WO2019085077A1 - 液晶透镜以及3d显示装置 - Google Patents

液晶透镜以及3d显示装置 Download PDF

Info

Publication number
WO2019085077A1
WO2019085077A1 PCT/CN2017/112568 CN2017112568W WO2019085077A1 WO 2019085077 A1 WO2019085077 A1 WO 2019085077A1 CN 2017112568 W CN2017112568 W CN 2017112568W WO 2019085077 A1 WO2019085077 A1 WO 2019085077A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
color
light
crystal lens
substrate
Prior art date
Application number
PCT/CN2017/112568
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/578,492 priority Critical patent/US20190129190A1/en
Publication of WO2019085077A1 publication Critical patent/WO2019085077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal lens and a 3D display device.
  • High color gamut display devices are widely used by consumers because they can display more colors in nature, have higher color saturation and color reproducibility.
  • the technology for achieving ultra-high color gamut is mainly based on Quantum Dot (QD) technology, including quantum dot films, quantum dot lamps, etc.
  • QD Quantum Dot
  • quantum dot films are the best choice for thin display.
  • a quantum dot film is usually disposed on a light-emitting surface of a backlight module, and the quantum dot film converts blue light emitted from the backlight module into white light to be supplied to the liquid crystal display panel.
  • 3D (3Dimension, 3D) display technology when a user observes a certain picture, different light rays that respectively present the same picture are respectively entered into the left eye and the right eye of the user, and the different rays are respectively in the left eye and the right eye of the user.
  • a picture with a slight difference is formed to simulate a picture with a slight difference observed by both eyes when the human eye observes a three-dimensional object, thereby realizing 3D display.
  • a liquid crystal lens is usually superposed on the light-emitting surface of the liquid crystal display device.
  • the liquid crystal display device is a conventional 2D liquid crystal display device.
  • the liquid crystal lens comprises a plurality of liquid crystal repeating units, each liquid crystal repeating unit is equivalent to a columnar lens, and each liquid crystal repeating unit focuses the light in different directions when light rays exhibiting the same picture pass through the liquid crystal lens, thereby making The light entering the left and right eyes of the user is different.
  • the liquid crystal lens includes an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer filled between the upper substrate and the lower substrate; an upper electrode is disposed on the upper substrate, and a plurality of strips parallel to each other are disposed on the lower substrate electrode.
  • the strip electrode is charged and an electric field is formed between the upper electrode and each strip electrode, in each liquid crystal repeating unit, the tilt angle of the liquid crystal molecules in the liquid crystal layer close to the lower substrate is gradually decreased from the central region to the edge region.
  • the refractive index of the liquid crystal layer close to the lower substrate is gradually reduced from the central region to the edge region.
  • the change in the refractive index causes the light to be focused to a predetermined direction as it passes through the liquid crystal layer near the lower substrate portion, and the 3D display can be realized by the optical action of the plurality of liquid crystal repeating units in the liquid crystal lens.
  • the liquid crystal lens-based 3D display device Compared with the conventional 2D display device, the liquid crystal lens-based 3D display device inevitably increases the thickness of the display module, and in order to increase the color gamut of the 3D display device, the added QD film in the 2D display device also brings thickness.
  • the increase in the thickness of the two technologies has greatly hindered the thinning process of the 3D display device.
  • the high color gamut quantum dot technology has a lower line width due to the green light portion having a larger luminance contribution, so that the luminous efficiency of the quantum dot backlight is much lower than that of the conventional low color gamut display module, and the liquid crystal lens based 3D
  • the display technology is to transmit the image signals of different viewpoints to different eyes respectively, which also objectively causes the brightness of the 3D display module to be lower than that of the conventional 2D display module.
  • the present invention provides a liquid crystal lens and a 3D display device for improving the display color gamut and brightness of the 3D display device, and at the same time taking into account the trend of thinning of the 3D display device.
  • a liquid crystal lens comprising: a first substrate and a second substrate disposed opposite to each other, a plurality of first electrodes disposed on the first substrate, a second electrode disposed on the second substrate, and disposed on the a liquid crystal cell between the first electrode and the second electrode; wherein the liquid crystal material in the liquid crystal cell is doped with a quantum dot material for the first color to be incident on the liquid crystal cell A portion of the light is converted into a second color ray and a third color ray, the first color ray and the combination of the second color ray and the third color ray forming a white light.
  • the quantum dot material comprises a red quantum dot material and a green quantum dot material, the first color light is blue light, the second color light is red light, and the third color light is green light;
  • the quantum dot material and the green quantum dot material are used to convert a portion of the blue light incident to the liquid crystal cell into red light and green light, respectively.
  • a plurality of spacers are further disposed between the first substrate and the second substrate, the plurality of spacers are spaced apart to form the first liquid crystal lens unit and the second liquid crystal lens arranged in an array a unit and a third liquid crystal lens unit; wherein the liquid crystal material in the first liquid crystal lens unit is not doped with a quantum dot material, and the first color light incident on the first liquid crystal lens unit is maintained as a first color light; The liquid crystal material in the second liquid crystal lens unit is doped with a quantum dot material corresponding to the second color light, and the first color light incident on the second liquid crystal lens unit is converted into a second color light; The liquid crystal material in the three liquid crystal lens unit is doped with a quantum dot material corresponding to the third color light, and the first color light incident to the third liquid crystal lens unit is converted into the third color light.
  • Each of the first liquid crystal lens unit, the second liquid crystal lens unit, and the third liquid crystal lens unit includes two or more of the first electrodes.
  • the liquid crystal cell is an integral continuous liquid crystal cell in a direction parallel to the first substrate and the second substrate, and the quantum dot material is uniformly doped in the liquid crystal cell; wherein A color filter is further disposed on the two substrates, and the color filter includes a first color photoresist unit, a second color photoresist unit, and a third color photoresist unit arranged in an array.
  • the color filter is disposed between the second substrate and the second electrode.
  • the present invention also provides a 3D display device including a 2D display device and a liquid crystal lens laminated on a light-emitting surface of the 2D display device, wherein the liquid crystal lens is a liquid crystal lens as described above,
  • the light emitted by the 2D display device for display is the first color light.
  • the 2D display device includes a backlight module and a liquid crystal display panel, wherein the liquid crystal lens stack is disposed on a light emitting surface of the liquid crystal display panel; and the backlight provided by the backlight module is a first color. Light, the liquid crystal display panel receives the first color light and the light for display emitted on the light exiting surface remains as the first color light.
  • the liquid crystal display panel includes a lower polarizer, a TFT array substrate, an opposite substrate and an upper polarizer, and a liquid crystal layer is disposed between the TFT array substrate and the opposite substrate.
  • the opposite substrate of the liquid crystal display panel and the first substrate of the liquid crystal lens share the same substrate.
  • the liquid crystal lens and the 3D display device provided in the embodiments of the present invention improve the color gamut of the 3D display device by using quantum dot technology by doping the quantum dot material in the liquid crystal cell of the liquid crystal lens, thereby realizing a high color gamut 3D display device.
  • the quantum dot material is disposed in the liquid crystal cell of the liquid crystal lens, and does not need to additionally add a quantum dot film structural layer, which is advantageous for the thin and light development of the 3D display device.
  • the liquid crystal cell therein in order to achieve a good phase retardation effect, the liquid crystal cell therein generally has a large thickness (Cell Gap), so that the quantum dot material is disposed in the liquid crystal cell, and the light conversion can be performed. The stroke, the conversion of light is more sufficient, for example, the incident blue light can be better and more fully converted into green light, thereby increasing the brightness of the 3D display device.
  • FIG. 1 is a schematic structural view of a liquid crystal lens according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a 3D display device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a 3D display device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a liquid crystal lens according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a 3D display device according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a 3D display device according to Embodiment 4 of the present invention.
  • the present embodiment provides a liquid crystal lens.
  • the liquid crystal lens 10 includes a first substrate 11 and a second substrate 12 disposed opposite to each other, and a plurality of first electrodes disposed on the first substrate 11 . 13.
  • a second electrode 14 disposed on the second substrate 12 and a liquid crystal cell 15 disposed between the first electrode 13 and the second electrode 14.
  • the first electrode 13 is a strip electrode, and the plurality of first electrodes 13 are spaced apart from each other.
  • the second electrode 14 is a flat electrode.
  • the liquid crystal cell 15 may form a plurality of liquid crystal lens units distributed in an array, and form a gap between the first electrode 13 and the second electrode 14 when the first electrode 13 is charged.
  • the liquid crystal in the liquid crystal lens unit is tilted in different directions, so that the refractive index of the region is uniformly increased from the center to both edges, so that the light (used to present a picture in the human eye) passes through the refraction.
  • the region is uniformly changed, it is refracted to substantially the same direction, that is, the light is focused.
  • the liquid crystal lens 10 is disposed in a 3D display device, and different liquid crystal lens units in the liquid crystal lens 10 can focus different light rays presenting the same picture to the left and right eyes of the observer, respectively, and thus in the observer's A nuanced picture is formed in the left eye and the right eye, respectively, so that the observer's brain generates an illusion, recognizes the picture as a stereoscopic picture, and finally realizes 3D display.
  • the liquid crystal material 15a in the liquid crystal cell 15 is doped with a quantum dot material, the quantum dot a material for converting a portion of the first color ray incident to the liquid crystal cell 15 into a second color ray and a third color ray, the first color ray and the combination of the second color ray and the third color ray forming a white color Light.
  • the quantum dot material includes a red quantum dot material 16a and a green quantum dot material 16b, the first color light is blue light, the second color light is red light, and the third color light is green light;
  • the red quantum dot material 16a and the green quantum dot material 16b are used to convert a part of the blue light incident to the liquid crystal cell 15 into red light and green light, respectively.
  • the red and green light formed by the conversion and the unconverted blue light can be combined to form white light.
  • a plurality of spacers 17 are disposed between the first substrate 11 and the second substrate 12 , and the plurality of spacers 17 space the liquid crystal cells 15 .
  • first liquid crystal lens unit 15B, second liquid crystal lens unit 15R, and third liquid crystal lens unit 15G are exemplarily shown in FIG. 1, and each of the liquid crystal lens units 15B, 15R, 15G Two first electrodes 13 are respectively included.
  • the liquid crystal material 15a in the first liquid crystal lens unit 15B is not doped with a quantum dot material, and the first color light incident on the first liquid crystal lens unit 15B is maintained as a first color light. Specifically, in the present embodiment, the color of the blue light incident on the first liquid crystal lens unit 15B remains unchanged, and remains as blue light.
  • the liquid crystal material 15a in the second liquid crystal lens unit 15R is doped with a quantum dot material corresponding to the second color light, and the first color light incident on the second liquid crystal lens unit 15R is converted into the second color.
  • the liquid crystal material 15a in the second liquid crystal lens unit 15R is doped with a red quantum dot material 16a, and the blue light incident on the second liquid crystal lens unit 15R is converted into red light.
  • the liquid crystal material 15a in the third liquid crystal lens unit 15G is doped with a quantum dot material corresponding to the third color light, and the first color light incident on the third liquid crystal lens unit 15G is converted into the third color. Light.
  • the liquid crystal material 15a in the third liquid crystal lens unit 15G is doped with the green quantum dot material 16b, and the blue light incident on the third liquid crystal lens unit 15G is converted into green light.
  • the first substrate 11 and the second substrate 12 are selected to use a glass substrate.
  • the materials of the first electrode 13 and the second electrode 14 are selected as transparent conductive materials, for example, in the field of display technology Indium tin oxide (ITO) is usually used.
  • ITO Indium tin oxide
  • the quantum dot material may be selected as a quantum dot material generally used in the field of display technology, and a quantum dot material and liquid crystal molecules are implanted into a liquid crystal cell formed by the first substrate 11 and the second substrate 12 to a cell.
  • the embodiment further provides a 3D display device.
  • the 3D display device includes a 2D display device 20 and a liquid crystal lens 10 laminated on a light emitting surface of the 2D display device 20.
  • the liquid crystal lens 10 is the liquid crystal lens 10 provided in the above embodiment, and the light for display emitted from the 2D display device 20 is a first color light.
  • the first color light is blue light.
  • the 2D display device 20 is a liquid crystal display device. As shown in FIG. 2, the 2D display device 20 includes a backlight module 21 and a liquid crystal display panel 22 disposed opposite to each other.
  • the liquid crystal lens 10 may be attached to the light-emitting surface of the liquid crystal display panel 22 through an adhesive layer on the light-emitting surface of the liquid crystal display panel 22.
  • the backlight provided by the backlight module 21 is a first color light, such as a blue backlight.
  • the liquid crystal display panel 22 receives the first color light and the light for display emitted on the light exit surface thereof remains as the first color light.
  • the backlight module 21 can be selected as a side-in backlight module or a direct-lit backlight module.
  • the liquid crystal display panel 22 may be any one of the conventional liquid crystal display panels, but only needs to remove the color filter layer in the conventional liquid crystal display panel, thereby causing the liquid crystal display panel to receive the first color provided by the backlight module. After the light, the light for display emitted from the light exiting surface remains as the first color light.
  • the liquid crystal display panel 22 includes a lower polarizer 221, a TFT array substrate 222, an opposite substrate 223, and an upper polarizer 224, and the TFT array substrate 222 and the opposite substrate 223.
  • a liquid crystal layer 225 is disposed therebetween.
  • the opposite substrate 223 is compared with the color filter substrate in the conventional liquid crystal display panel, in which only the functional structure layer for filtering is removed.
  • liquid crystal lens and the 3D display device provided in the above embodiments:
  • the color gamut of the 3D display device is improved using quantum dot technology, and a high color gamut 3D display device is realized.
  • the quantum dot material is disposed in the intrinsic liquid crystal cell 15 of the liquid crystal lens 10, and does not need to additionally add a quantum dot film structure layer (for example, the prior art generally adds a quantum dot film to the 2D display device 20), which is advantageous.
  • a quantum dot film structure layer for example, the prior art generally adds a quantum dot film to the 2D display device 20
  • liquid crystal cells 15 are spaced apart from each other by the spacers 17 to correspond to the first liquid crystal lens unit 15B which respectively obtains blue light, corresponds to the red liquid second liquid crystal lens unit 15R, and corresponds to obtain green
  • the light third liquid crystal lens unit 15G thus removes the functional structural layer for filtering in the 2D display device 20, further reducing the thickness of the 3D display device.
  • the liquid crystal cells 15 therein generally have a large thickness (Cell Gap), usually up to 30 ⁇ m or more, so that the quantum dot material is disposed in the liquid crystal cell 15 In the case of not occupying extra thickness, it can have a longer light conversion stroke, and the conversion of light is more sufficient, for example, the incident blue light can be better and more fully converted into green light, thereby improving The brightness of the 3D display device.
  • the present embodiment provides a 3D display device, which is different from the 3D display device provided in Embodiment 1.
  • the opposite substrate 223 of the liquid crystal display panel 22 and the The first substrate 11 of the liquid crystal lens 10 shares the same substrate.
  • the remaining structure of the 3D display device in this embodiment is the same as that of the 3D display device provided in Embodiment 1, and details are not described herein again.
  • the respective structural film layers formed on the first substrate 11 in the liquid crystal lens 10 are formed on the first surface of the common substrate 11, 223, and the liquid crystal display panel 22 is formed in the opposite direction.
  • the respective constituent film layers on the substrate 223 are formed on the opposite second surfaces of the common substrates 11, 223, and the upper polarizer 224 in the liquid crystal display panel 22 may be the first disposed on the common substrate 11, 223 On the surface or on the second surface.
  • the present embodiment provides a 3D display device. Compared with the 3D display device of the first embodiment, since the liquid crystal lens 10 and the liquid crystal display panel 22 share the same substrate, the thickness of the 3D display device is effectively reduced, which is more advantageous for 3D. The thinness of the display device has developed.
  • the present embodiment provides a liquid crystal lens, which is different from the liquid crystal lens 10 provided in Embodiment 1.
  • the liquid crystal lens 10a in the liquid crystal lens 10a, the first substrate 11 and the The spacers are no longer disposed between the second substrates 12, that is, the liquid crystal cells 15 are a unitary continuous liquid crystal cell 15 in a direction parallel to the first substrate 11 and the second substrate 12, the red The quantum dot material 16a and the green quantum dot material 16b are uniformly doped in the liquid crystal cell 15.
  • a color filter 18 is further disposed on the second substrate 12, and the color filter 18 includes a first color photoresist unit 18B, a second color photoresist unit 18R, and a third array arranged in an array.
  • the color resist unit 18G, each of the first color resist unit 18B, the second color resist unit 18R, and the third color resist unit 18G corresponds to one sub-pixel.
  • the first color photoresist unit 18B is The blue photoresist unit
  • the second color photoresist unit 18R is a red photoresist unit
  • the third color photoresist unit 18G is a green photoresist unit.
  • the blue light incident on the liquid crystal cell 15 is converted into white light, and then the color filter 18 filters the white light to obtain red light, green light, and blue light, respectively.
  • the color filter 18 is disposed between the second substrate 12 and the second electrode 12.
  • the remaining structure of the liquid crystal lens of this embodiment is the same as that of the liquid crystal lens provided in Embodiment 1, and details are not described herein again.
  • the liquid crystal lens 10a in the present embodiment has a slight increase in thickness although the color filter 18 is added, but the first substrate 11 and the first layer are eliminated.
  • the spacer between the two substrates 12 greatly reduces the process difficulty in the preparation process.
  • the embodiment further provides a 3D display device.
  • the 3D display device includes a 2D display device 20 and a liquid crystal lens 10a laminated on a light emitting surface of the 2D display device 20.
  • the liquid crystal lens 10a is the liquid crystal lens 10a provided in the embodiment.
  • the specific structure of the 2D display device 20 is the same as that in Embodiment 1, and details are not described herein again.
  • the liquid crystal lens and the 3D display device provided in the present embodiment achieve the technical effects similar to those of the first embodiment, except that, as described above, since the color filter 17 is added, the thickness is slightly increased, but The spacer between the first substrate 11 and the second substrate 12 has a greatly reduced process difficulty in the preparation process.
  • the present embodiment provides a 3D display device, which is different from the 3D display device provided in Embodiment 3.
  • the liquid crystal display panel 22 is The counter substrate 223 and the first substrate 11 of the liquid crystal lens 10a share the same substrate.
  • the remaining structure of the 3D display device in this embodiment is the same as that of the 3D display device provided in Embodiment 1, and details are not described herein again.
  • the present embodiment provides a 3D display device. Compared with the 3D display device of the third embodiment, since the liquid crystal lens 10a and the liquid crystal display panel 22 share the same substrate, the thickness of the 3D display device is effectively reduced, which is more advantageous for 3D. The thinness of the display device has developed.
  • the liquid crystal lens and the 3D display device provided in the embodiments of the present invention can improve the display color gamut and brightness of the 3D display device, and also take into consideration the thinning development trend of the 3D display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种液晶透镜(10),包括相对设置的第一基板(11)和第二基板(12)、设置于第一基板(11)上的多个第一电极(13)、设置于第二基板(12)上的第二电极(14)、以及设置于第一电极(13)和第二电极(14)之间的液晶单元(15);其中,液晶单元(15)中的液晶材料(15a)掺杂有量子点材料,量子点材料用于将入射到所述液晶单元(15)的第一颜色光线的一部分转换为第二颜色光线和第三颜色光线,第一颜色光线以及第二颜色光线和第三颜色光线的组合形成白色光。一种3D显示装置,包括2D显示装置以及叠层设置在2D显示装置的出光面上的液晶透镜(10),其中,液晶透镜(10)为如上的液晶透镜(10),从2D显示装置射出的用于显示的光线为第一颜色光线。

Description

液晶透镜以及3D显示装置 技术领域
本发明涉及显示器技术领域,尤其涉及一种液晶透镜以及3D显示装置。
背景技术
高色域显示装置可以表现出自然界中更多的色彩,具有较高的色饱和度和色彩再现性,因而广泛受到消费者们的青睐。目前实现超高色域的技术主要是基于量子点(Quantum Dot,QD)技术的,包括量子点薄膜、量子点灯管等,其中尤其以量子点薄膜成为薄型化显示的最优选择。例如在传统的2D(2Dimension,二维)液晶显示装置中,通常是在背光模组的出光面上设置量子点薄膜,量子点薄膜将背光模组发出的蓝光转换为白光提供给液晶显示面板。
在3D(3Dimension,三维)显示技术中,在用户对某个画面进行观察时,通常使呈现同一画面的不同光线分别进入用户的左眼和右眼,该不同光线在用户左眼和右眼分别形成具有微小差异的画面,以模拟人眼在观察三维物体时双眼所观察到的具有微小差异的画面,从而实现3D显示。
现有技术中,为达到上述3D显示的目的,通常在液晶显示装置的出光面上叠加设置液晶透镜。其中,所述液晶显示装置是传统的2D液晶显示装置。所述液晶透镜包括多个液晶重复单元,每个液晶重复单元相当于一个柱状的透镜,在呈现同一画面的光线经过液晶透镜时,每个液晶重复单元使光线向不同的方向聚焦,从而可使得进入用户左眼和右眼的光线不同。具体地,液晶透镜包括相对设置的上基板和下基板,以及填充在上基板和下基板之间的液晶层;在上基板上设有上电极,下基板上设有多个互相平行的条状电极。在条状电极充电而在上电极与各条状电极之间构成电场时,在每个液晶重复单元中,靠近下基板的液晶层中的液晶分子的倾斜角度从中央区域到边缘区域逐渐减小,从而使得靠近下基板的液晶层的折射率从中央区域到边缘区域逐渐减小。该折射率的变化使得光线在透过该靠近下基板部分的液晶层时被聚焦至预定的方向,通过上述液晶透镜中的多个液晶重复单元的光学作用,即可实现3D显示。
相比于传统的2D显示装置,基于液晶透镜的3D显示装置不可避免地增加显示模组的厚度,而为了提高3D显示装置的色域,在2D显示装置中增加的QD薄膜也会带来厚度的增加,两种技术的厚度叠加对于3D显示装置的薄型化进程造成了很大的阻碍。此外,高色域量子点技术由于在亮度贡献较大的绿光部分具有较低的线宽,使得量子点背光的发光效率远低于传统低色域显示模组,并且,基于液晶透镜的3D显示技术是通过将不同视点的图像信号分别传导至不同的眼睛中,这一点也在客观上造成了3D显示模组的亮度低于传统的2D显示模组。显然,上述厚度及亮度问题成为高色域3D显示技术进一步突破的重大障碍。
发明内容
有鉴于此,本发明提供了一种液晶透镜以及3D显示装置,用以提高3D显示装置的显示色域及亮度,同时还兼顾3D显示装置的薄型化发展趋势。
为了实现上述目的,本发明采用了如下的技术方案:
一种液晶透镜,包括相对设置的第一基板和第二基板、设置于所述第一基板上的多个第一电极、设置于所述第二基板上的第二电极、以及设置于所述第一电极和所述第二电极之间的液晶单元;其中,所述液晶单元中的液晶材料掺杂有量子点材料,所述量子点材料用于将入射到所述液晶单元的第一颜色光线的一部分转换为第二颜色光线和第三颜色光线,所述第一颜色光线以及第二颜色光线和第三颜色光线的组合形成白色光。
其中,所述量子点材料包括红色量子点材料和绿色量子点材料,所述第一颜色光线为蓝光,所述第二颜色光线为红光,所述第三颜色光线为绿光;所述红色量子点材料和所述绿色量子点材料用于将入射到所述液晶单元的蓝光的其中一部分分别转换为红光和绿光。
其中,所述第一基板和所述第二基板之间还设置有多个隔离件,所述多个隔离件将所述液晶单元间隔形成阵列排布的第一液晶透镜单元、第二液晶透镜单元和第三液晶透镜单元;其中,所述第一液晶透镜单元中的液晶材料未掺杂有量子点材料,入射到所述第一液晶透镜单元的第一颜色光线保持为第一颜色光线;所述第二液晶透镜单元中的液晶材料掺杂有对应于第二颜色光线的量子点材料,入射到所述第二液晶透镜单元的第一颜色光线被转换为第二颜色光线;所述第三液晶透镜单元中的液晶材料掺杂有对应于第三颜色光线的量子点材料,入射到所述第三液晶透镜单元的第一颜色光线被转换为第三颜色光线。
其中,每一个所述第一液晶透镜单元、第二液晶透镜单元和第三液晶透镜单元中分别包含有两个以上的所述第一电极。
其中,所述液晶单元在平行于所述第一基板和第二基板的方向上为一个整体连续的液晶单元,所述量子点材料均匀地掺杂在所述液晶单元中;其中,所述第二基板上还设置有彩色滤光片,所述彩色滤光片包括呈阵列排布的第一颜色光阻单元、第二颜色光阻单元和第三颜色光阻单元。
其中,所述彩色滤光片设置于所述第二基板和所述第二电极之间。
本发明还提供了一种3D显示装置,包括2D显示装置以及叠层设置在所述2D显示装置的出光面上的液晶透镜,其中,所述液晶透镜为如上所述的液晶透镜,从所述2D显示装置射出的用于显示的光线为第一颜色光线。
其中,所述2D显示装置包括相对设置的背光模组和液晶显示面板,所述液晶透镜叠层设置在所述液晶显示面板的出光面上;所述背光模组提供的背光源为第一颜色光线,所述液晶显示面板接收所述第一颜色光线并且其出光面上射出的用于显示的光线保持为第一颜色光线。
其中,所述液晶显示面板包括下偏光片、TFT阵列基板、对向基板和上偏光片,所述TFT阵列基板、对向基板之间设置有液晶层。
其中,所述液晶显示面板的对向基板和所述液晶透镜的第一基板共用同一基板。
本发明实施例中提供的液晶透镜以及3D显示装置,通过在液晶透镜的液晶单元中掺杂量子点材料,使用量子点技术提高3D显示装置的色域,实现高色域的3D显示装置。并且,量子点材料是设置在液晶透镜的液晶单元中,不需要额外增加量子点薄膜结构层,有利于3D显示装置的轻薄化发展。进一步地,在液晶透镜中,为了实现良好的相位延迟效果,其中的液晶单元通常都具有较大的厚度(Cell Gap),因此将量子点材料设置在液晶单元中,可以具有较长的光线转换行程,对光线的转换更加充分,例如可以将入射的蓝光更好地、更充分地转换为绿光,由此提高了3D显示装置的亮度。
附图说明
图1是本发明实施例1提供的液晶透镜的结构示意图;
图2是本发明实施例1提供的3D显示装置的结构示意图;
图3是本发明实施例2提供的3D显示装置的结构示意图;
图4是本发明实施例3提供的液晶透镜的结构示意图;
图5是本发明实施例3提供的3D显示装置的结构示意图;
图6是本发明实施例4提供的3D显示装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
实施例1
本实施例提供了一种液晶透镜,如图1所示,所述液晶透镜10包括相对设置的第一基板11和第二基板12、设置于所述第一基板11上的多个第一电极13、设置于所述第二基板12上的第二电极14、以及设置于所述第一电极13和所述第二电极14之间的液晶单元15。其中,所述第一电极13为条形电极,所述多个第一电极13相互间隔设置。所述第二电极14为平板状电极。
当所述液晶透镜10用于3D显示时,所述液晶单元15可以形成多个呈阵列分布的液晶透镜单元,在第一电极13充电时,在第一电极13和第二电极14之间形成的电场作用下,液晶透镜单元内的液晶向不同的方向倾斜,使得该区域的折射率由中央向两边缘均匀地变大,进而使得光线(用于在人眼中呈现画面)在穿过该折射率均匀变化的区域时,被折射至大致相同的方向,也即光线被聚焦。因此,将所述液晶透镜10设置在3D显示装置中,该液晶透镜10中的不同液晶透镜单元能够使呈现同一画面的不同光线分别向观察者的左眼和右眼聚焦,进而在观察者的左眼和右眼中分别形成具有细微差别的画面,使得观察者的大脑产生错觉,将画面中识别为立体画面,最终实现3D显示。
其中,所述液晶单元15中的液晶材料15a掺杂有量子点材料,所述量子点 材料用于将入射到所述液晶单元15的第一颜色光线的一部分转换为第二颜色光线和第三颜色光线,所述第一颜色光线以及第二颜色光线和第三颜色光线的组合形成白色光。例如,所述量子点材料包括红色量子点材料16a和绿色量子点材料16b,所述第一颜色光线为蓝光,所述第二颜色光线为红光,所述第三颜色光线为绿光;所述红色量子点材料16a和所述绿色量子点材料16b用于将入射到所述液晶单元15的蓝光的其中一部分分别转换为红光和绿光。转换形成的红光和绿光以及未被转换的蓝光可以组合形成白光。
在本实施例中,如图1所示,所述第一基板11和所述第二基板12之间还设置有多个隔离件17,所述多个隔离件17将所述液晶单元15间隔形成阵列排布的第一液晶透镜单元15B、第二液晶透镜单元15R和第三液晶透镜单元15G,其中,每一个所述第一液晶透镜单元15B、第二液晶透镜单元15R和第三液晶透镜单元15G中分别包含有两个以上的所述第一电极13。需要说明的是,图1中仅示例性地示出了各一个第一液晶透镜单元15B、第二液晶透镜单元15R和第三液晶透镜单元15G,并且每一个液晶透镜单元15B、15R、15G中分别包含两个第一电极13。
其中,所述第一液晶透镜单元15B中的液晶材料15a未掺杂有量子点材料,入射到所述第一液晶透镜单元15B的第一颜色光线保持为第一颜色光线。具体到本实施例中,入射到所述第一液晶透镜单元15B的蓝光的颜色保持不变,保持为蓝光射出。
其中,所述第二液晶透镜单元15R中的液晶材料15a掺杂有对应于第二颜色光线的量子点材料,入射到所述第二液晶透镜单元15R的第一颜色光线被转换为第二颜色光线。具体到本实施例中,所述第二液晶透镜单元15R中的液晶材料15a掺杂有红色量子点材料16a,入射到所述第二液晶透镜单元15R的蓝光被转换为红光。
其中,所述第三液晶透镜单元15G中的液晶材料15a掺杂有对应于第三颜色光线的量子点材料,入射到所述第三液晶透镜单元15G的第一颜色光线被转换为第三颜色光线。具体到本实施例中,所述第三液晶透镜单元15G中的液晶材料15a掺杂有绿色量子点材料16b,入射到所述第三液晶透镜单元15G的蓝光被转换为绿光。
其中,所述第一基板11和所述第二基板12选择使用玻璃基板。所述第一电极13和所述第二电极14的材料选择为透明导电材料,例如在显示技术领域 通常使用的氧化铟锡(ITO)。所述量子点材料可以选择为在显示技术领域通常使用的量子点材料,将量子点材料和液晶分子注入到由所述第一基板11和所述第二基板12对盒形成的液晶盒中。
本实施例还提供了一种3D显示装置,如图2所示,所述3D显示装置包括2D显示装置20以及叠层设置在所述2D显示装置20的出光面上的液晶透镜10。其中,所述液晶透镜10为如上实施例所提供的液晶透镜10,从所述2D显示装置20射出的用于显示的光线为第一颜色光线。具体到本实施例中,所述第一颜色光线为蓝光。
在本实施例中,所述2D显示装置20为液晶显示装置,如图2所示,所述2D显示装置20包括相对设置的背光模组21和液晶显示面板22,所述液晶透镜10叠层设置在所述液晶显示面板22的出光面上,所述液晶透镜10可以是通过粘附层贴附到所述液晶显示面板22的出光面上。所述背光模组21提供的背光源为第一颜色光线,例如是蓝光背光源。所述液晶显示面板22接收所述第一颜色光线并且其出光面上射出的用于显示的光线保持为第一颜色光线。
所述背光模组21可以选择为侧入式背光模组或者是直下式背光模组。所述液晶显示面板22可以是选择使用传统的任意一种液晶显示面板,只是需要将传统的液晶显示面板中彩色滤光层去除,由此使得液晶显示面板在接收背光模组提供的第一颜色光线之后,从其出光面上射出的用于显示的光线保持为第一颜色光线。作为一个具体的例子,如图2所示,所述液晶显示面板22包括下偏光片221、TFT阵列基板222、对向基板223和上偏光片224,所述TFT阵列基板222、对向基板223之间设置有液晶层225。其中,所述对向基板223相比于传统的液晶显示面板中彩色滤光基板,其中仅仅是去除了用于滤光的功能结构层。
如上实施例中提供的液晶透镜以及3D显示装置:
首先,通过在液晶透镜10的液晶单元15中掺杂量子点材料,使用量子点技术提高了3D显示装置的色域,实现高色域的3D显示装置。
其次,量子点材料是设置在液晶透镜10的固有液晶单元15中,不需要额外增加量子点薄膜结构层(例如现有技术通常是在2D显示装置20另外增加一层量子点薄膜),有利于3D显示装置的轻薄化发展。
另外,由于液晶单元15由隔离件17相互间隔为对应于分别获得蓝光的第一液晶透镜单元15B、对应于获得红光第二液晶透镜单元15R和对应于获得绿 光第三液晶透镜单元15G,因此在2D显示装置20中还去除了用于滤光的功能结构层,进一步地减小了3D显示装置的厚度。
进一步地,在液晶透镜10中,为了实现良好的相位延迟效果,其中的液晶单元15通常都具有较大的厚度(Cell Gap),通常是达到30μm以上,因此将量子点材料设置在液晶单元15中,在不占用额外厚度的情况下,又可以具有较长的光线转换行程,对光线的转换更加充分,例如可以将入射的蓝光更好地、更充分地转换为绿光,由此提高了3D显示装置的亮度。
实施例2
本实施例提供了一种3D显示装置,与实施例1中提供的3D显示装置不同的是,本实施例中,如图3所示,所述液晶显示面板22的对向基板223和所述液晶透镜10的第一基板11共用同一基板。本实施例提供3D显示装置的其余结构与实施例1提供的3D显示装置相同,在此不再赘述。
其中,参阅图3,所述液晶透镜10中形成在第一基板11上的各个结构膜层是形成在共用基板11、223的第一表面上,而所述液晶显示面板22中形成在对向基板223上的各个结构膜层是形成在共用基板11、223的相对的第二表面上,并且,所述液晶显示面板22中的上偏光片224可以是设置在共用基板11、223的第一表面上或第二表面上。
本实施例提供3D显示装置与实施例1的3D显示装置相比,由于所述液晶透镜10和所述液晶显示面板22共用同一基板,有效地减小了3D显示装置的厚度,更加有利于3D显示装置的轻薄化发展。
实施例3
本实施例提供了一种液晶透镜,与实施例1中提供的液晶透镜10不同的是,本实施例中,如图4所示,所述液晶透镜10a中,所述第一基板11和所述第二基板12之间不再设置有隔离件,即,所述液晶单元15在平行于所述第一基板11和第二基板12的方向上为一个整体连续的液晶单元15,所述红色量子点材料16a和所述绿色量子点材料16b均匀地掺杂在所述液晶单元15中。进一步地,所述第二基板12上还设置有彩色滤光片18,所述彩色滤光片18包括呈阵列排布的第一颜色光阻单元18B、第二颜色光阻单元18R和第三颜色光阻单元18G,每一个所述第一颜色光阻单元18B、第二颜色光阻单元18R和第三颜色光阻单元18G对应于一个子像素。具体到本实施例中,所述第一颜色光阻单元18B为 蓝色光阻单元,所述第二颜色光阻单元18R为红色光阻单元,所述第三颜色光阻单元18G为绿色光阻单元。入射到所述液晶单元15的蓝光被转换为白光射出,然后再又所述彩色滤光片18对白光进行滤光分别获得红光、绿光和蓝光。进一步地,本实施例中,所述彩色滤光片18设置于所述第二基板12和所述第二电极12之间。
本实施例提供液晶透镜的其余结构与实施例1提供的液晶透镜相同,在此不再赘述。与实施例1提供的液晶透镜相比,本实施例中的液晶透镜10a虽然是增加了彩色滤光片18,在厚度稍有增加,但是,由于取消了所述第一基板11和所述第二基板12之间的隔离件,其制备过程的工艺难度得到极大的减小。
本实施例还提供了一种3D显示装置,如图5所示,所述3D显示装置包括2D显示装置20以及叠层设置在所述2D显示装置20的出光面上的液晶透镜10a。其中,所述液晶透镜10a为本实施例所提供的液晶透镜10a。其中,所述2D显示装置20的具体结构与实施例1中的相同,在此不再赘述。
本实施例中提供的液晶透镜以及3D显示装置取得了与实施例1相近的技术效果,区别在于:如前所述,由于增加了彩色滤光片17,在厚度稍有增加,但是,由于取消了所述第一基板11和所述第二基板12之间的隔离件,其制备过程的工艺难度得到极大的减小。
实施例4
本实施例提供了一种3D显示装置,与实施例3中提供的3D显示装置不同的是:本实施例中,如图6所示,参照实施例2的方式,所述液晶显示面板22的对向基板223和所述液晶透镜10a的第一基板11共用同一基板。本实施例提供3D显示装置的其余结构与实施例1提供的3D显示装置相同,在此不再赘述。
本实施例提供3D显示装置与实施例3的3D显示装置相比,由于所述液晶透镜10a和所述液晶显示面板22共用同一基板,有效地减小了3D显示装置的厚度,更加有利于3D显示装置的轻薄化发展。
综上所述,本发明实施例中提供的液晶透镜以及3D显示装置,可以提高3D显示装置的显示色域及亮度,同时还兼顾3D显示装置的薄型化发展趋势。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含” 或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (17)

  1. 一种液晶透镜,包括相对设置的第一基板和第二基板、设置于所述第一基板上的多个第一电极、设置于所述第二基板上的第二电极、以及设置于所述第一电极和所述第二电极之间的液晶单元;其中,所述液晶单元中的液晶材料掺杂有量子点材料,所述量子点材料用于将入射到所述液晶单元的第一颜色光线的一部分转换为第二颜色光线和第三颜色光线,所述第一颜色光线以及第二颜色光线和第三颜色光线的组合形成白色光。
  2. 根据权利要求1所述的液晶透镜,其中,所述第一基板和所述第二基板之间还设置有多个隔离件,所述多个隔离件将所述液晶单元间隔形成阵列排布的第一液晶透镜单元、第二液晶透镜单元和第三液晶透镜单元;其中,所述第一液晶透镜单元中的液晶材料未掺杂有量子点材料,入射到所述第一液晶透镜单元的第一颜色光线保持为第一颜色光线;所述第二液晶透镜单元中的液晶材料掺杂有对应于第二颜色光线的量子点材料,入射到所述第二液晶透镜单元的第一颜色光线被转换为第二颜色光线;所述第三液晶透镜单元中的液晶材料掺杂有对应于第三颜色光线的量子点材料,入射到所述第三液晶透镜单元的第一颜色光线被转换为第三颜色光线。
  3. 根据权利要求2所述的液晶透镜,其中,所述量子点材料包括红色量子点材料和绿色量子点材料,所述第一颜色光线为蓝光,所述第二颜色光线为红光,所述第三颜色光线为绿光;所述红色量子点材料和所述绿色量子点材料用于将入射到所述液晶单元的蓝光的其中一部分分别转换为红光和绿光。
  4. 根据权利要求2所述的液晶透镜,其中,每一个所述第一液晶透镜单元、第二液晶透镜单元和第三液晶透镜单元中分别包含有两个以上的所述第一电极。
  5. 根据权利要求1所述的液晶透镜,其中,所述液晶单元在平行于所述第一基板和第二基板的方向上为一个整体连续的液晶单元,所述量子点材料均匀地掺杂在所述液晶单元中;其中,所述第二基板上还设置有彩色滤光片,所述彩色滤光片包括呈阵列排布的第一颜色光阻单元、第二颜色光阻单元和第三颜色光阻单元。
  6. 根据权利要求5所述的液晶透镜,其中,所述量子点材料包括红色量子 点材料和绿色量子点材料,所述第一颜色光线为蓝光,所述第二颜色光线为红光,所述第三颜色光线为绿光;所述红色量子点材料和所述绿色量子点材料用于将入射到所述液晶单元的蓝光的其中一部分分别转换为红光和绿光。
  7. 根据权利要求5所述的液晶透镜,其中,所述彩色滤光片设置于所述第二基板和所述第二电极之间。
  8. 一种3D显示装置,包括2D显示装置以及叠层设置在所述2D显示装置的出光面上的液晶透镜,其中,所述液晶透镜包括相对设置的第一基板和第二基板、设置于所述第一基板上的多个第一电极、设置于所述第二基板上的第二电极、以及设置于所述第一电极和所述第二电极之间的液晶单元;其中,所述液晶单元中的液晶材料掺杂有量子点材料,所述量子点材料用于将入射到所述液晶单元的第一颜色光线的一部分转换为第二颜色光线和第三颜色光线,所述第一颜色光线以及第二颜色光线和第三颜色光线的组合形成白色光,从所述2D显示装置射出的用于显示的光线为第一颜色光线。
  9. 根据权利要求8所述的3D显示装置,其中,所述2D显示装置包括相对设置的背光模组和液晶显示面板,所述液晶透镜叠层设置在所述液晶显示面板的出光面上;所述背光模组提供的背光源为第一颜色光线,所述液晶显示面板接收所述第一颜色光线并且其出光面上射出的用于显示的光线保持为第一颜色光线。
  10. 根据权利要求9所述的3D显示装置,其中,所述液晶显示面板包括下偏光片、TFT阵列基板、对向基板和上偏光片,所述TFT阵列基板、对向基板之间设置有液晶层。
  11. 根据权利要求10所述的3D显示装置,其中,所述液晶显示面板的对向基板和所述液晶透镜的第一基板共用同一基板。
  12. 根据权利要求8所述的3D显示装置,其中,所述第一基板和所述第二基板之间还设置有多个隔离件,所述多个隔离件将所述液晶单元间隔形成阵列排布的第一液晶透镜单元、第二液晶透镜单元和第三液晶透镜单元;其中,所述第一液晶透镜单元中的液晶材料未掺杂有量子点材料,入射到所述第一液晶透镜单元的第一颜色光线保持为第一颜色光线;所述第二液晶透镜单元中的液晶材料掺杂有对应于第二颜色光线的量子点材料,入射到所述第二液晶透镜单元的第一颜色光线被转换为第二颜色光线;所述第三液晶透镜单元中的液晶材 料掺杂有对应于第三颜色光线的量子点材料,入射到所述第三液晶透镜单元的第一颜色光线被转换为第三颜色光线。
  13. 根据权利要求12所述的3D显示装置,其中,所述量子点材料包括红色量子点材料和绿色量子点材料,所述第一颜色光线为蓝光,所述第二颜色光线为红光,所述第三颜色光线为绿光;所述红色量子点材料和所述绿色量子点材料用于将入射到所述液晶单元的蓝光的其中一部分分别转换为红光和绿光。
  14. 根据权利要求12所述的3D显示装置,其中,每一个所述第一液晶透镜单元、第二液晶透镜单元和第三液晶透镜单元中分别包含有两个以上的所述第一电极。
  15. 根据权利要求8所述的3D显示装置,其中,所述液晶单元在平行于所述第一基板和第二基板的方向上为一个整体连续的液晶单元,所述量子点材料均匀地掺杂在所述液晶单元中;其中,所述第二基板上还设置有彩色滤光片,所述彩色滤光片包括呈阵列排布的第一颜色光阻单元、第二颜色光阻单元和第三颜色光阻单元。
  16. 根据权利要求15所述的3D显示装置,其中,所述量子点材料包括红色量子点材料和绿色量子点材料,所述第一颜色光线为蓝光,所述第二颜色光线为红光,所述第三颜色光线为绿光;所述红色量子点材料和所述绿色量子点材料用于将入射到所述液晶单元的蓝光的其中一部分分别转换为红光和绿光。
  17. 根据权利要求15所述的3D显示装置,其中,所述彩色滤光片设置于所述第二基板和所述第二电极之间。
PCT/CN2017/112568 2017-10-31 2017-11-23 液晶透镜以及3d显示装置 WO2019085077A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,492 US20190129190A1 (en) 2017-10-31 2017-11-23 Liquid crystal lens and 3d displaying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711049637.XA CN107643641A (zh) 2017-10-31 2017-10-31 液晶透镜以及3d显示装置
CN201711049637.X 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085077A1 true WO2019085077A1 (zh) 2019-05-09

Family

ID=61124018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112568 WO2019085077A1 (zh) 2017-10-31 2017-11-23 液晶透镜以及3d显示装置

Country Status (2)

Country Link
CN (1) CN107643641A (zh)
WO (1) WO2019085077A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505461B (zh) * 2018-05-18 2022-07-29 深圳Tcl新技术有限公司 一种激光投影电视
CN109471300A (zh) * 2018-12-06 2019-03-15 青岛海信电器股份有限公司 一种显示面板及显示装置
TWI698678B (zh) 2019-04-09 2020-07-11 友達光電股份有限公司 顯示裝置
CN113867041A (zh) * 2021-09-30 2021-12-31 闽都创新实验室 液晶与量子点结合的彩色滤光片显示装置
CN114114781A (zh) * 2021-11-30 2022-03-01 京东方科技集团股份有限公司 液晶透镜及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150039066A (ko) * 2013-09-30 2015-04-09 엘지디스플레이 주식회사 양자점 컬러 필터를 이용한 입체 영상 표시 장치 및 그 양자점 컬러 필터의 제조 방법
CN104730763A (zh) * 2014-09-23 2015-06-24 友达光电股份有限公司 液晶透镜显示装置及其制作方法
CN105717723A (zh) * 2016-04-20 2016-06-29 深圳市华星光电技术有限公司 蓝相液晶显示装置及其制作方法
CN105759491A (zh) * 2016-05-06 2016-07-13 深圳市华星光电技术有限公司 液晶显示器、液晶显示模组及其液晶单元
CN206039110U (zh) * 2016-09-09 2017-03-22 万维云视(上海)数码科技有限公司 一种3d液晶显示面板和3d显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876558B1 (ko) * 2011-12-08 2018-07-10 엘지디스플레이 주식회사 무안경 방식의 2차원/3차원 영상 표시장치
CN103293688B (zh) * 2013-05-10 2015-11-25 昆山龙腾光电有限公司 二维/三维切换的显示器及其显示方法
CN104317135B (zh) * 2014-11-19 2018-09-11 京东方科技集团股份有限公司 光栅装置、显示装置及其驱动方法
CN105700262B (zh) * 2016-04-13 2019-04-30 深圳市华星光电技术有限公司 液晶显示装置及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150039066A (ko) * 2013-09-30 2015-04-09 엘지디스플레이 주식회사 양자점 컬러 필터를 이용한 입체 영상 표시 장치 및 그 양자점 컬러 필터의 제조 방법
CN104730763A (zh) * 2014-09-23 2015-06-24 友达光电股份有限公司 液晶透镜显示装置及其制作方法
CN105717723A (zh) * 2016-04-20 2016-06-29 深圳市华星光电技术有限公司 蓝相液晶显示装置及其制作方法
CN105759491A (zh) * 2016-05-06 2016-07-13 深圳市华星光电技术有限公司 液晶显示器、液晶显示模组及其液晶单元
CN206039110U (zh) * 2016-09-09 2017-03-22 万维云视(上海)数码科技有限公司 一种3d液晶显示面板和3d显示装置

Also Published As

Publication number Publication date
CN107643641A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2019085077A1 (zh) 液晶透镜以及3d显示装置
US10627664B2 (en) Display panel, display device and display method
TWI282018B (en) LCOS display panel
JP2015138123A (ja) 表示装置
WO2016011691A1 (zh) 高色域液晶显示模组结构
US20080218461A1 (en) Liquid crystal display device
JP2008102416A (ja) ワイヤーグリッド偏光子及びそれを用いた液晶表示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
JP2014182280A (ja) 表示装置
TW201234083A (en) Display panel
WO2015085700A1 (zh) 一种彩膜基板及液晶显示装置
US20150338675A1 (en) Color filter and preparation method thereof, and display device
JP2013235141A (ja) カラー液晶表示装置
JP2005196147A (ja) 2次元及び3次元映像を選択的に表示できるディスプレイ
WO2019227669A1 (zh) 显示面板及显示装置
WO2019000899A1 (zh) 显示模式控制装置及其控制方法、显示装置
CN112835207A (zh) 显示模组以及电子设备
WO2016123955A1 (zh) 一种电致变色光栅、显示面板及显示装置
TW583469B (en) Back light module and liquid crystal display
TW200407611A (en) Color LCD element and method for manufacturing the same
JP2014056051A (ja) 干渉フィルタ、表示装置および表示装置の製造方法
US20190129190A1 (en) Liquid crystal lens and 3d displaying device
CN111240080A (zh) 一种3d显示面板及其制造方法
US20200355959A1 (en) Liquid crystal panel and manufacturing method for the same
KR20100137725A (ko) 스위칭 방식 입체필터 및 이를 이용한 스위칭 방식 입체 영상 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930858

Country of ref document: EP

Kind code of ref document: A1