WO2019085137A1 - 一种多基团磁性混凝剂的制备方法及应用 - Google Patents

一种多基团磁性混凝剂的制备方法及应用 Download PDF

Info

Publication number
WO2019085137A1
WO2019085137A1 PCT/CN2017/114366 CN2017114366W WO2019085137A1 WO 2019085137 A1 WO2019085137 A1 WO 2019085137A1 CN 2017114366 W CN2017114366 W CN 2017114366W WO 2019085137 A1 WO2019085137 A1 WO 2019085137A1
Authority
WO
WIPO (PCT)
Prior art keywords
coagulant
magnetic
suspension
modified
preparing
Prior art date
Application number
PCT/CN2017/114366
Other languages
English (en)
French (fr)
Inventor
郑怀礼
刘冰枝
陈笑越
罗坤
陈新
赵纯
安严延
孙强
Original Assignee
重庆大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆大学 filed Critical 重庆大学
Publication of WO2019085137A1 publication Critical patent/WO2019085137A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof

Definitions

  • the invention belongs to the technical field of water treatment, and in particular relates to a preparation method and application of a multi-group magnetic coagulant.
  • Magnetic coagulation technology As an emerging water treatment technology, has been rapidly developed in feedwater treatment and various types of sewage and wastewater treatment, and has been applied in engineering practice.
  • Magnetic coagulation technology mainly achieves the effective combination of micro-suspension or insoluble contaminants in water with small-diameter magnetic particles through adsorption, coagulation and bridging, thereby increasing the volume and density of flocs and further accelerating flocs.
  • the settling velocity effectively reduces the hydraulic retention time of the coagulation sedimentation tank and increases its surface load.
  • the magnetic separation system can also recover and recycle the loaded magnetic particles to achieve the purpose of waste treatment and resource reuse.
  • the conventional magnetic coagulation process mainly involves the addition of a coagulant and a magnetic powder respectively, and the removal of the contaminants is achieved by the joint action of the two.
  • Chinese patent CN105314784A discloses a magnetic coagulation separation wastewater treatment method, which can achieve better treatment effect by combining the magnetic powder with oil, fine particles and coagulation.
  • Chinese patent CN106882895A discloses a method for removing high concentration organic phosphorus by organic phosphorus conversion and magnetic coagulation, but the process equipment is complicated. This type of conventional magnetic coagulation method has many influencing factors and the treatment effect is unstable.
  • the direct addition of unmodified magnetic powder in the water sample leads to a large amount of magnetic powder, low utilization efficiency, high economic cost and limited application range. Therefore, it is of great significance to develop a new type of magnetic coagulant that combines magnetic and coagulation properties.
  • the object of the present invention is to provide a method for preparing a multi-group magnetic coagulant, which solves the conventional magnetic coagulation process and separately adds a coagulant and a magnetic powder, and the treatment effect is unstable.
  • the problem of high cost The use of the coagulant prepared by the method for treating nickel-containing wastewater and malachite green wastewater is also provided.
  • the present invention adopts the following technical solutions:
  • a method for preparing a multi-group magnetic coagulant comprises the following steps:
  • step (1) After the completion of the step (1), the suspension is heated to 40 to 60 ° C in a water bath under nitrogen atmosphere, and then an initiator V044 which accounts for 0.05 to 0.1% by mass of the reaction system is added, and the reaction is stirred for 1 to 2 hours. Subsequently, it is cooled and left to stand for aging, and the obtained product is purified by ethanol and dried to obtain the multi-group magnetic coagulant.
  • the vinyl-modified Fe 3 O 4 nanoparticles can be dispersed in water by ultrasonic waves, and the reaction system described in the above step (2) refers to the modified Fe after the addition of itaconic acid and chitosan.
  • a suspension of 3 O 4 nanoparticles, the product is purified using ethanol for the purpose of removing unreacted monomers.
  • the mixed solution of itaconic acid and chitosan has a certain viscosity, and the magnetic particles can be better dispersed by a dropping method to form a uniform suspension. Nitrogen protection allows the grafting reaction to proceed better because dissolved oxygen will combine with the reducing radicals if dissolved oxygen is present in the reaction system.
  • the prepared coagulant is not magnetic.
  • the amount of initiator will affect the graft copolymerization reaction of the reaction system, and its concentration directly affects the amount of initial radicals generated, which in turn affects the polymerization rate and the conversion rate of the monomer, and the reaction is incomplete, and the addition is easy. Chain transfer and chain termination occur, resulting in a decrease in monomer conversion.
  • the vinyl modified Fe 3 O 4 magnetic particles in the present invention may be modified by 3-(methacryloyloxy)propyltrimethoxysilane (MPS) (M@MPS), and a carboxyl group-rich ethylene is also selected.
  • MMS 3-(methacryloyloxy)propyltrimethoxysilane
  • CS amino acid-rich organic polymer chitosan
  • the coagulant Mag@PIA-g-CS allows the obtained magnetic coagulant not only to have electrical neutralization ability, bridging ability and enhanced adsorption capacity due to group introduction, but also has excellent magnetic separation performance.
  • the itaconic acid can be free-radically copolymerized by a vinyl group, grafted onto the surface of the vinyl-modified Fe 3 O 4 magnetic particle, or grafted with chitosan, and then subjected to free radical copolymerization through a vinyl group.
  • chitosan can also be directly grafted onto the surface of the vinyl modified Fe 3 O 4 magnetic particles. The ratio of itaconic acid to chitosan will affect the treatment effect of the prepared coagulant.
  • the ratio is too large, the itaconic acid is too much, the monomer conversion rate is low, the degree of polymerization is not ideal, and the chitosan macromolecular skeleton is too
  • the molecular bridging effect of the product is low; if the ratio is too small, the introduced carboxyl group is greatly reduced, which directly affects the initial adsorption capacity of the coagulant.
  • the total concentration of the two in the suspension is 1.0 to 2.0 mol/L.
  • the concentration of the two is too large, which is not conducive to the dispersion of Fe 3 O 4 magnetic particles in the reaction system to form a uniform suspension.
  • the modified Fe 3 O 4 nanoparticles are dispersed in water at a mass to volume ratio of 1 g: 25 to 35 mL.
  • the aging time in the step (2) is from 1.5 to 2.5 h.
  • the vinyl modified Fe 3 O 4 magnetic particles in the present invention are modified by:
  • the volume fraction of 3-(methacryloyloxy)propyltrimethoxysilane is 15 ⁇ 25%.
  • the present invention has the following beneficial effects:
  • the conventional coagulant/coagulant polyacrylamide contains certain neurological properties.
  • the poisonous acrylamide residual monomer is limited to sewage treatment.
  • the graft copolymer material selected by the invention is biodegradable, biocompatible natural organic polymer chitosan and bio-based itaconic acid.
  • the coagulant component is non-toxic, has a wide range of sources and is easily biodegradable.
  • the graft monomer chitosan (CS) selected in the invention has good hydrophilicity, biocompatibility and degradability, and is rich in -OH and -NH 2 reactive groups, which can be combined with The organic matter undergoes a chemical reaction, and the introduction of chitosan not only makes the magnetic polymer particles have the dual characteristics of magnetic particles and polymer materials, but also functions as a coagulant and a heavy metal adsorbent in water treatment;
  • the comonomer itaconic acid used in the invention is a vinyl dicarboxylic acid having a high polymerization activity, and the copolymer contains a large amount of carboxyl groups and has strong chelation for positively charged cations.
  • the magnetic coagulant prepared by the invention Due to the embedding of the magnetic core, the magnetic coagulant prepared by the invention has the magnetic separation performance of the magnetic nano particles and the adsorption and coagulation properties of the polymer material, and can realize high-efficiency separation under the premise of ensuring the ideal treatment effect. And rapid settlement, which makes the surface load larger and the hydraulic retention time reduced, which greatly reduces the process footprint.
  • the magnetic flux of the conventional magnetic coagulation technology is 4.8 to 5.1, and the dosage is very large, while the magnetic coagulant Mag@PIA-g-CS, Fe 3 O 4 nanoparticles and organic components (shell) prepared by the invention
  • the mass ratio of polysaccharide and itaconic acid is only 1:11, which greatly reduces the dosage of magnetic powder, improves the utilization of magnetic powder, and reduces the cost.
  • the magnetic coagulant Mag@PIA-g-CS prepared by the invention has less dosage, faster coagulation speed, easy separation of flocs, and other external conditions such as pH value, compared with other coagulants.
  • the utility model has the advantages of small influence, simple preparation method and easy operation, and the magnetic coagulant is easy to be recycled and reused, does not cause secondary pollution to the water body, and the treatment effect is stable.
  • the organic layer on the surface of the magnetic core prepared by the invention has a loading rate of 51%, and the Fe 3 O 4 crystal form is intact and has good magnetic properties. Since a large number of carboxyl groups, hydroxyl groups and amino groups are introduced, The removal efficiency of nickel wastewater and malachite green organic dye wastewater can reach 98.3% and 90.1%, respectively, and can be used for the advanced treatment of industrial wastewater and sewage such as heavy metal wastewater, dye wastewater and oily wastewater.
  • Example 1 is an infrared spectrum diagram of a magnetic coagulant prepared in Example 1;
  • Example 2 is a thermogravimetric analysis diagram of the magnetic coagulant prepared in Example 1;
  • Example 3 is an X-ray diffraction chart of the magnetic coagulant prepared in Example 1;
  • Example 4 is a magnetization curve of the magnetic coagulant prepared in Example 1;
  • Figure 5 is a diagram showing the preparation process and mechanism of the magnetic coagulant of the present invention.
  • Example 6 is a leaching amount of Fe of a magnetic coagulant prepared according to Example 1 of the present invention at different pH values;
  • Figure 7 is a graph showing the recovery of the recycled use of the magnetic coagulant prepared in Example 1.
  • Embodiment 2 The preparation method of the multi-group magnetic coagulant of the embodiment comprises the following steps:
  • Embodiment 3 The preparation method of the multi-group magnetic coagulant of the embodiment comprises the following steps:
  • Example 1 is an infrared spectrum of the magnetic coagulant Mag@PIA-g-CS prepared in Example 1.
  • the infrared spectrum results show that the characteristic absorption peaks of 560.6 cm -1 and 1084.4 cm -1 are respectively expanded by the Fe-O bond. Vibration and vibration of the Si-O bond are generated.
  • the wide band around 3449.3 cm -1 is related to the stretching vibration of NH and -OH.
  • the 1648.2 cm -1 absorption peak of Fe 3 O 4 @CS is produced by the presence of a free amino group in the crosslinked chitosan and a primary amine shear to obtain NH.
  • the absorption peak of 1390.1 cm -1 originates from the bending vibration of the CN bond.
  • the transition of the NH bond peak from 1648.2 cm -1 to 1555.3 cm -1 further demonstrates the graft copolymerization of the surface of the magnetic particles.
  • Example 2 is a thermogravimetric analysis diagram of the magnetic coagulant prepared in Example 1, as shown in the figure, the coagulant showed three stages of weight loss.
  • the first weight loss phase occurs at 30.0-126.4 ° C, and the intramolecular and intermolecular moisture is caused by the adsorption of strong hydrophilic groups of the magnetic coagulant.
  • the end point temperature T 0 of the first stage is about 126.4 ° C, which is also the initial temperature at which the organic polymer is decomposed, which proves that the magnetic coagulant has good thermal stability, the magnetic coagulant Mag@PIA-g-CS and Mag@CS has a higher grafting rate with organic matter (48.3% and 51.9%, respectively).
  • Example 3 is an X-ray diffraction diagram of the magnetic coagulant prepared in Example 1, which exists in the presence of a cubic spinel structure of Fe 3 O 4 at 30.2°, 35.5°, 43.1°, 53.4°, 57.0°, and 63.1°.
  • the apparent dispersion peak confirmed the presence of magnetic particles in the coagulant and further showed that the coating process did not cause any phase change of Fe 3 O 4 .
  • the intensity of the corresponding peak of the magnetic coagulant is significantly attenuated by the presence of the CS or CS-g-PIA layer on the surface of the particle.
  • Example 4 is a magnetization curve of the magnetic coagulant prepared in Example 1, and its saturation magnetization is measured at room temperature, as shown in FIG. 4, hysteresis loops of M@MPS, Mag@CS, and Mag@PIA-g-CS. It exhibited good superparamagnetism and the saturation magnetization was measured to be 76.57, 41.6, 51.9emu ⁇ g -1 , respectively . It can be seen that the saturation magnetization of the organic matter after coating is significantly reduced, but the complete magnetic separation can still be achieved within 60s.
  • Figure 5 is a diagram showing the preparation process and mechanism of the magnetic coagulant of the present invention.
  • groups such as carboxyl groups, amino groups and hydroxyl groups are subjected to electrostatic interaction, ion exchange and chelation, and Ni(II) ions and MG.
  • the organic macromolecule undergoes rapid initial adsorption, and then the organic linear molecular chain further adsorbs the bridge and the net capture sweep, thereby further improving the removal efficiency.
  • the magnetic coagulant prepared in the above Examples 1-3 was used for the removal of heavy metal wastewater and dye wastewater, and the removal rate of heavy metal ions and organic dyes was tested.
  • the multi-group magnetic coagulant prepared by the present invention treats nickel-containing wastewater and malachite green dye wastewater at different pH values, and the removal rates are up to 98.3% and 90.1%, respectively.
  • Fig. 6 is a graph showing the amount of Fe leaching of the magnetic coagulant prepared in Example 1 at different pH values. It can be seen from the figure that the magnetic coagulant prepared by the present invention has good acid stability.
  • the magnetic coagulant prepared in Example 1 was flocculated with metal ion (Ni) and cationic dye (MG), and then collected by magnetic field magnetic separation, and then placed in a 0.1 mol ⁇ L -1 hydrochloric acid solution for 30 min, and passed under acidic conditions. Protonation and ultrasonication desorb the metal ions and cationic dye macromolecules in the flocs; and then regenerated in a 0.1 mol ⁇ L -1 sodium hydroxide solution. The regenerated magnetic flocculant was subjected to the re-use experiment. After 5 regeneration-recycling cycles, the removal rates of Ni(II) and MG were up to 82% and 78%, respectively, and still have good removal ability.
  • Ni metal ion
  • MG cationic dye
  • Example 7 is a recovery rate of the magnetic coagulant prepared in Example 1, and it can be seen from the figure that the recovery rate after the magnetic coagulant flocculates the metal ion (Ni) and the cationic dye (MG) after 5 cycles of recycling More than 80% and more than 65%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种多基团磁性混凝剂的制备方法及应用,所述制备方法为:将乙烯基改性的Fe 3O 4磁性颗粒分散于水中,再将衣康酸和壳聚糖的混合溶液滴加至改性的Fe 3O 4磁性颗粒的悬浮液中,然后将所述悬浮液在氮气保护下水浴加热至40~60℃,再加入引发剂V044搅拌进行反应,随后冷却并静置,得到的产物经乙醇提纯后干燥,即得到所述的多基团磁性混凝剂;该方法制备得到的混凝剂处理含镍废水和孔雀石绿废水效果理想,且混凝剂成分无毒、可生物降解,磁粉的投加量低,降低了成本,还易于再生回用,不会对水体造成二次污染。

Description

一种多基团磁性混凝剂的制备方法及应用 技术领域
本发明属于水处理技术领域,尤其涉及一种多基团磁性混凝剂的制备方法及应用。
背景技术
近年来,磁混凝技术作为新兴的水处理技术,在给水处理和各类污水、废水处理中得到快速发展,并在工程实际中得到应用。磁混凝技术主要通过吸附、混凝、架桥的作用,实现水中的微小悬浮物或不溶性污染物与小粒径磁性颗粒的有效结合,从而增加絮体的体积和密度,并进一步加快絮体的沉降速度,从而有效降低了混凝沉淀池的水力停留时间和增大了其表面负荷。同时,磁分离系统还可对加载的磁性颗粒进行回收,循环使用,达到以废治废、资源再用的目的。
常规磁混凝工艺主要是分别投加混凝剂和磁粉,通过二者的共同作用实现污染物的去除。中国专利CN105314784A公布了一种磁混凝分离废水处理方法,通过磁粉与油、微细颗粒结合以及混凝剂的混凝作用能实现较好的处理效果。中国专利CN106882895A公布了一种利用有机磷转化以及磁混凝去除高浓度有机磷的方法,但工艺设备复杂。这一类常规磁混凝方法影响因素较多,处理效果不稳定。此外,在水样中直接投加未修饰的磁粉会导致磁粉投加量大、利用效率低,带来经济成本高和应用范围受限等诸多问题。因此,开发一种集磁性和混凝特性于一体的新型磁性混凝剂具有重要的意义。
发明内容
针对现有技术存在的上述不足,本发明的目的是提供一种多基团磁性混凝剂的制备方法,解决现有常规的磁混凝工艺分别投加混凝剂和磁粉,处理效果不稳定、成本高的问题。还提供了采用该方法制备的混凝剂在处理含镍废水和孔雀石绿废水中的应用。
为实现上述目的,本发明采用如下技术方案:
一种多基团磁性混凝剂的制备方法,包括如下步骤:
(1)将乙烯基改性的Fe3O4纳米颗粒分散于水中形成悬浮液,再将摩尔比为1:1~3的衣康酸和壳聚糖的混合溶液滴加至所述悬浮液中,并搅拌以使悬浮液均匀,其中衣康酸和壳聚糖的总质量与乙烯基改性的Fe3O4纳米颗粒的质量比为11~12:1;
(2)步骤(1)完成后,将所述悬浮液在氮气保护下水浴加热至40~60℃,再加入占反应体系质量分数为0.05~0.1%的引发剂V044,搅拌反应1~2h,随后冷却并静置熟化,得到的产物经乙醇提纯后干燥,即得到所述的多基团磁性混凝剂。
上述步骤(1)乙烯基改性的Fe3O4纳米颗粒可采用超声波分散于水中,上述步骤(2)中所述的反应体系是指滴加衣康酸和壳聚糖后的改性Fe3O4纳米颗粒的悬浮液,产物使用乙醇提纯的目的是除去未反应的单体。衣康酸和壳聚糖的混合溶液具有一定的粘度,采用滴加的方式可以使磁性颗粒更好的分散,形成均匀的悬浮液。氮气保护可以使接枝反应更好的进行,因为反应体系中如果有溶解氧,溶解氧会与还原自由基结合。加入的Fe3O4磁性颗粒量如果太少,则制备得到的混凝剂磁性不强。引发剂的量会对反应体系的接枝共聚反应产生影响,其浓度直接影响初期自由基的生成量,进而影响聚合反应速率和单体的转化率,加少了反应不完全,加多了容易发生链转移和链终止,使单体的转化率降低。
本发明中乙烯基改性的Fe3O4磁性颗粒可采用3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)进行改性(M@MPS),同时选用富含羧基的乙烯基单体衣康酸(IA)和富含氨基、羟基的有机高分子壳聚糖(CS),在乙烯基改性的Fe3O4磁性颗粒表面发生接枝共聚,形成核壳结构的磁性混凝剂Mag@PIA-g-CS,从而使获得的磁性混凝剂不仅具有电中和能力、架桥能力和因基团引入而增强的吸附能力,而且还具有非常优良的磁分离性能。
其中衣康酸可通过乙烯基进行自由基共聚,接枝到乙烯基改性的Fe3O4磁性颗粒表面,也可以先与壳聚糖进行接枝反应,再通过乙烯基进行自由基共聚接枝到Fe3O4磁性颗粒表面,壳聚糖也可以直接接枝到乙烯基改性的Fe3O4磁性颗粒表面。衣康酸和壳聚糖的比例会影响制备的混凝剂的处理效果,比值过大,则衣康酸过多,单体转化率低,聚合度不理想,且壳聚糖大分子骨架太少,形成的产物分子架桥作用就低;比值太小,则引入的羧基基团大幅度减少,直接影响混凝剂的初期吸附能力。
作为优选,步骤(1)中衣康酸和壳聚糖的混合溶液滴加至悬浮液中后,二者在悬浮液中的总浓度为1.0~2.0mol/L。二者浓度太大,不利于反应体系中Fe3O4磁性颗粒分散形成均匀的悬浮液。
作为优选,步骤(1)中将改性的Fe3O4纳米颗粒按质量体积比1g:25~35mL分散于水中。
作为优选,步骤(2)中熟化时间为1.5~2.5h。
本发明中乙烯基改性的Fe3O4磁性颗粒,其改性方法为:
将磁性Fe3O4纳米颗粒按质量体积比0.8~1.2g:100mL加入到3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,在25~30℃搅拌反应10~15h,将产物洗涤至洗涤液为中性,干燥后即得到所述的乙烯基改性的Fe3O4纳米颗粒。优选地,所述3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,3-(甲基丙烯酰氧)丙基三甲氧基硅烷的体积分数为15~25%。
相比现有技术,本发明具有如下有益效果:
(1)常规的混凝剂如铁盐、铝盐均会携带金属离子至水体中,会造成混凝剂的二次污染,常规混凝剂/助凝剂聚丙烯酰胺因含有一定的神经性致毒的丙烯酰胺残留单体,仅限于污废水处理,本发明所选用的接枝共聚材料为可生物降解、生物相容性好的天然有机高分子壳聚糖和生物基来源的衣康酸,混凝剂成分无毒,来源广泛且易于可生物降解。
(2)本发明选用的接枝单体壳聚糖(CS)具有很好的亲水性、生物相容性、可降解性,含有丰富的-OH和-NH2活性基团,可以与多种有机物发生化学反应,壳聚糖的引入,不仅使磁性高分子微粒同时具备磁性粒子和高分子材料的双重特性,而且可以在水处理中起到作混凝剂和重金属吸附剂的作用;本发明选用的共聚单体衣康酸为聚合活性较高的乙烯基二元羧酸,其共聚物含有大量羧基,对带正电的阳离子具有很强的螯合作用。
(3)由于磁核的嵌入,使本发明制备的磁性混凝剂同时具备磁性纳米颗粒的磁分离性能和高分子材料的吸附、混凝性能,在保证处理效果理想的前提下能实现高效分离和快速沉降,从而使表面负荷变大、水力停留时间减小,这大大减少了工艺的占地面积。
(4)常规磁混凝技术的磁粉比重为4.8~5.1,投加量非常大,而本发明制备的磁性混凝剂Mag@PIA-g-CS,Fe3O4纳米颗粒与有机成分(壳聚糖和衣康酸) 的质量比仅为1:11,大大降低了磁粉的投加量,提高了磁粉利用率,降低了成本。
(5)本发明制备的磁性混凝剂Mag@PIA-g-CS,与其他混凝剂相比,具有用量少、混凝速度快、产生的絮体易分离、受pH值等外界条件影响小的优点,且制备方法简单,易于操作,磁性混凝剂易于再生回用,不会对水体造成二次污染,处理效果稳定。
(6)本发明制备的混凝剂磁核表面的有机层负载率可达51%,Fe3O4晶形完好且具有很好的磁性性能,由于大量的羧基、羟基、氨基被引入,对含镍废水和孔雀石绿有机染料废水去除效果可分别达到98.3%和90.1%,可用于处理重金属废水、染料废水、含油废水等工业废水和污水的深度处理。
附图说明
图1为实施例1制备的磁性混凝剂的红外光谱图;
图2为实施例1制备的磁性混凝剂的热重分析图;
图3为实施例1制备的磁性混凝剂的X射线衍射图;
图4为实施例1制备的磁性混凝剂的磁化曲线;
图5为本发明磁性混凝剂的制备过程和作用机理图;
图6为本发明实施例1制备的磁混凝剂在不同pH值下Fe的浸出量;
图7为实施例1制备的磁混凝剂循环使用的回收率。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
实施例1:
本实施例多基团磁性混凝剂的制备方法,包括如下步骤:
1)将磁性Fe3O4纳米颗粒1.0g加入至100毫升3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,其中3-(甲基丙烯酰氧)丙基三甲氧基硅烷的体积分数为15%,并在30℃下搅拌反应12小时;反应结束后进行磁吸,并分别用蒸馏水和无水乙醇反复洗涤多次至洗涤液为中性,自然干燥,得到乙烯基改性Fe3O4纳米颗粒(M@MPS)。
2)将1g乙烯基改性的Fe3O4纳米颗粒超声分散于含25mL去离子水的三颈烧瓶中形成悬浮液,在保证衣康酸和壳聚糖滴加至悬浮液中形成均匀分散体系后,二者在悬浮液中的总摩尔浓度为1.0mol/L的前提下,准确称量摩尔比为1:1的衣康酸和壳聚糖(二者总质量为11.64g)溶解于55mL去离子水中,并将二者 的混合液滴加至M@MPS悬浮液中,同时快速搅拌20min以形成均匀悬浮液。
3)向三颈瓶中充氮气除氧15min,在氮气保护下水浴加热至45℃后,加入占反应体系质量分数为0.05%的V044引发剂,持续搅拌反应1小时。
4)将反应得到的黑色悬浮物自然冷却到室温,并静置2h以促进产物的进一步交联,最后将所得悬浮液倾倒于烧杯中,并用无水乙醇提纯多次,干燥后收集所得产物,即为衣康酸-壳聚糖接枝共聚形成的磁性混凝剂Mag@PIA-g-CS11。
实施例2:本实施例多基团磁性混凝剂的制备方法,包括如下步骤:
1)将磁性Fe3O4纳米颗粒1.0g加入100毫升3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,其中3-(甲基丙烯酰氧)丙基三甲氧基硅烷的体积分数为20%,并在30℃下搅拌反应12小时;反应结束后进行磁吸,并分别用蒸馏水和无水乙醇反复洗涤多次至洗涤液为中性,自然干燥,得到乙烯基改性Fe3O4纳米颗粒(M@MPS)。
2)将1g乙烯基改性的Fe3O4纳米颗粒超声分散于含30mL去离子水的三颈烧瓶中形成悬浮液,在保证衣康酸和壳聚糖滴加至悬浮液中后,二者在悬浮液中的总摩尔浓度为1.0mol/L的前提下,准确称量摩尔比为2:1的衣康酸和壳聚糖(二者总质量为11.22g)溶解于50mL去离子水中,并将二者的混合液滴加至M@MPS悬浮液中,同时快速搅拌20min以形成均匀悬浮液。
3)向三颈瓶中充氮气除氧15min,在氮气保护下水浴加热至50℃后,加入占反应体系质量分数为0.075%的V044引发剂,持续搅拌反应1小时。
4)将反应得到的黑色悬浮物自然冷却到室温,并静置2h以促进产物的进一步交联,最后将所得悬浮液倾倒于烧杯中,并用无水乙醇提纯多次,干燥后收集所得产物即为衣康酸-壳聚糖接枝共聚形成的磁性混凝剂Mag@PIA-g-CS21。
实施例3:本实施例多基团磁性混凝剂的制备方法,包括如下步骤:
1)将磁性Fe3O4纳米颗粒1.0g加入100毫升3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,其中3-(甲基丙烯酰氧)丙基三甲氧基硅烷的体积分数为25%,并在30℃下搅拌反应12小时;反应结束后进行磁吸,并分别用蒸馏水和无水乙醇反复洗涤多次至洗涤液为中性,自然干燥,得到乙烯基改性Fe3O4纳米颗粒(M@MPS)。
2)将1g乙烯基改性的Fe3O4纳米颗粒超声分散于含35mL去离子水的三颈烧瓶中形成悬浮液,在保证衣康酸和壳聚糖滴加至悬浮液中后,二者在悬浮液中 的总摩尔浓度为2.0mol/L的前提下,准确称量摩尔比为3:1的衣康酸和壳聚糖(二者总质量为11g)溶解于45mL去离子水中,并将二者的混合液滴加至M@MPS悬浮液中,同时快速搅拌20min以形成均匀悬浮液。
3)向三颈瓶中充氮气除氧15min,在氮气保护下水浴加热至60℃后,加入占反应体系质量分数为0.1%的V044引发剂,持续搅拌反应1小时。
4)将反应得到的黑色悬浮物自然冷却到室温,并静置2h以促进产物的进一步交联,最后将所得悬浮液倾倒于烧杯中,并用无水乙醇提纯多次,干燥后收集所得产物即为衣康酸-壳聚糖接枝共聚形成的磁性混凝剂Mag@PIA-g-CS31。
图1为实施例1制备的磁性混凝剂Mag@PIA-g-CS的红外光谱图,红外光谱结果显示,560.6cm-1和1084.4cm-1的特征吸收峰分别由Fe-O键的伸缩振动和Si-O键的弯曲振动产生。在3449.3cm-1附近的宽波段则与N-H、-OH的伸缩振动相关。Fe3O4@CS的1648.2cm-1吸收峰由于交联壳聚糖中的游离氨基存在,伯胺剪切得到N-H而产生。Mag@PIA-g-CS中羧基的C=O双键的伸缩振动造成了1634.4cm-1的吸收峰的产生。1390.1cm-1吸收峰源于C-N键弯曲振动。同时,N-H键峰值由1648.2cm-1到1555.3cm-1的转变,进一步证明了磁颗粒表面的接枝共聚。以上结果表明,磁性混凝剂表面成功生成了含有大量氨基、羟基、羧基的有机聚合物。
图2为实施例1制备的磁性混凝剂的热重分析图,如图所示,混凝剂出现了3个失重阶段。第一个失重阶段发生在30.0-126.4℃,由分子内和分子间的水分受磁性混凝剂强亲水性基团吸附引起。第一阶段的终点温度T0约126.4℃,也是包覆有机聚合物分解的起始温度,从而证明了磁性混凝剂具有良好的热稳定性,磁性混凝剂Mag@PIA-g-CS和Mag@CS与有机物有较高的接枝率(分别为48.3%和51.9%)。
图3为实施例1制备的磁性混凝剂的X射线衍射图,由于Fe3O4的立方尖晶石结构的存在,30.2°、35.5°、43.1°、53.4°、57.0°和63.1°存在明显分散峰,证实了混凝剂中有磁性颗粒的存在,并进一步表明了包覆过程不会引起任何Fe3O4的相变化。包覆之后,磁性混凝剂对应衍射峰的强度由于颗粒表面CS或CS-g-PIA层的存在显著减弱。
图4为实施例1制备的磁性混凝剂的磁化曲线,室温下测量其饱和磁化强度,如图4所示,M@MPS、Mag@CS和Mag@PIA-g-CS的磁滞回线展现出良好的 超顺磁性,且饱和磁化强度分别测得为76.57,41.6,51.9emu·g-1。由此可见,包覆后有机物饱和磁化强度明显降低,但仍能够在60s内实现完整的磁分离。
图5为本发明磁性混凝剂的制备过程和作用机理图,如图5所示,羧基、氨基和羟基等基团通过静电作用、离子交换和螯合作用,对Ni(II)离子和MG有机大分子进行快速初期吸附,随后有机线性分子链进一步吸附架桥和网捕卷扫,从而进一步提高其去除效率。
应用试验
将上述实施例1-3制备的磁性混凝剂用于重金属废水和染料废水的去除,测试其对重金属离子和有机染料的去除率。
分别配制Ni(II)的初始浓度为0.51mmol/L和MG(有机阳离子染料孔雀石绿)的初始浓度为0.548mmol/L的模拟废水,在不同pH下测试实施例1~3制备的磁性混凝剂的去除效果,每次投加120mg/L实施例1~3制备的磁性混凝剂,在22±0.5℃下震荡3h后,静置30min,再于液面以下1cm处取样进行Ni(II)离子浓度和MG浓度测定。
表1实施例1~3制备的混凝剂对Ni(II)和MG的去除效果比较
Figure PCTCN2017114366-appb-000001
由表1可以看出,本发明制备的多基团磁性混凝剂在不同pH值下处理含镍废水和孔雀石绿染料废水,其去除率最高分别可达到98.3%和90.1%。
磁混凝剂的稳定性和再生回用
图6为实施例1制备的磁混凝剂在不同pH值下Fe的浸出量,由图可知,本发明制备的磁混凝剂具有良好的酸稳定性。
将实施例1制备的磁混凝剂絮凝金属离子(Ni)和阳离子染料(MG)之后,通过磁场磁分离收集后,置于0.1mol·L-1的盐酸溶液中超声30min,通过酸性条件下质子化作用和超声波作用解吸絮体中的金属离子和阳离子染料大分子;再置于0.1mol·L-1的氢氧化钠溶液再生。将再生的磁絮凝剂进行回用实验,经5个再生-回用循环,其对Ni(II)和MG的去除率最高分别可达到82%和78%,仍具有 较好的去除能力。
图7为实施例1制备的磁混凝剂循环使用的回收率,由图可看出,磁混凝剂絮凝金属离子(Ni)和阳离子染料(MG)后,循环使用5次后的回收率分别在80%以上和65%以上。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (7)

  1. 一种多基团磁性混凝剂的制备方法,其特征在于,包括如下步骤:
    (1)将乙烯基改性的Fe3O4纳米颗粒分散于水中形成悬浮液,再将摩尔比为1:1~3的衣康酸和壳聚糖的混合溶液滴加至所述悬浮液中,并搅拌以使悬浮液均匀,其中衣康酸和壳聚糖的总质量与乙烯基改性的Fe3O4纳米颗粒的质量比为11~12:1;
    (2)步骤(1)完成后,将所述悬浮液在氮气保护下水浴加热至40~60℃,再加入占反应体系质量分数为0.05~0.1%的引发剂V044,搅拌反应1~2h,随后冷却并静置熟化,得到的产物经乙醇提纯后干燥,即得到所述的多基团磁性混凝剂。
  2. 根据权利要求1所述的多基团磁性混凝剂的制备方法,其特征在于,步骤(1)中衣康酸和壳聚糖的混合溶液滴加至悬浮液中后,二者在悬浮液中的总浓度为1.0~2.0mol/L。
  3. 根据权利要求1所述的多基团磁性混凝剂的制备方法,其特征在于,步骤(1)中将改性的Fe3O4纳米颗粒按质量体积比1g:25~35mL分散于水中。
  4. 根据权利要求1所述的多基团磁性混凝剂的制备方法,其特征在于,步骤(2)中熟化时间为1.5~2.5h。
  5. 根据权利要求1所述的多基团磁性混凝剂的制备方法,其特征在于,所述乙烯基改性的Fe3O4纳米颗粒的改性方法为:将磁性Fe3O4纳米颗粒按质量体积比0.8~1.2g:100mL加入到3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,在25~30℃搅拌反应10~15h,将产物洗涤至洗涤液为中性,干燥后即得到所述的乙烯基改性的Fe3O4纳米颗粒。
  6. 根据权利要求5所述的多基团磁性混凝剂的制备方法,其特征在于,所述3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇的混合液中,3-(甲基丙烯酰氧)丙基三甲氧基硅烷的体积分数为15~25%。
  7. 如权利要求1至6任一项所述方法制备得到的混凝剂在处理含镍废水和孔雀石绿废水中的应用。
PCT/CN2017/114366 2017-11-02 2017-12-04 一种多基团磁性混凝剂的制备方法及应用 WO2019085137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711064426.3 2017-11-02
CN201711064426.3A CN107555569B (zh) 2017-11-02 2017-11-02 一种多基团磁性混凝剂的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2019085137A1 true WO2019085137A1 (zh) 2019-05-09

Family

ID=61032537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114366 WO2019085137A1 (zh) 2017-11-02 2017-12-04 一种多基团磁性混凝剂的制备方法及应用

Country Status (2)

Country Link
CN (1) CN107555569B (zh)
WO (1) WO2019085137A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655159A (zh) * 2019-09-30 2020-01-07 浙江工业大学 一种由磷化废水制备复合除磷混凝剂的方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340157B (zh) * 2022-09-02 2024-03-26 浙江华蓝环境科技有限公司 一种改性壳聚糖基磁性絮凝剂及其制备方法与应用
CN115779861B (zh) * 2022-12-02 2024-06-18 浙江农林大学 一种羧酸功能化水热炭吸附材料的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864025A (en) * 1997-06-30 1999-01-26 Virginia Tech Intellectual Properties, Inc. Method of making magnetic, crosslinked chitosan support materials and products thereof
CN104874366A (zh) * 2015-05-29 2015-09-02 西北师范大学 壳聚糖磁性吸附材料的制备及在吸附污水中Pb2+、As3+的应用
CN105251452A (zh) * 2015-10-21 2016-01-20 北京有色金属研究总院 一种壳聚糖-硅胶杂化磁性吸附剂及其制备方法和应用
CN105289557A (zh) * 2015-10-15 2016-02-03 中国科学院兰州化学物理研究所 利用Pickering-高内相乳液模板法制备磁性气凝胶吸附材料的方法
CN106832129A (zh) * 2017-03-21 2017-06-13 中国海洋大学 一种衣康酸均聚物接枝羧甲基壳聚糖纳米粒的制备方法
CN107321326A (zh) * 2017-07-03 2017-11-07 重庆大学 阴离子聚合物接枝壳聚糖磁性复合微球及制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186377C (zh) * 2003-05-15 2005-01-26 复旦大学 一种多功能有机-无机复合高分子微球及其制备方法
CN101882496A (zh) * 2009-05-04 2010-11-10 杨琥 一种壳聚糖-聚丙烯酰胺磁性复合微球材料、其制备方法及其应用
CN102515319A (zh) * 2011-12-10 2012-06-27 中国海洋大学 一种具有抑藻作用的磁性壳聚糖复合树脂颗粒的制备
CN104785227A (zh) * 2015-04-30 2015-07-22 南京大学 一种壳聚糖-接枝氨基酸磁性复合微球、制备及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864025A (en) * 1997-06-30 1999-01-26 Virginia Tech Intellectual Properties, Inc. Method of making magnetic, crosslinked chitosan support materials and products thereof
CN104874366A (zh) * 2015-05-29 2015-09-02 西北师范大学 壳聚糖磁性吸附材料的制备及在吸附污水中Pb2+、As3+的应用
CN105289557A (zh) * 2015-10-15 2016-02-03 中国科学院兰州化学物理研究所 利用Pickering-高内相乳液模板法制备磁性气凝胶吸附材料的方法
CN105251452A (zh) * 2015-10-21 2016-01-20 北京有色金属研究总院 一种壳聚糖-硅胶杂化磁性吸附剂及其制备方法和应用
CN106832129A (zh) * 2017-03-21 2017-06-13 中国海洋大学 一种衣康酸均聚物接枝羧甲基壳聚糖纳米粒的制备方法
CN107321326A (zh) * 2017-07-03 2017-11-07 重庆大学 阴离子聚合物接枝壳聚糖磁性复合微球及制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655159A (zh) * 2019-09-30 2020-01-07 浙江工业大学 一种由磷化废水制备复合除磷混凝剂的方法和应用

Also Published As

Publication number Publication date
CN107555569B (zh) 2021-03-23
CN107555569A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
Sun et al. Polyethylenimine-functionalized poly (vinyl alcohol) magnetic microspheres as a novel adsorbent for rapid removal of Cr (VI) from aqueous solution
WO2019085137A1 (zh) 一种多基团磁性混凝剂的制备方法及应用
CN103709342A (zh) 一种磁性镉离子表面印迹聚合物的制备方法
CN113694903B (zh) 一种含磷聚合物水凝胶及其制备方法和用途
CN103709341A (zh) 一种磁性锌离子表面印迹聚合物的制备方法
CN107814890A (zh) 一种疏水缔合型阳离子聚丙烯酰胺的制备方法
Liu et al. Synthesis of a cationic polyacrylamide by a photocatalytic surface-initiated method and evaluation of its flocculation and dewatering performance: Nano-TiO 2 as a photo initiator
Jin et al. Electrochemically mediated atom transfer radical polymerization of iminodiacetic acid-functionalized poly (glycidyl methacrylate) grafted at carbon fibers for nano-nickel recovery from spent electroless nickel plating baths
CN107601820B (zh) 一种阳离子聚丙烯酰胺污泥脱水剂的制备方法
Li et al. Adsorption performance of SiO2/CPAM composites for aqueous Ca (II)
CN115594264B (zh) 基于纳米二氧化硅的絮凝剂及其制备方法和应用以及含油污水脱油的方法
CN110354827A (zh) 一种磁性水凝胶吸附材料的合成方法
CN110627969A (zh) 一种利用Janus纳米材料制备自修复水凝胶的方法
Gao et al. Gelatin-polyacrylamide double network enhanced polyamidoxime magnetic photothermal composite hydrogel for highly efficient and selective uranium extraction from seawater
CN104211856B (zh) 黄土基聚丙烯酰胺吸附剂的制备方法
CN113121002B (zh) 一种絮凝剂及其制备方法和应用
CN117069228A (zh) 一种有机-无机高分子复合絮凝剂及其制备方法
Khan et al. Synthesis of hydrophobic cationic polymeric flocculants by the introduction of a hydrophobic monomer, cationic monomer and the application in sludge dewatering
Yayayürük The use of acrylic-based polymers in environmental remediation studies
CN106279548B (zh) 一种用于处理含重金属离子废水的聚乙烯醇水凝胶及其制备方法
CN101618937B (zh) 一种疏水阳离子高分子絮凝剂的制备方法
CN109201015B (zh) 一种表面印迹Fe3+四钛酸钾晶须吸附剂及其制备方法
CN106928412B (zh) 一种无机纳米颗粒@pam杂化材料的制备方法
CN112175128A (zh) 一种丙烯酰胺交联丙烯酸与蒙脱土水凝胶的制备方法
CN111410718A (zh) 一种锰锌铁氧体接枝环糊精-丙烯酸水凝胶吸附及其制法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930585

Country of ref document: EP

Kind code of ref document: A1