WO2019085824A1 - 移动通信系统扩容方法、设备及存储介质、程序产品 - Google Patents
移动通信系统扩容方法、设备及存储介质、程序产品 Download PDFInfo
- Publication number
- WO2019085824A1 WO2019085824A1 PCT/CN2018/111955 CN2018111955W WO2019085824A1 WO 2019085824 A1 WO2019085824 A1 WO 2019085824A1 CN 2018111955 W CN2018111955 W CN 2018111955W WO 2019085824 A1 WO2019085824 A1 WO 2019085824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission rate
- users
- user data
- data transmission
- mobile communication
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/18—Network planning tools
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/04—Traffic adaptive resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/085—Access point devices with remote components
Definitions
- the present application relates to the field of communications, and in particular, to a mobile communication system expansion method, device, storage medium, and program product.
- the embodiment of the present invention provides a mobile communication system expansion method, a related device, a storage medium, and a program product, which are used to accurately expand a communication network that is currently based on a data service.
- the embodiment of the present application provides a method for expanding a mobile communication system, where the expansion device of the mobile communication system collects data feature information in a coverage area of a transmitting unit in at least one preset duration; wherein the data feature information includes The number of data packets and the length of the data packet; the distribution of the data feature information is fitted with a power law model to obtain the user data transmission rate in the coverage area of the transmitting unit; according to the user data transmission rate and the obtained reference of the mobile communication system
- the system transmission rate determines the number of theoretical users supported by the mobile communication system; and determines whether to expand the transmission unit according to the number of theoretical users and the actual number of users accessing the transmitting unit within a preset duration.
- the data communication-oriented communication can be more accurately performed. Whether the network needs to be expanded to judge.
- the expansion device can also obtain the delay satisfaction degree to be satisfied;
- the time satisfaction degree is used to indicate the probability that the length of time from the entry of the transmitting unit to the leaving of the transmitting unit is not greater than the duration threshold; according to the delay satisfaction degree, the number of reference users supported by the mobile communication system, and the reference user data transmission rate, it is determined that The reference system transmission rate of the mobile communication system in the case of satisfying the delay satisfaction and the reference user data transmission rate.
- the delay satisfaction degree in the embodiment of the present application is used to indicate that the duration of data from entering the transmitting unit to leaving the transmitting unit is not greater than the duration threshold.
- the delay satisfaction degree can be regarded as a user experience indicator, that is, The delay satisfaction can better reflect the user experience of the terminal device. Therefore, based on the delay satisfaction degree, it is determined whether the transmission unit is expanded, and the data service network planning can be better guided from the user experience of the terminal device, thereby providing the user with better service.
- the power law model includes the Zeta model and the Pareto model.
- the expansion equipment fits the distribution of the number of data packets with the Zeta model to determine the Zeta model parameters; the distribution of the length of the data packet is fitted with the Pareto model to determine the Pareto model parameters; according to the Zeta model parameters and Pareto
- the model parameters determine the user data transmission rate within the coverage area of the transmitting unit. Since the Zeta model is used to fit the distribution of the number of data packets, the Pareto model is used to fit the distribution of the length of the data packet. Thus, the distribution of the user's data service can be more accurately fitted through the Zeta model and the Pareto model. In order to provide more accurate expansion decisions.
- the formulas of the Zeta model and the Pareto model can participate in the contents of the subsequent embodiments.
- the expansion device can determine the equivalent channel number according to the physical layer transmission rate supported by the mobile communication system and the reference user data transmission rate; and query the preset expansion according to the equivalent channel number and the delay satisfaction degree. Calculating the table to obtain the number of reference users; wherein the expansion calculation table includes the equivalent channel, the delay satisfaction degree, and the number of reference users under the condition that the reference user data transmission rate and the preset delay duration are satisfied. Correlation relationship; based on the number of reference users and the reference user data transmission rate, calculate the reference system transmission rate of the mobile communication system in the case where the delay satisfaction degree and the reference user data transmission rate are satisfied.
- the expansion calculation table can be set, the reference system transmission rate determined based on the expansion calculation table and the equivalent channel number is more accurate, thereby providing support for further determining whether to expand the capacity.
- the solution can be simplified by checking the expansion calculation table, so that a more complicated function calculation process can be avoided, and the operation speed of the solution can be further improved.
- the expansion calculation table in the embodiment of the present application is similar to the Erlang table (such as the Irish B table and/or the Irish C table), so that the expansion calculation table can be more easily promoted.
- the configuration scheme of the expansion calculation table refer to the content in the subsequent embodiments, and details are not described herein again.
- the transmitting unit is an RRU; the expansion device is a BBU module.
- the BBU module adds a first quantity of physical resource block PRB resources to the RRU.
- the BBU module reduces the second number of PRB resources for the RRU. This allows resources to be allocated to the RRU from a user experience perspective.
- the first number and the second number may be determined according to a transmission rate of the PRB resource, a user data transmission rate, a theoretical number of users, and an actual number of users.
- the embodiment of the present application provides a mobile communication system expansion device, and the mobile communication system expansion device has a function of implementing the behavior of the expansion device in the method of the first aspect.
- the structure of the mobile communication system expansion device includes a communication module, a processor, a bus, and a memory, wherein the processor and the memory are connected by a bus.
- the memory is for storing instructions; the processor is configured to, when the processor executes the instructions stored in the memory, the mobile communication system expansion device is configured to perform the first aspect or the first aspect, according to the instructions for executing the memory storage Any method.
- the communication module may be a radio frequency (RF) circuit, a wireless fidelity (Wi-Fi) module, a communication interface, a Bluetooth module, or the like.
- RF radio frequency
- Wi-Fi wireless fidelity
- Bluetooth a Bluetooth module
- the embodiment of the present application further provides a mobile communication system expansion device, where the mobile communication system expansion device has a function of implementing the behavior of the expansion device in the method of the first aspect.
- the functions can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the structure of the mobile communication system expansion device includes an acquisition unit and a processing unit, and the units can perform corresponding functions in the above method examples.
- the units can perform corresponding functions in the above method examples. For details, refer to the detailed description in the method example, which is not described herein.
- the embodiment of the present application provides a computer storage medium, where the computer storage medium stores instructions, when the computer is running on the computer, causing the computer to perform the method in the first aspect or any possible implementation manner of the first aspect. .
- an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method of the first aspect or any possible implementation of the first aspect.
- FIG. 1 is a schematic structural diagram of a mobile communication system in a 4G LTE network scenario to which an embodiment of the present application is applied;
- FIG. 2 is a schematic structural diagram of a mobile communication system to which a 5G C-RAN scenario is applied according to an embodiment of the present application;
- FIG. 3 is a schematic flowchart of a method for expanding a mobile communication system according to an embodiment of the present disclosure
- FIG. 4 is a schematic structural diagram of a device for expanding a mobile communication system according to an embodiment of the present disclosure
- FIG. 5 is a schematic structural diagram of a device for expanding a mobile communication system according to an embodiment of the present disclosure.
- FIG. 1 is a schematic structural diagram of a mobile communication system to which a 4G Long Term Evolution (LTE) network scenario of the embodiment of the present application is applied.
- the mobile communication system 1101 of the LTE network scenario may include a plurality of base stations 1102 and a plurality of terminal devices 1103.
- each base station can independently perform functions such as network organization, resource allocation, and signal processing.
- the transmitting unit in the embodiment of the present application may be a base station, and the expansion device for performing the mobile communication network expansion method in the embodiment of the present application may also be deployed on the base station.
- the mobile communication system expansion method provided by the embodiment of the present application can be used to determine whether the base station needs to be expanded.
- the engineer may manually expand the base station that needs to be expanded, for example, increase the available frequency band for the base station that needs to be expanded.
- FIG. 2 exemplarily shows a schematic architecture diagram of a mobile communication system to which a 5G C-RAN scenario of the embodiment of the present application is applied.
- C-RAN is based on centralized processing (also known as Centralized Processing in English), collaborative radio (also known as Collaborative Radio in English) and real-time cloud computing architecture (also known as Real-time Cloud Infrastructure in English).
- Access network architecture (Clean system).
- the mobile communication system 1201 of the C-RAN scenario may include a Remote Radio Unit (RRU) 1202, a terminal device 1203, a switch 1204, and a Base-Band Processing Unit (BBU) resource. Pool 1207.
- RRU Remote Radio Unit
- BBU Base-Band Processing Unit
- the BBU resource pool 1207 may also be referred to as a virtual base station pool (also referred to as a Virtual Base Station Pool in English).
- the BBU resource pool 1207 may include multiple processing units, such as a general-purpose processing unit (also referred to as a General-Purpose Processor) 1206 and a physical layer (Physical, PHY)/Medium Access Control (MAC) processing unit 1205.
- the "/" in the PHY/MAC processing unit 1205 may mean the meaning of the sum.
- the BBU resource pool 1207 can perform functions such as network organization, resource allocation, and baseband signal processing.
- the MAC processing unit 1205 and the general processing unit 1206 can implement functions such as network organization, resource allocation, and baseband signal processing.
- a large number of RRUs 1202 can be connected to the BBU resource pool 1207 through a large-capacity fiber backhaul network, and one or more switches 1204 can be disposed between the RRU 1202 and the BBU resource pool 1207.
- only the radio frequency unit can be set to complete the transmission and reception of the uplink and downlink radio frequency signals.
- the terminal device 1203 can access the network through the RRU 1202 through a newly defined physical layer technology.
- the transmitting unit in the embodiment of the present application may be an RRU, and the expansion device for performing the mobile communication network expansion method in the embodiment of the present application may also be referred to as a BBU module.
- the BBU module may be used.
- the BBU resource pool 1207 may also be a module deployed in the BBU resource pool 1207, such as a module including the PHY/MAC processing unit 1205 and the general processing unit 1206.
- the mobile communication system expansion solution provided by the embodiment of the present application may be used to determine whether the RRU needs to be expanded. In an optional implementation, if the RRU needs to be expanded, the BRU module can expand the RRU that needs to be expanded.
- the neighboring RRUs cannot use the same physical resource block (PRB) resource due to strong signal interference.
- the BBU module is required.
- Each RRU is assigned an exclusive orthogonal PRB resource.
- the BBU module can determine whether to expand the RRU by using the mobile communication system expansion solution provided by the embodiment of the present application. If the RRU needs to be expanded, the PRB resource can be added to the RRU. If the RRU is not required to be expanded, the RBU may not be the RRU. The PRB resource is added. Further, if the RRU is not required to be expanded, the PRB resource may also be reduced for the RRU. In this way, the BBU module can configure PRB resources between several adjacent RRUs with strong interference relationships.
- the terminal device in the embodiment of the present application may communicate with one or more core networks via a radio access network (RAN), and the terminal device may be a user equipment (User Equipment, UE), an access terminal device, Subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal device, mobile device, user terminal device, terminal device, wireless communication device, user agent or user device.
- the access terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless device.
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- FIG. 3 is a schematic flowchart of a method for expanding a mobile communication system according to an embodiment of the present disclosure.
- the method may be implemented by a capacity expansion device.
- the expansion device may be integrated in the base station 1102 in FIG. 1 or deployed.
- Step 3101 The expansion device collects data feature information in a coverage area of the transmitting unit in at least one preset duration; where the data feature information includes the number of data packets and the length of the data packet.
- the length of the data packet can be represented by the number of bytes occupied by the data packet. For example, the larger the number of bytes occupied by a data packet, the longer the length of the data packet, and the more the number of bytes occupied by one data packet. If there is less, the length of the packet is shorter.
- Step 3102 The expansion device fits the distribution of the data feature information with a power law model to obtain a user data transmission rate in the coverage area of the transmitting unit.
- the power rate model may be, for example, any one or more of a Zeta model, a Pareto model, a Cauchy model, a Zipf model, a Levy model, and the like.
- the power law model and other models may be combined to fit the distribution of the data feature information, for example, the Poisson distribution and the Zeta model are used to fit the distribution of the data feature information.
- Step 3103 The expansion device determines the number of theoretical users supported by the mobile communication system according to the user data transmission rate and the obtained reference system transmission rate of the mobile communication system.
- Step 3104 The expansion device determines whether to expand the transmitting unit according to the number of theoretical users and the actual number of users accessing the transmitting unit within a preset duration.
- the data feature information in the coverage area of the transmitting unit in at least one preset duration is collected, and the data feature information includes the number of data packets and the length of the data packet, and the distribution of the data feature information is fitted by the power law model.
- the distribution of the data feature information is fitted by the power law model. It can more accurately judge whether the current communication network based on data services needs to be expanded.
- the capacity expansion device can also obtain the delay satisfaction degree to be satisfied; and determine the delay satisfaction degree according to the delay satisfaction degree, the number of reference users supported by the mobile communication system, and the reference user data transmission rate. And the reference system transmission rate of the mobile communication system with reference to the user data transmission rate.
- the delay satisfaction degree is used to indicate a probability that the length of time between entering the transmitting unit and leaving the transmitting unit is not greater than the duration threshold.
- the delay satisfaction degree in the embodiment of the present application is used to indicate that the duration of data from entering the transmitting unit to leaving the transmitting unit is not greater than the duration threshold, and therefore, the delay satisfaction degree can be regarded as
- the user experience indicator that is, the delay satisfaction degree
- the delay satisfaction degree can better reflect the user experience of the terminal device. Therefore, based on the delay satisfaction degree, it is determined whether the transmission unit is expanded, and the data service network planning can be better guided from the user experience of the terminal device. To provide users with better service.
- the concept of the blocking probability in the prior art is not applicable.
- the blocking probability is defined as the probability that the system has no idle channel, and thus the delay is satisfied. The concept of degree can more accurately determine whether to expand the transmission unit.
- the capacity expansion device can monitor the service transmission process of the transmitting unit in real time, and collect data feature information of each user in the sampling time period.
- the sampling time period may be a predefined time period. For example, after observation and data statistics, a time period of busy time may be determined, and the time period of the busy time is determined as the sampling time period. Further, the method for determining the time period of the busy time is different.
- the number of downlink data packets in the preset time period may be counted, and the time period in which the total number of bits of the data packet arriving in a period of time is greater than the threshold value of the number of bits may be determined as During the busy time period, the total number of bits of the data packet takes into account both the number of data packets and the length of a single data packet.
- the busy time period determined from these two dimensions can more accurately reflect the network load situation. .
- the busy time period can be determined empirically.
- the coverage area of a transmitting unit is a residential area, it can be judged empirically that the user in the coverage area of the transmitting unit should normally use the data service after work, so according to experience You can set the time between 18:00 and 20:00 to the busy time period.
- the data packet collected in the foregoing step 3101 may be a downlink data packet; if the uplink service of the transmitting unit needs to be expanded, the data packet collected in the foregoing step 3101 may be Upstream packet.
- the preset duration may be a transmission time interval (TTI), and the data feature information in the coverage area of the transmitting unit in multiple TTIs may be counted in the sampling period, that is, each of the data is collected.
- TTI transmission time interval
- the collected data can be processed to some extent, and then the power law model is fitted. For example, the average of the number of packets arriving by the user in each TTI and the average of the length of the packets arriving by the user in each TTI are calculated.
- the data in two TTIs is counted, and the data feature information of the user w 1 and the user w 2 is collected in the first TTI; the number of packets of the user w 1 is 2, and the two packets are The data lengths are w 3 and w 4 respectively ; the number of packets of user w 2 is 1, and the data lengths of the two packets are w 5 respectively.
- Data feature information of user w 6 and user w 7 is collected in the second TTI; the number of data packets of user w 6 is 2, and the data lengths of the two data packets are w 8 and w 9 respectively ; data of user w 7 The number of packets is 2, and the data lengths of the two packets are w 10 and w 11 , respectively .
- the average number of packets arriving by the user in the first TTI is passed [(number of packets of user w 1 2+ number of packets of user w 2 1) / number of users within the first TTI 2
- the average number of packets arriving by the user in the first TTI is calculated to be 3/2.
- the average value of the number of packets arriving by the user in the similar second TTI is [(2+2)/2], which is 4.
- "/" in the calculation formula means a division number.
- the average value of the length of the data packet arrived by the user in the first TTI is passed [(user w 1 packet length w 3 + w 4 + user w 2 packet length w 5 ) / first
- the number of users in the TTI is calculated.
- the average value of the number of packets arrived by the user in the first TTI is [(w 3 +w 4 +w 5 )/2].
- the average value of the length of the data packet arrived by the user in the similar second TTI is the value of [((w 8 + w 9 + w 10 + w 11 )/2]].
- the average value of the number of data packets arrived by the user in each TTI calculated in the above example, and the average value of the length of the data packet arrived by the user in each TTI may be used.
- the power law model is fitted.
- the power rate model reference value and the packet length reference value of the user in each TTI may be fitted to the power law model, and the reference value of the number of data packets reached by the user in one TTI may be The number of packets of a user that appears in the TTI, or the number of packets of the user with a higher frequency in the TTI, or the number of packets of a larger or smaller user in the TTI.
- the data packet length reference value reached by the user in one TTI may be the data packet length of a user appearing in the TTI, or may be the frequency of occurrence within the TTI.
- the packet length of the higher user may also be the packet length of one user longer or shorter in the TTI, or the weighted average value of the packet length of several users.
- step 3102 there may be multiple power rate models.
- the Poisson model distribution and the Zeta model distribution may be used to fit the data feature information, or the Poisson model distribution and the Pareto model distribution may be used to fit.
- Data feature information either use the Zeta model distribution to fit the data feature information; or use the Pareto model distribution to fit the data feature information.
- the power law model includes a Zeta model and a Pareto model, that is, a fitting method based on a least square method based on a Zeta model and a Pareto model is used to fit data feature information, and based on this, In the selected place, the distribution of the number of data packets can be fitted by the Zeta model to determine the Zeta model parameters; the distribution of the length of the data packet is fitted with the Pareto model to determine the Pareto model parameters; according to the Zeta model parameters And the Pareto model parameters determine the user data transmission rate within the coverage area of the transmitting unit.
- the average value of the number of data packets arriving by the user of each TTI in the at least one TTI may be fitted with a Zeta model to determine a Zeta model parameter; the user of each TTI in the at least one TTI may be used to arrive.
- the average of the packet lengths was fitted using the Pareto model to determine the Pareto model parameters.
- N(t) is the number of packets arriving at the transmitting unit within the tth preset duration
- the number of packets is the probability of y
- y is the number of packets, which is the value of random variables
- ⁇ is the shape parameter in the parameters of Zeta model
- ⁇ ( ⁇ ) is the Riemann zeta function.
- the number of data packets arriving at the transmitting unit within the tth preset duration may be an average value of the number of data packets arriving at the transmitting unit within the tth preset duration in the foregoing content, or the tth preset duration The reference number of the number of packets arriving within the transmitting unit.
- L(m) is the length of the mth data packet within the tth preset duration
- Pr ⁇ L(m) ⁇ l ⁇ is the length of the mth data packet is less than l Probability
- m is the length of the data packet, which is the value of the random variable
- ⁇ is the shape parameter in the Pareto model parameter
- l min is the length of the data packet whose length within the at least one preset duration is less than the length threshold.
- l may be an average value of the length of the data packet arriving at the transmitting unit within the tth preset duration, or 1 is a length reference value of the data packet reaching the transmitting unit within the tth preset duration.
- the above formula (1) and formula (2) may also undergo some deformation, such as deforming the formula (2) into
- l min in the embodiment of the present application may be a length of a data packet having a minimum length within at least one preset duration collected.
- the calculated user data transmission rate may also be referred to as a single-user data transmission rate.
- the method for calculating the single-user transmission rate may have other methods in addition to the solutions provided in the foregoing steps 3101 and 3102.
- the data regression method may be used to calculate the user data transmission rate, specifically, for example, in the statistical period, the calculation
- the arrival rate of each user in each TTI is then averaged according to the number of users for each user within the TTI, thereby obtaining the average rate of single users in each TTI, and finally according to the number of TTIs in the statistical period.
- the average rate of single users of all TTIs in the statistical period is averaged, and the single-user data transmission rate in the statistical period is calculated.
- the embodiment of the present application provides another scheme for selectively determining a user data transmission rate. Specifically, determining a user data transmission rate in a coverage area of a transmitting unit according to formula (3):
- the Zeta model parameters and the Pareto model parameters in the formula (3) can be obtained according to the above formula (1) and formula (2).
- the capacity conversion rate of the reference system of the mobile communication system that the device can acquire is obtained.
- acquisition methods such as determining the reference system transmission rate according to system parameters when deploying the transmitting unit, and determining the reference system transmission rate based on experience, for example.
- the distribution of the system transmission rate is determined, and then the mean or statistical median of the transmission rates of these systems is taken as the reference system transmission rate.
- the equivalent channel number is determined according to the physical layer transmission rate supported by the mobile communication system and the reference user data transmission rate;
- the delay satisfaction degree is used to query the preset expansion calculation table to obtain the number of reference users.
- the expansion calculation table includes the equivalent channel and the delay satisfaction degree under the condition that the reference user data transmission rate and the preset delay duration are met.
- the association relationship with the number of reference users based on the number of reference users and the reference user data transmission rate, calculate the reference system transmission rate of the mobile communication system in the case where the delay satisfaction degree and the reference user data transmission rate are satisfied.
- the delay satisfaction degree may be input by the user, or may be selected from the perspective of the user experience, selected by the supplier for the user, or determined according to some empirical values, and the like. Since the expansion calculation table can be set, the reference system transmission rate determined based on the expansion calculation table and the equivalent channel number is more accurate, thereby providing support for further determining whether to expand the capacity. On the other hand, the solution can be simplified by checking the expansion calculation table, so that a more complicated function calculation process can be avoided, and the operation speed of the solution can be further improved.
- the expansion calculation table in the embodiment of the present application is similar to the Erlang table (such as the Irish B table and/or the Irish C table), so that the expansion calculation table can be more easily promoted.
- the expansion calculation table may be set in advance, and the transmitting unit is used as the base station as an example.
- the data of the base station in different scenarios may be collected, and then the expansion calculation table in different scenarios may be established.
- the scenario in which the base station is located selects a capacity expansion calculation table corresponding to the scenario, and the scenario may be, for example, a city, a village, an office area, a residential area, and the like.
- the data feature information of a period of time is counted, and the expansion calculation table is established according to the data feature information. After a period of use, such as half a year or one year, the data feature information can be re-stated.
- the table may not be updated. If the data feature information of the re-statistics differs greatly from the data feature information used in the previous expansion calculation table, the expansion calculation table needs to be updated according to the new statistical data feature information. Optionally, the expansion calculation table may also be updated after each expansion of the transmitting unit.
- Table 1 exemplarily shows a form of a capacity expansion calculation table provided by an embodiment of the present application.
- the row represents the value of 1 minus the delay satisfaction.
- the row can also be represented as delay satisfaction in the expansion calculation table; the column represents the equivalent channel.
- the query expansion table can determine that the reference user data transmission rate is 0.2 Mbps, and the preset delay time is 10 ms.
- the reference user data transmission rate may also be referred to as a normalized user data transmission rate, and the reference user number is referred to as a normalized maximum system traffic.
- the establishment of the expansion calculation table in the embodiment of the present application may have various optional implementation manners, such as pre-stating data feature information in the coverage area of the transmission unit, and using the above formula (1) and formula (2) to perform data feature information. Fit, and combine the formula (4) to calculate the number of reference users in the expansion calculation table.
- f(x) can satisfy the formula (5).
- ⁇ is the delay satisfaction degree
- D is the preset delay time length
- ⁇ is obtained by integrating f(x);
- ⁇ is the preset duration
- R is the delay Reference system transmission rate of the mobile communication system with time satisfaction and reference user data transmission rate
- B is the physical layer transmission rate supported by the mobile communication system
- ⁇ is the shape parameter in the Zeta model parameter
- ⁇ is in the Pareto model parameter
- l min is the length of the data packet whose length within the at least one preset duration is less than the length threshold
- * indicates multiplication
- ⁇ ( ⁇ ) is a Riemann zeta function.
- the reference system transmission rate R of the mobile communication system satisfies equation (6) if the delay satisfaction degree and the reference user data transmission rate are satisfied:
- R is the reference system transmission rate of the mobile communication system in the case where the delay satisfaction degree and the reference user data transmission rate are satisfied;
- A is the reference user number;
- b 0 is the reference user data transmission rate.
- the physical layer transmission rate B supported by the mobile communication system satisfies the formula (7):
- the expansion calculation table can be constructed based on the collected data feature information.
- the preset delay duration and the reference user data transmission rate can be selected according to experience, such as reference.
- the user data transmission rate may be selected as the user data transmission rate determined according to the statistical data when the expansion calculation table is built, or may be some empirical value, for example, the user data transmission rate determined by the period of time is determined as the reference user. Data transfer rate.
- the choice of the preset delay duration can be consistent with the standard Irish table. For example, you can select some common values, such as 0.001, 0.01, 0.05, etc.
- the embodiment of the present application further provides a solution for constructing a capacity expansion calculation table, for example, pre-stating data feature information in a coverage area of a transmitting unit, and optionally performing certain processing on the data feature information, for example, as described above.
- Value or determine the packet length reference value reached by the user within each TTI, and then calculate the average of the number of packets arriving by the user within each TTI, and the average of the length of the packets arriving by the user within each TTI.
- Values are fitted using a power law model.
- the power law model may be fitted to the data packet reference value and the packet length reference value reached by the user in each TTI.
- the ⁇ -stable distribution can be used for fitting.
- the ⁇ -stable distribution is a very broad type of distribution.
- Many existing distributions such as exponential distribution, normal distribution, Cauchy distribution, Poisson distribution, Levy distribution, Pareto distribution, Zeta distribution, Zipf distribution, Zipf-Mandelbrot distribution, etc. Etc.
- These distributions may also be referred to as models in this embodiment, such as the Cauchy distribution, which may also be referred to as the Cauchy model.
- an alternative embodiment may be to fit the data feature information using at least one of the ⁇ -stable distributions, such as using the Cauchy distribution pair data feature information described above.
- the fitting may be performed; for example, the data feature information may be fitted according to at least one power law function, for example, using the Zipf distribution and the Poisson distribution to fit the data feature information.
- the ⁇ -stable distribution is used for fitting, the reference system transmission rate of the mobile communication system needs to be given in advance, and the ⁇ -stable distribution fitting is performed according to the given reference system transmission rate and the collected data characteristic information.
- the inverse Laplace numerical transformation method can be used to obtain the f(x) value of the given reference system transmission rate.
- the integral of f(x) can be used to determine the delay satisfaction degree.
- the expansion calculation table can be constructed according to the given reference system transmission rate and the determined delay satisfaction.
- ⁇ -stable English can also be written as an alpha-stable ⁇ -stable distribution characteristic function can be represented by formula (8):
- s is a variable of the eigenfunction at a complex number, which can indicate the characteristics of the probability distribution in the frequency domain;
- ⁇ is a stability parameter
- ⁇ is the slope parameter, the value range is [-1, 1];
- c is a scaling factor
- ⁇ is a positional parameter
- i is a plural unit
- Exp( ⁇ ) is an exponential function
- Sgn( ⁇ ) is a symbolic function
- ⁇ is a variable parameter; alternatively, in formula (8), Where tan is a tangent function; log is a logarithmic function; ⁇ is a constant.
- the foregoing step 3102 may be performed by using a solution corresponding to the foregoing formula (8), for example, by fitting the data feature information by using a model formula of the ⁇ -stable distribution, thereby obtaining ⁇ .
- the model parameters of the stable distribution are further obtained according to the model parameters of the ⁇ -stable distribution to obtain the user data transmission rate in the coverage area of the transmitting unit.
- the number of theoretical users supported by the mobile communication system in satisfying the delay satisfaction degree may be determined according to formula (9):
- the number of theoretical users K can also be determined by other means, such as in equation (9). The values are rounded up, rounded up, rounded up by 1 and so on.
- the reference user rate is 0.1434 when the number of equivalent channels is 6 and the delay satisfaction requirement is 98%.
- the expansion device determines whether to expand the transmitting unit according to the number of theoretical users and the actual number of users accessing the transmitting unit within a preset duration, wherein the actual user accessing the transmitting unit within a preset duration
- the quantity may be an average of the number of users in all the preset durations collected in the foregoing step 3101, that is, the number of all the users collected in the at least one preset duration is averaged by the number of preset durations, for example, at least one pre- The duration is 5 TTIs, and the total number of users collected in the at least one preset duration is 1 million.
- the actual number of users accessing the transmitting unit within the preset duration may be obtained by using (1 million/5).
- the number of users collected in each preset duration in the preset duration is determined, and the actual number of users accessing the transmitting unit in the preset duration may also be The median number of users collected by all preset durations; the actual number of users accessing the transmitting unit within the preset duration may be the number of users collected in a preset duration of all preset durations, or The weighted average of the number of users collected in multiple preset durations in all preset durations.
- the transmitting unit is a base station
- the base station may be expanded.
- the actual number of users accessing the transmitting unit within a preset duration may be expanded if the difference between the theoretical users is greater than the difference threshold.
- the transmitting unit is a base station
- the base station may not be expanded.
- the actual number of users accessing the transmitting unit within a preset duration may not be expanded if the difference between the number of theoretical users is not greater than the difference threshold.
- the capacity expansion device may be a BBU module.
- the baseband processing unit BBU module is added to the RRU.
- the first number of physical resource block PRB resources optionally, if the number of theoretical users is less than the actual number of users, the baseband processing unit BBU module reduces the second number of PRB resources for the RRU.
- the first quantity is determined by equation (10):
- K is the number of theoretical users; N is the actual number of users; b is the user data transmission rate; ⁇ is the transmission rate of the PRB resources; * indicates multiplication.
- the second quantity is determined by equation (10):
- K is the number of theoretical users; N is the actual number of users; b is the user data transmission rate; ⁇ is the transmission rate of the PRB resources; * indicates multiplication.
- FIG. 4 exemplarily shows a schematic structural diagram of a capacity expansion device of a mobile communication system according to an embodiment of the present application.
- the transmitting unit in the embodiment of the present application is the base station 1102 in FIG.
- the expansion device 400 can also be deployed on the base station 1102.
- the expansion device 400 may be a BBU module, and the expansion device 400 may be a BBU resource pool 1207, or may be deployed in the BBU resource pool 1207.
- the modules may be, for example, modules including a PHY/MAC processing unit 1205 and a general purpose processing unit 1206.
- the expansion device 400 includes a processor 401, a memory 403, and a communication interface 404; wherein the processor 401, the memory 403, and the communication interface 404 are connected to each other through a bus 405.
- the bus 405 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 4, but it does not mean that there is only one bus or one type of bus.
- the memory 403 may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
- RAM random-access memory
- the memory may also include a non-volatile memory such as a flash memory.
- a hard disk drive (HDD) or a solid-state drive (SSD); the memory 403 may also include a combination of the above types of memories.
- the communication interface 404 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
- the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
- the wireless communication interface can be a WLAN interface.
- the processor 401 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
- the processor 401 may further include a hardware chip.
- the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
- the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
- the memory 403 can also be used to store program instructions, and the processor 401 calls the program instructions stored in the memory 403, and can perform one or more steps in the embodiment shown in the above scheme, or an optional implementation thereof.
- the expansion device 400 implements the function of the expansion device in the foregoing method.
- the processor 401 is configured to: when the processor 401 executes the instruction of the memory storage, the expansion device 400 is configured to collect data feature information in a coverage area of the at least one preset time period; and the data feature information is used by the processor 401. Including the number of data packets and the length of the data packet; fitting the distribution of the data feature information with a power law model to obtain a user data transmission rate in the coverage area of the transmitting unit; according to the user data transmission rate and the acquired mobile communication system Determine the number of theoretical users supported by the mobile communication system according to the system transmission rate; determine whether to expand the transmission unit according to the number of theoretical users and the actual number of users accessing the transmitting unit within the preset duration.
- the delay satisfaction degree in the embodiment of the present application is used to indicate that the duration of data from entering the transmitting unit to leaving the transmitting unit is not greater than the duration threshold. Therefore, the delay satisfaction degree can be regarded as a user experience indicator, that is, The delay satisfaction can better reflect the user experience of the terminal device. Therefore, based on the delay satisfaction degree, it is determined whether the transmission unit is expanded, and the data service network planning can be better guided from the user experience of the terminal device, thereby providing the user with better service.
- the processor is further configured to obtain a delay satisfaction degree to be satisfied; wherein the delay satisfaction degree is used to indicate that the duration of the data from entering the transmitting unit to leaving the transmitting unit is not greater than a duration threshold. Probability; based on the delay satisfaction degree, the number of reference users supported by the mobile communication system, and the reference user data transmission rate, the reference system transmission rate of the mobile communication system is determined under the condition that the delay satisfaction degree and the reference user data transmission rate are satisfied.
- the power law model includes a Zeta model and a Pareto model; a processor is configured to: fit the distribution of the number of data packets with a Zeta model, determine a Zeta model parameter; and length the data packet The distribution is calculated by the Pareto model, and the Pareto model parameters are determined. According to the Zeta model parameters and the Pareto model parameters, the user data transmission rate in the coverage area of the transmitting unit is determined.
- determining the user data transmission rate within the coverage area of the transmitting unit may refer to the above.
- the processor is configured to determine an equivalent channel number according to a physical layer transmission rate supported by the mobile communication system and a reference user data transmission rate; and query the preamble according to the equivalent channel number and the delay satisfaction degree.
- the expansion calculation table is set to obtain the number of reference users; wherein the expansion calculation table includes the equivalent channel, the delay satisfaction degree, and the number of reference users under the condition that the reference user data transmission rate and the preset delay duration are satisfied.
- the relationship between the two is calculated; based on the number of reference users and the reference user data transmission rate, the reference system transmission rate of the mobile communication system is calculated under the condition that the delay satisfaction degree and the reference user data transmission rate are satisfied.
- the number of theoretical users and the construction method of the expansion calculation table can refer to the above content.
- the transmitting unit is a remote radio unit RRU; the processor is configured on the baseband processing unit BBU module; and the processor is configured to add a first quantity to the RRU if the number of theoretical users is greater than the actual number of users. Physical resource block PRB resource; and/or; if the number of theoretical users is less than the actual number of users, the second number of PRB resources is reduced for the RRU.
- FIG. 5 exemplarily shows a schematic structural diagram of a device for expanding a mobile communication system according to an embodiment of the present application.
- the transmitting unit in the embodiment of the present application is the base station 1102 in FIG.
- the capacity expansion device 500 can also be deployed on the base station 1102.
- the expansion device 500 may be a BBU module, and the expansion device 500 may be a BBU resource pool 1207, or may be deployed in the BBU resource pool 1207.
- the modules may be, for example, modules including a PHY/MAC processing unit 1205 and a general purpose processing unit 1206.
- the expansion device 500 includes an obtaining unit 501 and a processing unit 502.
- the obtaining unit 501 is configured to collect data feature information in a coverage area of the transmitting unit in at least one preset duration; wherein the data feature information includes the number of data packets and the length of the data packet.
- the processing unit 502 is configured to fit the distribution of the data feature information by using a power law model to obtain a user data transmission rate in the coverage area of the transmitting unit; and according to the user data transmission rate and the obtained reference system transmission rate of the mobile communication system, Determine the number of theoretical users supported by the mobile communication system; determine whether to expand the transmission unit according to the number of theoretical users and the actual number of users accessing the transmitting unit within the preset duration.
- the processing unit 502 may also perform other methods performed by the foregoing expansion device, and may perform other methods performed by the processor 401 in FIG. 4, and details are not described herein again.
- the acquiring unit 501 and the processing unit 502 may be deployed in the base station 1102 of FIG. 1 .
- the acquiring unit may be connected to the downlink data pipeline, and the downlink data feature information may be directly collected by the acquiring unit.
- the collection unit may be deployed in the terminal device of the user, and used to collect uplink data feature information, and the acquiring unit 501 may The collecting unit acquires the collected uplink data feature information. Or the uplink data feature information is directly collected by the acquiring unit and the uplink data pipeline connection.
- the processing unit 502 further performs subsequent processing on the data feature information.
- the obtaining unit 501 and the processing unit 502 may be deployed within the base station 1102 of FIG. 1 or within the BBU resource pool 1207 of FIG.
- the method performed in step 3102 of FIG. 3 is defined as being executed by the processing unit 502, and in another optional implementation manner,
- the distribution of the data feature information in the above step 3102 may be fitted with a power law model to obtain a model parameter, which is processed by the obtaining unit 501, and then the data transmission rate is further obtained according to the model parameter, and then the processing unit is still handed over to the processing unit. 502 execution.
- the division of each unit above is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
- the obtaining unit 501 and the processing unit 502 may be implemented by the processor 401.
- the expansion device 400 can include a processor 401 and a memory 403.
- the memory 403 can be used to store the code when the processor 401 executes the solution, and the code can be a program/code pre-installed when the expansion device 400 is shipped.
- a computer program product includes one or more instructions.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the instructions may be stored on a computer storage medium or transferred from one computer storage medium to another computer storage medium, for example, instructions may be wired from a website site, computer, server or data center (eg, coaxial cable, fiber optic, digital user) Line (DSL) or wireless (eg infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
- the computer storage medium can be any available media that can be accessed by the computer or a data storage device such as a server, data center, or the like, including one or more available media.
- Usable media can be magnetic media (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical media (eg, CD, DVD, BD, HVD, etc.), or semiconductor media (eg, ROM, EPROM, EEPROM, Non-volatile memory (NAND FLASH), solid state disk (SSD), etc.
- magnetic media eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
- optical media eg, CD, DVD, BD, HVD, etc.
- semiconductor media eg, ROM, EPROM, EEPROM, Non-volatile memory (NAND FLASH), solid state disk (SSD), etc.
- embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG. These instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine such that instructions executed by a processor of a computer or other programmable data processing device are utilized for implementation A means of function specified in a flow or a flow and/or a block diagram of a block or blocks.
- the instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种移动通信系统扩容方法、相关设备及存储介质、程序产品,用于较为准确的对目前以数据业务为主的通信网络进行扩容。本申请实施例中将采集到的数据特征信息的分布情况用幂律模型进行拟合,得到发射单元覆盖区域内的用户数据传输速率;根据用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定移动通信系统支持的理论用户数量;根据理论用户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容。由于数据业务到达的数据包的数量和数据包长度的分布服从幂律模型,因此通过将数据特征信息的分布情况用幂律模型进行拟合,可以更加准确的对目前以数据业务为主的通信网络是否需要扩容进行判断。
Description
本申请要求在2017年10月31日提交中国专利局、申请号为201711075641.3、发明名称为“移动通信系统扩容方法、设备及存储介质、程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域,尤其涉及一种移动通信系统扩容方法、设备及存储介质、程序产品。
100年前,丹麦科学家爱尔兰提出了话务阻塞理论,该理论被广泛应用于话音网络设计和扩容当中。在话音网络中,当信道被占满时,新到达的呼叫被阻塞或者排队接入,但不影响系统正在服务的用户。由于新到达的呼叫被阻塞或者排队,则新来的用户体验就会变差。该模型在90年代2G网络或GSM网络下得到了很好的应用。具体的,传统的语音业务的到达服从泊松分布,而业务持续时长服从指数分布,因此该模型被用到了解决2G无线网络扩容问题上。当给定信道数和话务阻塞要求时,通过查询爱尔兰表格可以得到当前网络理论上可以承载的业务最大值。通过比较该值和真实网络下的业务量来决策是否要扩容。如果查询的业务最大值大于现网业务量,则不需要扩容。反之,则需要扩容。
随着LTE,以及未来5G时代的到来,数据网络将会得到快速部署。与此同时,用户行为方式发生了很大变化:从传统语音业务为主,转变为社交、视频等应用为主,数据业务的爆发性增长和热点不可预知使系统容量更加难以衡量。传统的话音网络往往呈现出“平均效应”。比如话音请求到达很难出现爆发性的增长现象。而且通话时长也很难出现长时通话的现象。而数据业务网络由于用户的随机性和用户的差异性,使得数据业务的突发性增长特点尤为明显。而且,通过现网实测数据分析,发现数据业务的到达个数不再服从泊松分布,而业务长度也不再服从指数分布,若再继续应用上述话务阻塞理论进行扩容则会造成不准确的问题。
综上,亟需一种移动通信系统扩容方案,用于较为准确的对目前以数据业务为主的通信网络进行扩容。
发明内容
本申请实施例提供一种移动通信系统扩容方法、相关设备及存储介质、程序产品,用于较为准确的对目前以数据业务为主的通信网络进行扩容。
第一方面,本申请实施例提供一种移动通信系统扩容方法,该方法中,移动通信系统的扩容设备采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,数据特征信息包括数据包的数量和数据包的长度;将数据特征信息的分布情况用幂律模型进行拟合,得到发射单元覆盖区域内的用户数据传输速率;根据用户数据传输速率以及获取的 移动通信系统的参考系统传输速率,确定移动通信系统支持的理论用户数量;根据理论用户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容。由于数据业务到达的数据包的数量和数据包长度的分布服从幂律模型,因此通过将数据特征信息的分布情况用幂律模型进行拟合,可以更加准确的对目前以数据业务为主的通信网络是否需要扩容进行判断。
在一个可能的设计中,根据用户数据传输速率以及获取的移动通信系统参考系统传输速率,确定移动通信系统支持的理论用户数量之前,扩容设备还可以获取待满足的延时满足度;其中,延时满足度用于指示数据从进入发射单元到离开发射单元之间的时长不大于时长阈值的概率;根据延时满足度、移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率。由于本申请实施例中的延时满足度是用于指示数据从进入发射单元到离开发射单元之间的时长不大于时长阈值的概率,因此,可以将延时满足度视为用户体验指标,即延时满足度可以更好反应终端设备的用户体验,如此基于延时满足度确定是否对发射单元进行扩容,可以更好的从终端设备的用户体验出发指导数据业务网络的规划,从而为用户提供更好的服务。
在一个可能的设计中,幂律模型包括Zeta模型和Pareto模型。扩容设备将数据包的数量的分布情况用Zeta模型进行拟合,确定出Zeta模型参数;将数据包的长度的分布情况用Pareto模型进行拟合,确定出Pareto模型参数;根据Zeta模型参数和Pareto模型参数,确定出发射单元覆盖区域内的用户数据传输速率。由于使用Zeta模型拟合数据包的数量的分布情况,使用Pareto模型拟合数据包的长度的分布情况,如此,可以更加准确的通过Zeta模型和Pareto模型来拟合用户的数据业务的分布情况,从而为提供更加准确的扩容决策。Zeta模型和Pareto模型的公式可参加后续实施例中内容。
在一个可能的设计中,扩容设备可以根据移动通信系统支持的物理层传输速率和参考用户数据传输速率,确定出等效信道数量;根据等效信道数量和延时满足度,查询预设的扩容计算表,得到参考用户数量;其中,扩容计算表中包括在满足参考用户数据传输速率和预设延时时长的条件下,等效信道、延时满足度和参考用户数量这三者之间的关联关系;根据参考用户数量和参考用户数据传输速率,计算出在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率。由于可以设置扩容计算表,因此基于扩容计算表和等效信道数量确定出的参考系统传输速率更加准确,从而为进一步确定是否进行扩容提供支持。另一方面,通过查扩容计算表的方式可以简化方案,从而可以避免更加复杂的函数计算过程,可以进一步提高方案运行速度。第三方面,本申请实施例中扩容计算表和爱尔兰(Erlang)表(比如爱尔兰B表和/或爱尔兰C表)类似,因此可以使该扩容计算表更容易推广。扩容计算表的构造方案可参考后续实施例中内容,在此不再赘述。
在一个可能的设计中,发射单元为RRU;扩容设备为BBU模块。可选地,若理论用户数量大于实际用户数量,则BBU模块为RRU增加第一数量的物理资源块PRB资源。可选地,若理论用户数量小于实际用户数量,则BBU模块为RRU减少第二数量的PRB资源。如此可以从用户体验角度出发为RRU分配资源。
在一个可能的设计中,第一数量和第二数量可以根据PRB资源的传输速率、用户数据传输速率、理论用户数量和实际用户数量来确定。
第二方面,本申请实施例提供了一种移动通信系统扩容设备,该移动通信系统扩容设 备具有实现上述第一方面方法示例中扩容设备行为的功能。功能可以通过硬件实现。移动通信系统扩容设备的结构中包括通信模块、处理器、总线以及存储器,其中,处理器和存储器通过总线连接。
在一个可能的设计中,存储器用于存储指令;处理器用于根据执行存储器存储的指令,当处理器执行存储器存储的指令时,移动通信系统扩容设备用于执行上述第一方面或第一方面中任一种方法。
在一个可能的设计中,通信模块可以为射频(Radio Frequency,RF)电路、无线高保真(wireless fidelity,Wi-Fi)模块、通信接口、蓝牙模块等。
第三方面,本申请实施例还提供了一种移动通信系统扩容设备,该移动通信系统扩容设备具有实现上述第一方面方法示例中扩容设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,移动通信系统扩容设备的结构中包括获取单元和处理单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例提供一种计算机存储介质,计算机存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
图1为应用本申请实施例的一种4G的LTE网络场景的移动通信系统的示意性架构图;
图2为应用本申请实施例的一种5G的C-RAN场景的移动通信系统的示意性架构图;
图3为本申请实施例提供的一种移动通信系统扩容方法的流程示意图;
图4为本申请实施例提供的一种移动通信系统扩容设备的结构示意图;
图5为本申请实施例提供的一种移动通信系统扩容设备的结构示意图。
本申请实施例适用于多种移动通信系统,比如4G和5G等通信系统。图1示例性示出了应用本申请实施例的一种4G的长期演进(Long Term Evolution,LTE)网络场景的移动通信系统的示意性架构图。如图1所示,LTE网络场景的移动通信系统1101可以包括多个基站1102和多个终端设备1103。在LTE网络的场景中,每个基站可以独立的完成网络组织、资源分配和信号处理等功能。在LTE网络的场景中,本申请实施例中的发射单元可以是基站,且用于执行本申请实施例的移动通信网络扩容方法的扩容设备也可以部署在基站上。通过本申请实施例提供的移动通信系统扩容方法可以用于确定是否需要对基站进行扩容。一种可选地实施方案中,若需要对基站进行扩容,可以由工程师人工为需要进行扩容的基站进行扩容,比如为需要进行扩容的基站增加可用的频段。
图2示例性示出了应用本申请实施例的一种5G的C-RAN场景的移动通信系统的示意性架构图。C-RAN是基于集中化处理(英文也可称为Centralized Processing),协作式无线电(英文也可称为Collaborative Radio)和实时云计算构架(英文也可称为Real-time Cloud Infrastructure)的绿色无线接入网构架(Clean system)。如图2所示,C-RAN场景的移动通信系统1201可以包括远端射频模块(Remote Radio Unit,RRU)1202、终端设备1203、交换机1204、基带处理单元(Base-Band processing Unit,BBU)资源池1207。BBU资源池1207也可以称为虚拟基站池(英文也可以称为Virtual Base Station Pool)。BBU资源池1207可以包括多个处理单元,比如通用处理单元(英文也可以称为General-Purpose Processor)1206和物理层(Physical,PHY)/媒体访问控制(Medium Access Control,MAC)处理单元1205,PHY/MAC处理单元1205中的“/”可以表示和的意思。
在C-RAN架构中,BBU资源池1207可以完成网络组织、资源分配和基带信号处理等功能,比如可以由MAC处理单元1205和通用处理单元1206来实现网络组织、资源分配和基带信号处理等功能。大量的RRU1202可以与BBU资源池1207通过大容量光纤回程网络连接在一起,RRU1202可以和BBU资源池1207之间可以设置一个或多个交换机1204。RRU1202中可以仅设置射频单元,以完成上下行射频信号的收发。终端设备1203可以通过新定义的物理层技术通过RRU1202接入网络。
在C-RAN场景中,本申请实施例中的发射单元可以是RRU,用于执行本申请实施例的移动通信网络扩容方法的扩容设备也可以称为BBU模块,本申请实施例中BBU模块可以是指BBU资源池1207,也可以是部署在BBU资源池1207中的模块,比如可以是包括PHY/MAC处理单元1205和通用处理单元1206的模块。在C-RAN场景中,通过本申请实施例提供的移动通信系统扩容方案可以用于确定是否需要对RRU进行扩容。一种可选地实施方案中,若需要对RRU进行扩容,可以由BBU模块对需要进行扩容的RRU进行扩容。
在C-RAN场景中,一种可选地实施方案中,相邻近的RRU由于信号强干扰,不能使用相同的物理资源块(physical resource block,PRB)资源,这种情况下需要BBU模块给每个RRU分配独享的正交PRB资源。BBU模块可通过本申请实施例提供的移动通信系统扩容方案确定是否对RRU进行扩容,若需要对RRU扩容,则可以为该RRU增加PRB资源;若不需要对RRU扩容,则可以不为该RRU增加PRB资源;进一步,若不需要对RRU扩容,也可以为该RRU减少PRB资源。如此,BBU模块可以在几个邻近的存在强干扰关系的RRU之间配置PRB资源。
本申请实施例中的终端设备可以经无线接入网(Radio Access Network,RAN)等与一个或多个核心网进行通信,终端设备可以指用户设备(User Equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。接入终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
图3示例性示出了本申请实施例提供的一种移动通信系统扩容方法的流程示意图,该方法可以由扩容设备执行,该扩容设备可以集成在上述图1中的基站1102中,也可以部署 在上述图2中的BBU资源池1207中。如图3所示,该方法包括:
步骤3101,扩容设备采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,数据特征信息包括数据包的数量和数据包的长度。数据包的长度可以用该数据包占用的字节的数量来表示,比如一个数据包占用的字节的数量越多,则该数据包的长度越长,一个数据包占用的字节的数量越少,则该数据包的长度越短。
步骤3102,扩容设备将数据特征信息的分布情况用幂律模型进行拟合,得到发射单元覆盖区域内的用户数据传输速率。可选地,幂率模型比如可以是Zeta模型、Pareto模型、Cauchy模型、Zipf模型,Levy模型等等中的任一个或任多个。可选地,本申请实施例中也可以用幂律模型和其它模型结合的方式去拟合数据特征信息的分布情况,比如用泊松分布和Zeta模型拟合数据特征信息的分布情况。
步骤3103,扩容设备根据用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定移动通信系统支持的理论用户数量。
步骤3104,扩容设备根据理论用户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容。
本申请实施例中采集至少一个预设时长内发射单元覆盖区域内的数据特征信息,数据特征信息包括数据包的数量和数据包的长度,将数据特征信息的分布情况用幂律模型进行拟合,得到发射单元覆盖区域内的用户数据传输速率;根据用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定移动通信系统支持的理论用户数量,根据理论用户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容。通过对数据业务的采样和研究,发现数据业务到达的数据包的数量和数据包长度的分布服从幂律模型,因此本申请实施例中通过将数据特征信息的分布情况用幂律模型进行拟合,可以更加准确的对目前以数据业务为主的通信网络是否需要扩容进行判断。
进一步,在上述步骤3103之前,扩容设备还可以获取待满足的延时满足度;根据延时满足度、移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率。其中,延时满足度用于指示数据从进入发射单元到离开发射单元之间的时长不大于时长阈值的概率。
基于此,一方面由于本申请实施例中的延时满足度是用于指示数据从进入发射单元到离开发射单元之间的时长不大于时长阈值的概率,因此,可以将延时满足度视为用户体验指标,即延时满足度可以更好反应终端设备的用户体验,如此基于延时满足度确定是否对发射单元进行扩容,可以更好的从终端设备的用户体验出发指导数据业务网络的规划,从而为用户提供更好的服务。另一方面,由于在数据业务网络中,信道以共享形式被用户使用,因此现有技术中的阻塞概率的概念已不适用,阻塞概率的定义为系统无空闲信道的概率,因此通过延时满足度的概念可以更准确的确定是否对发射单元进行扩容。
上述步骤3101中,扩容设备可以实时监控发射单元的业务传输过程,并在采样时间段内采集每个用户的数据特征信息。可选地,采样时间段可以是预定义的时间段,比如经过观察和数据统计,可以确定出忙时的时间段,将该忙时的时间段确定为采样时间段。进一步,确定忙时的时间段的方式有多种,比如可以统计预设时间段的下行数据包的数量,可以将一段时间内到达的数据包的总比特数大于比特数阈值的时间段确定为忙时的时间段,数据包的总比特数既考虑到了数据包的数量,也考虑到了单个数据包的长度,从这两 个维度确定出的忙时的时间段可以更加准确的反应网络负荷情况。再比如,可以根据经验确定忙时的时间段,比如一个发射单元的覆盖区域为居住区,则可以根据经验判断该发射单元的覆盖区域内的用户通常应该是下班后使用数据业务,因此根据经验可以将晚上18点至20点设置为忙时的时间段。
可选地,若需要对发射单元的下行业务进行扩容,上述步骤3101中采集的数据包可以是下行数据包;若需要对发射单元的上行业务进行扩容,上述步骤3101中采集的数据包可以是上行数据包。
上述步骤3101中,可选地,预设时长可以是传输时间间隔(transmission time interval,TTI),可以在采样时间段内统计多个TTI内发射单元覆盖区域内的数据特征信息,即采集每个TTI内每个用户对应的数据包的数量和数据包的长度。进一步可以对采集到的数据进行一定处理,之后再进行幂律模型的拟合。比如计算每个TTI内用户到达的数据包数量的平均值,以及每个TTI内用户到达的数据包的长度的平均值。
举个例子,比如,统计了2个TTI内的数据,第一个TTI内采集到用户w
1和用户w
2的数据特征信息;用户w
1的数据包数量为2,该两个数据包的数据长度分别为w
3和w
4;用户w
2的数据包数量为1,该两个数据包的数据长度分别为w
5。第二个TTI内采集到用户w
6和用户w
7的数据特征信息;用户w
6的数据包数量为2,该两个数据包的数据长度分别为w
8和w
9;用户w
7的数据包数量为2,该两个数据包的数据长度分别为w
10和w
11。
则上述例子中,第一个TTI内用户到达的数据包数量的平均值通过[(用户w
1的数据包数量2+用户w
2的数据包数量1)/第一个TTI内用户的数量2]计算得到,经计算,第一个TTI内用户到达的数据包数量的平均值为3/2。类似的第二个TTI内用户到达的数据包数量的平均值为[(2+2)/2]的值,为4。本领域技术人员可知,计算式中的“/”表示除号。
则上述例子中,第一个TTI内用户到达的数据包的长度的平均值通过[(用户w
1的数据包长度w
3+w
4+用户w
2的数据包长度w
5)/第一个TTI内用户的数量2]计算得到,经计算,第一个TTI内用户到达的数据包数量的平均值为[(w
3+w
4+w
5)/2]。类似的第二个TTI内用户到达的数据包的长度的平均值为[((w
8+w
9+w
10+w
11)/2]的值。
上述步骤3102中,一种可选地实施方案中可以将上述示例中计算的每个TTI内用户到达的数据包数量的平均值,以及每个TTI内用户到达的数据包的长度的平均值使用幂律模型进行拟合。另一种可选地实施方案中也可以将每个TTI内用户达到的数据包数量参考值和数据包长度参考值进行幂律模型的拟合,一个TTI内用户达到的数据包数量参考值可以是该TTI内出现的一个用户的数据包数量,也可以是该TTI内出现频率较高的用户的数据包数量,也可以是该TTI内较大或较小的一个用户的数据包数量,也可以是几个用户的数据包数量的加权平均后的值等;一个TTI内用户达到的数据包长度参考值可以是该TTI内出现的一个用户的数据包长度,也可以是该TTI内出现频率较高的用户的数据包长度,也可以是该TTI内较长或较短的一个用户的数据包长度,也可以是几个用户的数据包长度的加权平均后的值等。
上述步骤3102中,幂率模型可以有多种,一种可选地方案中可以用泊松模型分布和Zeta模型分布来拟合数据特征信息,或者使用泊松模型分布和Pareto模型分布来拟合数据特征信息;或者使用Zeta模型分布来拟合数据特征信息;或者使用Pareto模型分布来拟合数据特征信息。
本申请实施例中提供一种可选地实施方案,幂律模型包括Zeta模型和Pareto模型,即 基于Zeta模型和Pareto模型用最小二乘法等拟合方法来拟合数据特征信息,基于此,可选地,可以将数据包的数量的分布情况用Zeta模型进行拟合,确定出Zeta模型参数;将数据包的长度的分布情况用Pareto模型进行拟合,确定出Pareto模型参数;根据Zeta模型参数和Pareto模型参数,确定出发射单元覆盖区域内的用户数据传输速率。比如,可以用上述至少一个TTI中的每个TTI的用户到达的数据包数量的平均值用Zeta模型进行拟合,确定出Zeta模型参数;可以用上述至少一个TTI中的每个TTI的用户到达的数据包长度的平均值用Pareto模型进行拟合,确定出Pareto模型参数。
本申请实施例中提供一种可选地Zeta模型的公式,如公式(1)所示:
在公式(1)中,N(t)为第t个预设时长内到达发射单元的数据包的数量;Pr{N(t)=y}为第t个预设时长内到达发射单元的数据包的数量为y的概率;y为数据包的数量,为随机变量的取值;α为Zeta模型参数中的形状参数;ζ(·)为黎曼zeta函数。
可选地,第t个预设时长内到达发射单元的数据包的数量可以是上述内容中第t个预设时长内到达发射单元的数据包的数量的平均值,或者第t个预设时长内到达发射单元的数据包数量参考值。
本申请实施例中提供一种可选地Pareto模型的公式,如公式(2)所示:
在公式(2)中,其中,L(m)为第t个预设时长内的第m个数据包的长度;Pr{L(m)<l}为第m个数据包的长度小于l的概率;m为数据包的长度,为随机变量的取值;β为Pareto模型参数中的形状参数;l
min为采集到的至少一个预设时长内的长度小于长度阈值的数据包的长度。可选地,l可以为第t个预设时长内到达发射单元的数据包的长度的平均值,或者l为第t个预设时长内到达发射单元的数据包的长度参考值。
可选地,上述公式(1)和公式(2)也可以进行一些变形,比如将公式(2)变形为
可选地,本申请实施例中的l
min可以是为采集到的至少一个预设时长内的长度最小的数据包的长度。
上述步骤3102中,计算出的用户数据传输速率也可以称为单用户数据传输速率。计算单用户传输速率的方法除了上述步骤3101和步骤3102提供的方案之外,还可以有其它方式,比如可以采用数据回归的方法计算用户数据传输速率,具体来说,比如在统计周期内,计算每个TTI内每个用户的到达速率,然后按照用户数对每个TTI内用户的到达速率取平均值,从而得到每个TTI内的单用户平均速率,最后按照该统计周期内的TTI的数量对该统计周期内所有TTI的单用户平均速率取平均值,计算出该统计周期内的单用户数据传输速率。
本申请实施例提供另一种可选地用于确定用户数据传输速率的方案,具体来说,根据公式(3)确定发射单元覆盖区域内的用户数据传输速率:
在公式(3)中,b为用户数据传输速率;α为Zeta模型参数中的形状参数;β为Pareto模型参数中的形状参数;l
min为采集到的至少一个预设时长内的长度小于长度阈值的数据包的长度;ζ(·)为黎曼zeta函数;*为乘号。
公式(3)中的Zeta模型参数和Pareto模型参数可以是根据上述公式(1)和公式(2)得到。
上述步骤3103之前,扩容设备可以获取的移动通信系统的参考系统传输速率。获取方式有多种,比如在部署发射单元的时候,根据系统参数确定参考系统传输速率,再比如根据经验确定参考系统传输速率等等。再比如,根据数据分析,确定出系统传输速率的分布,然后取这些系统传输速率的均值或统计中位数作为参考系统传输速率。
一种可选地获取的移动通信系统的参考系统传输速率的实施方式中,根据移动通信系统支持的物理层传输速率和参考用户数据传输速率,确定出等效信道数量;根据等效信道数量和延时满足度,查询预设的扩容计算表,得到参考用户数量;其中,扩容计算表中包括在满足参考用户数据传输速率和预设延时时长的条件下,等效信道、延时满足度和参考用户数量这三者之间的关联关系;根据参考用户数量和参考用户数据传输速率,计算出在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率。在查询扩容计算表时,延时满足度可以是用户输入的,也可以是从用户体验角度出发,由供应商为用户选择的,或者根据一些经验值确定的等等。由于可以设置扩容计算表,因此基于扩容计算表和等效信道数量确定出的参考系统传输速率更加准确,从而为进一步确定是否进行扩容提供支持。另一方面,通过查扩容计算表的方式可以简化方案,从而可以避免更加复杂的函数计算过程,可以进一步提高方案运行速度。第三方面,本申请实施例中扩容计算表和爱尔兰(Erlang)表(比如爱尔兰B表和/或爱尔兰C表)类似,因此可以使该扩容计算表更容易推广。
本申请实施例中可以预先设置扩容计算表,以发射单元为基站为例,比如可以对不同场景下的基站的数据进行统计,进而建立不同场景下的扩容计算表,之后再部署基站时,根据基站所处的场景选择该场景对应的扩容计算表,场景比如可以是城市、乡村、办公区域和住宅区域等等。又比如可以在初始部署基站时,统计一段时间的数据特征信息,根据该数据特征信息建立扩容计算表。经过一段时间的使用,如半年或一年,可以重新统计数据特征信息,如果重新统计的数据特征信息与前一次建立扩容计算表所使用的数据特征信息相差较小,则可以不用更新表格,也可以不用扩容;如果重新统计的数据特征信息与前一次建立扩容计算表所使用的数据特征信息相差较大,则需要重新根据新统计的数据特征信息更新扩容计算表。可选地,也可以在每次对发射单元进行扩容之后更新一次扩容计算表。表1示例性示出了本申请实施例提供的一种扩容计算表的形式。
表1 扩容计算表
如表1所示,行表示1减去延时满足度的值,可选地,在扩容计算表中也可以将行表示为延时满足度;列表示等效信道。以表1的第三行第二列的0.0034为例进行说明,比如表1是在参考用户数据传输速率为0.2Mbps,预设延时时长为10ms的条件下制作的,则当延时满足度为(1-0.01%),等效信道为3时,通过查询扩容计算表可以确定出在参考用户数据传输速率为0.2Mbps,预设延时时长为10ms的情况下参考用户数量为0.0034。可选地,也可以称参考用户数据传输速率为归一化用户数据传输速率,将参考用户数量称为归一化的最大系统业务量。
本申请实施例中的扩容计算表的建立可以有多种可选的实施方式,比如预先统计发射单元覆盖区域内的数据特征信息,使用上述公式(1)和公式(2)对数据特征信息进行拟合,并结合公式(4)计算出扩容计算表中的参考用户数量。
在公式(4)中,f(x)可以满足公式(5)。
在公式(4)和公式(5)中,η为延时满足度;D为预设延时时长;η是对f(x)求积分得到的;τ为预设时长;R为在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率;B为移动通信系统支持的物理层传输速率;α为Zeta模型参数中的形状参数;β为Pareto模型参数中的形状参数;l
min为采集到的至少一个预设时长内的长度小于长度阈值的数据包的长度;*表示乘法;ζ(·)为黎曼zeta函数。
在公式(4)和公式(5)中,可选地,在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率R满足公式(6):
R=A*b
0……公式(6)
在公式(6)中,R为在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率;A为参考用户数量;b
0为参考用户数据传输速率。
在公式(4)和公式(5)中,可选地,移动通信系统支持的物理层传输速率B满足公式(7):
B=n*b
0……公式(7)
在公式(7)中,B为移动通信系统支持的物理层传输速率;n为等效信道数量;b
0为参考用户数据传输速率。
通过上述公式(1)至公式(7),可以基于采集到的数据特征信息构建扩容计算表,构建扩容计算表时,预设延时时长和参考用户数据传输速率可以根据经验来选择,比如参考用户数据传输速率可以选择为建扩容计算表时根据统计到的数据确定出的用户数据传输速率,也可以是一些经验值,比如经过一段时间的统计将确定出的用户数据传输速率确定为参考用户数据传输速率。预设延时时长的选择可以和标准爱尔兰表一致,比如可以选择一 些常用数值,如0.001、0.01、0.05等。
可选地,本申请实施例还提供一种构建扩容计算表的方案,比如,比如预先统计发射单元覆盖区域内的数据特征信息,可选地,对数据特征信息进行一定处理,比如如上面所描述的内容,计算出每个TTI内用户到达的数据包数量的平均值,或者确定出每个TTI内用户达到的数据包数量参考值,计算出每个TTI内用户到达的数据包长度的平均值,或者确定出每个TTI内用户达到的数据包长度参考值,之后将计算的每个TTI内用户到达的数据包数量的平均值,以及每个TTI内用户到达的数据包的长度的平均值使用幂律模型进行拟合。或者,另一种可选地实施方案中也可以将每个TTI内用户达到的数据包数量参考值和数据包长度参考值进行幂律模型的拟合。比如可以用α-稳定分布进行拟合。
α-稳定分布是一类非常广泛的分布类型,现有的许多分布,比如指数分布、正态分布、Cauchy分布、Poisson分布、Levy分布、Pareto分布、Zeta分布、Zipf分布、Zipf-Mandelbrot分布等等,这些分布在该实施例中也可以称为模型,比如Cauchy分布也可以称为Cauchy模型。
在使用α-稳定分布进行拟合时,一种可选地实施方案中可以是使用α-稳定分布中的至少一项分布对数据特征信息进行拟合,比如可以使用上述Cauchy分布对数据特征信息进行拟合;再比如可以是根据至少一项幂律函数对数据特征信息进行拟合,比如使用上述Zipf分布和Poisson分布对数据特征信息进行拟合。可选地,在使用α-稳定分布进行拟合时需要提前给出移动通信系统的参考系统传输速率,根据给定的参考系统传输速率和采集到的数据特征信息进行α-稳定分布拟合,得到α-稳定分布的模型参数后,可以进一步采用Laplace数值反变换的方法,得到给定的参考系统传输速率下的f(x)数值,对f(x)求积分可以确定出延时满足度,根据给定的参考系统传输速率和求出的延时满足度可以构造扩容计算表。
本申请实施例中提供一种α-稳定分布的模型公式,α-稳定英文也可以写为alpha-stableα-稳定分布的特征函数可以为公式(8)所示:
在公式(8)中,s为特征函数在复数的变量,可以表明概率分布在频域的特征;
γ为稳定性参数;
χ为斜度参数,取值范围为[-1,1];
c为缩放因子;
μ为位置参数;
i为复数单位;
exp(·)为指数函数;
|·|为绝对值;
sgn(·)为符号函数;
本申请实施例中,另一种可选地实施例中,可以通过上述公式(8)对应的方案执行 对上述步骤3102,比如通过α-稳定分布的模型公式拟合数据特征信息,从而得到α-稳定分布的模型参数,进一步根据α-稳定分布的模型参数得到发射单元覆盖区域内的用户数据传输速率。
上述步骤3103中,一种可选地实施方式中,可以根据公式(9)确定移动通信系统在满足延时满足度的情况下所支持的理论用户数量:
在公式(9)中,K为理论用户数量;b为用户数据传输速率;A为参考用户数量;b
0为参考用户数据传输速率;
为向下取整。可选地,也可以通过其它方式确定理论用户数量K,比如将公式(9)中
的值进行四舍五入、向上取整、向上取整后减1等等。
结合上述表1举个例子,比如通过表1查询得到在等效信道数量为6且延时满足度要求为98%时,参考用户速率为0.1434。此时,满足预设延时时长的参考系统传输速率为(0.1434*参考用户数据传输速率=0.1434*0.2Mbps=0.02868Mbps)。若用户数据传输速率为10Kbps,则可以根据上述公式(9)计算出理论用户数量为
可选地,上述步骤3104中,扩容设备根据理论用户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容,其中,预设时长内接入发射单元的实际用户数量可以是上述步骤3101中采集到的所有预设时长内的用户数量的平均值,即将上述至少一个预设时长内采集到的所有用户数量对预设时长的数量求平均值,比如至少一个预设时长为5个TTI,该至少一个预设时长内采集到的用户总数量为100万,则预设时长内接入发射单元的实际用户数量可以是使用(100万/5)得到。另一种可选地实施方式中,确定出该至少一个预设时长内所有预设时长中每个预设时长中采集到的用户数量,预设时长内接入发射单元的实际用户数量也可以是所有预设时长采集到的用户数量的统计中位数;预设时长内接入发射单元的实际用户数量可以是所有预设时长中的一个预设时长中采集到的用户数量,也可以是对所有预设时长中多个预设时长中采集到的用户数量进行加权平均后得到的。
可选地,若发射单元为基站,则若理论用户数量小于预设时长内接入发射单元的实际用户数量,则可以对该基站进行扩容。进一步,可选地,可以在预设时长内接入发射单元的实际用户数量于理论用户数量的差值大于差值阈值的情况下进行扩容。
可选地,若发射单元为基站,则若理论用户数量不小于预设时长内接入发射单元的实际用户数量,则可以不对该基站进行扩容。进一步,可选地,可以在预设时长内接入发射单元的实际用户数量于理论用户数量的差值不大于差值阈值的情况下不进行扩容。
可选地,若发射单元为RRU,则扩容设备可以为BBU模块,这种情况下,上述步骤3104中,可选地,若理论用户数量大于实际用户数量,则基带处理单元BBU模块为RRU增加第一数量的物理资源块PRB资源。可选地,若理论用户数量小于实际用户数量,则基带处理单元BBU模块为RRU减少第二数量的PRB资源。
进一步,可选地,第一数量通过公式(10)确定:
在公式(10)中,K为理论用户数量;N为实际用户数量;b为用户数据传输速率;ρ为PRB资源的传输速率;*表示乘法。
进一步,可选地,第二数量通过公式(10)确定:
在公式(11)中,K为理论用户数量;N为实际用户数量;b为用户数据传输速率;ρ为PRB资源的传输速率;*表示乘法。
基于相同构思,本申请实施例提供一种移动通信系统的扩容设备,用于执行上述方法中的任一个方案。图4示例性示出了本申请实施例提供一种移动通信系统的扩容设备的结构示意图,如图4所示,可选地,本申请实施例中的发射单元为图1中的基站1102的情况下,扩容设备400也可以部署在基站1102上。可选地,本申请实施例中的发射单元为图2中的RRU1202的情况下,扩容设备400可以是BBU模块,扩容设备400可以是BBU资源池1207,也可以是部署在BBU资源池1207中的模块,比如可以是包括PHY/MAC处理单元1205和通用处理单元1206的模块。可选地,扩容设备400包括处理器401、存储器403和通信接口404;其中,处理器401、存储器403和通信接口404通过总线405相互连接。
总线405可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器403可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器403还可以包括上述种类的存储器的组合。
通信接口404可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
处理器401可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器401还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
可选地,存储器403还可以用于存储程序指令,处理器401调用该存储器403中存储的程序指令,可以执行上述方案中所示实施例中的一个或多个步骤,或其中可选的实施方式,使得扩容设备400实现上述方法中扩容设备的功能。
处理器401用于根据执行存储器存储的指令,当处理器401执行存储器存储的指令时,扩容设备400用于采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,数据特征信息包括数据包的数量和数据包的长度;将数据特征信息的分布情况用幂律模型进行拟合,得到发射单元覆盖区域内的用户数据传输速率;根据用户数据传输速率以及获 取的移动通信系统的参考系统传输速率,确定移动通信系统支持的理论用户数量;根据理论用户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容。由于本申请实施例中的延时满足度是用于指示数据从进入发射单元到离开发射单元之间的时长不大于时长阈值的概率,因此,可以将延时满足度视为用户体验指标,即延时满足度可以更好反应终端设备的用户体验,如此基于延时满足度确定是否对发射单元进行扩容,可以更好的从终端设备的用户体验出发指导数据业务网络的规划,从而为用户提供更好的服务。
在一种可能的设计中,处理器,还用于获取待满足的延时满足度;其中,延时满足度用于指示数据从进入发射单元到离开发射单元之间的时长不大于时长阈值的概率;根据延时满足度、移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率。
在一种可能的设计中,幂律模型包括Zeta模型和Pareto模型;处理器,用于:将数据包的数量的分布情况用Zeta模型进行拟合,确定出Zeta模型参数;将数据包的长度的分布情况用Pareto模型进行拟合,确定出Pareto模型参数;根据Zeta模型参数和Pareto模型参数,确定出发射单元覆盖区域内的用户数据传输速率。
可选地,Zeta模型的公式和Pareto模型的公式参加上述内容,在此不再赘述。可选地,确定发射单元覆盖区域内的用户数据传输速率可以参考上述内容。
在一种可能的设计中,处理器,用于根据移动通信系统支持的物理层传输速率和参考用户数据传输速率,确定出等效信道数量;根据等效信道数量和延时满足度,查询预设的扩容计算表,得到参考用户数量;其中,扩容计算表中包括在满足参考用户数据传输速率和预设延时时长的条件下,等效信道、延时满足度和参考用户数量这三者之间的关联关系;根据参考用户数量和参考用户数据传输速率,计算出在满足延时满足度和参考用户数据传输速率的情况下移动通信系统的参考系统传输速率。
可选地理论用户数量、扩容计算表的构造方法可以参考上述内容。:
在一种可能的设计中,发射单元为远端射频单元RRU;处理器配置于基带处理单元BBU模块上;处理器,用于若理论用户数量大于实际用户数量,则为RRU增加第一数量的物理资源块PRB资源;和/或;若理论用户数量小于实际用户数量,则为RRU减少第二数量的PRB资源。
基于相同构思,本申请实施例提供一种移动通信系统的扩容设备,用于执行上述方法中的任一个方案。图5示例性示出了本申请实施例提供一种移动通信系统的扩容设备的结构示意图,如图5所示,可选地,本申请实施例中的发射单元为图1中的基站1102的情况下,扩容设备500也可以部署在基站1102上。可选地,本申请实施例中的发射单元为图2中的RRU1202的情况下,扩容设备500可以是BBU模块,扩容设备500可以是BBU资源池1207,也可以是部署在BBU资源池1207中的模块,比如可以是包括PHY/MAC处理单元1205和通用处理单元1206的模块。
可选地,扩容设备500包括获取单元501和处理单元502。获取单元501用于采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,数据特征信息包括数据包的数量和数据包的长度。处理单元502,用于将数据特征信息的分布情况用幂律模型进行拟合,得到发射单元覆盖区域内的用户数据传输速率;根据用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定移动通信系统支持的理论用户数量;根据理论用 户数量和预设时长内接入发射单元的实际用户数量,确定是否对发射单元进行扩容。可选地,处理单元502还可以执行上述扩容设备所执行的其它方法,还可以执行上述图4中处理器401所执行的其它方法,在此不再赘述。
可选地,本申请实施例中若需对下行业务实施本申请实施例提供的方案,则获取单元501和处理单元502都可以部署在图1的基站1102内。可选地,获取单元可以与下行数据管道连接,通过获取单元可以直接采集下行的数据特征信息。
可选地,本申请实施例中若需对上行业务实施本申请实施例提供的方案,则可以将采集单元部署在用户的终端设备内,用于采集到上行的数据特征信息,获取单元501从采集单元获取所采集到的上行的数据特征信息。或者由获取单元与上行数据管道连接直接采集上行的数据特征信息。进一步将处理单元502对数据特征信息进行后续处理。可选地,获取单元501和处理单元502可以部署在图1的基站1102内或图2的BBU资源池1207内。
进一步,可选地,本申请实施例中一种虚拟单元划分方法中,将上述图3的步骤3102中所执行的方法划定为由处理单元502执行,另一种可选地实施方式中,也可以将上述步骤3102中将数据特征信息的分布情况用幂律模型进行拟合从而得到模型参数,交由获取单元501进行处理,而之后根据模型参数进一步得到数据传输速率则仍交由处理单元502执行。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,获取单元501和处理单元502可以由处理器401实现。如图4所示,扩容设备400可以包括处理器401和存储器403。其中,存储器403可以用于存储处理器401执行方案时的代码,该代码可为扩容设备400出厂时预装的程序/代码。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现、当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。指令可以存储在计算机存储介质中,或者从一个计算机存储介质向另一个计算机存储介质传输,例如,指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带、磁光盘(MO)等)、光介质(例如,CD、DVD、BD、HVD等)、或者半导体介质(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk,SSD))等。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由指令实现流程图和/或方框图中的每一流程和 /或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (30)
- 一种移动通信系统扩容方法,其特征在于,包括:采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,所述数据特征信息包括数据包的数量和数据包的长度;将所述数据特征信息的分布情况用幂律模型进行拟合,得到所述发射单元覆盖区域内的用户数据传输速率;根据所述用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定所述移动通信系统支持的理论用户数量;根据所述理论用户数量和预设时长内接入所述发射单元的实际用户数量,确定是否对所述发射单元进行扩容。
- 如权利要求1所述的方法,其特征在于,所述根据所述用户数据传输速率以及获取的移动通信系统参考系统传输速率,确定所述移动通信系统支持的理论用户数量之前,还包括:获取待满足的延时满足度;其中,所述延时满足度用于指示数据从进入所述发射单元到离开所述发射单元之间的时长不大于时长阈值的概率;根据所述延时满足度、所述移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率。
- 如权利要求1或2所述的方法,其特征在于,所述幂律模型包括Zeta模型和Pareto模型;所述将所述数据特征信息的分布情况用幂律模型进行拟合,得到所述发射单元覆盖区域内的用户数据传输速率,包括:将所述数据包的数量的分布情况用所述Zeta模型进行拟合,确定出Zeta模型参数;将所述数据包的长度的分布情况用所述Pareto模型进行拟合,确定出Pareto模型参数;根据所述Zeta模型参数和所述Pareto模型参数,确定出所述发射单元覆盖区域内的所述用户数据传输速率。
- 如权利要求2至6任一项所述的方法,其特征在于,所述根据所述延时满足度、所述移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率,包括:根据所述移动通信系统支持的物理层传输速率和所述参考用户数据传输速率,确定出等效信道数量;根据所述等效信道数量和所述延时满足度,查询预设的扩容计算表,得到所述参考用户数量;其中,所述扩容计算表中包括在满足所述参考用户数据传输速率和预设延时时长的条件下,等效信道、延时满足度和所述参考用户数量这三者之间的关联关系;根据所述参考用户数量和所述参考用户数据传输速率,计算出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率。
- 如权利要求7或8所述的方法,其特征在于,所述扩容计算表中的延时满足度满足以下公式:其中,所述η为所述延时满足度;所述D为所述预设延时时长,所述τ为所述预设时长;所述R为在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率;R=A*b 0,所述A为所述参考用户数量;所述b 0为所 述参考用户数据传输速率;所述B为所述移动通信系统支持的所述物理层传输速率;所述α为所述Zeta模型参数中的形状参数;所述β为所述Pareto模型参数中的形状参数;所述l min为采集到的所述至少一个预设时长内的长度小于长度阈值的数据包的长度;*表示乘法;所述ζ(·)为黎曼zeta函数。
- 如权利要求1至9任一项所述的方法,其特征在于,所述发射单元为远端射频单元RRU;所述根据所述理论用户数量和预设时长内接入所述发射单元的实际用户数量,确定是否对所述发射单元进行扩容,包括:若所述理论用户数量大于所述实际用户数量,则基带处理单元BBU模块为所述RRU增加第一数量的物理资源块PRB资源;和/或;若所述理论用户数量小于所述实际用户数量,则BBU模块为所述RRU减少第二数量的PRB资源。
- 一种移动通信系统的扩容设备,其特征在于,包括处理器和存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器存储的指令,当所述处理器执行所述存储器存储的指令时,所述扩容设备用于执行:采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,所述数据特征信息包括数据包的数量和数据包的长度;将所述数据特征信息的分布情况用幂律模型进行拟合,得到所述发射单元覆盖区域内的用户数据传输速率;根据所述用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定所述移动通信系统支持的理论用户数量;根据所述理论用户数量和预设时长内接入所述发射单元的实际用户数量,确定是否对所述发射单元进行扩容。
- 如权利要求12所述的扩容设备,其特征在于,所述处理器,还用于:获取待满足的延时满足度;其中,所述延时满足度用于指示数据从进入所述发射单元到离开所述发射单元之间的时长不大于时长阈值的概率;根据所述延时满足度、所述移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率。
- 如权利要求12或13所述的扩容设备,其特征在于,所述幂律模型包括Zeta模型和Pareto模型;所述处理器,用于:将所述数据包的数量的分布情况用所述Zeta模型进行拟合,确定出Zeta模型参数;将所述数据包的长度的分布情况用所述Pareto模型进行拟合,确定出Pareto模型参数;根据所述Zeta模型参数和所述Pareto模型参数,确定出所述发射单元覆盖区域内的所述用户数据传输速率。
- 如权利要求13至17任一项所述的扩容设备,其特征在于,所述处理器,用于:根据所述移动通信系统支持的物理层传输速率和所述参考用户数据传输速率,确定出等效信道数量;根据所述等效信道数量和所述延时满足度,查询预设的扩容计算表,得到所述参考用户数量;其中,所述扩容计算表中包括在满足所述参考用户数据传输速率和预设延时时长的条件下,等效信道、延时满足度和所述参考用户数量这三者之间的关联关系;根据所述参考用户数量和所述参考用户数据传输速率,计算出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率。
- 如权利要求18或19所述的扩容设备,其特征在于,所述扩容计算表中的延时满足度满足以下公式:其中,所述η为所述延时满足度;所述D为所述预设延时时长,所述τ为所述预设时长;所述R为在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率;R=A*b 0,所述A为所述参考用户数量;所述b 0为所述参考用户数据传输速率;所述B为所述移动通信系统支持的所述物理层传输速率;所述α为所述Zeta模型参数中的形状参数;所述β为所述Pareto模型参数中的形状参数;所述l min为采集到的所述至少一个预设时长内的长度小于长度阈值的数据包的长度;*表示乘法;所述ζ(·)为黎曼zeta函数。
- 如权利要求12至20任一项所述的扩容设备,其特征在于,所述发射单元为远端射频单元RRU;所述处理器配置于基带处理单元BBU模块上;所述处理器,用于:若所述理论用户数量大于所述实际用户数量,则为所述RRU增加第一数量的物理资源块PRB资源;和/或;若所述理论用户数量小于所述实际用户数量,则为所述RRU减少第二数量的PRB资源。
- 一种移动通信系统的扩容设备,其特征在于,包括:获取单元,用于采集至少一个预设时长内发射单元覆盖区域内的数据特征信息;其中,所述数据特征信息包括数据包的数量和数据包的长度;处理单元,用于将所述数据特征信息的分布情况用幂律模型进行拟合,得到所述发射单元覆盖区域内的用户数据传输速率;根据所述用户数据传输速率以及获取的移动通信系统的参考系统传输速率,确定所述移动通信系统支持的理论用户数量;根据所述理论用户 数量和预设时长内接入所述发射单元的实际用户数量,确定是否对所述发射单元进行扩容。
- 如权利要求23所述的扩容设备,其特征在于,所述处理单元,还用于:获取待满足的延时满足度;其中,所述延时满足度用于指示数据从进入所述发射单元到离开所述发射单元之间的时长不大于时长阈值的概率;根据所述延时满足度、所述移动通信系统支持的参考用户数量和参考用户数据传输速率,确定出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率。
- 如权利要求23或24所述的扩容设备,其特征在于,所述幂律模型包括Zeta模型和Pareto模型;所述处理单元,用于:将所述数据包的数量的分布情况用所述Zeta模型进行拟合,确定出Zeta模型参数;将所述数据包的长度的分布情况用所述Pareto模型进行拟合,确定出Pareto模型参数;根据所述Zeta模型参数和所述Pareto模型参数,确定出所述发射单元覆盖区域内的所述用户数据传输速率。
- 如权利要求23至26任一项所述的扩容设备,其特征在于,所述处理单元,用于:根据所述移动通信系统支持的物理层传输速率和所述参考用户数据传输速率,确定出等效信道数量;根据所述等效信道数量和所述延时满足度,查询预设的扩容计算表,得到所述参考用户数量;其中,所述扩容计算表中包括在满足所述参考用户数据传输速率和预设延时时长的条件下,等效信道、延时满足度和所述参考用户数量这三者之间的关联关系;根据所述参考用户数量和所述参考用户数据传输速率,计算出在满足所述延时满足度和所述参考用户数据传输速率的情况下所述移动通信系统的所述参考系统传输速率。
- 如权利要求23至27任一项所述的扩容设备,其特征在于,所述发射单元为远端射频单元RRU;所述处理单元配置于基带处理单元BBU模块上;所述处理单元,用于:若所述理论用户数量大于所述实际用户数量,则为所述RRU增加第一数量的物理资源块PRB资源;和/或;若所述理论用户数量小于所述实际用户数量,则为所述RRU减少第二数量的PRB资源。
- 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指 令,所述计算机可执行指令在被计算机调用时,使所述计算机执行如权利要求1至11任一项所述的方法。
- 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行权利要求1至11任一权利要求所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18874084.9A EP3694267B1 (en) | 2017-10-31 | 2018-10-25 | Capacity expansion method for mobile communication system, device, storage medium, and program product |
US16/862,104 US10887774B2 (en) | 2017-10-31 | 2020-04-29 | Mobile communications system expansion method and device, storage medium, and program product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711075641.3A CN109729538B (zh) | 2017-10-31 | 2017-10-31 | 移动通信系统扩容方法、设备及存储介质、程序产品 |
CN201711075641.3 | 2017-10-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/862,104 Continuation US10887774B2 (en) | 2017-10-31 | 2020-04-29 | Mobile communications system expansion method and device, storage medium, and program product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019085824A1 true WO2019085824A1 (zh) | 2019-05-09 |
Family
ID=66294322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/111955 WO2019085824A1 (zh) | 2017-10-31 | 2018-10-25 | 移动通信系统扩容方法、设备及存储介质、程序产品 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10887774B2 (zh) |
EP (1) | EP3694267B1 (zh) |
CN (1) | CN109729538B (zh) |
WO (1) | WO2019085824A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113037528A (zh) * | 2019-12-25 | 2021-06-25 | 中国移动通信集团山东有限公司 | 一种告警服务节点的弹性扩缩容方法、装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110493789B (zh) * | 2019-07-08 | 2022-05-17 | 中国联合网络通信集团有限公司 | 网络扩容方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651563A (zh) * | 2009-09-14 | 2010-02-17 | 清华大学 | 大规模网络随机故障的生成方法 |
CN102262678A (zh) * | 2011-08-16 | 2011-11-30 | 郑毅 | 一个对海量数据进行抽样以及抽样数据管理系统 |
CN102355362A (zh) * | 2011-07-22 | 2012-02-15 | 华为技术有限公司 | 一种网络拓扑生成方法和装置 |
CN106160993A (zh) * | 2016-08-12 | 2016-11-23 | 江苏大学 | 一种基于its中d2d通信模型的系统容量扩容方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2222120A4 (en) * | 2007-10-29 | 2017-04-19 | NTT DoCoMo, Inc. | Mobile communication system, home base station, and mobile station |
MX2010010913A (es) * | 2008-04-04 | 2010-12-21 | Powerwave Cognition Inc | Metodos y sistemas para una internet movil de banda ancha, enrutable. |
JP5287853B2 (ja) * | 2008-05-29 | 2013-09-11 | 日本電気株式会社 | 最適化評価システム、最適化評価装置、最適化評価方法、及び最適化評価用プログラム |
CN105323770B (zh) * | 2014-07-31 | 2019-01-01 | 中国移动通信集团公司 | 无线通信系统的扩容评估方法及装置 |
CN105407494B (zh) * | 2015-10-23 | 2018-10-30 | 中国联合网络通信集团有限公司 | 网络扩容方法及装置 |
CN106714233B (zh) * | 2015-11-13 | 2020-08-25 | 华为技术有限公司 | 应用驱动网络的通信系统、组网方法及控制器 |
CN105407486B (zh) * | 2015-12-02 | 2018-09-21 | 中国联合网络通信集团有限公司 | 一种网络扩容的方法及装置 |
CN106507389A (zh) * | 2016-10-21 | 2017-03-15 | 黄东 | 一种无线网络的优化设计方法 |
CN107148076B (zh) * | 2017-06-05 | 2020-03-17 | 西安交通大学 | 一种基于随机几何的无线小区网络功率控制方法 |
-
2017
- 2017-10-31 CN CN201711075641.3A patent/CN109729538B/zh active Active
-
2018
- 2018-10-25 WO PCT/CN2018/111955 patent/WO2019085824A1/zh unknown
- 2018-10-25 EP EP18874084.9A patent/EP3694267B1/en active Active
-
2020
- 2020-04-29 US US16/862,104 patent/US10887774B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651563A (zh) * | 2009-09-14 | 2010-02-17 | 清华大学 | 大规模网络随机故障的生成方法 |
CN102355362A (zh) * | 2011-07-22 | 2012-02-15 | 华为技术有限公司 | 一种网络拓扑生成方法和装置 |
CN102262678A (zh) * | 2011-08-16 | 2011-11-30 | 郑毅 | 一个对海量数据进行抽样以及抽样数据管理系统 |
CN106160993A (zh) * | 2016-08-12 | 2016-11-23 | 江苏大学 | 一种基于its中d2d通信模型的系统容量扩容方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3694267A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113037528A (zh) * | 2019-12-25 | 2021-06-25 | 中国移动通信集团山东有限公司 | 一种告警服务节点的弹性扩缩容方法、装置 |
Also Published As
Publication number | Publication date |
---|---|
US10887774B2 (en) | 2021-01-05 |
EP3694267A4 (en) | 2020-10-28 |
EP3694267B1 (en) | 2023-05-31 |
EP3694267A1 (en) | 2020-08-12 |
CN109729538A (zh) | 2019-05-07 |
CN109729538B (zh) | 2021-02-09 |
US20200260294A1 (en) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109195170B (zh) | 小区扩容方法、装置及存储介质 | |
WO2020108355A1 (zh) | 一种选择prach资源的方法及装置 | |
WO2019158102A1 (zh) | 一种确定QoS描述信息的方法和装置 | |
WO2020108002A1 (zh) | 一种传输策略确定方法、策略控制方法及装置 | |
CN105052202A (zh) | 在动态无线电切换期间用于反馈用户设备性能度量的用户设备和方法 | |
WO2020098575A1 (zh) | 一种容量规划方法及装置 | |
US9961604B2 (en) | Radio network information management method and network device | |
KR101749200B1 (ko) | 무선 통신 네트워크의 허용 제어를 위한 방법 및 장치 | |
US11824783B2 (en) | Maximum data burst volume (MDBV) determining method, apparatus, and system | |
WO2018181491A1 (ja) | 無線通信システムおよび無線通信制御方法 | |
US10887774B2 (en) | Mobile communications system expansion method and device, storage medium, and program product | |
JP2014209701A (ja) | 無線通信制御装置、無線通信制御方法、及びプログラム | |
WO2016095193A1 (zh) | 一种触发退避的方法、基站设备、用户设备及系统 | |
WO2020103733A1 (zh) | 用于实现质差根因分析的方法及网络设备 | |
JP6900498B2 (ja) | ハンドオーバー制御方法、ネットワーク側機器及びシステム | |
US10694533B2 (en) | Network scheduling in unlicensed spectrums | |
WO2018148964A1 (zh) | 网络容量调整方法和网络设备 | |
WO2022021302A1 (zh) | 层二测量量增强表示和报告方法及设备 | |
CN103442406A (zh) | 一种接入控制方法及装置 | |
WO2021103718A1 (zh) | 信道选择方法及装置 | |
US10448260B2 (en) | Management apparatus and radio communication system | |
Nam et al. | Fairness Enhancement Scheme for Multimedia Applications in IEEE 802.11 e Wireless LANs | |
JP6302384B2 (ja) | 無線基地局、サーバ装置、送信レート選択方法及び送信レート選択プログラム | |
US20240049020A1 (en) | Data acquisition in a communication network | |
CN103517251B (zh) | 一种获取移动性信息的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874084 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018874084 Country of ref document: EP Effective date: 20200505 |