a target light color and a light output mode corresponding to the at least one target outer surface, the light output mode including one or more of a light output mode, a light output time, and a light duration.
  • the target determining subunit includes:
  • a detecting subunit configured to detect, according to the cube state information, whether at least two target outer surfaces having the same light color and the positional relationship satisfying the preset condition exist in each of the tiles of the Rubik's cube at the current time;
  • Adjusting a target determining subunit for determining, when the at least two target outer surfaces are present in the cube, respectively, determining target light colors to be adjusted by the at least two target outer surfaces, wherein the at least two The target light colors corresponding to the outer surface of the target are not exactly the same.
  • the puzzle state information acquired by the information acquiring unit 1001 further includes: posture offset information for the Rubik's Cube, the posture offset information is used to represent the Rubik's Cube in a preset Offset angles in three mutually perpendicular coordinate directions;
  • Target determination subunits including:
  • a cube building subunit configured to construct a virtual cube based on the cube state information, and store a one-to-one correspondence between each virtual tile in the virtual cube and each tile in the cube, wherein the virtual cube The relative positional relationship of each virtual tile is consistent with the relative positional relationship of each tile in the cube, and the posture offset information corresponding to the virtual cube is consistent with the posture offset information corresponding to the cube;
  • a first target determining subunit configured to determine, according to the constructed virtual cube, at least one target outer surface to be controlled and a target corresponding to the target outer surface among the plurality of outer surfaces corresponding to each tile of the cube Light color.
  • the device further includes: a first updating unit 1004,
  • the control command updates the color of the light presented by the outer surface of the virtual puzzle of the virtual cube so that each face of the virtual cube is consistent with each face of the cube.
  • the apparatus further includes: a second updating unit 1005, configured to use the updated cube after receiving the updated cube state information sent by the terminal
  • the status information updates the relative positional relationship of each virtual tile in the virtual cube and the offset pose information corresponding to the virtual cube.
  • the application also provides a terminal.
  • the terminal can be a mobile phone, a tablet, a laptop, and the like.
  • FIG. 11 a schematic structural diagram of an embodiment of a terminal of the present application is shown.
  • the terminal 1100 of the present embodiment establishes a communication connection with a cube, the cube includes a plurality of tiles, and the tile
  • the outer surface of the block is a surface on the outer surface of the cube, and the specific structure and composition of the cube can be referred to the related introduction of the previous embodiment. No longer.
  • the terminal 1100 can include:
  • the communication interface 1101 is configured to acquire the cube state information sent by the cube, and the cube state information is used to at least represent a relative positional relationship between the tiles in the cube.
  • the processor 1102 is configured to generate, according to the cube state information, a control command for the Rubik's cube, where the control command is used to indicate a target light color corresponding to an outer surface of the puzzle block of the Rubik's Cube;
  • the transmitter 1103 is configured to send the control command to the cube to control the light color of the light output by the outer surface of the block of the cube.
  • the terminal may further include a memory 1104 for storing a program required by the processor 1102 to perform operations, such as machine readable instructions implementing the aforementioned Rubik's cube control method.
  • the storage medium may include a read only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Toys (AREA)

Abstract

一种魔方(10)、魔方控制方法、魔方控制装置(21)、终端(20)以及非易失性计算机可读存储介质,该魔方(10)的机械轴心部件内设置有中央控制装置(310),拼块的外表面为可控发光面,拼块内设置有块控制装置;该中央控制装置(310)确定魔方状态信息并发送给终端(20);接收终端(20)发送的控制命令,控制命令用于指示拼块的外表面对应的目标光颜色;并向块控制装置发送控制命令;块控制装置依据控制命令,控制块控制装置所属的拼块上的可控发光面输出的光的目标光颜色。

Description

魔方、魔方控制方法以及终端
本申请要求于2017年11月6日提交中国专利局、申请号为201711078488.X,申请名称为“魔方、魔方控制方法以及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子信息技术领域,尤其涉及一种魔方、魔方控制方法以及终端。
背景技术
魔方是由多个小方块(也称为拼块)构成的智能玩具。魔方具有多个面,在初始状态下,处于魔方同一个面的各个小方块的面上所呈现的颜色一致,使得魔方各个面呈现单一的颜色,且不同面的颜色不同。
通过旋转魔方可以改变魔方中部分小方块的相对位置,从而使得处于魔方同一个面的各个小方块的面上所呈现的颜色不同。当然,通过不断旋转魔方,还可以将魔方复原,即将魔方中各个面的颜色恢复为初始状态。
发明内容
本申请实施例提供了一种魔方,包括:相互拼装的多个拼块,以及维持所述多个拼块旋转的机械轴心部件;
其中,所述机械轴心部件内设置有中央控制装置,所述拼块的外表面为可控发光面,所述拼块内设置有与所述可控发光面相连的块控制装置,所述拼块的外表面为所述拼块中处于魔方外表面上的面;
所述中央控制装置,用于确定魔方状态信息,所述魔方状态信息用于表征魔方中各个拼块之间的相对位置关系;将所述魔方状态信息发送给与所述中央控制装置建立有通信连接的终端;接收所述终端发送的控 制命令,所述控制命令为所述终端基于所述魔方状态信息生成的,且所述控制命令用于指示所述拼块的外表面对应的目标光颜色;向所述块控制装置发送所述控制命令;
所述块控制装置,用于依据所述控制命令,控制所述块控制装置所属的拼块上的可控发光面输出的光的目标光颜色。
本申请实施例还提供了一种魔方控制方法,应用于终端,所述终端与所述魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,所述方法包括:
获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
本申请实施例还提供了一种魔方控制装置,应用于终端,所述终端与所述魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,所述装置包括:
信息获取单元,用于获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
命令生成单元,用于基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
命令发送单元,用于将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
本申请实施例还提供了一种终端,所述终端与魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所 述拼块的外表面为所述拼块中处于魔方外表面上的面,所述终端包括:
通信接口;
发射器;
处理器以及与所述处理器相连接的存储器,所述存储器中存储有可由所述处理器执行的机器可读指令,所述处理器执行所述机器可读指令完成以下操作:
通过所述通信接口获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
通过所述发射器将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
本申请实施例还提供了一种非易失性计算机可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
获取魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系,其中,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,所述拼块的外表面为所述拼块中处于魔方外表面上的面;
基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见 地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1a是本申请实施例提供的魔方控制方法的实施环境示意图;
图1b为本申请实施例公开的一种魔方的组成结构示意图;
图2示出了魔方中中心转轴与中心拼块的连接结构示意图;
图3a示出了魔方的一种剖面结构示意图;
图3b示出了魔方中连接中央控制装置与中心拼块内的面中心控制装置的总线连接部件的结构示意图;
图4a示出了在三阶魔方的中心拼块的内侧面设置的总线接触点的示意图;
图4b示出了三阶魔方中的棱拼块中与角拼块相接触的第二内侧面上的总线接触点的一种分布示意图;
图4c示出了三阶魔方中的角拼块的内侧面上的总线接触点的一种分布示意图;
图5示出了中央控制装置向各个拼块内的控制装置传输数据的数据流向示意图;
图6示出了本申请实施例提供的一种中央控制装置以及不同种拼块内的块控制装置之间的组成结构示意图;
图7a示出了本申请实施例提供的一种魔方控制方法的流程示意图;
图7b示出了本申请一种魔方控制方法一个实施例的流程交互示意图;
图8示出了魔方执行颜色混合命令后的效果示意图;
图9示出了魔方中满足游戏中消除条件的至少三个拼块的至少三个外表面的相对位置关系以及该至少三个外表面的光颜色;
图10a示出了本申请一种魔方控制装置一个实施例的组成结构示意图;
图10b示出了本申请一种魔方控制装置一个实施例的组成结构示意图;
图10c示出了本申请一种魔方控制装置一个实施例的组成结构示意图;
图11示出了本申请一种终端一个实施例的组成结构示意图。
具体实施方式
目前,魔方的功能较为单一,缺乏趣味性,无法满足用户需求。
本申请实施例的魔方可以为三阶魔方、四阶魔方、五阶魔方等等任意形式的魔方。本申请实施例的魔方能够控制拼块中各个面的颜色;且魔方能够与终端进行数据通信,并能够基于终端的控制命令,控制魔方中各个拼块中各个面的颜色。
具体的,魔方具有多个相互拼装的拼块,以及维持该多个拼块旋转的机械轴心部件。在魔方中每个拼块可以有多个面,在本申请实施例中,为了便于区分,将任意一个拼块可以显露在魔方外面表或者说处于魔方外表面上的面称为外表面,并将拼块中能够与其他拼块相接触的面称为内侧面。拼块的内侧面不能显露在魔方外表面上。
在本申请实施例中,魔方的机械轴心部件内设置有中央控制装置,且拼块的外表面为可控发光面,该拼块内设置有与该可控发光面相连的块控制装置。
该中央控制装置,用于确定魔方状态信息,该魔方状态信息用于表征魔方中各个拼块之间的相对位置关系;将该魔方状态信息发送给与中央控制装置建立有通信连接的终端;接收所述终端发送的控制命令,所述控制命令为该终端基于该魔方状态信息生成的,且该控制命令用于指示所述拼块的外表面对应的目标光颜色;向该块控制装置发送控制命令;
相应的,块控制装置,还用于依据该控制命令,控制该块控制装置 所属的拼块上的可控发光面输出的光的目标光颜色。
当然,除了中央控制装置接收终端发送的控制命令之外,中央控制装置也可以根据需要生成用于控制拼块的外表面呈现相应光颜色的控制命令,以使得块控制装置通过该执行中央控制装置的控制命令,控制拼块的外表面上的可控发光面输出的光的光颜色。
其中,中央控制装置确定魔方中各个拼块的相对位置关系的方式可以有多种。
如,在本申请一些实施例中,拼块的内侧面上设置有与该拼块内的块控制装置通过总线相连的总线接触点。其中,总线接触点用于连接不同拼块内的块控制装置之间的总线。相应的,内侧面上的总线接触点相接触的任意两个拼块的块控制装置之间的总线连通。基于不同拼块内的各个块控制装置的连接关系,拼块内的块控制装置,可以用于确定当前时刻与该块控制装置通过总线相连的相邻块控制装置所属的相邻拼块,并将该块控制装置所属的拼块和该相邻拼块的信息发送给该中央控制装置。
相应的,中央控制装置可以根据所述块控制装置所属的拼块和相邻拼块的信息,确定魔方状态信息。
可以理解的是,通过在拼块的内侧面上设置总线接触点,可以使得任意相连的两个拼块内的块控制装置可以通过这两个拼块的内侧面上的总线接触点相连,这样,拼块内的块控制装置可以与相邻拼块内的块控制装置通信,从而确定与拼块相邻的相邻拼块。
可以理解的是,以上仅仅是以一种确定魔方中各个拼块的相对位置关系的方式为例进行介绍,在实际应用中,还可以有其他实现方式,例如,在中央控制装置与魔方中六个中心拼块固定相连的基础上,各个拼块内的块控制装置之间还可以通过蓝牙等无线方式实现通信,并基于蓝牙测距等技术,确定出各个拼块之间的距离,这样,基于各个拼块之间距离以及六个中心拼块之间的相对位置关系,可以还原出当前时刻魔方中各个拼块的相对位置关系。当然,本申请对于中央控制装置确定魔方 状态信息的具体方式不加以限制。
图1a是本申请实施例提供的一种魔方控制方法的实施环境示意图。其中,终端20集成有本申请任一实施例提供的魔方控制装置21,用于实现本申请任一实施例提供的魔方控制方法。该终端20与魔方10之间通过网络30连接,所述网络30可以是有线网络,也可以是无线网络。
为了便于理解,以魔方为三阶魔方为例进行介绍,如,参见图1b,其示出了一种三阶魔方的外部结构示意图。
由图1b可以看出,该魔方具有六个面,且魔方的每个面由9个拼块的面组成。其中,该魔方一共具有26个拼块。具体的,该26个拼块分别为:6个中心拼块110、12个棱拼块120以及8个角拼块130。
结合图1b可以看出,中心拼块110位于每个面的中央,位于中心拼块110四周的拼块为棱拼块120,而位于魔方各个角上的拼块为角拼块130。
为了保证魔方的旋转,并使得魔方的26个拼块能够拼装在一起,魔方中具有一个机械轴心装置,其中,该机械轴心装置用于支撑26个拼块的拼装组合,以及维持魔方中拼块的旋转。在三阶魔方中,该机械轴心装置为一个中心转轴,该中心转轴包括三个相互交叉的轴,每个轴包括两根处于同一直线上的两个轴柱,且这三个相互交叉的轴柱的中间部位相互接合,形成中心转轴的轴连接体,每个轴从轴连接体向两端延伸,使得每个轴具有两个能够连接中心拼块的轴柱,轴柱的顶端(远离轴连接体的一端)具有轴端头,该轴端头呈圆柱状,中心拼块可以与该轴柱的轴端头相连。
如,参见图2,其示出了在中心转轴上连接6个中心拼块的示意图,由图2可见,中心转轴通过轴柱连接体210连接有六个轴柱220,其中,每个轴柱220的轴端头可以连接一个中心拼块110,从而使得6个中心拼块分别连接中心转轴的6个轴柱220对应的6个轴端头上。如,在轴柱220的轴端头可以为一个圆柱形插头,而中心拼块朝向中心转轴的一侧具有插槽,这样,通过将轴端头插入到中心拼块的插槽内,实现中心 拼块与轴柱的连接。如图2所示,中心拼块110直接与中心转轴的轴柱220相连,使得中心拼块随着该中心拼块所在轴柱的旋转而转动。同时,由图2可以看出,中心拼块中与轴柱相连的一端并不是属于一个平面,因此,中心拼块具有5个面(或者说5个平面),且这5个面分别为1个外表面111和4个内侧面112,其中,中心拼块的外表面111可以显露在魔方的外表面上,而无论如何旋转,中心拼块110的4个内侧面112也不会显露在魔方的外表面上。
其中,每个棱拼块120具有一个第一凸出连接体,通过棱拼块上的第一凸出连接体可以将棱拼块与中心转轴上连接的中心拼块相互拼装组合到一起。如,参见图4b示出了棱拼块120中的一种第一凸出连接体124的一种结构示意图。其中,通过该第一凸出连接体可以将该棱拼块嵌在两个中心拼块之间。结合图1b可以看出,每个棱拼块120具有两个外表面以及4个内侧面。
与棱拼块类似,角拼块也具有第二凸出连接体,该第二凸出连接体处于角拼块的一个顶角上,通过该第二凸出连接体可以将角拼块与棱拼块拼装组合到一起。如,参见图4c其示出了角拼块130中设置的一种第二凸出连接体133的一种结构示意图。通过该第二凸出连接体可以将该角拼块嵌入到三个棱拼块之间。
可以理解的是,其中,该第一凸出连接体和第二凸出连接体仅仅是为了区分棱拼块与角拼块上用于实现将棱拼块或角拼块组装到魔方上的连接体。
为了增加魔方的功能,在本申请实施例中,将魔方中每个拼块的外表面都被设置为可控发光面,该可控发光面具备显示不同颜色光的功能,通过控制信号可以控制该可控发光面输出的光的光颜色,从而使得拼块的外表面呈现出相应的颜色。如,该可控发光面可以输出的光颜色可以包括:红色、黄色、蓝色、绿色、紫色、白色等等颜色。
在本申请一些实施例中,该可控发光面可以由发光二极管(Light Emitting Diode,LED)构成,在该LED内部可以封装用于输出颜色光 的发光芯片,通过控制LED内部的一种或几种发光芯片的点亮,可以实现LED输出的光呈现出不同的颜色。
为了实现对不同拼块的外表面上的可控发光面的控制,以对魔方中各个面的颜色显示效果进行控制,本申请实施例中,在该魔方的中心转轴的轴连接体的内部为空腔,在该空腔内设置有中央控制装置,且,每个拼块内部均设置有块控制装置,每个块控制装置通过总线与该块控制装置所属的拼块的各个外表面上可控发光面相连。为了便于区分,将中心拼块内部设置的块控制装置称为面中心控制装置,棱拼块内部设置的块控制装置称为棱控制装置,并将角拼块内部设置的块控制装置称为角控制装置。
其中,该中央控制装置用于控制魔方中的各个拼块的可控发光面输出的光颜色。如,中央控制装置可以向各个块控制装置下发控制信号,以通过控制信号指示不同拼块内的块控制装置控制可控发光面的开关状态以及光颜色输出。
为了实现中央控制装置与各个拼块内部的块控制装置的通信,同时简化中央控制装置与各个块控制装置之间的线路连接,在本申请实施例中,基于魔方中各个拼块之间的拼装关系,设置魔方中中央控制装置与块控制装置,以及各个块控制装置之间总线连接关系。其中,中央控制装置仅仅与面中心控制装置通过总线相连,而每个面中心控制装置还可以通过总线与该面中心控制装置所属的中心拼块相邻的棱拼块内设置的棱控制装置相连,而每个棱控制装置也还可以与该棱控制装置所在的棱拼块相邻的角拼块中的角控制装置通过总线相连。
这样,中央控制装置可以将控制信号(包括控制命令以及各种数据)发送给6个面中心控制装置,而面中心控制装置可以将该控制信号传输给当前相连的棱控制装置,相应的,棱控制装置可以将该控制信号传输给棱控制装置通过总线相连的角控制装置,从而使得中央控制装置的控制信号逐层传递,实现了中央控制装置对魔方中所有块控制装置的控制。同时,角控制装置可以向棱控制装置传输需要上报给中央控制装置的上 报数据,棱控制装置可以自身采集到的上报数据以及角控制装置传输的上报数据传输给面中心控制装置,而面中心控制装置也可以将棱控制装置传输的上报数据以及自身采集到的上报数据传输给中央控制装置,从而实现了数据的逐层上报,以使得中央控制装置可以获取到魔方中任意一个拼块中的块控制装置中上报的数据。
在本申请一些实施例中,该总线可以包括通信线路以及电气线路,这样,通过该总线可以实现数据传输以及电气信号传输,从而既可以保证中央控制装置与面中心控制装置、棱控制装置以及角控制装置之间的数据通信,又可以实现中央控制装置与面中心控制装置、棱控制装置以及角控制装置之间电力传输。
下面分别介绍对中央控制装置与面中心控制装置、面中心控制装置与棱控制装置、棱控制装置与角控制装置之间的总线连接方式进行介绍。
首先,介绍中央控制装置与面中心控制装置之间的总线连接方式。
在本申请实施例中,连接中央控制装置与面中心控制装置之间的总线部署于中心转轴的轴柱内部。如,中心转轴的轴柱可以为轴向贯通的空心柱体,在轴柱内部设置有用于连接中央控制装置与面中心控制装置的总线连接端,该总线连接端的两端分别连接中央控制装置的总线和面中心控制装置的总线。
由于六个面中心控制装置分别对应的六个中心拼块在魔方中的相对位置固定,且是与中心转轴的轴柱固定连接的,无论魔方如何旋转,中心拼块与中心转轴的轴连接体都是稳定连接的,这样,将位于轴连接体内的中央控制装置与面中心控制装置之间连接的总线穿过中心转轴的轴柱内部,可以在魔方转动过程中,也可以保证中央控制装置与面中心控制装置的稳定连接,从而保证中央控制装置与面中心控制装置之间稳定的数据通信以及电力传输。
如,参见图3a,其示出了本申请实施例提供的一种魔方的剖面结构示意图。图3a的剖面图是以从魔方的一个中轴线对魔方进行剖面为例,在图3a的剖面图中可以看到魔方的中心转轴200的剖面、中心转轴的两 个相互交叉的轴所对应的4根轴柱220的剖面,以及转轴连接体210的剖面,同时还可以看到分别与两个轴柱220对应的四个轴端头相连的4个中心拼块110的剖面,以及嵌入中心拼块之间的四个棱拼块120的剖面。
由图3a可见,转轴连接体210的空腔内设置有中央控制装置310,而中心拼块110内部设置有面中心控制装置320。其中,中心转轴中每个轴的两个轴柱220分别连接有中心拼块110,且该中心拼块110内设置有面中心控制装置320,且该轴柱的内部为中空设置,从而可以将连接中央控制装置310与面中心控制装置320的总线穿过该轴柱220的内部。
可以理解的是,除了直接将连接中央控制装置与面中心控制装置的总线穿过轴柱内部之外,还可以在轴柱内部设置一个总线连接部件330,该总线连接部件可以实现中央控制装置与面中心控制装置之间的总线连接。如,该总线连接部件可以提供连接中央控制装置的总线与面中心控制装置的总线的总线连接端。
在本申请一些实施例中,该总线连接部件330可以包括:同轴环形螺柱和螺柱插头两部分,相应的,中央控制装置与面中心控制装置可以通过同轴环形螺柱和螺柱插头实现总线连接。具体的,同轴环形螺柱具有插槽,中央控制装置的总线可以与同轴环形螺柱的插槽内壁的总线触点相连,而面中心控制装置的中心的总线可以与螺柱插头上的总线触头相连,这样,当将螺柱插头插入到同轴环形螺柱内之后,该总线触点与该总线触头相接触,从而实现中央控制装置与面中心控制装置的总线连接。同时,为了进一步保证中央控制装置与面中心控制装置之间连接的稳定性,该同轴环形螺柱远离插槽口的一端可以与轴连接体相连,且同螺柱插头未插入同轴环形螺柱的一端可以与面中心装置所在的中心拼块固定连接。
如,参见图3b,其示出了同轴环形螺柱和螺柱插头的一种剖面结构示意图,由图3b可见,同轴环形螺柱331具有螺柱插槽332,螺柱插头 333可以插入该同轴环形螺柱331的插槽332内,从而实现螺柱插头与同轴环形螺柱的连接,且螺柱插头可以在同轴环形螺柱的插槽内旋转。其中,该同轴环形螺柱的插槽内壁上设置有总线触点334,而螺柱插头的外壁上也设置与插槽内壁上的总线触点334相匹配的有总线触点(图中未示出),在将螺柱插头插入同轴环形螺柱的插槽内之后,该螺柱插头上的总线触点334与同轴环形螺柱的插槽内壁上的总线触点相接触。
同时,在同轴环形螺柱的插槽内,除了具有与该图3b中示出的总线触点334相匹配总线触点之外,在该同轴环形螺柱的插槽内还可以设置有其他形式的总线触点,如图3b中的总线触点335,相应的,在螺柱插头的外壁上也会设置与该总线触点335相匹配的总线触点(图3b中未示出)。
结合图3b可知,在同轴环形螺柱上的任意总线触点与中央控制装置的总线相连,且该螺柱插头上任意总线触点与面中心控制装置的总线相连的情况下,将螺柱插头插入到同轴环形螺柱的插槽内,则可以实现中央控制装置与面中心控制装置的总线连接。
下面对面中心控制装置与棱控制装置之间的总线连接方式进行介绍。
在本申请实施例中,由于面中心控制装置设置于中心拼块中,棱控制装置设置于棱拼块中,而发明人经过对魔方的研究发现,在魔方未处于旋转状态时,中心拼块的四个内侧面分别与4个棱拼块各自的一个内侧面相接触,而1个棱拼块中有2个内侧面可以分别与2个中心拼块各自的一个内侧面相接触;而且,即使在旋转魔方的过程中,1个棱拼块也至少有1个内侧面会与1个中心拼块的一个内侧面相接触。
基于发明人的以上发现,本申请实施例中,在中心拼块的每个内侧面上设置有总线接触点,且中心拼块的内侧面上的总线接触点与中心拼块内的面中心控制装置通过总线相连。相应的,在棱拼块中能够与中心拼块接触的每个内侧面上也设置有总线接触点,且棱拼块中能够与中心 拼块接触的每个内侧面上的总线接触点与该棱拼块内的棱控制装置通过总线相连。这样,当棱拼块的内侧面与中心拼块的一个内侧面接触时,棱拼块的内侧面上的总线接触点会与该中心拼块中该内侧面上的总线接触点相接触,从而使得棱拼块内的棱控制装置经该棱拼块的内侧面上的总线接触点与该中心拼块内的面中心控制装置的总线相连。
为了便于区分,将棱拼块中能够与中心拼块相接触的内侧面称为棱拼块的第一内侧面,而将棱拼块中能够与角拼块相接触的内侧面称为棱拼块的第二内侧面,结合图1b可知,棱拼块具有2个外表面、2个第一内侧面以及2个第二内侧面。
为了便于理解中心拼块的内侧面上设置的总线接触点的分布,可以参见图4a,其示出了单个中心拼块的内侧面上设置的总线接触点的一种示意图,由图4a可以看出中心拼块110具有一个外表面111和4个内侧面112,其中,该中心拼块的4个内侧面上设置有呈线条状分布的总线接触点401,这样,每个线条中具有多个总线接触点,以增加内侧面中总线接触点的可接触面积,从而可以提高中心拼块的内侧面上的总线接触点与棱拼块的内侧面上的总线接触点之间接触的稳定性。同时,由图4a可以看出,中心拼块的不同侧面上均设置有呈线条状分布的多个总线接触点,且不同侧面上的总线接触点是相互隔离的。
其中,图4a所示的中心拼块可以认为是处于图1b的魔方中顶面的中心拼块的示意图,结合图1b可以看出,每个中心拼块110的每个内侧面112中均设置有总线接触点401。这样,将中心拼块拼装到魔方中,则中心拼块的每个内侧面上的总线接触点会与一个棱拼块的内侧面接触。
相应的,该棱拼块中能够与中心拼块接触的第一内侧面上的总线接触点的分布形式可以与中心拼块中内侧面上总线接触点的分布形式相似,以使得棱拼块的第二内侧面与中心拼块的内侧面相接触时,棱拼块的第一内侧面上的总线接触点与中心拼块的内侧面上的总线接触点能够相互接触,从而实现面中心控制装置与棱控制装置之间的总线连接。 如参见图4b在棱拼块的第一内侧面122中设置有呈线条形分布的总线接触点403。
如,参见图3a可以看出,由于中心拼块110的面中心控制装置320与该中心拼块的内侧面上的总线接触点(图3a中未示出)通过总线(图3a中未示出该总线)相连,且棱拼块120内的棱控制装置340与棱拼块120的内侧面上的总线接触点(图3a中未示出)也通过总线(图3a中未示出该总线)相连,因此,在中心拼块110的内侧面与棱拼块120的第一内侧面相接触时,中心拼块的内侧面上的总线接触点会与棱拼块的第一内侧面上的总线接触点接触,从而使得面中心控制装置320与棱控制装置340通过总线相连。
下面对棱控制装置与角控制装置之间的总线连接方式进行介绍。
在本申请实施例中,角控制装置设置于角拼块的内部,角拼块具有3个外表面以及3个内侧面,而发明人研究发现,在魔方不发生旋转的状态下,每个角拼块的3个内侧面分别与不同的棱拼块的一个内侧面相接触;而在魔方旋转状态中,每个角拼块也至少存在两个内侧面与棱拼块的内侧面(即,第二内侧面)相接触,这样,可以设置角拼块内的角控制装置与棱拼块内的棱控制装置可以通过角拼块与棱拼块相接触的内侧面实现总线连接。
具体的,可以在棱拼块中与角拼块相接触的第二内侧面上也可以设置总线接触点,且,棱拼块的第二内侧面上的总线接触点,与该棱拼块内的棱控制装置通过总线相连。这样,棱拼块的4个内侧面上均设置有总线接触点。相应的,在角拼块的3个内侧面上也设置有总线接触点,且角拼块的内侧面上设置的总线接触点也与角拼块内的角控制装置通过总线相连。
如,参见图4b,该图4b的棱拼块可以看成是图1b所示的魔方中,位于魔方顶面的中心拼块左侧的棱拼块的示意图。由图4b可以看出,棱拼块120中能够与角拼块相接触的第二内侧面121上的总线接触点 402的分布形成多条半弧状的线条,且该多条半弧状的线条设置于第二内侧面121中靠近角拼块的一端,以保证该第二内侧面121上的总线接触点402能够与角拼块的内侧面上的总线接触点更稳定的接触。
其中,棱拼块120中能够与面中心拼块的第一内侧面122中设置有与面中心拼块的内侧面上匹配的总线接触点,如参见该图4b中,该棱拼块120的第一内侧面122上设置的总线接触点403与中心拼块的内侧面上的总线接触点的分布形式相同,而该第一内侧面122上的总线接触点403与该第二内侧面121上的总线接触点402的分布形式不同,而棱拼块120的外表面123为可控发光面,其表面未设置有总线接触点。
同时,参见图4c,其示出了单个角拼块的内侧面上设置的总线接触点的分布示意图,由图4c可以看出,在角拼块130的内侧面131上的总线接触点404也呈现出多条半弧状的线条。同时结合图1b可以看出,角拼块的内侧面上的总线接触点404设置于该角拼块的内侧面中朝向魔方中心的一侧,即,接近角拼块设置第二凸出连接体133的一侧,该种设计,有利于增加角拼块的内侧面上的总线接触点与棱拼块的第二内侧面上的总线接触点的稳固接触。同时,由图4c可以看出,角拼块130的外表面132上无需设置总线接触点。
对比图4b和图4c,并结合图1b可知,当魔方未处于旋转状态时,角拼块内的角控制装置可以通过该角拼块的任意一个内侧面上的总线接触点与某个棱拼块的第二内侧面上的总线接触点相连,从而使得该角控制装置可以与该棱拼块内的棱控制装置通过总线相连,进而使得角拼块内的角控制装置可以接收棱控制装置传输的控制信号,并向棱控制装置传输该角控制装置获取到的数据。当然,即使魔方处于旋转状态,角拼块也至少会存在一个内侧面与一个棱拼块的第二内侧面接触,从而保证了角拼块与棱拼块上的总线接触点的接触,使得角拼块内的角控制装置在任意时刻均可以与一个棱拼块内的棱控制装置通过总线相连。
需要说明的是,在本申请实施例中,对于任意一个拼块的内侧面上的总线接触点的分布方式具有可以有多种可能,具体可以根据需要设定, 只需要保证两个拼块相互接触的两个内侧面上的总线接触点可以实现互连即可。特别的,对于棱拼块而言,一个棱拼块中具有能够与中心拼块相接触的第一内侧面,以及能够与角拼块相接触的第二内侧面,其中,设置在该第一内侧面和第二内侧面上的总线接触点的分布方式可以相同,也可以不同,在此也不加以限制。
基于以上对该中央控制装置、面中心控制装置、棱控制装置以及角控制装置之间的总线连接关系的介绍,本申请实施例中,中央控制装置向各个拼块内的控制装置之间的数据传输流程可以参见图5所示。
由图5可以看出:魔方的中央控制装置与6个面中心控制装置具有总线连接。魔方的中央控制装置可以向6个面中心控制装置下发控制命令等数据。当然,这6个面中心控制装置也可以向中央控制装置传输上报数据。
通过魔方的6个面中心控制装置可以与魔方的12个棱控制装置实现总线连接,其中,每个面中心控制装置最多可以与4个棱控制装置具有总线连接,当然,在魔方旋转过程中,由于中心拼块可能无法与4个棱拼块同时接触,此时,一个面控制装置通过总线连接的棱控制装置可以为3个或者2个。可以理解的是,随着魔方的旋转,不同时刻与同一个中心拼块相邻的4个棱拼块会有所不同,这样,不同时刻,一个面中心控制装置通过总线连接的棱控制装置也会发生变化,而图5中仅仅是以魔方未发生旋转的情况下,任意一个面中心装置向棱控制装置传输控制命令为例进行说明。
由图5可以看出,面中心控制装置可以向具有总线连接关系的棱控制装置传输中央控制装置下发的控制命令等数据。
同时,由图5可以看出,在魔方未旋转的情况下,每个棱控制装置可以与2个角控制装置具有总线连接,相应的,每个角控制装置可以与3个棱控制装置具有总线连接。当然,在魔方旋转的情况下,每个棱控制装置也至少可以与1个角控制装置具有总线连接,而每个角控制装置 也可以至少与2个棱控制装置具有总线连接。这样,任意时刻,棱控制装置在经过面中心控制装置接收到中央控制装置下发的控制命令等数据之后,均可以向与该棱控制装置具有总线连接的角控制装置传输该控制命令等数据。而由于任意时刻,每个角控制装置至少可以与2个棱控制装置具有总线连接,从而保证了每个角控制装置均可以接收到中央控制装置下发的控制命令等数据。
结合图5所示出中央控制装置下发控制命令的命令传输关系可知,中央控制装置可以通过面中心控制装置逐层向下传输控制命令,从而使得中央控制装置可以向魔方中任意一个拼块内的控制装置下发控制命令。
可以理解的是,图5是以从中央控制装置向各个拼块内下发控制命令等数据为例进行介绍,但是可以理解的是,任意拼块内的控制装置如果需要向中央控制装置上报数据,则可以按照图5所示的各层数据传输过程的逆过程上报数据。
如,在魔方未发生旋转的情况下,每个角控制装置可以与3个棱控制装置具有总线连接关系,而在魔方旋转的情况下,每个角控制装置也可以与至少2个棱控制装置具有总线连接关系。可见,每个角控制装置可以向具有总线连接关系的至少一个棱控制装置发送所需上报的上报数据,而棱控制装置接收到该角控制装置传输的上报数据之后,可以将该上报数据传输给与棱控制装置相连的至少一个面中心控制装置,而面中心控制装置则可以将该角控制装置的上报数据传输给该中央控制装置,从而实现了从角控制装置向中央控制装置逐层上报数据。
当然,对于棱控制装置而言,如果棱控制装置需要向中央控制装置上报数据,则可以直接将所需上报的上报数据传输给与棱控制装置具有总线连接关系的至少一个面中心控制装置,并由面中心控制装置向中央控制装置传输该棱控制数据的上报数据。
由此可见,魔方中具有总线连接关系的角控制装置与棱控制装置,棱控制装置与面中心控制装置,以及面中心控制装置与中央控制装置之 间可以相互传输数据。
基于以上共性,下面对中央控制模块以及不同种拼块内的控制装置的具体功能进行介绍。
首先,介绍中央控制模块。
在本申请实施例中,中央控制模块,用于获取控制命令,该控制命令携带有魔方中待控制的至少一个目标拼块的标识,以及该目标拼块的至少一个外表面中待控制的至少一个目标外表面的标识,且该控制命令用于指示该目标拼块中该目标外表面所需显示的目标光颜色;并将该控制命令传输给至少一个面中心控制装置。
其中,为了便于区分,将控制命令指示的目标外表面所需显示的光颜色称为目标光颜色。
在本申请一些实施例中,该控制命令除了指示目标外表面所需显示的目标光颜色之外,还可以指示目标外表面显示光颜色的光输出模式,该光输出模式可以包括:光输出方式、光输出时刻以及光持续时长等等中的一种或多种。
其中,光输出方式可以为光输出时所采用的点亮方式,如,目标外表面显示光颜色的方式可以为常亮、闪烁等等。光输出时刻可以为点亮该目标外表面的可控发光面的时刻,如,所有目标外表面的光输出时刻可以相同也可以不同,具体可以根据需要设定。光持续时长可以为可控发光面被点亮的时长,如,在某些情况下,可能需要多个目标外表面的可控发光面依次输出光,且每个输出光的持续预设时长之后,点亮下一个目标外表面的可控发光面。
其中,根据需求不同,该控制命令的作用会有所不同,且该控制命令中包含的目标拼块的标识的数量,以及目标拼块中待控制的目标外表面的标识的数量也会有所不同,相应的,控制命令中指示出的各个目标外表面上所对应的光颜色也会有所差异。
如,在本申请一些实施例中,该控制命令可以为用于将魔方恢复到 原始状态的复原命令。在该种情况下,魔方中所有的拼块都属于待控制的目标拼块,且每个拼块中的外表面都是该拼块中待控制的外表面。且该控制命令中包含每个拼块中每个外表面所对应的目标光颜色。其中,在魔方处于原始状态时,处于该魔方相同面上的目标外表面对应的目标光颜色相同,且处于魔方不同面上的目标外表面对应的目标光颜色不同。
又如,在本申请另外一些实施例中,该控制命令可以为用于控制魔方从原始状态到颜色混合状态的颜色混合命令,其中,颜色混合状态可以认为是魔方中存在至少一个外表面呈现有多种颜色,具体的,处于魔方同一个面上的多个目标外表面中,至少存在部分目标外表面对应的目标光颜色不同。例如,以现有常见的魔方为例,通过旋转魔方,可以使得处于魔方同一个外表面上的拼块的外表面呈现出不同的颜色,从而达到魔方的颜色混合状态。
在本申请实施例中,该颜色混合命令可以将魔方中所有拼块都作为目标拼块,并将拼块中每一个外表面作为目标外表面,通过该颜色混合命令可以指示魔方中所有拼块的外表面重新显示颜色,以达到现有通过旋转魔方所达到的颜色混合状态。该颜色混合命令也可以是将部分拼块作为目标拼块,并将目标拼块的全部或者部分外表面作为目标外表面,并通过控制该部分拼块中部分或全部外表面的颜色变化,来达到使得魔方处于颜色混合状态的目的。
又如,在本申请另外一些实施例中,该控制命令可以为指示魔方旋转方向的旋转指示命令,该旋转指示命令中可以将魔方中的部分拼块作为目标拼块,并将目标拼块中的部分外表面或全部外表面作为目标外表面。在该种情况中,该控制命令确定出目标拼块或者目标拼块中的目标外表面之后,通过指示目标外表面呈现特殊的光颜色,或者特殊的光颜色显示方式,来提示用户旋转魔方的方向,以提示用户如何将魔方恢复到原始状态,从而起到魔方教学或者快速恢复魔方的效果。
其中,特殊的光颜色可以认为是不同于魔方的原始状态时,魔方中六个面所对应的六种颜色的颜色,例如,魔方的六个面的光颜色分别为, 红色、橙色、黄色、绿色、紫色和白色,那么特殊的光颜色可以为这6种颜色之外的蓝色、灰色等等。
特殊的光颜色显示方式可以不同于魔方中预先设定的默认光颜色显示方式,如,魔方中预设的默认光颜色显示方式可以为常亮,那么该特殊的光颜色显示方式可以为目标拼块的多个目标外表面同步闪烁或者依次闪烁。例如,通过该控制命令指示出需要按照先后顺序依次闪烁的目标拼块的目标外表面,从而提示用户按照光闪烁方向旋转目标拼块。
具体的,可以基于魔方状态信息以及预置的魔方复原算法,确定将魔方恢复到原始状态所需旋转的多个目标拼块,以及该多个目标拼块的旋转方向,这样,依据该多个目标拼块的旋转方向,从该多个目标拼块的外表面中,确定提示该旋转方向所需的至少一个目标外表面,以及该至少一个目标外表面对应的目标光颜色和光输出模式,从而生成包含该至少一个目标外表面对应的目标光颜色和光输出模式的旋转提示命令。
当然,该控制命令还可以有其他多种可能,在此不加以限制。
需要说明的是,以上是以控制命令携带有目标拼块的标识以及目标拼块中待控制的目标外表面的标识为例进行介绍,但是可以理解的是,如果魔方中各个拼块的外表面具有唯一的标识的情况下,也可以在该控制命令中直接指示出拼块中各个外表面对应的光颜色,如,控制命令可以携带待控制的至少一个目标外表面的标识以及目标外表面对应的目标光颜色。
可以理解的是,为了确定以上控制命令,魔方需要了解到该魔方中各个拼块的相对位置关系,即中央控制装置需要获取到每个拼块相邻的相邻拼块的信息,从而得到魔方中各个拼块的相对位置关系。其中,本申请实施例中,将拼块相邻的拼块称为相邻拼块,可以理解的是,拼块与相邻拼块之间至少存在一个内侧面是相互接触的,从而使得拼块与相邻拼块内的两个块控制装置之间具有总线连接。
如,拼块内的块控制装置可以在接收到中央控制装置下发的相对关系上报指示时,获取该块控制装置所在的拼块的标识,以及该块控制模 块所在拼块的相邻拼块的标识,同时,该块控制装置可以将该块控制装置所在的拼块的标识以及该相邻拼块的标识上报给中央控制装置。相应的,中央控制装置可以根据各个拼块以及各个拼块相邻的相邻拼块,构建出魔方中各个拼块的相对位置关系。
在本申请一些实施例中,拼块内的块控制装置可以主动上报该块控制装置所在的拼块以及该拼块相邻的相邻拼块的信息。
其中,在各个拼块内的块控制装置之间实现总线连接的方式的基础上,任意拼块内的块控制装置可以确定当前通过总线与该块控制装置相连的相邻块控制装置,从而确定出相邻块控制装置所属的相邻拼块,并将该块控制装置所属的拼块和该相邻拼块的信息发送给中央控制装置。
如,对于任意一个块控制装置都可以内置该块控制装置所属的拼块的标识,同时,该块控制装置可以通过与该块控制装置通过总线连接相邻块控制装置进行通信,从而获取该相邻块控制装置所属的相邻拼块的标识,这样,每个块控制装置都可以获取自身所属的拼块的标识以及该相邻拼块的标识。
具体的,每个棱控制装置通过与该棱控制装置具有总线连接的至少一个角控制装置上报的角拼块的标识,确定出该棱控制装置所在的棱拼块相邻的至少一个角拼块。相应的,棱控制装置可以将该棱控制装置所属的棱拼块以及该棱拼块相邻的至少一个角拼块的信息上报给面中心控制装置;同时,面中心控制装置可以确定当前与该面中心控制装置通过总线相连的棱控制装置,并获取与该面中心控制装置通过总线相连的至少一个棱控制装置上报的该棱控制装置所属的棱拼块的标识,从而获取到该面中心控制装置所属的中心拼块相邻的至少一个棱拼块。这样,通过面中心控制装置可以将该面中心控制装置所属的中心拼块、该中心拼块相邻的棱拼块、棱拼块上报的该棱拼块相邻的至少一个角拼块上报给中央控制装置。
可见,魔方中内侧面相互接触的两个拼块内的块控制装置之间具有总线连接,使得块控制装置可以确定与该块控制装置所属的拼块相邻且 通过总线连接的相邻拼块。
相应的,中央控制装置根据六个面中心控制装置上报的各个拼块的相邻拼块的信息,可以确定出魔方中各个拼块的相对位置关系,从而可以确定出魔方所呈现出的形态,这样,魔方可以根据所需的控制命令,从魔方中确定待控制的目标拼块以及目标拼块中待控制的目标外表面。
其中,该相对位置关系可以反映出魔方中各个拼块之间的相对位置,这样,根据魔方中各个拼块之间的相对位置关系,可以确定出哪些拼块相邻,以及魔方的每个外表面分别由哪些拼块的哪些外表面构成。这样,根据魔方中各个拼块的相对位置关系,并结合所需生成的控制命令的具体需求,确定目标拼块、目标拼块中的目标外表面以及目标外表面所需呈现的光颜色。
如,在需要将魔方设置为原始状态时,中央控制模块将所有的拼块均作为目标拼块,同时,中央控制模块可以先确定魔方的6个外表面分别需要呈现出的颜色,然后,根据当前时刻魔方中各个拼块的相对位置关系,分别针对魔方的每个外表面,确定处于魔方中的哪些拼块的哪些外表面处于该魔方的该外表面上,并确定处于魔方中该外表面上的拼块的外表面所输出的光颜色为魔方该外表面所呈现的颜色。这样,中央控制模块可以构建出包含各个拼块的每个外表面所对应的光颜色的控制命令。
可以理解的是,在中央控制装置通过总线向面中心控制装置下发了控制命令之后,通过面中心控制装置可以控制命令传输给具有总线连接的棱控制装置,并由棱控制装置将控制命令传输给与该棱控制装置具有总线连接的角控制装置。
除了传输控制命令之外,对于任意一个块控制装置,还用于依据该控制命令,控制该块控制装置所属的拼块上的可控发光面输出的光的目标光颜色。
如,当该块控制装置所属的拼块的外表面中存在该控制命令中指示出的目标外表面时,该块控制装置控制该目标外表面的可控发光面输出 该目标外表面对应的目标光颜色。如,控制命令中携带有目标外表面1的标识,而该块控制装置所属的拼块的外表面包括该目标外表面1,则该块控制装置依据该目标外表面1对应的目标光颜色,控制该目标外表面上设置的可控发光面输出的光的光颜色。
特别的,在该控制命令还包括输出的光输出模式时,块控制装置会依据该控制命令,控制该块控制装置所属的拼块中的目标外表面对应的可控发光面输出的光的光输出模式和光颜色。
当然,在该控制命令携带的目标外表面的标识中不存在属于该块控制装置所在的拼块中的外表面时,该块控制装置无需执行该控制命令,则需要将该块控制命令转发给其他块控制装置即可。
可以理解的是,以上是以控制命令由该魔方的中央控制装置生成为例进行说明。但是可以理解的是,该控制命令也可以是由终端发送给该中央控制装置的。如,通过手机、笔记本电脑等向终端发送控制命令。
在通过终端向魔方的中央控制装置发送控制命令的情况中,该中央控制装置还用于,确定魔方状态信息,该魔方状态信息用于表征魔方中各个拼块之间的相对位置关系,如,根据各个块控制装置所属的拼块和相邻拼块的信息,确定该魔方状态信息;将该魔方状态信息发送给与该中央控制装置建立有通信连接的终端,并接收该终端发送的控制命令。
其中,该魔方状态信息可以为中央控制装置根据各个块控制装置所属的拼块和相邻拼块的信息,确定出的该魔方中各个拼块的相对位置关系;也可以是将各个拼块的相邻拼块的信息直接作为该魔方状态信息。
其中,终端生成该控制命令的过程与该魔方的中央控制装置生成该控制命令的过程相似,在此不再赘述;后续将以步骤流程的形式对终端控制魔方的过程进行具体介绍。
为了便于理解魔方中的中央控制装置以及各个块控制装置,可以参见图6,其示出了本申请实施例提供的一种中央控制装置以及不同种拼块内的块控制装置之间的组成结构示意图。
由图6可以看出,该中央控制装置610包括:中央处理模块611,以及通过总线与所述中央处理模块相连的电池模块612。
其中,该中央处理模块611,用于获取控制命令,该控制命令携带有魔方中待控制的至少一个目标拼块的标识,以及该目标拼块的至少一个外表面中待控制的至少一个目标外表面的标识,且该控制命令用于指示该目标拼块中该目标外表面所需显示的目标光颜色;并将该控制命令传输给至少一个面中心控制装置。
同时,该中央处理模块获取该控制命令的过程可以参见前面中央控制装置确定控制命令的相关操作,在此不再赘述。
该电池模块612用于为该中央控制装置、面中心控制装置、棱控制装置以及角控制装置供电。其中,该电池模块可以为可充电电池。
其中,电池模块可以通过各个中央控制装置以及各个块控制装置之间连通的总线,向中央控制装置以及各个块控制装置提供电力。
可以理解的是,在本申请实施例,在控制命令由中央控制装置生成的情况下,触发中央控制装置的中央处理模块生成控制命令的触发条件可以有多种。
在本申请一些实施例中,魔方上中心拼块上可以设置有与中央控制装置内的中央处理模块相连的至少一种控制按键,通过触按不同的控制按键可以触发中央处理模块生成不同的控制命令。
在本申请另外一些实施例中,该中央控制装置中还可以包括:与该中央处理模块相连的姿态感应模块613。该姿态感应模块613用于感应魔方当前的姿态偏移信息,该姿态偏移信息包括魔方在预置的三个相互垂直的坐标方向上的偏离角度。以空间相互垂直的X、Y和Z轴为例,通过获取魔方偏移这三个坐标轴的偏移角度,可以得到魔方在空间的空间姿态,从而有利于还原出魔方中各个面在空间中的朝向。这样,结合该魔方中各个拼块的相对位置关系以及该魔方的姿态偏移信息,能够真实还原出魔方在空间中的空间姿态(或者说空间相对位置),从而有利于中央控制装置或者终端更为准确的确定出所需控制的拼块以及拼块 中待控制的外表面。
如,确定出魔方偏离重力方向的角度,并依据魔方偏离重力方向的角度,分析出魔方中哪个中心拼块的外表面上朝上的,哪个中心拼块的外表面是朝下的,进而得到整个魔方中各个拼块的相对位置关系以及空间相对位置,从而还原出魔方在空间中的实际方位。
进一步的,该姿态感应模块还用于感应魔方的运动姿态信息,如,感应魔方是否处于运动状态、运动方向以及运动速度等等。
其中,该姿态感应模块可以包括加速度传感器、陀螺仪等用于感应运动姿态的器件中的一种或者几种。
相应的,在魔方生成控制命令的场景中,中央处理模块可以获取姿态感应模块感应到的该魔方的运动姿态信息,当根据该运动姿态信息,判断出魔方当前的运动姿态满足预设条件时,则根据运动姿态与命令的对应关系,触发生成与该运动姿态对应的控制命令。如,当前的运动姿态符合触发魔方的中央处理模块生成复原命令的运动姿态,则中央处理模块生成复原命令。
可以理解的是,在该控制命令由其他终端发送给魔方的中央控制模块的情况下,该中央控制模块除了包括中央处理模块611和电池模块612之外,还可以包括:通过总线与中央处理模块611以及电池模块612相连的无线通讯模块614。
其中,该无线通讯模块614,用于接收终端发送的控制命令,并将该控制命令传输给中央控制装置的中央处理模块,以使得中央处理模块可以获取到控制命令。该控制命令可以为前面提到的复原命令、颜色混合命令以及旋转指示命令等命令中的任意一种或多种。
可以理解的是,为了使得终端可以确定魔方中哪些拼块需要作为控制命令中待控制的目标拼块,以及目标拼块中待控制的目标外表面,该中央处理模块还可以通过该无线通讯模块将用于表征魔方中各个拼块的相对位置关系的魔方状态信息发送给终端。
进一步的,在一些应用场景中,如,魔方教学场景中,终端需要构 建虚拟的魔方,并使得构建出的魔方与真实环境中该魔方的保持一致,这样,终端需要获取到该魔方在空间中的空间相对位置,因此,该无线通讯模块还可以将姿态感应模块感应到的魔方的姿态偏移信息以及运动姿态信息发送给终端,以使得终端确定出该魔方的空间相对位置,并根据该魔方的空间相对位置以及魔方中各个拼块的相对位置关系,构建虚拟魔方。
下面对设置于不同种拼块内的控制装置进行介绍。
如图6所示,面中心控制装置620可以与中央控制装置610通过总线连线。在图6中仅仅示出了中央控制装置相连的一个面中心控制装置,但是可以理解的是,在实际应用中,中央控制装置可以与4个面中心控制装置的总线固定相连。相应的,面中心控制装置620最多可以与4个棱控制装置630通过总线相连,而在该图6中也仅仅示出了该面中心控制装置与一个棱控制装置之间的连接关系。
其中,面中心控制装置620可以包括第一处理模块621,该第一处理模块621,用于获取中央控制装置传输的控制命令,将该控制命令传输给通过总线相连的棱控制装置;同时,根据该控制命令,控制该面中心控制装置所在的中心拼块的外表面输出颜色光。
其中,该第一处理模块621中可以预置该面中心控制装置620所在的中心拼块的标识,如果该控制命令中包含该第一处理模块621中预置的中心拼块的标识时,则说明该控制命令中包括用于对该中心拼块的外表面输出的光颜色进行控制的命令。在该种情况下,该第一处理模块621可以从该控制命令中解析出与该中心拼块的标识以及该中心拼块中的外表面的标识对应的目标光颜色,并控制该中心拼块的外表面输出该目标光颜色。
同时,该第一处理模块621还可以获取棱控制装置上报的上报数据,并将棱控制装置上报的上报数据传输给中央控制装置,如该上报数据可以包括:该面中心控制装置通过总线相连的相邻棱控制装置传输的相邻 棱拼块的标识,以及与该相邻棱控制装置所在的相邻棱拼块相邻的相邻角拼块的标识等等。
进一步的,在该面中心控制装置620中还可以包括第一光驱动模块622。在该种情况下,该第一处理模块621根据控制命令,向该第一光驱动模块622发送驱动命令,该驱动命令用于驱动中心拼块的目标外表面上的可控发光面输出与该目标外表面对应的目标颜色光。
相应的,该第一光驱动模块622依据该驱动命令,驱动该中心拼块的目标外表面上的可控发光面输出该目标颜色光。
其中,根据目标外表面对应的可控发光面的不同,该第一光驱动模块622也会有多种可能,如,当拼块中外表面的可控发光面由LED灯构成时,该第一光驱动模块622可以为LED驱动模块。
同时,由图6可以看出,与面中心控制装置620相似,棱控制装置630可以包括:第二处理模块631。
其中,该第二处理模块631,用于接收面中心控制装置620传输的控制命令;将该控制命令传输给与该棱控制装置630通过总线相连的至少一个角控制装置640;并依据控制命令,控制该棱控制装置630所在的棱拼块中的外表面输出的光的光颜色。
同时,该第二处理模块631还用于确定与该棱控制装置630所在的棱拼块通过总线相连的至少一个相邻角拼块的标识,并将该棱拼块的标识以及该相邻角拼块的标识上报给通过总线相连的面中心控制装置620。
进一步的,该棱控制装置630还可以包括:第二光驱动模块632。相应的,第二处理装置631还用于依据该控制命令,向该第二光驱动模块632发送驱动命令,该驱动命令用于指示该第二光驱动模块632驱动棱拼块中的目标外表面上的可控发光面的发光。
相应的,该第二光驱动模块632,用于依据该驱动命令,驱动该棱控制装置630所在的棱拼块的目标外表面的可控发光面输出与该棱拼块的目标外表面对应的目标光颜色。
同时,由图6可以看出,角控制装置640可以包括第三处理模块641。
其中,该第三处理模块641,用于接收与该角控制装置640通过总线相连的棱控制装置630传输的该控制命令;并依据该控制命令,控制角控制装置640所在的角拼块的外表面输出光颜色。
同时,该第三处理模块641还用于,将该角控制装置640所在的角拼块的标识上报给与该角控制装置640通过总线相连的棱拼块。
进一步的,该角控制装置640还可以包括:第三光驱动模块642。相应的,该第三处理模块641,还用于依据该控制命令,向该第三光驱动模块642发送驱动命令,该驱动命令用于指示该第三光驱动模块642驱动该角拼块的目标外表面上的可控发光面的发光。
相应的,该第三光驱动模块642,用于依据该驱动命令,驱动该角控制装置640所在的角拼块的目标外表面的可控发光面输出与该角拼块的目标外表面对应的目标光颜色。
需要说明的是,不同种拼块内的控制装置的处理模块的功能相似,仅仅是为了区分,将面中心控制装置、棱控制装置以及角控制装置内的处理模块分别称为第一处理模块、第二处理模块以及第三处理模块。
相应的,不同控制装置内的光驱动模块的功能都是驱动拼块上的可控发光面发光,仅仅是为了便于区分,将面中心控制装置、棱控制装置以及角控制装置内的光驱动模块分别称为第一光驱动模块、第二光驱动模块和第三光驱动模块。
需要说明的是,以上是以魔方为三阶魔方为例,对魔方中的中央控制装置以及各个拼块内的块控制装置之间的总线连接关系以及数据传输过程进行介绍。但是可以理解的是,当魔方为五阶魔方等奇数阶魔方的情况下,由于魔方中也会存在与中心转轴相对位置固定的六个中心拼块,因此,中央控制装置同样可以与魔方中相对位置固定的六个中心拼块内的块控制装置通过总线相连,而对于拼块内的块控制装置之间的总线连接关系则是相同的。
相应的,对于任意一个块控制装置,如果该块控制装置为与中央控制装置直接通过总线相连的中心拼块内的块控制装置,则可以通过与中 央控制装置相连的总线,将该块控制装置所属的拼块和该相邻拼块的信息发送给该中央控制装置;如果该块控制装置未与中央控制装置直接通过总线相连,则可以经与该块控制装置通过总线相连的其他块控制装置将该块控制装置所属的拼块和该相邻拼块的信息转发给该中央控制装置。
相应的,中央控制装置可以通过总线向与该中央控制装置相连的块控制装置(即,相对位置固定的六个中心拼块内的块控制装置)发送该控制命令。
进一步的,块控制装置,还用于将接收到的控制命令转发给该块控制装置对应的目的块控制装置,该目的块控制装置为该魔方中与该块控制装置具有总线连接,且未向该块控制装置转发该控制命令的块控制装置。
如,以五阶魔方为例,五阶魔方共有8个角块、36个边块和54个中心块,其中,该54个中心拼块中有6个属于与中心转轴相连,相对位置固定的中心拼块,另外48个中心拼块的位置可以移动。这样,除了6个中心拼块与中心转轴内的中央控制装置通过总线直接相连之外,这6个中心拼块内的块控制装置与其他中心拼块内的块控制装置也是通过内侧面上的总线触点实现总线连接,相应的,中心拼块与棱拼块以及棱拼块与角拼块内的块控制装置之间同样是通过相接触的内侧面上的总线触点实现总线连接。
在此基础上,中央控制装置的控制命令会传输给与该中央控制装置相连的6个中心拼块内的块控制装置。而这六个中心拼块内的块控制装置会向该中心拼块通过总线相连其他中心拼块内块控制装置传输控制命令;而其他中心拼块内的块控制装置接收到该控制命令之后,会将该控制命令传输给通过总线相连的棱拼块内的块控制装置,而棱拼块内的块控制装置再将控制命令传输给通过总线相连的角拼块内的块控制装置。
当然,以上中央控制装置经中心拼块内的块控制装置与魔方中其他 拼块内的块控制装置实现总线连接为例,可以理解的是,在实际应用中,中央控制装置也可以通过无线通讯与各个拼块内的块控制装置实现相连。如,中央控制装置以及各个块控制装置内设置有蓝牙模块,通过蓝牙模块实现中央控制装置与各个块控制装置之间的数据通信。
在中央控制装置与各个块控制装置通过无线网络连接的情况下,中央控制模块可以直接向各个块控制装置发送控制命令;而各个块控制装置在确定出块控制装置所在的拼块以及相邻拼块的信息之后,也可以直接上报给中央控制装置。
为了增加魔方的功能以及趣味性,本申请实施例的魔方可以通过手机、平板电脑等终端进行控制。
具体的,终端获取到魔方的中央控制装置发送的魔方状态信息之后,基于该魔方状态信息,生成对该魔方的控制命令,该控制命令用于指示该魔方中拼块对应的目标光颜色;并将控制命令发送给魔方,以控制魔方的拼块的外表面输出的光的目标光颜色。
可以理解的是,根据终端的控制需求不同,生成控制命令的过程以及控制命令的具体内容均会有所不同。
下面结合以上魔方的共性,对魔方控制方法进行介绍。
图7a示出了本申请实施例提供的一种魔方控制方法的流程示意图。如图7a所示,该魔方控制方法可由终端执行,该终端与该魔方建立有通信连接,该魔方包括多个拼块,且拼块的外表面为可控发光面,拼块的外表面为该拼块中处于魔方外表面上的面。该方法包括以下步骤。
S71、获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
S72、基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
S73、将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
该方法的具体实现过程可以参见前面的相关介绍,在此不再赘述。
再如,参见图7b,其示出了本申请一种魔方控制方法一个实施例的流程交互示意图,本实施例的方法可以包括以下步骤。
S701,终端中运行控制魔方的魔方控制应用。
其中,终端中可以运行有用于对魔方进行控制的应用,在本申请实施例中,将该应用称为魔方控制应用。当然,通过魔方控制应用实现对魔方的控制仅仅是一种示例性的实施方式。
S702,魔方的中央控制装置启动。
如,开启魔方的中央控制装置的电池模块的开关,以实现对魔方的中央控制装置的供电,从而启动该中央控制装置。在本申请一些实施例中,可以在魔方的拼块上设置一个用于开启电池模块的按键,通过触按该按键可以开启该电池模块的供电。
S703,终端的魔方控制应用向魔方的中央控制装置发送通讯连接请求。
S704,魔方的中央控制装置响应于该通讯连接请求,建立与该终端之间的通讯连接。
如,中央控制装置的无线通讯模块可以接收终端发送的通讯连接请求,且,该无线通讯模块可以在中央控制装置内的中央控制模块的控制下,建立魔方与该终端之间的通讯连接。
需要说明的是,以上步骤S701到步骤S704为魔方开始启动时,魔方与终端之间建立通信连接的过程,可以理解的是,以上步骤仅仅是在魔方最初启动时执行,而在魔方与终端建立有通信连接的基础上,则无需在魔方与终端每次传输数据时,都重复执行以上步骤。
同时,以上是以魔方启动之后,便与终端建立通讯连接为例进行说明,但是可以理解的是,魔方可以在启动一段时间之后,或者魔方启动后的任意时刻与终端建立通讯连接,也就是该步骤S703和步骤S704可以在终端的魔方控制应用以及该魔方启动后的任意时刻执行。
S705,魔方的中央控制装置获取魔方中各个拼块的相对位置关系。
其中,魔方的中央控制装置获取该相对位置关系的过程可以参见前面的相关介绍,在此不再赘述。
S706,魔方的中央控制装置依据魔方中各个拼块的相对位置关系,确定用于控制魔方处于原始状态的初始控制命令。
其中,魔方的原始状态可以认为是魔方的每个面呈现一种颜色,且不同面呈现的颜色不同。
可以理解的是,在魔方刚开始启动时,由于魔方中各个拼块的外表面尚未输出光,为了确定出拼块中各个外表面输出的光的光颜色,该魔方中可以预置用于将魔方恢复至原始状态的规则,这样,在确定出魔方中各个拼块的相对位置关系之后,魔方分别确定魔方各个面所需呈现的光颜色,进而依据魔方中各个外表面所需呈现的光颜色,确定在魔方各个面上的拼块的外表面所需呈现的光颜色。
其中,在本申请实施例中,为了便于与终端向魔方发送的控制命令进行区分,将魔方启动时,魔方生成的用于控制魔方处于原始状态的控制命令称为初始控制命令。
S707,魔方的中央控制装置将初始控制命令发送给魔方中各个拼块内的块控制装置,以控制魔方的同一个面呈现同一个光颜色,且魔方的不同面呈现不同光颜色。
需要说明的是,以上步骤S706和S707仅仅是为了便于理解,魔方刚开始启动时,控制魔方的各个拼块的外表面所可能呈现的光颜色的一种实现方式,但是可以理解的是,由于魔方与终端可以在任意时刻建立通讯连接,因此,在魔方与终端建立通讯连接之后,如果魔方的各个拼块的外表面已经呈现有初始的光颜色,也无需魔方的中央控制装置再重复向各个块控制装置发送初始控制命令,因此,以上步骤S706和步骤S707为可选步骤。
同时,由魔方的中央控制装置向魔方的各个块控制装置发送初始控制命令仅仅是一种实现方式,在实际应用中,魔方启动之后,也可以是直接将魔方的各个拼块的相对位置关系发送给终端之后,由终端向魔方 发送控制命令,来控制魔方各个拼块的外表面的光颜色。
S708,魔方的中央控制装置获取当前时刻魔方的魔方状态信息以及各个拼块所呈现的光颜色,并将魔方状态信息以及各个拼块的外表面当前所呈现的光颜色发送给终端。
其中,该魔方状态信息包括:魔方中各个拼块的相对位置关系。
其中,在本申请实施例中,是以魔方状态信息包括魔方中各个拼块的相对位置关系为例进行说明。但是可以理解的是,在魔方的中央控制装置获取到各个块控制装置上报的拼块以及相邻拼块的信息之后,魔方的中央控制装置可以是根据各个拼块的相邻拼块的信息,确定出魔方中各个拼块的相对位置关系,并将该相对位置关系作为魔方状态信息发送给终端;也可以是将各个拼块的相邻拼块的信息直接作为该魔方状态信息的内容发送给终端,并由终端根据该各个拼块的相邻拼块的信息,确定魔方中各个拼块的相对位置关系。
在本申请一些实施例中,为了能够使得终端可以还原出该魔方在空间中的实际姿态,该魔方状态信息还可以包括:魔方的姿态偏移角度。该姿态偏移信息用于表征该魔方在预置的三个相互垂直的坐标方向上的偏离角度。
需要说明的是,将魔方中各个拼块的外表面当前呈现的光颜色的信息发送给终端是一种示例性的实现方式,其适用于魔方首次向终端发送魔方状态信息的情况,由于后续魔方中各个拼块的外表面所对应的光颜色是由终端的控制的,因此,魔方后续向终端发送魔方状态信息时,则无需再发送魔方当前时刻各个拼块的外表面对应的光颜色。
同时,在由魔方的各个拼块的外表面所呈现的光颜色是由终端控制显示的情况下,也无需向终端发送魔方中各个拼块的外表面当前呈现的光颜色的信息;而且,在某些情况下,终端可能无需关心魔方中各个拼块的外表面当前所呈现的光颜色,如,终端需要控制魔方中不同面上的拼块的外表面呈现不同种颜色时,终端只需要确定魔方中各个拼块的相对位置关系即可,因此,将魔方中各个拼块的外表面当前呈现的光颜色 的信息发送给终端是一种可选操作。
S709,终端的魔方控制应用根据该魔方中各个拼块的相对位置关系、各个拼块的外表面所呈现的光颜色以及魔方的姿态偏移角度,构建与该魔方所呈现出的姿态以及外观相同的虚拟魔方。
其中,该虚拟魔方中包括多个虚拟拼块,且该多个虚拟拼块与魔方中多个拼块之间具有一一对应关系,也就是说每个虚拟拼块代表魔方中的一个拼块,且不同虚拟拼块代表魔方中的不同拼块。终端可以存储各个虚拟拼块与魔方中各个拼块之间的对应关系。
可以理解的是,该虚拟魔方中各个虚拟拼块的相对位置关系与该魔方中各个拼块的相对位置关系一致,且虚拟魔方对应的姿态偏移信息与魔方对应的姿态偏移信息一致。
同时,由于魔方的中央控制装置将魔方中各个拼块的外表面当前呈现的光颜色信息发送给终端,因此,终端可以控制虚拟魔方中各个虚拟拼块的外表面所呈现出的光颜色,以使得虚拟拼块的外表面所呈现出的光颜色与该魔方中该虚拟拼块的外表面对应的拼块的外表面所呈现的光颜色一致。例如,虚拟魔方中的虚拟角拼块a1与魔方中的角拼块b1相互对应,且虚拟角拼块a1的第一外表面a11与角拼块b1的第一外表面b11对应,则第一外表面a11与第一外表面b11所呈现出的光颜色一致。
可见,终端可以构建出与真实空间中的魔方完全一致的虚拟魔方,这样,基于虚拟魔方中各个虚拟拼块的相对位置关系、各个虚拟拼块、虚拟魔方的朝向等等,可以准确反映出魔方的姿态以及外观,从而有利于后续根据虚拟魔方,确定对魔方的控制命令。
在本申请一些实施例中,该终端的魔方控制应用构建出虚拟魔方之后,还可以在该终端的显示界面中显示出该虚拟魔方。且如果显示出的虚拟魔方为二维图形时,显示界面中展现出的虚拟魔方,与握持魔方的用户在真实环境中看到的魔方一致。
S710,终端的魔方控制应用依据该虚拟魔方,确定魔方中需要调整 光颜色的至少一个目标拼块中待调整的至少一个的目标外表面,以及目标拼块的目标外表面所需调整到的目标光颜色,并生成控制命令。
其中,该控制命令携带有魔方中待调整光颜色的至少一个目标拼块的标识、目标拼块中待控制的至少一个目标外表面的标识以及每个目标外表面对应的目标光颜色。
在本申请一些实施例中,在魔方中各个拼块的外表面具有唯一标识的情况下,该控制命令也可以仅仅携带有魔方中待控制的至少一个目标外表面的标识以及每个目标外表面对应的目标光颜色。
其中,依据虚拟魔方确定控制命令的过程可以为:从虚拟魔方中,确定待控制的虚拟拼块以及虚拟拼块中待控制的虚拟外表面,同时,根据虚拟魔方与魔方的拼块之间对应关系,确定待控制的虚拟拼块对应的目标拼块,以及虚拟拼块中待控制的虚拟外表面对应的目标拼块中的目标外表面,并将虚拟外表面对应的目标光颜色确定为该虚拟外表面对应的目标外表面的目标光颜色。
需要说明的是,通过构建虚拟魔方,并基于虚拟魔方来生成控制命令是一种示例性的实现方式,在实际应用中,在确定出魔方的魔方状态信息之后,基于该魔方状态信息就可以还原出魔方的实际形态,因此,终端可以直接基于该魔方状态信息,从魔方的各个拼块对应的外表面中,确定出当前待控制的至少一个目标外表面(或者至少一个目标拼块中待控制的至少一个目标外表面)以及每个目标外表面对应的目标光颜色,并生成控制命令。
其中,终端生成的控制命令可以包括前面中央控制装置生成的控制命令的几种情况。
如,在本申请一些实施例中,控制命令可以为复原命令,例如,用户可以通过触按终端上的指定按键,以向终端发送复原指令,以触发终端生成该复原命令。相应的,终端检测到该复原命令,则可以魔方中所有拼块对应的多个外表面均确定为目标外表面,并基于魔方状态信息,确定各个目标外表面对应的目标光颜色,从而生成控制命令,基于该控 制命令可以使处于魔方相同面上的目标外表面对应的目标光颜色相同,且处于魔方不同面上的目标外表面对应的目标光颜色不同。
又如,在本申请另外一些实施例中,控制命令可以为颜色混合命令。用户通过输入颜色混合指令,触发终端生成颜色混合命令,该颜色混合命令用于控制处于魔方同一个面上的多个目标外表面中,至少存在部分目标外表面对应的目标光颜色不同。相应的,在终端检测到颜色混合指令时,将魔方的各个拼块对应的多个外表面均确定为待控制的目标外表面,并基于魔方状态信息,分别确定每个目标外表面对应的目标光颜色,以使得魔方每个面可以呈现出多种光颜色。
又如,在本申请另外一些实施例中,终端还可以生成用于提示魔方旋转方向的控制命令。具体的,基于魔方状态信息以及预置的魔方复原算法,确定将魔方恢复到原始状态所需旋转的多个目标拼块,以及该多个目标拼块的旋转方向;依据该多个目标拼块的旋转方向,从该多个目标拼块的外表面中,确定提示该旋转方向所需的至少一个目标外表面,以及该至少一个目标外表面对应的目标光颜色和光输出模式。
又如,在一些游戏场景中,终端还可以通过控制魔方中某些拼块的部分或者全部外表面所输出的光颜色的变化,以达到游戏目的。后续将结合游戏场景进行介绍。
S711,终端的魔方控制应用向魔方的中央控制装置发送该控制命令。
如,终端的魔方控制应用向魔方的中央控制装置内的无线通讯模块发送该控制命令,且在该无线通讯模块接收到该控制命令之后,将该控制命令传输给该中央控制装置内的中央处理模块。
其中,终端向魔方发送了控制命令之后,终端可以基于控制命令中指示的各个目标外表面对应的目标光颜色,这样,后续魔方无需向终端发送魔方中各个拼块的外表面对应的光颜色,而终端根据已经发出的控制命令以及记录的魔方中各个拼块的各个目标外表面对应的目标光颜色,便可以确定魔方中各个拼块的外表面当前所呈现的光颜色。
S712,魔方的中央控制装置将该控制命令发送给魔方中各个拼块内 的块控制装置,以使得拼块内的块控制装置基于该控制命令调整拼块的外表面上输出的光颜色。
魔方的中央控制装置将该控制命令发送给各个块控制装置,以及块控制装置执行控制命令的过程可以参见前面的相关介绍,在此不再赘述。
S713,终端的魔方控制应用依据控制命令,更新该虚拟魔方的虚拟拼块的外表面所呈现的光颜色,以使得虚拟魔方的各个面分别与魔方中各个面保持一致。
在终端向魔方发送控制命令的同时,该终端的魔方控制应用会依据控制命令,对虚拟魔方中虚拟拼块的外表面所呈现的光颜色进行更新,以使得更新后的虚拟魔方与按照该控制命令更新后的魔方的姿态以及外观仍保持一致。
其中,该步骤S713可以与步骤S711或者S712同时执行,也可以是在该步骤S711之后执行,在此不加以限制。
S714,魔方的中央控制装置检测到魔方存在运动姿态变化时,获取该魔方的更新后的魔方状态信息。
其中,为了便于区分,将魔方存在运动姿态变化之后,该魔方的魔方状态信息称为更新后的魔方状态信息。其中,该更新后的魔方状态信息包括:魔方运动姿态变化后,该魔方中各个拼块的相对位置关系以及魔方的姿态偏移信息。
如,在魔方的中央控制装置内的姿态感应模块感应到魔方存在运动姿态变化,则中央处理模块会获取当前确定的各个拼块的相对位置关系,并触发姿态感应模块确定当前魔方的姿态偏移信息。
可以理解的是,在魔方存在运动姿态变化时,则说明魔方有可能被旋转,魔方中各个拼块的相对位置关系会发生改变,因此,需要重新获取魔方的魔方状态信息。进一步的,魔方的中央控制装置可以根据获取到魔方的运动姿态信息,分析该魔方是否满足旋转条件,如果是,则执行获取更新后的魔方状态信息的操作。
进一步的,魔方可以在分析出魔方当前满足旋转条件之后,还可以 根据各个块控制装置上报的拼块以及相邻拼块的信息,确定魔方是否完成旋转,如果是,则将获取到的更新后的魔方状态信息发送给终端;否则,则等待魔方完成旋转。其中,魔方被旋转之后,魔方中拼块相邻的相邻拼块的数量会减少,例如,魔方未被旋转时,每个角拼块有3个相邻的相邻棱拼块,而魔方旋转过程中,就可能存在一个角拼块仅仅有2个相邻的棱拼块的情况,在该种情况下,则可以确定魔方尚处于旋转状态,未完成旋转。
当然,如果终端构建虚拟魔方时,仅仅保持虚拟魔方中各个虚拟拼块的相对位置关系,与魔方中各个拼块的相对位置关系一致,则无需获取魔方的姿态偏移信息。
S715,魔方的中央控制装置将当前获取到的更新后的魔方状态信息发送给终端的魔方控制应用。
S716,终端的魔方控制应用利用更新后的魔方状态信息,更新该虚拟魔方中各个虚拟拼块的相对位置关系以及虚拟魔方对应的偏移姿态信息。
其中,终端更新虚拟魔方之后,后续可以继续依据虚拟魔方,确定魔方中待控制的拼块以及拼块中待控制的外表面,从而生成控制命令。
当然,如果终端不依据虚拟魔方生成控制命令,则终端只需要存储魔方的中央控制装置发送的更新后的魔方状态信息即可,而无需执行该步骤S716。
可见,在块控制装置将该块控制装置所属的拼块以及该拼块相邻的相邻拼块的信息发送给魔方的中央控制装置之后,中央控制装置可以确定出用于反映魔方中各个拼块的相对位置关系的魔方状态信息,并将该魔方状态信息发送给终端,这样,终端可以依据该魔方的魔方状态信息,确定魔方的拼块中待控制的外表面,并向魔方发送控制命令,通过该控制命令可以指示魔方的拼块的外表面对应的目标光颜色,从而实现控制魔方的拼块的外表面所呈现颜色,有利于根据需要随意变换魔方的拼块的外表面所呈现的颜色,进而增加了魔方的功能,实现了魔方的可控性, 也有利于增加魔方的趣味性。
为了便于理解,通过终端控制魔方来增加魔方的功能以及趣味性,下面结合两个终端控制魔方的两个应用场景进行介绍。
首先,以通过终端控制魔方实现魔方教学的应用场景为例进行介绍。
在终端的魔方控制应用在与魔方建立通讯连接之后,基于魔方发送的魔方状态信息构建虚拟魔方。而为了实现魔方教学,终端可以根据虚拟魔方,确定颜色混合命令,并将该颜色混合命令发送给魔方,以控制将处于魔方相同面上的拼块的外表面的光颜色混合,使得魔方同一个面上的拼块的外表面可以呈现多种不同光颜色。同时,按照该颜色混合命令,更新虚拟魔方中各个虚拟拼块各个拼块的颜色。
如,参见图8,其示出了魔方(或者说虚拟魔方)执行颜色混合命令后的效果示意图,在图8中,拼块的外表面所呈现出的白色、黑色、直线条纹、曲线条纹、圆圈以及方框分别代表不同的光颜色,由图8可见,对于虚拟魔方的每个面上各个拼块的外表面的颜色不会完全相同。
同时,终端可以根据魔方还原算法,确定在图8所示的魔方状态下,如果将魔方恢复到原始状态,需要旋转哪些目标拼块,以及对这些目标拼块的旋转方向,并从确定出的目标拼块的外表面中,确定提示该旋转方向所需的至少一个目标外表面,以及该至少一个目标外表面对应的目标光颜色和光输出模式,从而生成旋转提示命令,并发送给魔方。
如,参见图8,假设将魔方恢复至原始状态,需要按照图8中箭头所示方向旋转拼块,则目标拼块为魔方中最右侧的一层目标拼块,如图8中与标示出的拼块801、拼块802和拼块803处于同一层的拼块,且至少需要在目标拼块中朝向用户的外表面上输出旋转方向提示,即,至少需要在拼块801、拼块802以及拼块803中标示出箭头的外表面上输出用于提示旋转方向的目标光颜色以及光输出模式,例如,可以控制拼块801、拼块802以及拼块803依次点亮相同或者不同颜色,以实现这三个拼块按照从箭头方向依次闪烁的目的,以对用户进行提示。
相应的,在用户旋转该魔方之后,魔方的中央控制装置会将魔方旋转后的魔方状态信息发送给终端,终端根据魔方状态信息,以及终端记录的各个拼块对应的光颜色,更新虚拟魔方,并在后续继续对用户进行提示,或者根据需要重新控制魔方各个面处于颜色混合状态。
当然,当用户因为操作技巧差而导致其还原魔方的思路不清晰时,用户可以通过终端上设置的“一键还原”指令,来触发终端生成复原命令,并将复原命令发送给魔方,以将魔方以及虚拟魔方还原为初始状态,从而用户的非必要操作,提高魔方学习效率。
下面,以将魔方控制方法应用于一种游戏场景为例进行介绍。
在一些游戏竞技场景中,在将魔方与终端建立通讯连接之后,可以将魔方作为游戏的操控器,通过旋转魔方的拼块,以使得魔方中具有相同颜色的拼块的外表面相邻,而终端基于获取到的魔方的魔方状态信息,可以检测当前时刻魔方的各个拼块中是否存在光颜色相同,且位置关系满足预设条件的至少两个目标外表面;如果是,则分别确定该至少两个目标外表面所需调整到的目标光颜色,以达到用户通过魔方玩消除类游戏的目的。其中,该至少两个目标外表面对应的目标光颜色不完全相同。
如,在终端与魔方建立通讯连接之后,终端可以构建虚拟魔方,并控制虚拟魔方中各个虚拟拼块的外表面所呈现的光颜色,同时,终端根据虚拟魔方中各个虚拟拼块的外表面的光颜色,控制魔方各个拼块的外表面输出的光的光颜色。在该场景中,各个拼块的外表面所呈现出的光颜色的种类可以根据需要设定,如,魔方中所有拼块的外表面只能呈现三种光颜色中的一种,当然,光颜色的种类可以根据游戏需要设定。
当玩家旋转魔方之后,虚拟魔方会同步更新,如果终端根据虚拟魔方中各个虚拟拼块的相对位置关系以及虚拟拼块的外表面的光颜色,确定出,当前存在至少三个虚拟拼块的至少三个外表面相邻且输出的光颜色一致,则确定该至少三个外表面满足游戏中的消除条件,如,该至少三个外表面所呈现出的图案可以为包括且不限于“L”、“十”“X”“斜线” “竖线”等图案形状,例如,可以参见图9,其示出了魔方中满足游戏中消除条件的至少三个拼块的至少三个外表面的相对位置关系以及该至少三个外表面的光颜色,其中,图9中不同方框代表不同的颜色,如,拼块的外表面为横条代表该拼块的外表面所呈现出的一种颜色,而拼块的外表面为黑色,则代表该拼块的外表面所呈现出的另一种颜色,在该图9中,利用虚线框出的外表面就是满足消除条件的至少三个外表面。
在确定出虚拟魔方中存在满足消除条件的至少三个拼块的至少三个外表面时,则根据该至少三个外表面对应的个数,确定用户的游戏得分,并随机为该虚拟魔方中该至少三个外表面分配不同种光颜色,同时同步控制魔方,以使得魔方与虚拟魔方的外观保持一致。
对应本申请实施例提供的一种魔方控制方法,本申请实施例还提供了一种魔方控制装置。
如,参见图10a,其示出了本申请一种魔方控制装置一个实施例的组成结构示意图,该装置可以应用于终端,该终端与所述魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,其中,该魔方的具体组成可以参见前面实施例的相关介绍,在此不再赘述。
其中,该装置可以包括:
信息获取单元1001,用于获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
命令生成单元1002,用于基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
命令发送单元1003,用于将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
在本申请一些实施例中,所述命令生成单元1002,包括:
目标确定子单元,用于基于所述魔方状态信息,从所述魔方的各个 拼块对应的多个外表面中,确定出当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色;
命令生成子单元,用于生成对所述魔方的控制命令,所述控制命令包括所述至少一个目标外表面的标识以及所述至少一个目标外表面各自对应的目标光颜色。
在本申请一些实施例中,所述目标确定子单元,可以包括:
复原子单元,用于当检测到复原指令时,将所述魔方的各个拼块对应的多个外表面均确定为待控制的目标外表面,并基于所述魔方状态信息,分别确定每个目标外表面对应的目标光颜色,其中,处于所述魔方相同面上的目标外表面对应的目标光颜色相同,且处于魔方不同面上的目标外表面对应的目标光颜色不同。
在本申请一些实施例中,所述目标确定子单元,包括:
颜色混合子单元,用于当检测到颜色混合指令时,将所述魔方的各个拼块对应的多个外表面均确定为待控制的目标外表面,并基于所述魔方状态信息,分别确定每个目标外表面对应的目标光颜色,其中,处于魔方同一个面上的多个目标外表面中,至少存在部分目标外表面对应的目标光颜色不同。
在本申请一些实施例中,所述目标确定子单元,包括:
旋转确定子单元,用于基于所述魔方状态信息以及预置的魔方复原算法,确定将所述魔方恢复到原始状态所需旋转的多个目标拼块,以及所述多个目标拼块的旋转方向,其中,所述魔方的原始状态为所述魔方中每个面呈现同一种颜色,且魔方不同面呈现的颜色不同;
旋转目标确定子单元,用于依据所述多个目标拼块的旋转方向,从所述多个目标拼块的外表面中,确定提示所述旋转方向所需的至少一个目标外表面,以及所述至少一个目标外表面对应的目标光颜色和光输出模式,所述光输出模式包括:光输出方式、光输出时刻以及光持续时长中的一种或多种。
在本申请一些实施例中,所述目标确定子单元,包括:
检测子单元,用于基于所述魔方状态信息,检测当前时刻所述魔方的各个拼块中是否存在光颜色相同,且位置关系满足预设条件的至少两个目标外表面;
调整目标确定子单元,用于当所述魔方中存在所述至少两个目标外表面时,分别确定所述至少两个目标外表面所需调整到的目标光颜色,其中,所述至少两个目标外表面对应的目标光颜色不完全相同。
在本申请一些实施例中,所述信息获取单元1001获取到的魔方状态信息还包括:用于所述魔方的姿态偏移信息,所述姿态偏移信息用于表征所述魔方在预置的三个相互垂直的坐标方向上的偏离角度;
目标确定子单元,包括:
魔方构建子单元,用于基于所述魔方状态信息,构建虚拟魔方,并存储虚拟魔方中各个虚拟拼块与所述魔方中各个拼块之间的一一对应关系,其中,所述虚拟魔方中各个虚拟拼块的相对位置关系与所述魔方中各个拼块的相对位置关系一致,且所述虚拟魔方对应的姿态偏移信息与所述魔方对应的姿态偏移信息一致;
第一目标确定子单元,用于依据构建出的虚拟魔方,确定所述魔方的各个拼块对应的多个外表面中,当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色。
在本申请一些实施例中,如图10b所示,所述装置还包括:第一更新单元1004,用于在所述命令发送单元1003将所述控制命令发送给所述魔方的同时,依据所述控制命令,更新所述虚拟魔方的虚拟拼块的外表面所呈现的光颜色,以使得所述虚拟魔方的各个面分别与所述魔方中各个面保持一致。
在本申请一些实施例中,如图10c所示,该装置还包括:第二更新单元1005,用于当接收到所述终端发送的更新后的魔方状态信息时,利用所述更新后的魔方状态信息,更新所述虚拟魔方中各个虚拟拼块的相对位置关系以及所述虚拟魔方对应的偏移姿态信息。
另一方面,本申请还提供了一种终端。该终端可以为手机、平板电脑、笔记本电脑等等。
如,参见图11,其示出了本申请一种终端一个实施例的组成结构示意图,本实施例的终端1100与魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,该魔方的具体结构以及组成可以参见前面实施例的相关介绍,在此不再赘述。
该终端1100可以包括:
通信接口1101,用于获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
处理器1102,用于基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
发射器1103,用于将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
当然,该终端还可以包括存储器1104,用于存储处理器1102执行操作所需的程序,例如实现前述的魔方控制方法的机器可读指令。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一非易失性计算机可读存储介质中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系 术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
以上仅是本申请的示例性的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (16)

  1. 一种魔方,包括:相互拼装的多个拼块,以及维持所述多个拼块旋转的机械轴心部件;
    其中,所述机械轴心部件内设置有中央控制装置,所述拼块的外表面为可控发光面,所述拼块内设置有与所述可控发光面相连的块控制装置,所述拼块的外表面为所述拼块中处于魔方外表面上的面;
    所述中央控制装置,用于确定魔方状态信息,所述魔方状态信息用于表征魔方中各个拼块之间的相对位置关系;将所述魔方状态信息发送给与所述中央控制装置建立有通信连接的终端;接收所述终端发送的控制命令,所述控制命令为所述终端基于所述魔方状态信息生成的,且所述控制命令用于指示所述拼块的外表面对应的目标光颜色;向所述块控制装置发送所述控制命令;
    所述块控制装置,用于依据所述控制命令,控制所述块控制装置所属的拼块上的可控发光面输出的光的目标光颜色。
  2. 根据权利要求1所述的魔方,所述拼块的内侧面上设置有与所述拼块内的块控制装置通过总线相连的总线接触点,其中,内侧面上的总线接触点相接触的任意两个拼块的块控制装置之间的总线连通,所述拼块的内侧面为所述拼块中能够与魔方中其他拼块相接触的面;
    其中,所述块控制装置,还用于确定当前时刻与所述块控制装置通过总线相连的相邻块控制装置所属的相邻拼块,并将所述块控制装置所属的拼块和所述相邻拼块的信息发送给所述中央控制装置;
    所述中央控制装置具体用于,根据所述块控制装置所属的拼块和相邻拼块的信息,确定魔方状态信息。
  3. 根据权利要求2所述的魔方,所述中央控制装置与所述多个拼块中相对位置固定的六个中心拼块内的块控制装置通过总线相连;
    所述块控制装置具体用于通过与中央控制装置相连的总线,将所述块控制装置所属的拼块和所述相邻拼块的信息发送给所述中央控制装置;或者,经与所述块控制装置通过总线相连的其他块控制装置将所述 块控制装置所属的拼块和所述相邻拼块的信息转发给所述中央控制装置;
    所述中央控制装置具体用于,通过总线向与所述中央控制装置相连的块控制装置发送所述控制命令;
    所述块控制装置,还用于将接收到的控制命令转发给所述块控制装置对应的目的块控制装置,所述目的块控制装置为所述魔方中与所述块控制装置具有总线连接,且未向所述块控制装置转发所述控制命令的块控制装置。
  4. 根据权利要求3所述的魔方,所述机械轴心部件为中心转轴,所述中心转轴包括相互垂直的六根轴柱,以及与所述六根轴柱相连的转轴连接体,每根轴柱与所述魔方中相对位置固定的六个中心拼块相连;
    其中,所述轴柱内设置有与所述转轴连接体相连的同轴环形螺柱,所述同轴环形螺柱具有环形凹槽,且所述环形凹槽内设置有环绕所述凹槽内壁的总线触点;
    其中,所述中央控制装置设置于所述转轴连接体的空腔内,且所述中央控制装置与所述同轴环形螺柱内的总线触点通过总线相连;
    所述中心拼块连接有与所述同轴环形螺柱的凹槽匹配且可绕所述凹槽旋转的螺柱插头,且所述螺柱插头的外壁上设置有环绕所述螺柱插头的总线触点,所述螺柱插头的总线触点与所述中心拼块内的块控制装置通过总线相连;
    其中,当所述螺柱插头插入所述同轴环形螺柱的凹槽时,所述中心拼块与所述轴柱相连,且所述螺柱插头上的总线触点与所述凹槽内的总线触点相接触。
  5. 根据权利要求2至4任一项所述的魔方,所述中央控制装置还用于,确定所述魔方当前的姿态偏移信息,所述姿态偏移信息包括所述魔方在预置的三个相互垂直的坐标方向上的偏离角度;
    所述中央控制装置具体用于根据所述姿态偏移信息,以及所述块控制装置所属的拼块和相邻拼块的信息,确定魔方状态信息,所述魔方状 态信息还用于表征所述魔方在预置的三个相互垂直的坐标方向上的偏离角度。
  6. 根据权利要求2至4任一项所述的魔方,所述中央控制装置还用于,确定所述魔方当前的运动姿态信息;
    所述中央控制装置具体用于,当根据所述运动姿态信息确定出所述魔方被旋转时,将所述魔方状态信息发送给与所述中央控制装置建立有通信连接的终端。
  7. 根据权利要求1所述的魔方,所述中央控制装置接收到的控制命令还用于指示拼块的外表面对应的光输出模式,所述光输出模式包括:光输出方式、光输出时刻以及光持续时长中的一种或多种;
    所述块控制装置具体用于依据所述控制命令,控制所述块控制装置所属的拼块上的可控发光面输出的光的光输出模式和光颜色。
  8. 一种魔方控制方法,应用于终端,所述终端与所述魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,所述方法包括:
    获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
    基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
    将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
  9. 根据权利要求8所述的魔方控制方法,所述基于所述魔方状态信息,生成对所述魔方的控制命令,包括:
    基于所述魔方状态信息,从所述魔方的各个拼块对应的多个外表面中,确定出当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色;
    生成对所述魔方的控制命令,所述控制命令包括所述至少一个目标 外表面的标识以及所述至少一个目标外表面各自对应的目标光颜色。
  10. 根据权利要求9所述的魔方控制方法,所述基于所述魔方状态信息,从所述魔方的各个拼块对应的多个外表面中,确定出当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色,包括:
    当检测到复原指令时,将所述魔方的各个拼块对应的多个外表面均确定为待控制的目标外表面,并基于所述魔方状态信息,分别确定每个目标外表面对应的目标光颜色,其中,处于所述魔方相同面上的目标外表面对应的目标光颜色相同,且处于魔方不同面上的目标外表面对应的目标光颜色不同。
  11. 根据权利要求9所述的魔方控制方法,所述基于所述魔方状态信息,从所述魔方的各个拼块对应的多个外表面中,确定出当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色,包括:
    基于所述魔方状态信息以及预置的魔方复原算法,确定将所述魔方恢复到原始状态所需旋转的多个目标拼块,以及所述多个目标拼块的旋转方向,其中,所述魔方的原始状态为所述魔方中每个面呈现同一种颜色,且魔方不同面呈现的颜色不同;
    依据所述多个目标拼块的旋转方向,从所述多个目标拼块的外表面中,确定提示所述旋转方向所需的至少一个目标外表面,以及所述至少一个目标外表面对应的目标光颜色和光输出模式,所述光输出模式包括:光输出方式、光输出时刻以及光持续时长中的一种或多种。
  12. 根据权利要求9所述的魔方控制方法,所述基于所述魔方状态信息,从所述魔方的各个拼块对应的多个外表面中,确定出当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色,包括:
    基于所述魔方状态信息,检测当前时刻所述魔方的各个拼块中是否存在光颜色相同,且位置关系满足预设条件的至少两个目标外表面;
    当所述魔方中存在所述至少两个目标外表面时,分别确定所述至少两个目标外表面所需调整到的目标光颜色,其中,所述至少两个目标外表面对应的目标光颜色不完全相同。
  13. 根据权利要求9所述的魔方控制方法,所述魔方状态信息还包括:用于所述魔方的姿态偏移信息,所述姿态偏移信息用于表征所述魔方在预置的三个相互垂直的坐标方向上的偏离角度;
    所述基于所述魔方状态信息,从所述魔方的各个拼块对应的多个外表面中,确定出当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色,包括:
    基于所述魔方状态信息,构建虚拟魔方,并存储虚拟魔方中各个虚拟拼块与所述魔方中各个拼块之间的一一对应关系,其中,所述虚拟魔方中各个虚拟拼块的相对位置关系与所述魔方中各个拼块的相对位置关系一致,且所述虚拟魔方对应的姿态偏移信息与所述魔方对应的姿态偏移信息一致;
    依据构建出的虚拟魔方,确定所述魔方的各个拼块对应的多个外表面中,当前待控制的至少一个目标外表面以及所述目标外表面对应的目标光颜色。
  14. 一种魔方控制装置,应用于终端,所述终端与所述魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,所述装置包括:
    信息获取单元,用于获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
    命令生成单元,用于基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
    命令发送单元,用于将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
  15. 一种终端,所述终端与魔方建立有通信连接,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,其中,所述拼块的外表面为所述拼块中处于魔方外表面上的面,所述终端包括:
    通信接口;
    发射器;
    处理器以及与所述处理器相连接的存储器,所述存储器中存储有可由所述处理器执行的机器可读指令,所述处理器执行所述机器可读指令完成以下操作:通过所述通信接口获取所述魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系;
    基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
    通过所述发射器将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
  16. 一种非易失性计算机可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
    获取魔方发送的魔方状态信息,所述魔方状态信息至少用于表征所述魔方中各个拼块之间的相对位置关系,其中,所述魔方包括多个拼块,且所述拼块的外表面为可控发光面,所述拼块的外表面为所述拼块中处于魔方外表面上的面;
    基于所述魔方状态信息,生成对所述魔方的控制命令,所述控制命令用于指示所述魔方的拼块的外表面对应的目标光颜色;
    将所述控制命令发送给所述魔方,以控制魔方的拼块的外表面输出的光的光颜色。
PCT/CN2018/114150 2017-11-06 2018-11-06 魔方、魔方控制方法以及终端 WO2019086042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711078488.XA CN107670268B (zh) 2017-11-06 2017-11-06 魔方、魔方控制方法以及终端
CN201711078488.X 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019086042A1 true WO2019086042A1 (zh) 2019-05-09

Family

ID=61145591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114150 WO2019086042A1 (zh) 2017-11-06 2018-11-06 魔方、魔方控制方法以及终端

Country Status (2)

Country Link
CN (1) CN107670268B (zh)
WO (1) WO2019086042A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670268B (zh) * 2017-11-06 2020-03-03 腾讯科技(深圳)有限公司 魔方、魔方控制方法以及终端
CN109215418A (zh) * 2018-10-25 2019-01-15 塔普翊海(上海)智能科技有限公司 一种魔方、魔方教学系统以及魔方教学方法
CN109731324B (zh) * 2018-12-29 2022-08-16 深圳市掌网科技股份有限公司 一种基于增强现实的游戏系统
CN109675297A (zh) 2019-01-18 2019-04-26 佛山市计客创新科技有限公司 智能中轴、智能魔方及其计时方法
CN110180165B (zh) * 2019-03-27 2024-09-27 佛山市计客创新科技有限公司 智能中轴、智能魔方及智能魔方的监测方法
CN113476820A (zh) * 2021-06-30 2021-10-08 上海邦麟复合材料科技有限公司 一种可以控制魔方显示颜色的魔方及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291711A (zh) * 2005-10-20 2008-10-22 皇家飞利浦电子股份有限公司 带有可编程发光拼块的游戏器具
CN101690847A (zh) * 2009-09-22 2010-04-07 罗富强 一种电子魔方的感测方法及电子魔方、魔方游戏系统
CN202355822U (zh) * 2011-12-05 2012-08-01 北京安天电子设备有限公司 可编程的发光魔方
US20130132909A1 (en) * 2011-11-22 2013-05-23 Byung-youn Song Method and apparatus for displaying a polyhedral user interface
CN105641919A (zh) * 2016-03-24 2016-06-08 徐晖 炫彩魔方
CN107670268A (zh) * 2017-11-06 2018-02-09 腾讯科技(深圳)有限公司 魔方、魔方控制方法以及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291711A (zh) * 2005-10-20 2008-10-22 皇家飞利浦电子股份有限公司 带有可编程发光拼块的游戏器具
CN101690847A (zh) * 2009-09-22 2010-04-07 罗富强 一种电子魔方的感测方法及电子魔方、魔方游戏系统
US20130132909A1 (en) * 2011-11-22 2013-05-23 Byung-youn Song Method and apparatus for displaying a polyhedral user interface
CN202355822U (zh) * 2011-12-05 2012-08-01 北京安天电子设备有限公司 可编程的发光魔方
CN105641919A (zh) * 2016-03-24 2016-06-08 徐晖 炫彩魔方
CN107670268A (zh) * 2017-11-06 2018-02-09 腾讯科技(深圳)有限公司 魔方、魔方控制方法以及终端

Also Published As

Publication number Publication date
CN107670268B (zh) 2020-03-03
CN107670268A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2019086042A1 (zh) 魔方、魔方控制方法以及终端
US10293268B2 (en) Block, block system, information processing apparatus, display method, and information processing method
JP5089060B2 (ja) エンタテインメントシステムおよびゲームコントローラ
JP5160431B2 (ja) プログラム可能な発光セグメントを備えるゲーム
CN104096366B (zh) 一种智能积木系统及智能积木的控制方法
KR20140133496A (ko) 장난감 조각을 이용하기 위한 베이스플레이트
JP6543678B2 (ja) 発光装置
JP4906391B2 (ja) ゲームコントローラ
CN104107554B (zh) 一种智能积木系统及智能积木的控制方法
US8897567B2 (en) Information processor, device, and information processing system
Hung et al. Home outlet and LED array lamp controlled by a smartphone with a hand gesture recognition
KR101911010B1 (ko) 스마트 블록 조립체
CN211073602U (zh) 一种具有多种功能的可更换外壳机器人及其装饰外壳
US20210252701A1 (en) Modular robot system
US11951414B2 (en) Modular robot system having improved assembly convenience
KR102301027B1 (ko) 모듈을 이용한 독자 참여형 전자책 시스템 및 동작 방법
JP5545024B2 (ja) 発光システムおよびその制御方法
CN205160878U (zh) 一种基于光立方的机器人
KR102463835B1 (ko) 미션 해결형 콘텐츠를 제공하는 코딩 교육용 시스템 및 그 방법
KR101673806B1 (ko) 블록, 상기 블록과 동작 완구를 이용하여 게임을 제공하는 방법 및 사용자 단말기
KR102337996B1 (ko) 원점 인식이 가능한 스텝모터 어셈블리 및 이를 포함하는 모듈러 로봇 시스템
KR20220100271A (ko) Ar을 통한 모듈 조립이 가능한 코딩 교육용 시스템
KR102289872B1 (ko) 플러그 앤 플레이 모듈 어셈블리 및 플러그 앤 플레이 시스템
KR20200059708A (ko) 모듈러 로봇 시스템
CN114404935A (zh) 手持装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874196

Country of ref document: EP

Kind code of ref document: A1