TW201234083A - Display panel - Google Patents

Display panel Download PDF

Info

Publication number
TW201234083A
TW201234083A TW100133437A TW100133437A TW201234083A TW 201234083 A TW201234083 A TW 201234083A TW 100133437 A TW100133437 A TW 100133437A TW 100133437 A TW100133437 A TW 100133437A TW 201234083 A TW201234083 A TW 201234083A
Authority
TW
Taiwan
Prior art keywords
linear grid
metal
layer
polarization
display panel
Prior art date
Application number
TW100133437A
Other languages
Chinese (zh)
Inventor
Seong-Eun Chung
Dong-Hwan Kim
Il-Yong Jung
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201234083A publication Critical patent/TW201234083A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133533Colour selective polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display panel and a display apparatus are provided. The display panel includes first and second substrates which are disposed opposite to each other and a liquid crystal layer formed in between; a color filter polarizing layer which is formed on one surface between the first and second substrates; and a polarizing layer. The color filter polarizing layer comprises a first metal linear grid arranged at different pitches to emit a first polarized component of incident light with different colors, and a second metal linear grid formed on an opposite surface of the one surface between the first and second substrates. The provided display panel and display apparatus, have reduced manufacturing costs and a simplified manufacturing process.

Description

201234083 ^yozipif 六、發明說明: 【發明所屬之技術領域】 符合例示性實施例的裝置與方法是關於一種顯示面 板和包括所述顯示面板的顯示裝置,且更特別是關於一種 包括彩色遽光偏光層和偏光層的顯示面板,以及包括前述 顯示面板的顯示裝置。 【先前技術】 液晶顯示(LCD)面板包括第一基板和第二基板,在 兩基板間有液晶層以及偏光膜,偏光膜用以極化入射至第 一基板和第二基板的光。此外,液晶顯示面板包括彩色濾 光層(color filter layer)以用光產生不同的顏色。當入射 光穿過偏光膜和彩色濾光層時,其光學效率會下降。將光 傳送通過偏光膜的極化構件可根據包括於液晶顯示面板之 中之液晶種類加以調整。同時,液晶顯示面板可於光入射 之側面進一步包括反射式增亮膜(dual brightness enhance film,DBEF),以補償因極化而致之光損失。 然而’偏光膜和反射式增亮膜會增加液晶顯示面板或 顯示裝置的製造成本,且使得製造過程變得繁複。 【發明内容】 據此,一個或多個例示性實施例提供顯示面板和包括 顯示面板的顯示裝置,在上述之例示性實施例中,可降低 製造成本且簡化製造過程。 另一例示性實施例提供一種具有改善的光學效率的 顯示面板和包括所述顯示面板之顯示裝置。 4 201234083 又一例示性實施例提供一種顯示裝置,其具有可見度 極出色的被動類型立體影像。 根據本發明,提供有如下列申請專利範圍所述的設備 彳方法本發明的其它特徵可由附屬項及以下敘述明確得 知。 曰刖述面向及/或其它面向可由以下方式達成:提供具有 液晶層之顯示面板,所賴示面板具有彼此相對配置的第 -基板和第二基板;以及彩Μ光偏光層,其形成於彼此 相對的第-基板和第二基板其中—者之表面上,且包括第 -金屬線_格,其具有不同•,㈣發射具有不同顏 色入射光之第一極化成份。 顯示面板可進—步包括畫素層’其形成於第一基板和 第二基板其中-者的表面上,轉示面板包括晝素,畫素 =個次畫素’且至少三個所述次晝素在第-金屬線性 網格中的節距不同。 一第基板和第一基板可以彼此相對的方式配置於顯 示面板的相對面。第-基板和第二基板可配置於一個或多 個液ΒΘ層、色遽光偏光層和第—金屬線性網格之相對面/ 第一金屬線性網格可包括紅色金屬線性網格、綠色金 ,線性網格和藍色金屬線性網格;且紅色金屬線性網格經 m使得各節距短於1/2紅光波長;綠色金屬線性網 格經女置,可使得各節距短於1/2綠光波長;且藍色 線性網格經安置,可使得各節距短於1/2藍光波長。 201234083 緣二金括卿之第-金屬層、絕 第—金屬線性網格之高度可大於盆寬戶。 金屬射進—純齡電層:其形成於第一 格;彩色遽先偏光層可分=::== 和第二極化線性網格交替形成於所述棋盤之相鄰的 第二金屬線性網格可包括傳送第一極化成份 :化=網格,以及傳送第二極化成份之第二極化線性網 一金屬線性網格之第一極化線性網格可對應於 一金屬線性祕m雜網格,且第二金屬i性網 格之第二極化線性網格可對應於第—金屬線性網格之 極化線性網格。 ,、、、頁示面板可進一步包括晝素層,其形成於彼此相對的 第一基板和第二基板其中一者的表面上,以及包括晝素, 所述畫素包括多個次畫素’其中在彩色渡光偏光層之祺盤 中形成一單元,用以對應於所述畫素。 第一金屬線性網格可包括傳送第一極化成份之第— 極化線性網格,以及傳送第二極化成份之第二極化線性網 格,彩色濾光偏光層可分割為多個行或多個列,且第—極 化線性網格和第二極化線性網格可交替形成於多個行或多 201234083. jyozipif 個列之中。 第二金屬線性網格可包括傳送第-極化成份之第一 ΓΪΓ二!及傳送第二極化成份之第二極化線性網 格,且金屬_娜之第―極化線 一金屬線性網格之第二極化線性 / 第 ±h欣,,丨a 冰丨王、、相格,且第二金屬線性網 格之第二極化線性網格可對應於第__金屬線性網格之第一 極化線性網格。 μ m進—步包括晝素層,所述晝素層形成於介 :第:ίί和第二基板間的-表面上,且有包括多個次畫 ϋ素&之形成’其中,形成行或列以對應於晝素行或 當音功I。 另面向可藉此達成:提供顯示裝置,所述顯示裝置 包括具,液晶層的顯示面板’所述顯示面板包括彼此相對 第基板和第二基板,以及彩色渡光偏光層’所述 純慮光偏光層形成於彼此相對之第—基板和第二基板其 二:的表面上;而且包括以不同節距安置之第一金屬線 網才’用以發射具有不同顏色之人射光之第-極化成 伤及背級件’其發射光至顯示面板。 上述及/或其他面向將因以下結合附圖的例示性實 施例的描⑽變得鴨及更容胃理解。 【實施方式】 、以下,將輔以隨附圖式詳述例示性實施例,以使本領 域中,有通常知識者可輕易了解例示性實施例。例示性實 施例可以各種形式實施’並不僅限於本文所述的例示性實 7 201234083 jyo^ipif 施例。為使文意清楚,眾所周知的部分的敘述將予以省略, 且同樣的元件符號在全文皆指涉同樣的元件。 圖1呈現根據一例示性實施例之顯示面板之層結構, 而圖2為圖1之顯示面板之剖面圖。 如圖中所示,在此例示性實施例中的顯示面板1〇〇〇 包括彼此相對形成的第一基板100和第二基板200,還包 ,依序女置於第一基板100和第二基板2〇〇之間的彩色濾 光偏光層300、晝素層400和液晶層500以及偏光層6〇〇。 包括液晶層500的顯示面板1〇〇〇可用於電視、家用電器(如 顯不器)、行動電話、行動式多媒體播放器(p〇rtable multimedia player, PMP )、小型筆記型電腦、筆記型電腦、 行動終端裝置(例如電子書終端設備或類似設備)以及用 以展示或廣告之顯示裝置。 彩色滤光偏光層300和晝素層400依序形成於第一基 板100上’而偏光層600形成於第二基板2〇〇上。如圖2 中所不’當第·一基板200形成時’黑矩陣200-1於第二基 板200對應於第一基板100之薄膜電晶體(TFT)4U的區 域中形成,而產生對應於畫素電極412之電壓的共用電極 200-3也隨之形成。將液晶層500 (其配向隨施予之電壓調 整)插入第一基板1〇〇和第二基板200之間。液晶層5〇〇 之陣列根據顯示面板1000的扭轉向列型(twisted nematic,TN)模式、垂直配向(vertical alignment,VA) 模式、圖案垂直配向(patterned vertical alignment)模式、 平面内切換(in-plane switching,IPS)模式或相似操作模 201234083 , ^ ^ A. |Jlt 式來控制。為了改善光學視角,將次晝素分割或圖案化, 將液晶之折射率調整一致,或可使用類似的技術。 彩色渡光偏光層300形成於第一基板丨〇〇上,且用以 控制液晶陣列和顯示影像之晝素層400形成於彩色濾光偏 光層300上。彩色濾光偏光層300包括第一金屬線性網格 31〇 ’其以不同節距(pitch)排列,使得入射光之第一極 化成份可以不同顏色的光發射。偏光層600可包括第二金 屬線性網格610 ’其傳送異於第一極化成份之第二極化成 份之光,且只改變入射光之極化狀態。在第一金屬線性網 格310和第二金屬線性網格610上形成平面化層1〇〇_1, 用以保護和校正所述金屬線性網格。第一金屬線性網格 310包括於彩色濾光偏光層300中,以及第二金屬線性網 格610包括於所述偏光層6〇〇中’兩者將於後詳述。 旦素層400形成於平面化層100-1上,所述晝素層4〇〇 包括多個畫素(未繪示),用以根據由外部所接收之控制 訊號’改變填充於液晶層500中之液晶陣列,而且每個晝 素包括多個次晝素41〇。在此例示性實施例中,次晝素41〇 代表最小的單位畫素,將對應於紅色、綠色、藍色的視訊 訊號號值輸入其中;而包括多個次畫素410並表示一視訊 訊號的單位被視為晝素。次晝素410包括作為轉換元件的 薄膜電晶體(TFT) 411以及晝素電極412。在本例示性實 施例中,次畫素410具有二維空間概念以及包括tft 411 和晝素電極412之實體概念。 在第一基板100之平面化層100-1上,形成閘極201234083 ^yozipif VI. Description of the Invention: [Technical Field] The device and method consistent with the exemplary embodiments relate to a display panel and a display device including the same, and more particularly to a method including color grading polarization A display panel of a layer and a polarizing layer, and a display device including the foregoing display panel. [Prior Art] A liquid crystal display (LCD) panel includes a first substrate and a second substrate, and a liquid crystal layer and a polarizing film are interposed between the two substrates, and the polarizing film is used to polarize light incident on the first substrate and the second substrate. Further, the liquid crystal display panel includes a color filter layer to generate different colors with light. When incident light passes through the polarizing film and the color filter layer, its optical efficiency is lowered. The polarizing member that transmits light through the polarizing film can be adjusted in accordance with the type of liquid crystal included in the liquid crystal display panel. Meanwhile, the liquid crystal display panel further includes a dual brightness enhancer film (DBEF) on the side of the light incident to compensate for light loss due to polarization. However, the 'polarizing film and the reflective brightness enhancing film increase the manufacturing cost of the liquid crystal display panel or the display device, and the manufacturing process becomes complicated. SUMMARY OF THE INVENTION Accordingly, one or more exemplary embodiments provide a display panel and a display device including the display panel, which can reduce manufacturing costs and simplify the manufacturing process in the above-described exemplary embodiments. Another exemplary embodiment provides a display panel having improved optical efficiency and a display device including the display panel. 4 201234083 Yet another exemplary embodiment provides a display device having a passive type stereoscopic image with excellent visibility. According to the present invention, there is provided an apparatus as described in the following claims. Other features of the present invention are apparent from the dependent items and the following description. The aspect and/or other aspects may be achieved by providing a display panel having a liquid crystal layer having a first substrate and a second substrate disposed opposite to each other; and a color light polarizing layer formed on each other On the surface of the opposite first substrate and the second substrate, and including the first metal wire grid, which have different •, (4) emitting first polarization components having incident light of different colors. The display panel may further include a pixel layer formed on a surface of the first substrate and the second substrate, the display panel including a pixel, a pixel = a sub-pixel, and at least three of the times The pitch of the alizarin in the first-metal linear grid is different. A first substrate and a first substrate may be disposed opposite to each other on opposite sides of the display panel. The first substrate and the second substrate may be disposed on the opposite side of the one or more liquid helium layer, the color light polarizing layer and the first metal linear grid / the first metal linear grid may comprise a red metal linear grid, green gold Linear grid and blue metal linear grid; and the red metal linear grid is m so that the pitch is shorter than 1/2 red wavelength; the green metal linear grid is set by the female, which makes the pitch shorter than 1 /2 green wavelength; and the blue linear grid is placed such that each pitch is shorter than 1/2 blue wavelength. 201234083 The height of the metal-layer and the metal-metal linear grid of the edge of the Jinji Jinqing can be greater than that of the basin. Metal injection - pure age electrical layer: formed in the first grid; color first polarizing layer can be divided =::== and the second polarized linear grid alternately formed on the adjacent second metal linearity of the board The grid may include transmitting a first polarization component: a = grid, and transmitting a second polarization linear network of the second polarization component. The first polarization linear grid of the metal linear grid may correspond to a metal linearity The m-shaped grid, and the second polarized linear grid of the second metallic grid of identities may correspond to the polarized linear grid of the first-metal linear grid. The display panel may further include a halogen layer formed on a surface of one of the first substrate and the second substrate opposite to each other, and including a halogen, the pixel including a plurality of sub-pixels' Wherein a unit is formed in the disk of the color light-emitting polarizing layer for corresponding to the pixel. The first metal linear grid may include a first-polarized linear mesh transmitting the first polarization component and a second polarization linear mesh transmitting the second polarization component, and the color filter polarizing layer may be divided into a plurality of rows Or a plurality of columns, and the first-polarized linear grid and the second-polarized linear grid may be alternately formed in a plurality of rows or more 201234083. jyozipif columns. The second metal linear grid can include the first one to transmit the first polarization component! And transmitting a second polarization linear grid of the second polarization component, and the metal-na-polarization line-the second linear polarization of the metal linear grid / the first ±h Xin,, 丨a hail king, The second polarized linear grid of the second metal linear grid may correspond to the first polarized linear grid of the first __ metal linear grid. The μ m-step includes a layer of a halogen layer formed on a surface between the : ίί and the second substrate, and having a plurality of sub-drawings & formations forming a row therein Or listed to correspond to the prime line or when the sound works I. The other aspect can be achieved by providing a display device including a display panel having a liquid crystal layer, the display panel including the first substrate and the second substrate opposite to each other, and the color light-emitting polarizing layer The polarizing layer is formed on the surfaces of the first substrate and the second substrate opposite to each other; and the first metal wire mesh disposed at different pitches is used to emit the first polarization of the human light having different colors. Injury to the backing piece's light emitted to the display panel. The above and/or other aspects will be understood by the description of the exemplary embodiment (10) of the following embodiments in conjunction with the accompanying drawings. The exemplified embodiments will be described in detail with reference to the accompanying drawings, in which FIG. The illustrative embodiments may be implemented in various forms and are not limited to the illustrative embodiments described herein. For the sake of clarity, the description of well-known parts will be omitted, and the same element symbols refer to the same elements throughout the text. 1 is a layered structure of a display panel according to an exemplary embodiment, and FIG. 2 is a cross-sectional view of the display panel of FIG. 1. As shown in the figure, the display panel 1A in this exemplary embodiment includes a first substrate 100 and a second substrate 200 formed opposite to each other, and further includes a first substrate 100 and a second substrate. The color filter polarizing layer 300, the halogen layer 400, the liquid crystal layer 500, and the polarizing layer 6A between the substrates 2A. The display panel 1 including the liquid crystal layer 500 can be used for a television, a household appliance (such as a display device), a mobile phone, a mobile multimedia player (PMP), a small notebook computer, a notebook computer. , a mobile terminal device (such as an e-book terminal device or the like) and a display device for displaying or advertising. The color filter polarizing layer 300 and the halogen layer 400 are sequentially formed on the first substrate 100, and the polarizing layer 600 is formed on the second substrate 2''. As shown in FIG. 2, when the first substrate 200 is formed, the black matrix 200-1 is formed in a region of the second substrate 200 corresponding to the thin film transistor (TFT) 4U of the first substrate 100, and corresponds to the drawing. The common electrode 200-3 of the voltage of the element electrode 412 is also formed. The liquid crystal layer 500, whose alignment is adjusted with the applied voltage, is inserted between the first substrate 1A and the second substrate 200. The array of the liquid crystal layer 5 turns according to the twisted nematic (TN) mode, the vertical alignment (VA) mode, the patterned vertical alignment mode, and the in-plane switching of the display panel 1000 (in- Plane switching, IPS) mode or similar operation mode 201234083, ^ ^ A. | Jlt type to control. In order to improve the optical viewing angle, the secondary halogen is divided or patterned to adjust the refractive index of the liquid crystal, or a similar technique can be used. The color light-emitting polarizing layer 300 is formed on the first substrate, and the pixel layer 400 for controlling the liquid crystal array and displaying the image is formed on the color filter polarizing layer 300. The color filter polarizing layer 300 includes a first metal linear grid 31'' arranged at different pitches such that the first polarization component of the incident light can be emitted by different colors of light. The polarizing layer 600 can include a second metal linear grid 610' that transmits light of a second polarization component that is different from the first polarization component and that only changes the polarization state of the incident light. A planarization layer 1〇〇_1 is formed on the first metal linear grid 310 and the second metal linear grid 610 to protect and correct the metal linear grid. The first metal linear grid 310 is included in the color filter polarizing layer 300, and the second metal linear grid 610 is included in the polarizing layer 6', both of which will be described in detail later. The layer 400 is formed on the planarization layer 100-1, and the pixel layer 4 includes a plurality of pixels (not shown) for changing the filling of the liquid crystal layer 500 according to the control signal received by the outside. In the liquid crystal array, and each element includes a plurality of secondary halogens 41〇. In this exemplary embodiment, the sub-stimulus 41 〇 represents the smallest unit pixel, and the video signal value corresponding to the red, green, and blue colors is input thereto; and the plurality of sub-pixels 410 are included and represents a video signal. The unit is considered a vegetarian. The secondary halogen 410 includes a thin film transistor (TFT) 411 as a conversion element and a halogen electrode 412. In the present exemplary embodiment, the sub-pixel 410 has a two-dimensional space concept and a physical concept including tft 411 and a halogen electrode 412. Forming a gate on the planarization layer 100-1 of the first substrate 100

201234083f d y 1 plT 411-卜閘極411·1可為含金屬的單—層或複合層。在與閑 極411-1相同之層上進-步形成有閘線(未繪示)以及 極墊(未繚示),所述閘線連結至閘極,且安置於橫越顯 示面板1000的方向;所述閘極墊連結至閘極驅動器(未絡 示)並傳送驅動信號至閘線。另外,在與閘極41Μ相^ 之層上,形成用以增加電荷之維持電極413。 在第-基板100上,含有氮化石夕(SiNx)或類似物之 閘極絕緣層411-2覆蓋閘極仙丨和維持電極413。 -1〜,旧儿吧琢層4112上形 石夕或類似半導體之半導體層4叫。在半導體層川曰曰 1成歐姆接觸層4U-4,其含有以魏物或n型 片 払雜的n+氫化非晶石夕或類似材料。此姆= :從除下文將描述的源極 成資 44^和^^可為含金屬的單—層或複合層。^ 川-5和411_6包括在垂直方向 =線路 父以形成次畫素41〇之 ]踝(未、、.9不)相 觸層4ΐι_4之上忿二=以 之上部形:之源極411-5的歐姆接觸層41U4 在部份資料線路4 仙5和4ι!·6所覆 =411_6以及未被資科線路 所覆羞之+導體層4叫上形成保護層 201234083 · d 〆 V/>6« ▲ pll 411-7。此時,可進一步在保護層411_7與1^1411之間形 成氮化矽或類似之無機絕緣膜,由此確保TFT4U之可^ 通常,形成於保護層411-7上之晝素電極412包含銦 錫氧化物(ITO)或錮鋅氧化物(IZ〇),或類似的透明導 電材料。晝素電極412與源極411_5電性連接。 在第二基板200之平面化層jooq上,里 形成於與TFT 4U (形成於第一基板⑽上)”、對應之區域 中。-般而言,黑矩陣細·丨用於分隔次晝素彻及避免 TFT 411曝露於外部光線。黑矩陣2〇(M包含具有黑色染 料之感光有機材料。使用碳黑、氧化鈦或類似材料^為所 述黑氙染斜。 在黑矩陣2GG_1上,形·啸正和賴黑矩陣2〇〇1 之外套層2GG_2。通常使用_環氧材料作為外套層2〇〇_2。 在外套層200-2之上,形成共用電極2〇〇-3。共用電 極200-3由透明導電材料製成,例如肋、ιζ〇等。丘用 電極雛3與第-基板刚之晝素電極412 晶 500直接施與電壓。 厚3為f現圖1的形成於第—基板上的彩色滤光偏光 曰之不思圖。圖4A和圖4B為說明次畫素之第一金屬 線性網格的示意圖,而+ A Μ ㈣β®13之彩色濾、光偏光層之剖 ㈤圖0 201234083. 310以特定咼度(H)和寬度(w)週期性的安置。此週期, 亦即第一金屬線性網格310之節距,是依期望之光線色彩 以不同方式控制。 若繞射光柵之節距經調整為等於或小於光之波長之 1/2,繞射波不形成,僅有穿透光和反射光存在。如圖中所 示,當入射光穿過形如狹縫之第一金屬線性網格31〇時, 將入射光之第一極化成份(其垂直於第一金屬線性網格 310)傳送通過第一基板100,但與第一金屬線性網格31〇 垂直之入射光之第二極化成份,會成為反射光以被再反 射。亦即,穿過彩色濾光偏光層3〇〇之入射光是沿特定方 向極化。同時,在第一金屬線性網格31〇之間可能會有空 氣形成。 圖4A是顯示畫素〗及組成晝素〗之次畫素41〇 r、 410-G及410-B的示意圖。在此例示性實施例中,晝素j 包括形成於紅光發射區域内之紅色次晝素41〇_R;形成於 綠光發射區域内之綠色次畫素41〇_G;以及形成於藍 射區域内之藍色次晝素41〇_B。與晝素層彻對應之彩^ 濾光偏光層300形成時,具有根據次晝素41〇_R、4i〇 G 及410-B的不同節距之第一金屬線性網格31〇也隨之形成。 圖4B為顯示對應於次晝素41〇 R、41〇 G及4i〇 b之 第-金屬線性網格31G之示意圖。第—金屬線性網格31〇 包括形成於與紅色次畫素41〇_R對應之區域中之紅色金屬 線性網格3财;形成於麟色次晝素·_G對應之區域 中之綠色金屬線性網格31G_G;以及形成於與藍色次晝素201234083f d y 1 plT 411 - The gate 411·1 may be a metal-containing single-layer or composite layer. A gate line (not shown) and a pole pad (not shown) are formed on the same layer as the idle pole 411-1, and the gate line is connected to the gate and disposed across the display panel 1000. Direction; the gate pad is coupled to a gate driver (not shown) and transmits a drive signal to the gate. Further, on the layer opposite to the gate 41, a sustain electrode 413 for increasing the electric charge is formed. On the first substrate 100, a gate insulating layer 411-2 containing a nitride nitride (SiNx) or the like covers the gate electrode and the sustain electrode 413. -1~, the old layer of the enamel layer 4112 is shaped like a stone or semiconductor layer called semiconductor. In the semiconductor layer, an ohmic contact layer 4U-4 containing n+ hydrogenated amorphous or similar material doped with a Wei or n-type sheet. This m = : may be a metal-containing single-layer or composite layer from the source of the material described below. ^ Chuan-5 and 411_6 are included in the vertical direction = line father to form sub-pixels 41 踝 踝 (not, , .9 no) on the contact layer 4 ΐ ι_4 忿 two = to the upper part: the source 411- The ohmic contact layer 41U4 of 5 forms a protective layer 201234083 · d 〆V/> on the part of the data line 4 仙 5 and 4 ι!·6 覆 = 411_6 and the conductor layer 4 which is not covered by the credit line. 6« ▲ pll 411-7. At this time, a tantalum nitride or the like inorganic insulating film may be further formed between the protective layers 411_7 and 1^1411, thereby ensuring that the TFT4U is normally formed, and the halogen electrode 412 formed on the protective layer 411-7 contains indium. Tin oxide (ITO) or bismuth zinc oxide (IZ〇), or a similar transparent conductive material. The halogen electrode 412 is electrically connected to the source 411_5. The planarization layer jooq of the second substrate 200 is formed in a region corresponding to the TFT 4U (formed on the first substrate (10)). In general, the black matrix is used to separate the secondary molecules. Thoroughly avoiding the exposure of the TFT 411 to external light. The black matrix 2〇 (M contains a photosensitive organic material having a black dye. The carbon black, titanium oxide or the like is used to dye the black enamel. On the black matrix 2GG_1, the shape · The jacket layer 2GG_2 of Xiaozheng and Laihe matrix 2〇〇1. Usually, the epoxy material is used as the jacket layer 2〇〇_2. On the jacket layer 200-2, the common electrode 2〇〇-3 is formed. 200-3 is made of a transparent conductive material, such as ribs, ζ〇, etc. The core electrode 3 and the first substrate of the first substrate are applied with a voltage of 500. The thickness of 3 is f. - Color filter polarizer on the substrate is not considered. Figures 4A and 4B are schematic diagrams illustrating the first metal linear grid of the sub-pixel, and + A Μ (4) β®13 color filter, photo-polarization layer (5) Figure 0 201234083. 310 Periodically placed with specific width (H) and width (w). This period, which is the first The pitch of the metal linear grid 310 is controlled in different ways according to the desired color of the light. If the pitch of the diffraction grating is adjusted to be equal to or less than 1/2 of the wavelength of the light, the diffraction wave is not formed, only the wear Light and reflected light are present. As shown in the figure, when the incident light passes through the first metal linear grid 31, such as a slit, the first polarization component of the incident light (which is perpendicular to the first metal linear) The grid 310) is transmitted through the first substrate 100, but the second polarization component of the incident light perpendicular to the first metal linear grid 31 turns into reflected light to be re-reflected. That is, through the color filter polarized light. The incident light of the layer 3 is polarized in a specific direction. At the same time, air may be formed between the first metal linear grid 31. Fig. 4A is a sub-pixel 41 showing the pixel and the composition of the element. Schematic diagrams of 〇r, 410-G, and 410-B. In this exemplary embodiment, the halogen element j includes red erythromycin 41〇_R formed in the red light emitting region; formed in the green light emitting region The green sub-pixel 41〇_G; and the blue sub-salin 41〇_B formed in the blue-shooting region. Layer 2 Corresponding Colors ^ When the filter polarizing layer 300 is formed, a first metal linear grid 31 具有 having different pitches according to the secondary elements 41〇_R, 4i〇G, and 410-B is also formed. 4B is a schematic diagram showing a first-metal linear grid 31G corresponding to the sub-halogens 41〇R, 41〇G, and 4i〇b. The first-metal linear grid 31〇 is formed in the red sub-pixel 41〇_R a red metal linear grid in the corresponding region; a green metal linear grid 31G_G formed in a region corresponding to the lindenin _G; and formed in the blue nucleus

12 201234083. 410-Β對應之區域中之藍色金屬線性網格31〇_β。 紅色金屬線性網格310-R具有小於1/2紅光波長之矿 距;綠色金屬線性網格31〇_G具有小於1/2綠光波^之^ 距;而藍色金屬線性網格31〇·Β具有小於W藍光波長: 節距。因此,金屬線性網格31〇_R、31〇_G和31〇七之每 -節距是根據次晝素41G_R、41G-G和4腳進行調整=12 201234083. The blue metal linear grid 31〇_β in the area corresponding to 410-Β. The red metal linear grid 310-R has a mine pitch of less than 1/2 red light wavelength; the green metal linear grid 31〇_G has a distance less than 1/2 green light wave; and the blue metal linear grid 31〇 • Β has a wavelength less than W blue: pitch. Therefore, each of the metal linear grids 31〇_R, 31〇_G, and 31〇-the pitch is adjusted according to the secondary elements 41G_R, 41G-G, and 4 feet=

控制所述人射光之波長,藉此使次晝素分別發射不同 顏色的光。 U 紅色金屬線性網格310-R之節距小於1/2紅光波長, 即約33〇nm〜39〇nm’且入射光在通過紅色金屬線性網格 310-R時’被分割為具有第一極化成份之紅光光譜。綠色 金屬線性網格310-G之節距小於i/2綠光波長,即約25〇咖 〜290nm,且入射光被分割為具有第一極化成份之綠光光 譜。藍色金屬線性網格310-B之節距可設定為小於1/2藍 光波長’即約220 nm〜240騰,且通過藍色金屬線性網格 310-B的光被分割為具有第—極化成份之藍光光譜。換言 之’金屬線性網格310之節距依紅色金屬線性網格曰3i〇 r°、 綠色金屬線性網格310_G以及藍色金屬線性網格3i〇_B的 順序縮小。第-金屬線性網格31〇之節距仰據欲由顯示 面板1000發射之色彩之光波長調整’且可發射黃色光、青 色光和品紅色光而非前述之紅光、綠光和藍光。、 如圖5中所示,本例示性實施例中之第一金屬線性網 格310包括依序堆疊的第一金屬層扣、絕緣層和第 二金屬層315。第-金屬層311和第二金屬層315可由例 13 201234083. pif 如鋁 銀寺金屬製成,且可具有小於約i〇〇nn^高度。 在本例示性實施例中,各第一金屈 削形成為具有約40二金:,和各第二金屬層 和第二金屬層犯之間的絕豐於第一金屬層311 如,_二氧化鈦,電材料’例 古麻咕 X « 成為具有小於約150 nm之 冋度。第一金屬、線性網格31〇之高 3==〜4,例如3:=:線= Ml ^ A節距、高度與寬度之比值以及節距 之比值會依形成第—金屬線性網格則 = 光傳送的模擬是藉由將金厲之種類 第一金屬線性網格310之金屬層311和315 =射之原理X基於轉子理論(pia_n),即 21=1現Γ自由電子之振盪,奈米尺寸的金屬 子在金屬薄膜表面上=::产=電聚:共振是電 子丘㈣電了讀振盧,且由表面電聚 子共振引發之表面電聚子波為表 之介電村料之間的邊界表面傳播:、茲: 面雷料2材料之間之邊界表面傳遞之表面電磁波,表 未完ί反射且ίΐί具有特定波長的光人射至金屬表面而 射¥致表面波時所產生的波。若包括第一金屬 201234083 o^o^ipif 層311絕緣層313和第一金屬層3i5之金屬線性網格 以特定週期之狹缝形式排列,發射光之顏色便會隨著所述 週期而變化。 根據本例示性實施例,第一金屬線性網格31〇是用以 將白光過濾為整個可見光區域中的各個顏色。這是要在特 疋之振盪波長中實現用於量子—電漿子—量子轉換的奈米 振盪器,與其他彩色濾光方法相較,其提高通帶頻寬(pass bandwidth)與緊密度。另外,因過濾光已經自然極化所 以可直接應用於液晶顯示面板或類似物上,而不需要任何 單獨的偏光層。 據此’顯示面板100可經由一彩色濾光偏光層3〇〇產 生極化有色光,而非經由現有的偏光膜和彩色濾光器。另 外,不是藉由第一基板100傳送的光不會被吸收, 第一金屬線性網格310之第一金屬層311反射,因此所述 光可能會再被反射向顯示面板1000。亦即,總光學效率提 升,以致可省略傳統反射式增亮膜(DBEF)。 圖6為在圖1之第二基板上之偏光層的剖面圖。如圖 中所示,偏光層_包括形如條狀m線性網格 610 ’其安置於垂直於第一金屬線性網格31〇之方向。亦 即,第二金屬線性網格610傳送垂直於第一極化成份之第 二極化成份。第二金屬線性網格61〇具有可傳送全波長的 入射光的節距m傳送第二極化成份。具體地說, 第二金屬線性網袼⑽之節距可形成為小於1/2藍光波 長。第二金屬線性網袼61〇有約15Gnm的高度和介於⑽ 15 201234083 ^yo^ipif nm至150nm的節距。此外,第二金屬線性網格61〇之高 度與寬度的比值可調整至2到4的範圍内。 第二金屬線性網格610包括金屬層611及形成於金屬 層611上之硬遮罩612。金屬層611可包含與第一金屬線 性網格310相同或不同之金屬。換言之,金屬層611可包 3例如.鋁、銀、銅等金屬,或可包含鉬鎢合金(M〇w) 或類似的硬合金。或者’金屬層611可由導電高分子製成, 或可包含導電高分子。硬遮罩612用以保護金屬層611和 改善金屬層611之極化效能,且可包含介電材料,如 化石夕。 根據另一例示性實施例,第一金屬線性網格31〇和第 二金屬線性網格610可具有相同的極化方向,因為可依據 應用電壓於液晶與否,蚊崎或傳送光線,以調登所述 光之方向。因此,不需要使第一金屬線性網格310和第二 j線性罐610之極化方向彼此垂直。這可根據液晶之 方向調整。 圖7為根據一例示性實施例之另一彩色滤光偏光 剖面圖。 、士圖中所示,彩色渡光偏光層300可進一步包括堆疊 :第金屬線性網格下方的介電層mo。介電層320 =第了基板1〇0之材料製成,且可包含敦化鎮。介 人ιοί以連接至第—基板⑽⑽的形式提供。在此, ;1電a 320可取代第一基板1〇〇或可省略。 圖8為根據另-例示性實施例,呈現顯示面板之層結 16 201234083. 構的示意圖。 根據此例示性實施例,顯示面板1000可包括反射限 制層700 ’安置於第一基板100或第二基板200上,亦即 作為基板之外表面’且光實質上通過所述外表面發射。顯 不面板1000為一種穿透式面板,只有入射光會呈現影像, 且光完全穿透。顯示面板1000可進一步包括反射限制層, 以減少因外部光引起之表面反射。此外,反射限制層7〇0 可包括抗反射膜或抗眩光膜,或可包括以奈米科技形成於 第二基板200之外部平面上的蛾眼圖案層。並且,反射限 制層700可由低反射(i〇wre打ectj〇n,lr)、抗反射(anti reflection ’ AR)、硬鑛膜(hard coating )等處理方法或綜 合以上處理方法形成。此種表面處理可執行解析度強化、 抗放電、抗污染、耐磨以及還有抗反射等功能。有時,反 射限制層700可加到面對入射光的基板,或加入顯示面板 1000之中央。 圖9至圖11為根據另一例示性實施例,呈現顯示面 板的彩色濾光偏光層和偏光層的示意圖。圖9至圖η之顯 示面板1000’包括第一金屬線性網格31〇和第二金屬線性 網格610,彼此的材料不同,特別是兩者内含之金屬材料 不同。在第一金屬線性網格310和第二金屬線性網格610 中内含之金屬,彼此間的反射率(rej|ectiVity)和硬度可能 不相同。 圖9之顯示面板1〇〇0包括第一金屬線性網格31〇和 第二金屬線性網格610。第一金屬線性網格31〇包含高反 17 201234083 ^yozipif 射率的金屬而第二金屬線性網格610包含低反射率的金 屬。若光經由第一基板之底部進入且經由第二基板2〇〇 離開,只有第一極化成份的光會進入液晶層500,且第二 極化成份的光會從第一基板100反射。一般而言,在顯示 面板1000下方發射光之背光組件(未繪示)包括反射板, 所述反射板將由第一基板100反射回來的光,再次向著顯 示面板1000反射。第一金屬線性網格310所含之金屬可具 有咼反射率,以致反射板可使更多的光回收並進入第一基 板100,亦即有更多第二極化成份的光可進入反射板。例 如:第一金屬線性網格310可包括具有高反射率之金屬, 如鋁、銀、銅等。因此,若高反射金屬創造第一金屬線性 網格3=的反射率,财機會省略驗傳賴示面板之反 射式增亮膜(DBEF)。據此,將有使顯示面板麵之生 產成本降低之效果’也可讓包括顯示面板1〇〇〇之顯示裝置 變薄且輕量。 万面 、一第二金屬線性網格610可包含具低反射^ 极細处’以抑制外部光的反射和吸收外部光。第二金屬 可Μ 二可能會經歷使金屬反射率降低的額外製程, 以二L:光鉻氣化物等,或與碳、鉻氧化物等-同配置 例的^二外部的多個接觸,根據另—例示性實: 如:第二金屬^網格⑽可包括具有高強度之金屬,/ 或可網格⑽可包含•目合金或類似合金 ^ ¥電@分子’所述導電高分子可執行與金屬層」 18 201234083. jyozipif 質上相同之功能。 圖10之顯示面板1000可進一步包括光吸收層330, 所述光吸收層330形成於包括於第一基板1〇〇中之第一金 屬線性網格310上,並吸收光線。若外部光進入至顯示面 板1000且被再次反射,因光的反射,則將產生顯示面板 1〇〇〇之對比度降低且晝質劣化等問題。為了避免這些問 題,根據此例示性實施例之第一基板100包括在第一金屬 線性網格310上的光吸收層330,以吸收不希望得到的外 部光。 光吸收層330可包含具有低反射率之金屬,以及或可 包括碳、鉻氧化物等或與碳、鉻氧化物等一同配置,以吸 收光。 或者,光吸收層330可形成於第二基板2〇〇之第二金 屬線性網格610之下,而非形成於第一基板之上。亦即, 外部光由形成於第二金屬線性網格61〇之下的光吸收層所 截取’如此’可避免外部光進入至顯示面板1〇〇〇。 圖11顯示第一光吸收層331,其形成於第一金屬線性 網格310上,所述第一金屬線性網格31〇包括於第—基板 1〇〇中;圖11還顯示第二光吸收層631,其形成於第二基 板200上。為了減少外部光反射的問題(而非由背光組^ (未緣示)發射光的問題),根據此例示性實施例的顯示 面板1000包括位於第一基板100和第二基板200兩者上的 光吸收層331和631。光吸收層331和631可與碳、鉻氧 化物等一同配置。當然,光吸收層331和631並無特別限 19 201234083. jvozipif 制’只要包括可吸收光的材料即可。 可形成於如 第一光吸收層331和第二光吸收層631 圖10所示之任一基板上,或可省略。 圖12一為根據一例示性實施例’用以說明顯示面板之 第和第一金屬線性網格之極化的示意圖。圖12 、 了形成於彩色滤光偏光層綱上之第:網良 格610之方向。穿透光之各極化成份依 =。例如:若水平線傳送光之第—極化成份 傳送第二極化成份。根據此例示性實施_顯示面板麵 適用於呈現三維影像之顯示器,特別是以被動模式 維影像之顯示器。在以被動模式呈現三維影像的案例中了 使用者可透過具有不同極化狀態之極化眼睛觀看影像。 如圖中所示,彩色渡光偏光層3〇〇可分為多 第:金屬線性網格31〇包括:第一極化線性網格Μ 以傳运第-極化成份;以及第二極化線性網格ρ2 純絲。第—極化雜哺ρ句成於奇 格彼此乂互間隔。同樣地,第二金屬線性 第一極化線性網格p-卜用以傳送第-極化紐=第 一極化線性網格ρ_2 ’用以傳送第二極化成份。 斑 G金=格310相反的是’第二金屬線性網格⑽ 之第-極化紐娜P]形成於健行中 線性網格Ρ·2形成於奇數射,兩線性纟_此交互 201234083 厶 ipif 換言之’第二金屬線性網格副之第一極化線性網格 P-ι是對應於第-金屬線性網格310之第二極化線性網格 P-2形成;第二金屬線性網格61〇之第二極化線性網格 P_2是對應於第-金屬線性網格之第—極化線性網格 P-1形成,兩線性網格彼此交互間隔。 若將對應於左眼影像之視訊信號以及對應於右眼影 像之視訊信號分別交替施加在奇數行和偶數行,左眼影像 透過第一金屬線性網格310之第一極化線性網格p—i以及 第二金屬線性網格610之第二極化線性網格p_2顯示在顯 示面板1〇〇〇上;且右眼影像透過第一金屬線性網格31〇 之第二極化線性網格P_2以及第二金屬線性網格61〇之第 —極化線性網格顯示在顯示面板1〇〇〇上。雖然左眼影 像和右眼影像同時顯示在顯示面板丨〇 〇 〇上,透過可僅傳送 左眼影像和右眼影像的一個極化成份的極化眼鏡,使用者 之雙眼分別看到不同的影像,由此使用者看到三維影像。 第一極化線性網格P4及第二極化線性網格p_2之重 複週期可根據一個畫素行或多個畫素行。 或者,彩色濾光偏光層300可由多個列所分割,且第 極化線性網格及第二極化線性網格p_2可在每個列 交替形成。 圖13為根據另一例示性實施例,用以說明顯示面板 之第一和第二金屬線性網格之極化之示意圖。 如圖中所示,在此例示性實施例中,彩色濾光偏光層 3〇〇被分割為棋盤形狀’且第一極化線性網格ρ_ι和第二 21 201234083 iyo/ipif 極化線性網格P-2交錯形成於棋盤上相鄰的單元中。第一 金屬線性網格310之第一極化線性網格p—丨對應於第二金 屬線性網格610之第二極化線性網格P-2 ;且第-金屬線 !·生網格31G之第二極化線性網格p_2,對應於第二金屬線 性網格610之第一極化線性網格ρ_ι。 ^然這樣,左眼影像和右眼影像可交錯顯示於棋盤之 相鄰單元中,且如同前述那些例示性實施例,使用者可透 過同樣的極化眼鏡看到三維影像。在此例示性實施例中, 所顯示影像之騎度㈣上傭顯㈣板綱之影像之 解析度,但左眼影像和右眼影像在網格圖案中重複,以致 使用者察覺不簡析度降低。亦即,使用者可看到具有比 圖12之例示性實施例更高解析度的影像。 棋盤的單元可對應於晝素層_之_晝素,且可對 應於多個晝素。 另外,圖12和圖13之顯示面板1000可外含偏光器 (P—) ’用以將穿透過偏光層_之線性偏振光轉 換成圓偏振光。為確保視角及讓使用者可看到三維影像(即 便使用者從任何方向觀看影像),顯示面板1_可發射圓 偏振光。 圓 圖^根據另-例示性實施例之顯示面板之剖面圖。 在此實施例中的顯不面板1000進一步包括附加偏光 ^00 ’用以傳送第一極化成份,所述附加偏光層位在彩 色遽光偏光層300之下。附加偏光層_可進一步包括第 三金屬線性網格810,其實質上包含與第二金屬線性網格 22 201234083 61 〇所含之金屬相_金屬且安置於與第—金屬線性網格 31〇相同的方向。第三金屬線性網格81〇安置於與第一金 屬線性網格310相同的方向,且因而傳送第—極化成份, 通過附加偏光層800的第一極化成份之光在通過彩色濾光 層300時以紅色、藍色和綠色發射。 第三金屬線性網格810所含的金屬層可包含高反射金 屬,例如為鋁、金和銅其中至少一者。此外,可在金屬層 上進一步提供光吸收層並吸收外部光。 圖15為根據又一例示性實施例之顯示面板之剖面圖。 如圖中所示,根據此例示性實施例的顯示面板1〇〇〇 包括形成於第一基板1〇〇上之偏光層6〇〇和形成於第二基 板200上之彩色濾光偏光層300。換言之,彩色濾光偏^ 層300可安置於與黑矩陣2004 一同形成之基板上,而非 安置於晝素層400上。若光通過第一基板1〇〇之底部而進 入,則穿過偏光層000之第二極化成份之光會穿過液晶層 500 ’接者在穿過彩色滤光偏光層3〇〇時,以具有不同顏色 之第一極化成份之光發射。彩色濾光偏光層3〇〇和偏光層 600之每一者可選擇性地形成在與畫素電極4〇〇相同或不 同的基板上。當然’光可通過第二基板2〇〇進入及經由第 一基板100而離開。 雖未繪示於圖中,然而顯示面板1000可進一步包括 印刷電路板,其承載有閘極驅動積體晶片(integrate(j chip ’ 1C)和資料晶片膜封裝。並且,在第一基板1〇〇和 第二基板200外側,可進一步提供補償膜(未繪示)。 23 201234083f 圖16A至目16D為根據一例示性實施例,說明一種 製造顯示面板之第一基板的方法之示意圖。X月種 如圖16A中所示1 一金屬層3n、絕緣層3 二金屬層315以濺鍍法或類似方法依序堆疊,以 板100上形成彩色濾光偏光層3〇〇。 一 土 之後,如圖16B中所示,進行一般圖案化製程。換t 之触,透過鮮曝光,且賴f彡餘刻以形成i -金屬線性網格31G。亦即,在此例示性實施例中 金,層311、絕緣層3"和第二金屬層阳並非分別形成, 序:經一次圖案化製程以形成第-金屬線性網 格310。形成第一金屬線性網格31〇的製程,可由任何眾 所周知或未知的圖案化技術達成。 如圖16C中所示,在形成第一金屬線性網格31〇後, =化層.!接著形成,以保護和校正第—金屬線性網 格310之表面。平面化層wo」可包含氮化矽。 TFT 411和與TFT川t性連接之畫素電極化形成 =平面化層KKM上。畫素電極412可用_法沈積金屬 來形成’並將金屬圖案化(參見圖16D)。 ,圖17A至圖17D為根據一例示性實施例,說明一種 製造顯示面板之第二基板之方法之示意圖。 第二基板200之偏光層6〇〇可經類似於形成第一基板 100之彩色遽光偏光層300之方法形成。亦即,如圖17A 中所示’金屬層611和用以保護金屬層611之硬遮罩612, 皆堆疊於第二基板200之上。 24 201234083 形成第二金屬線性 接著進行一次微影或I虫刻製程 網格610。 M 1H7C中所示’在第二金屬線性網格⑽形成後, ==護和校正第二金屬線性網請的表面之 如,3中所示,黑矩陣細」形成於平面化層觸心 、疋對應於TFT 411的區域中;且形成外套声 0-2以校正黑矩陣2G(M。此外,含^ 電極觸以濺鍍法形成。 爾氣、用 =7D和圖16D的兩基板1〇〇# 口 2〇〇’彼此搞合和封 裝’八中並插人液晶藉此完成顯示面板1000。 圖18A和圖18B為根據一例示性實施例,用以說明一 種形成光吸收層的方法之示意圖。 圖18A顯示依序堆疊於第一基板100上的第一金屬層 311、絕,層313、第二金屬層315以及光吸收層33〇。 接著,如圖18B中所示,應用一次圖案化製程以形成 第一金屬線性網袼31〇和光吸收層33〇。 ,圖19A和圖19B為根據另一例示性實施例,說明一種 形成光吸收層的方法之示意圖。 在此例示性實施例中,光吸收層330形成於第二金屬 線性網格610之下。如圖19A中所示,光吸收層330、金 屬層611和硬遮罩612依序堆疊於第二基板200之上。 ^ 接著,如圖19B中所示,應用一次圖案化製程以形成 第二金屬線性網袼610和光吸收層330。 25 201234083 pif 圖20A和圖20B為根據-例示性實施例,說明一種形 成附加偏光層的方法之示意圖。 如圖20A所示,具有第三金屬線性網格81〇之附加偏 光層800首先形成於第一基板⑽上,且平面化層100-1 形成於附加偏光層8〇〇上。 接著’如圖20B中所示,彩色遽光偏光層3〇〇和晝素 ^ 400依序形成。第二基板2〇〇如圖nD中所示形成,接 著如圖14中所示耦合,藉此完成包括附加偏光層800、彩 色濾光偏光層300以及偏光層600的顯示面板1〇〇〇,所述 顯示面板1000。 圖21為根據一例示性實施例之顯示裝置之示意圖, 而圖22為根據一例示性實施例之顯示裴置之控制方塊圖。 如圖中所示,顯示裝置1包括顯示面板、背光組 件2000、容納器3100、3200和3300,用以容納上述元件, 以及視訊提供器4000。 顯示面板1000包括:第一基板100、相對於第一基板 100之第二基板200、插入第一基板1〇〇和第二基板2〇〇 中的液日曰層(未繪不)’以及用以驅動晝素層4〇〇以顯示 視訊信號的面板驅動器。面板驅動器可包括閘極驅動 910、資料晶片膜封裝920,以及印刷電路板930。 第一基板100和第二基板200可與晝素層4〇〇、彩色 濾光偏光層300、偏光層600、黑矩陣200-1和共同電極 200-3等共同形成。彩色濾光偏光層300將進人第―基板 100的入射光極化,而偏光層600將經由顯示面板1〇〇〇離The wavelength of the person's light is controlled, whereby the secondary elements emit light of different colors, respectively. U The pitch of the red metal linear grid 310-R is less than 1/2 red wavelength, that is, about 33 〇 nm to 39 〇 nm' and the incident light is divided into the first when passing through the red metal linear grid 310-R. The red spectrum of a polarized component. The pitch of the green metal linear grid 310-G is less than the i/2 green wavelength, i.e., about 25 kPa to 290 nm, and the incident light is split into a green spectrum having a first polarization component. The pitch of the blue metal linear grid 310-B can be set to be less than 1/2 blue wavelength 'i.e., about 220 nm to 240 tens, and the light passing through the blue metal linear grid 310-B is divided into the first pole. The blue spectrum of the composition. In other words, the pitch of the metal linear grid 310 is reduced in the order of the red metal linear grid 曰3i 〇 r°, the green metal linear grid 310_G, and the blue metal linear grid 3i 〇 _B. The pitch of the first-metal linear grid 31 is adjusted according to the wavelength of the light to be emitted by the display panel 1000 and emits yellow, cyan and magenta light instead of the aforementioned red, green and blue light. As shown in FIG. 5, the first metal linear grid 310 in the present exemplary embodiment includes a first metal layer buckle, an insulating layer, and a second metal layer 315 which are sequentially stacked. The first metal layer 311 and the second metal layer 315 may be made of, for example, 13 201234083. pif such as aluminum silver temple metal, and may have a height of less than about 〇〇 ^ 。. In the exemplary embodiment, each of the first gold dies is formed to have about 40 bis gold: and the second metal layer and the second metal layer are between the first metal layer 311, such as _ titanium dioxide. The electrical material 'an example of the ancient paralysis X « becomes having a twist of less than about 150 nm. The height of the first metal, linear grid 31〇3==~4, for example, 3:=: line = Ml ^ A pitch, the ratio of height to width, and the ratio of pitches will be formed according to the first metal linear grid. = The simulation of the optical transmission is based on the rotor theory (pia_n), which is based on the principle of the metal layer 311 and 315 of the first metal linear grid 310 of the Jin Li type, ie 21 = 1 oscillation of the free electrons. The metal-sized metal is on the surface of the metal film =:: production = electro-convergence: the resonance is the electron mound (four) electric reading the vibration, and the surface electro-convergence wave induced by the surface electro-polymer resonance is the dielectric material of the table. The boundary surface propagation between:: The surface electromagnetic wave transmitted by the boundary surface between the materials of the surface material 2, the surface is not completely reflected and the light of a specific wavelength is emitted to the metal surface and is generated when the surface wave is emitted. Wave. If the metal linear grid including the first metal 201234083 o^o^ipif layer 311 insulating layer 313 and the first metal layer 3i5 is arranged in a slit of a specific period, the color of the emitted light changes with the period. According to the present exemplary embodiment, the first metal linear grid 31 is for filtering white light into respective colors in the entire visible light region. This is to implement a quantum oscillator for quantum-plasma-quantum conversion in a special oscillation wavelength, which improves passband bandwidth and tightness compared to other color filter methods. In addition, since the filtered light has been naturally polarized, it can be directly applied to a liquid crystal display panel or the like without any separate polarizing layer. According to this, the display panel 100 can generate polarized colored light via a color filter polarizing layer 3, instead of passing through the existing polarizing film and color filter. In addition, the light that is not transmitted by the first substrate 100 is not absorbed, and the first metal layer 311 of the first metal linear grid 310 is reflected, so that the light may be reflected to the display panel 1000 again. That is, the total optical efficiency is increased so that the conventional reflective brightness enhancement film (DBEF) can be omitted. Figure 6 is a cross-sectional view of the polarizing layer on the second substrate of Figure 1. As shown in the figure, the polarizing layer _ includes a strip-shaped m linear grid 610' which is disposed in a direction perpendicular to the first metal linear grid 31〇. That is, the second metal linear grid 610 transmits a second polarization component that is perpendicular to the first polarization component. The second metal linear grid 61 has a pitch m that can transmit incident light of a full wavelength to transmit a second polarization component. Specifically, the pitch of the second metal linear network (10) can be formed to be less than 1/2 of the blue wavelength. The second metal linear network 61 has a height of about 15 Gnm and a pitch of (10) 15 201234083 ^yo^ipif nm to 150 nm. Further, the ratio of the height to the width of the second metal linear grid 61 can be adjusted to a range of 2 to 4. The second metal linear grid 610 includes a metal layer 611 and a hard mask 612 formed on the metal layer 611. Metal layer 611 can comprise the same or a different metal than first metal linear grid 310. In other words, the metal layer 611 may comprise, for example, a metal such as aluminum, silver, copper, or the like, or may comprise a molybdenum-tungsten alloy (M〇w) or a similar hard alloy. Alternatively, the metal layer 611 may be made of a conductive polymer or may contain a conductive polymer. The hard mask 612 serves to protect the metal layer 611 and improve the polarization performance of the metal layer 611, and may include a dielectric material such as a fossil. According to another exemplary embodiment, the first metal linear grid 31〇 and the second metal linear grid 610 may have the same polarization direction, because the liquid crystal may be applied according to the applied voltage, the mosquito or the light is transmitted, to adjust In the direction of the light. Therefore, it is not necessary to make the polarization directions of the first metal linear grid 310 and the second j linear can 610 perpendicular to each other. This can be adjusted according to the direction of the liquid crystal. Figure 7 is a cross-sectional view of another color filter polarized light, in accordance with an exemplary embodiment. As shown in the figure, the color light-emitting polarizing layer 300 may further include a stack: a dielectric layer mo under the metal linear grid. The dielectric layer 320 is made of a material of the first substrate 1 〇 0 and may include Dunhua Town. The ιοί is provided in the form of a connection to the first substrate (10) (10). Here, the electric 1 a 320 may be substituted for the first substrate 1 or may be omitted. Figure 8 is a schematic illustration of a layered display of a display panel in accordance with another exemplary embodiment. According to this exemplary embodiment, the display panel 1000 may include the reflection limiting layer 700' disposed on the first substrate 100 or the second substrate 200, that is, as the substrate outer surface' and the light is substantially emitted through the outer surface. The display panel 1000 is a transmissive panel, and only the incident light will present an image, and the light completely penetrates. The display panel 1000 may further include a reflection restricting layer to reduce surface reflection due to external light. Further, the reflection restricting layer 7〇0 may include an anti-reflection film or an anti-glare film, or may include a moth-eye pattern layer formed on the outer plane of the second substrate 200 by nanotechnology. Further, the reflection limiting layer 700 may be formed by a treatment method such as low reflection (anti- erj 〇n, lr), anti-reflection (AR), hard coating or the like. This surface treatment can perform functions such as resolution enhancement, discharge resistance, contamination resistance, wear resistance, and anti-reflection. Sometimes, the reflection limiting layer 700 may be added to the substrate facing the incident light or added to the center of the display panel 1000. 9 through 11 are schematic views of a color filter polarizing layer and a polarizing layer that present a display panel, according to another exemplary embodiment. The display panel 1000' of Figs. 9 to η includes a first metal linear grid 31 〇 and a second metal linear grid 610 which are different in material from each other, in particular, metal materials contained in the two. The metals contained in the first metal linear grid 310 and the second metal linear grid 610 may have different reflectances (rej|ectiVity) and hardness from each other. The display panel 100 of FIG. 9 includes a first metal linear grid 31 and a second metal linear grid 610. The first metal linear grid 31 〇 contains the metal of high reflection 17 201234083 ^yozipif and the second metal linear grid 610 contains metal of low reflectivity. If light enters through the bottom of the first substrate and exits through the second substrate 2, only light of the first polarization component enters the liquid crystal layer 500, and light of the second polarization component is reflected from the first substrate 100. In general, a backlight assembly (not shown) that emits light below the display panel 1000 includes a reflective plate that reflects light reflected back from the first substrate 100 toward the display panel 1000 again. The metal contained in the first metal linear grid 310 may have a 咼 reflectivity such that the reflector can recover more light and enter the first substrate 100, that is, more light having a second polarization component can enter the reflector. . For example, the first metal linear grid 310 can comprise a metal having a high reflectivity, such as aluminum, silver, copper, or the like. Therefore, if the highly reflective metal creates a reflectivity of the first metal linear grid 3 =, the opportunity omits the reflective brightness enhancement film (DBEF) of the inspection panel. According to this, there is an effect of reducing the production cost of the display panel surface. The display device including the display panel 1 can be made thin and lightweight. The 10,000-sided, second metal linear grid 610 can include a low-reflection portion to suppress reflection of external light and absorb external light. The second metal may be subjected to an additional process for lowering the reflectance of the metal, or a plurality of contacts such as carbon chrome vaporization or the like, or carbon, chromium oxide, etc. Another—exemplary: For example, the second metal mesh (10) may include a metal having high strength, and/or the mesh (10) may include a mesh alloy or the like. With the metal layer" 18 201234083. jyozipif qualitatively the same function. The display panel 1000 of FIG. 10 may further include a light absorbing layer 330 formed on the first metal linear grid 310 included in the first substrate 1 and absorbing light. When external light enters the display panel 1000 and is reflected again, the reflection of light causes a problem that the contrast of the display panel 1 降低 is lowered and the quality of the enamel is deteriorated. In order to avoid these problems, the first substrate 100 according to this exemplary embodiment includes a light absorbing layer 330 on the first metal linear grid 310 to absorb undesired external light. The light absorbing layer 330 may comprise a metal having a low reflectance, and may or may include carbon, chromium oxide, or the like, or be disposed together with carbon, chromium oxide, or the like to absorb light. Alternatively, the light absorbing layer 330 may be formed under the second metal linear grid 610 of the second substrate 2 instead of being formed over the first substrate. That is, the external light is intercepted by the light absorbing layer formed under the second metal linear grid 61 ’ so that external light can be prevented from entering the display panel 1 〇〇〇. Figure 11 shows a first light absorbing layer 331 formed on a first metal linear grid 310, the first metal linear grid 31 〇 being included in the first substrate 1 ;; Figure 11 also showing a second light absorbing layer A layer 631 is formed on the second substrate 200. In order to reduce the problem of external light reflection (rather than the problem of emitting light by the backlight group), the display panel 1000 according to this exemplary embodiment includes both the first substrate 100 and the second substrate 200. Light absorbing layers 331 and 631. The light absorbing layers 331 and 631 may be disposed together with carbon, chrome oxide, or the like. Of course, the light absorbing layers 331 and 631 are not particularly limited to 19 201234083. The jvozipif system is only required to include a material that absorbs light. It may be formed on any of the substrates as shown in Fig. 10 of the first light absorbing layer 331 and the second light absorbing layer 631, or may be omitted. Figure 12 is a schematic illustration of the polarization of the first and second metal linear grids of the display panel in accordance with an exemplary embodiment. Fig. 12 shows the direction of the first mesh 610 formed on the color filter polarizing layer. The polarization components of the transmitted light depend on =. For example, if the horizontal line transmits the first polarization component of the light, the second polarization component is transmitted. According to this exemplary implementation, the display panel surface is suitable for displays that display three-dimensional images, particularly displays that are passive images. In the case of presenting a three-dimensional image in a passive mode, the user can view the image through polarized eyes having different polarization states. As shown in the figure, the color light-emitting polarizing layer 3〇〇 can be divided into a plurality of: the metal linear grid 31〇 includes: a first polarization linear grid Μ to transport the first-polarized component; and a second polarization Linear mesh ρ2 pure silk. The first-polarized hybrid ρ sentence is formed in a strange space between each other. Similarly, the second metal linear first polarization linear grid p-b is used to transmit a first polarization first = first polarization linear grid ρ_2' for transmitting the second polarization component. Spot G gold = grid 310 is the opposite of the 'second metal linear grid (10) - polarization Neona P] formed in the line of the linear grid Ρ · 2 formed in the odd-numbered shot, two linear 纟 _ this interaction 201234083 厶ipif In other words, the first polarization linear grid P-ι of the second metal linear grid pair is formed by the second polarization linear grid P-2 corresponding to the first metal linear grid 310; the second metal linear grid 61 The second polarization linear grid P_2 of the 〇 is formed by a first-polarized linear grid P-1 corresponding to the first-metal linear grid, and the two linear grids are alternately spaced from each other. If the video signal corresponding to the left eye image and the video signal corresponding to the right eye image are alternately applied to the odd and even rows, respectively, the left eye image is transmitted through the first polarization linear grid p of the first metal linear grid 310. i and the second polarization linear grid p_2 of the second metal linear grid 610 are displayed on the display panel 1 ;; and the right eye image is transmitted through the first metal linear grid 31 第二 the second polarization linear grid P_2 And a first-polarized linear grid of the second metal linear grid 61〇 is displayed on the display panel 1〇〇〇. Although the left eye image and the right eye image are simultaneously displayed on the display panel, the user's eyes respectively see different polarized glasses that can transmit only one polarization component of the left eye image and the right eye image. Image, whereby the user sees the 3D image. The repetition period of the first polarization linear grid P4 and the second polarization linear grid p_2 may be based on one pixel row or multiple pixel rows. Alternatively, the color filter polarizing layer 300 may be divided by a plurality of columns, and the first polarized linear mesh and the second polarized linear mesh p_2 may be alternately formed in each column. Figure 13 is a schematic diagram illustrating polarization of first and second metal linear grids of a display panel, in accordance with another exemplary embodiment. As shown in the figure, in this exemplary embodiment, the color filter polarizing layer 3 is divided into a checkerboard shape 'and a first polarized linear grid ρ_ι and a second 21 201234083 iyo/ipif polarized linear grid P-2 is interleaved in adjacent cells on the board. The first polarization linear grid p_丨 of the first metal linear grid 310 corresponds to the second polarization linear grid P-2 of the second metal linear grid 610; and the first metal line! The second polarization linear grid p_2 corresponds to the first polarization linear grid ρ_ι of the second metal linear grid 610. Thus, the left eye image and the right eye image can be interlaced in adjacent cells of the board, and as with the exemplary embodiments described above, the user can see the three dimensional image through the same polarized glasses. In this exemplary embodiment, the riding degree of the displayed image (4) is on the resolution of the image of the (four) board, but the left eye image and the right eye image are repeated in the grid pattern, so that the user perceives the degree of inaccuracy. reduce. That is, the user can see an image having a higher resolution than the exemplary embodiment of FIG. The unit of the checkerboard may correspond to the element of the alizarin layer and may correspond to a plurality of elements. In addition, the display panel 1000 of Figs. 12 and 13 may include a polarizer (P-)' for converting linearly polarized light that has passed through the polarizing layer into circularly polarized light. To ensure viewing angle and to allow the user to see the 3D image (even if the user views the image from any direction), the display panel 1_ can emit circularly polarized light. Circle Figure 2 is a cross-sectional view of a display panel in accordance with another exemplary embodiment. The display panel 1000 in this embodiment further includes additional polarized light ^00' for transmitting the first polarized component, the additional polarizing layer being below the color fluorescent polarizing layer 300. The additional polarizing layer _ may further include a third metal linear grid 810 that substantially includes the same metal phase as the second metal linear grid 22 201234083 61 且 and is disposed in the same manner as the first metal linear grid 31 〇 The direction. The third metal linear grid 81 is disposed in the same direction as the first metal linear grid 310, and thus transmits the first polarization component, and the light passing through the first polarization component of the additional polarization layer 800 passes through the color filter layer. At 300 o'clock, it is launched in red, blue and green. The metal layer contained in the third metal linear grid 810 may comprise a highly reflective metal such as at least one of aluminum, gold and copper. Further, a light absorbing layer may be further provided on the metal layer and external light may be absorbed. 15 is a cross-sectional view of a display panel in accordance with yet another exemplary embodiment. As shown in the figure, the display panel 1A according to this exemplary embodiment includes a polarizing layer 6A formed on the first substrate 1 and a color filter polarizing layer 300 formed on the second substrate 200. . In other words, the color filter bias layer 300 can be disposed on the substrate formed with the black matrix 2004 instead of being disposed on the pixel layer 400. If the light enters through the bottom of the first substrate 1 , the light passing through the second polarization component of the polarizing layer 000 passes through the liquid crystal layer 500 ′ when passing through the color filter polarizing layer 3 , Light emission with a first polarization component of a different color. Each of the color filter polarizing layer 3A and the polarizing layer 600 may be selectively formed on the same or different substrate as the pixel electrode 4''. Of course, light can enter through the second substrate 2 and exit through the first substrate 100. Although not shown in the drawings, the display panel 1000 may further include a printed circuit board carrying a gate drive integrated wafer (integrate (j chip ' 1 C) and a material wafer film package. Also, on the first substrate 1 〇 A compensation film (not shown) may be further provided on the outer side of the second substrate 200. 23 201234083f FIGS. 16A to 16D are schematic diagrams illustrating a method of manufacturing a first substrate of a display panel according to an exemplary embodiment. As shown in FIG. 16A, a metal layer 3n, an insulating layer 3, and a second metal layer 315 are sequentially stacked by a sputtering method or the like to form a color filter polarizing layer 3 on the board 100. As shown in Fig. 16B, a general patterning process is performed. The touch of t is transmitted through the fresh exposure, and is left to form an i-metal linear grid 31G. That is, in the exemplary embodiment, gold, layer 311, the insulating layer 3" and the second metal layer yang are not separately formed, the order: a one-time patterning process to form the first-metal linear grid 310. The process of forming the first metal linear grid 31〇 may be any well known or unknown Patterning technique This is achieved. As shown in FIG. 16C, after the first metal linear grid 31 is formed, a layer is formed to protect and correct the surface of the first metal linear grid 310. The planarization layer may include矽. The TFT 411 and the pixel electrode connected to the TFT are formed on the planarization layer KKM. The pixel electrode 412 can be formed by metal deposition to form 'and pattern the metal (see FIG. 16D). 17A through 17D are schematic diagrams illustrating a method of fabricating a second substrate of a display panel according to an exemplary embodiment. The polarizing layer 6 of the second substrate 200 may be colored similarly to the color of the first substrate 100. The method of polarizing layer 300 is formed. That is, as shown in FIG. 17A, 'metal layer 611 and hard mask 612 for protecting metal layer 611 are stacked on top of second substrate 200. 24 201234083 Forming second metal linearity Then, a lithography or I-etch process grid 610 is performed. The M 1H7C shows the following: after the formation of the second metal linear grid (10), == protects and corrects the surface of the second metal linear mesh, 3 Show that the black matrix is thin" formed on the flattened layer of the touch, 疋Corresponding to the region of the TFT 411; and a jacket sound 0-2 is formed to correct the black matrix 2G (M. Further, the electrode is formed by sputtering, the gas is used, and the two substrates of FIG. 16D are used. FIG. 18A and FIG. 18B are schematic diagrams illustrating a method of forming a light absorbing layer, according to an exemplary embodiment, in accordance with an exemplary embodiment. FIG. 18A shows a first metal layer 311, a dummy layer 313, a second metal layer 315, and a light absorbing layer 33A stacked on the first substrate 100 in this order. Next, as shown in Fig. 18B, a patterning process is applied to form a first metal linear network 31 and a light absorbing layer 33A. 19A and 19B are schematic views illustrating a method of forming a light absorbing layer, according to another exemplary embodiment. In this exemplary embodiment, light absorbing layer 330 is formed under second metal linear grid 610. As shown in Fig. 19A, the light absorbing layer 330, the metal layer 611, and the hard mask 612 are sequentially stacked over the second substrate 200. Next, as shown in Fig. 19B, a patterning process is applied to form the second metal linear network 610 and the light absorbing layer 330. 25 201234083 pif FIGS. 20A and 20B are schematic diagrams illustrating a method of forming an additional polarizing layer, in accordance with an exemplary embodiment. As shown in Fig. 20A, an additional polarizing layer 800 having a third metal linear grid 81 is first formed on the first substrate (10), and a planarization layer 100-1 is formed on the additional polarizing layer 8''. Next, as shown in Fig. 20B, the color calendering polarizing layer 3 and the halogen element 400 are sequentially formed. The second substrate 2 is formed as shown in FIG. 11D, and then coupled as shown in FIG. 14, thereby completing the display panel 1A including the additional polarizing layer 800, the color filter polarizing layer 300, and the polarizing layer 600, The display panel 1000. 21 is a schematic diagram of a display device in accordance with an exemplary embodiment, and FIG. 22 is a control block diagram of a display device in accordance with an exemplary embodiment. As shown in the figure, the display device 1 includes a display panel, a backlight assembly 2000, and receivers 3100, 3200, and 3300 for accommodating the above components, and a video provider 4000. The display panel 1000 includes: a first substrate 100, a second substrate 200 opposite to the first substrate 100, a liquid coring layer (not drawn) inserted into the first substrate 1 and the second substrate 2, and A panel driver that drives the pixel layer 4 to display video signals. The panel driver can include a gate drive 910, a data wafer film package 920, and a printed circuit board 930. The first substrate 100 and the second substrate 200 may be formed together with the halogen layer 4, the color filter polarizing layer 300, the polarizing layer 600, the black matrix 200-1, and the common electrode 200-3. The color filter polarizing layer 300 polarizes the incident light entering the first substrate 100, and the polarizing layer 600 will be separated from the display panel 1.

26 201234083 . pit· 開的光極化。 顯示面板1000接收外部光和控制穿過液晶層的光之 強度(液晶層插入於第一基板100和第二基板200之中), 由此顯示影像。 閘極驅動1C 910整合和形成於第一基板100之上,且 連接至形成於第一基板1〇〇上之每一閘線(未繪示)。另 外,資料晶片膜封裝920可連結至形成於第一基板1〇〇上 的每一資料線(未繪示)。此時,資料晶片膜封裝920可 包括捲帶式自動接合(tape automated bonding,TAB)之 捲帶’其中半導體晶片以TAB技術黏著在形成於底膜上的 配線圖案。作為晶片膜封裝之一例,可使用捲帶承載封裝 (tape carrier package,TCP)、薄膜覆晶(chip 〇n film, COF)等。 同時’印刷電路板930可裝設驅動構件,用以輸入閘 極驅動信號至閘極驅動1C 931,且用以輸入資料驅動訊號 至資料晶片膜封裝920。 背光組件2000可包括用以導引光線的導光板2200、 用以發射光的第一光源2300a和第二光源2300b、置於導 光板2200下的反射片2400,以及一個或多個光學片2100。 導光板2200用以導引欲提供給顯示面板1〇〇〇之光。 導光板2200可由透明塑膠板(例如丙稀)製成,且導引由 第一 2300a和第二光源2300b發射之光,使其向形成於導 光板2200上之顯示面板1〇〇〇移動。在導光板2200之背面 可有不同圖案’以改變進入導光板2200内之光的移動方 27 201234083 向’使其朝向顯示面板1 〇〇〇移動。 如圖中所示,第一光源2300a和第二光源2300b可包 括發光二極體(LED)作為點光源。光源不限於LED,且 可包括線光源,例如冷陰極榮光燈(cold cathode fluorescent lamp ’ CCFL )或熱螢光燈(hot fluorescent lamp ’ HCFL )。 第一光源2300a和第二光源2300b與提供電力之變流器(未 繪示)電性連接,且接收電力。 反射片2400設置於導光板2200之下,並向上反射在 導光板2200下方發射之光。具體而言,不被形成於導光板 2200背面之細微點狀圖案反射的光,被朝向導光板2200 再次反射,由此減少進入顯示面板1000之光損失,且增加 通過導光板2200之出光面傳送的光之均勻性。 一個或多個光學片2100設置於導光板2200之上方, 用以擴散和聚集由導光板2200所傳送之光線。光學片2100 可包括擴散片、稜鏡片、保護片等。擴散片可置於導光板 2200和棱鏡片之中,將來自導光板2200之入射光擴散, 藉此避免光線部份集中。稜鏡片可包括規律安置於其上之 三稜柱’用以聚集由擴散片所擴散之光,使光線之方向與 顯示面板1000垂直。保護片可形成於稜鏡片上,保護稜鏡 片之表面,且擴散光線,以致可均勻分布光線。 容納器可包括低容納器3100、中容納器3200和高容 納器3300。低容納器3100可容納反射片2400、第一光源 2300a、第二光源2300b、導光板2200以及一個或多個光 學片2100。低容納器3100可由金屬製成,所述金屬具有 28 201234083f 足夠強度以支撐外部衝擊,且具有接地能力。 視訊提供器400與顯示面板1〇〇〇連接,且提供視訊 訊號。雖然視訊提供器400未繪示於圖21中,視訊提供器 4000可安置於反射片2400和低容納器3100之上,或可置 放於低容納器3100之背面。 圖23為根據一例示性實施例,說明在顯示裝置中顯 示三維(3D)影像之示意圖。 圖23繪示以棋盤狀形式設置的彩色濾光偏光層3〇〇、 偏光層600和極化眼鏡5000。據此例示性實施例之顯示裝 置包括顯示面板1000以及用以分別觀看顯示於顯示面板 1000上之左眼影像和右眼影像之極化眼鏡5〇〇〇。 極化眼鏡5000包括左眼透鏡5100和右眼透鏡5200, 兩者分別傳送彼此垂直之極化成份,亦即,第一極化成份 和第二極化成份。左眼透鏡51〇〇和右眼透鏡5200分別傳 送以不同方式偏振的光。因此’穿透左眼透鏡5100之光不 能穿透右眼透鏡5200,且穿透右眼透鏡5200之光不能穿 透左眼透鏡5100。 在此例示性實施例中’視訊提供器4000將左眼影像 資料和右眼影像資料施加在對應於棋盤中的單元的次晝素 410上’以致左眼影像和右眼影像可交互顯示在棋盤之相 鄰的單元上。根據極化的狀態,左眼影像和右眼影像僅可 傳送至兩透鏡5100和52000之其中之一。因此,使用者將 透過其雙眼看到之左眼影像和右眼影像結合,而感知到三 維影像。 29 201234083 f 在光所穿出之第二基板之外表面上,可設置偏光器, 用以將直線偏振光改變為圓偏振光《此外,極化眼鏡5〇〇〇 可包括圓偏振偏光器,用以傳送圓偏振光。 在根據此例示性實施例的顯示器中,第一金屬線性網 格310和第二金屬線性網格610以棋盤狀形成於顯示面板 1000中,藉此促成被動類型立體影像之形成。在以被動模 式顯示二維影像的例子中,左眼影像和右眼影像必須是在 工間上分開的(spatially divided )。此時,若使用偏光膜, 便會產生影像解析度降低的缺點。在此例示性實施例中的 顯示面板1000可將極化狀態改變為棋盤形狀,以致可提供 高品質的三維影像,而不讓使用者所察覺到解析度降低。 根據此例示性實施例的顯示裝置所包含的顯示面板 可藉由根據快門式眼鏡(shutter-type glasses )之分時 (timesharing),顯示左眼影像和右眼影像。此外,顯示 面板1000之極化狀態可隨著圖丨2中所示之行或列而改變。 圖24為說明圖23之顯示裝置的製造方法之示意圖。 首先,在操作S10中,在第一基板1〇〇之上以棋盤形 式設置用以傳送第一極化成份的第一極化線性網格pq, 以及用以傳送第二極化成份的第二極化線性網格p_2,藉 此形成彩色濾光偏光層300。彩色濾光偏光層3〇〇之第一 金屬線性網格310以不同節距排列,以發射不同色彩之 光,像是紅色、綠色和藍色。形成各節距小於1/2紅光波 長的紅色金屬線性網格,且使其對應於次晝素41〇安置以 發射紅色光;形成各節距小於1/2綠光波長的綠色金屬線 30 201234083. 性網格’且使麟聽:欠晝素41G安置 節距小於1/2藍光波長的藍色金屬線 吏二對應於次晝素⑽安置以發射藍色光。第—金屬線性 網格310是由依序堆疊第一金屬層3U、絕緣層313和第 一金屬層315並對其加以圖案化而形成。 在第一金屬線性網格310上可形成光吸收層33〇以吸 收來自外部的人射光’而非吸收來自背歧件·㈣光。 接,’在操作S20中,偏光層6〇〇形成於第二基板2〇〇 上,使得偏光層600之第一極化線性網格ρ ι可對應於彩 色濾光偏光層300之第二極化線性網格p_2,且偏光層6〇〇 ,第二極化線性_ P_2可對應於彩色滤光絲層3〇〇之 第一極化線性網格p_l。 在操作S30中,包括多個次晝素41〇的晝素層4〇〇形 成於彩色濾光偏光層300或偏光層6〇〇之其中一者上。若 晝素層400與彩色遽光偏光層300形成於同一基板上,則 畫素層400可先於偏光層6〇〇而形成。若畫素層4〇〇與偏 光層600形成於同一基板上,則畫素層4〇〇可先於彩色濾 光偏光層300而形成。 之後,在操作S40中,將第一基板1〇〇和第二基板2〇〇 封裝,且將液晶注入形成於第一基板1〇〇和第二基板2〇〇 之間的空間中。 將可提供視訊資料至次晝素41〇之視訊提供器4〇〇〇 及用以驅動晝素層400之面板驅動器9〇〇連接至基板,且 將左眼影像資料和右眼影像資料施加於次晝素41〇上,以 31 201234083. 使左眼影像資料和右眼影像資料可交錯顯示於棋盤之相鄰 的單元中。於是’使用者結合透過極化眼睛5〇〇〇看到的左 眼影像和右眼影像,從而將左眼影像和右眼影像感知為三 維影像。 如上述’根據一例示性實施例,提供顯示面板和包含 顯示面板之顯示裝置,其中,可降低生產成本且簡化生產 過程。 根據另一例示性實施例,提供具有較佳光學效率之顯 示面板和包含顯示面板之顯示裝置。 根據又一實施例,提供顯示裝置,所述顯示裝置可顯 示具有絕佳可視度之被動類型立體影像。 雖然僅敘述和描繪少數幾個例示性實施例,然而本技 術領域中具有通常知識者應理解,在不脫離發明概念之原 則下,這賴示性實⑽當可做些許之更動,本發明之範 圍當視後附之申請專利範圍與其等效内容所界定者為準。 應注意與本發明相關,而與本說明書同時發表或在本 說明書之前發表的論域讀,賊著本賴t而為公眾 所知’且所有該些論文與文件_容則丨时式併入本文。 本說明書所揭露之特徵(包括其所附之冑請專利範 圍、摘要及圖式)及/或由此揭露之任何方法或任何製程 之所有步驟’除了具有至少—些彼此互斥之特徵及/或步 驟的組合外,可以任何組合方式結合。 1本月書所揭露之每一特徵(包括其所附之申請專利 把圍、摘要及圖式)’除特別聲明外,可由能達成同樣效26 201234083 . Pit · Open light polarization. The display panel 1000 receives external light and controls the intensity of light passing through the liquid crystal layer (the liquid crystal layer is inserted into the first substrate 100 and the second substrate 200), thereby displaying an image. The gate driving 1C 910 is integrated and formed on the first substrate 100, and is connected to each gate line (not shown) formed on the first substrate 1A. In addition, the data wafer film package 920 can be coupled to each of the data lines (not shown) formed on the first substrate 1A. At this time, the data wafer film package 920 may include a tape automated bonding (TAB) tape in which the semiconductor wafer is adhered to the wiring pattern formed on the base film by TAB technology. As an example of the wafer film package, a tape carrier package (TCP), a chip 〇n film (COF), or the like can be used. At the same time, the printed circuit board 930 can be provided with a driving member for inputting the gate driving signal to the gate driving 1C 931 and for inputting the data driving signal to the data wafer film package 920. The backlight assembly 2000 may include a light guide plate 2200 for guiding light, a first light source 2300a and a second light source 2300b for emitting light, a reflection sheet 2400 disposed under the light guide plate 2200, and one or more optical sheets 2100. The light guide plate 2200 is used to guide the light to be supplied to the display panel 1 . The light guide plate 2200 may be made of a transparent plastic plate (for example, acryl), and guide the light emitted by the first 2300a and the second light source 2300b to move toward the display panel 1A formed on the light guide plate 2200. There may be a different pattern on the back side of the light guide plate 2200 to change the movement of the light entering the light guide plate 2200. The 201234083 is moved toward the display panel 1 ’. As shown in the figure, the first light source 2300a and the second light source 2300b may include a light emitting diode (LED) as a point light source. The light source is not limited to an LED, and may include a line light source such as a cold cathode fluorescent lamp (CCFL) or a hot fluorescent lamp 'HCFL'. The first light source 2300a and the second light source 2300b are electrically connected to a current-providing converter (not shown) and receive power. The reflection sheet 2400 is disposed under the light guide plate 2200 and reflects the light emitted under the light guide plate 2200 upward. Specifically, light that is not reflected by the fine dot pattern formed on the back surface of the light guide plate 2200 is reflected again toward the light guide plate 2200, thereby reducing light loss entering the display panel 1000 and increasing transmission through the light guide surface of the light guide plate 2200. The uniformity of light. One or more optical sheets 2100 are disposed above the light guide plate 2200 for diffusing and collecting the light transmitted by the light guide plate 2200. The optical sheet 2100 may include a diffusion sheet, a gusset, a protective sheet, and the like. The diffusion sheet can be placed in the light guide plate 2200 and the prism sheet to diffuse the incident light from the light guide plate 2200, thereby avoiding partial concentration of the light. The cymbal may include a triangular prism </ RTI> regularly disposed thereon for collecting the light diffused by the diffusion sheet so that the direction of the light is perpendicular to the display panel 1000. The protective sheet can be formed on the cymbal sheet to protect the surface of the cymbal sheet and diffuse the light so that the light can be evenly distributed. The receptacle can include a low receptacle 3100, a middle receptacle 3200, and a high receptacle 3300. The low receiver 3100 can accommodate the reflective sheet 2400, the first light source 2300a, the second light source 2300b, the light guide plate 2200, and one or more optical sheets 2100. The low receiver 3100 can be made of metal having a strength of 28 201234083f to support an external impact and having a grounding capability. The video provider 400 is connected to the display panel 1 and provides a video signal. Although the video provider 400 is not shown in FIG. 21, the video provider 4000 can be disposed over the reflective sheet 2400 and the low container 3100, or can be placed on the back of the low container 3100. Figure 23 is a diagram illustrating the display of a three-dimensional (3D) image in a display device, in accordance with an illustrative embodiment. 23 shows a color filter polarizing layer 3, a polarizing layer 600, and polarized glasses 5000 which are provided in a checkerboard form. The display device according to this exemplary embodiment includes a display panel 1000 and polarized glasses 5 for respectively viewing left and right eye images displayed on the display panel 1000. The polarized glasses 5000 include a left-eye lens 5100 and a right-eye lens 5200, which respectively transmit polarization components perpendicular to each other, that is, a first polarization component and a second polarization component. The left-eye lens 51A and the right-eye lens 5200 respectively transmit light polarized in different ways. Therefore, light that penetrates the left-eye lens 5100 cannot penetrate the right-eye lens 5200, and light that penetrates the right-eye lens 5200 cannot penetrate the left-eye lens 5100. In this exemplary embodiment, the 'video provider 4000 applies left-eye image data and right-eye image data to the secondary pixels 410 corresponding to the cells in the board' so that the left-eye image and the right-eye image can be interactively displayed on the chessboard. On the adjacent unit. According to the state of polarization, the left eye image and the right eye image can only be transmitted to one of the two lenses 5100 and 52000. Therefore, the user perceives the three-dimensional image by combining the left eye image and the right eye image seen by both eyes. 29 201234083 f On the outer surface of the second substrate through which the light passes, a polarizer may be provided to change the linearly polarized light into circularly polarized light. Further, the polarized glasses 5 may include a circularly polarized polarizer, Used to transmit circularly polarized light. In the display according to this exemplary embodiment, the first metal linear grid 310 and the second metal linear grid 610 are formed in a checkerboard shape in the display panel 1000, thereby facilitating the formation of a passive type stereoscopic image. In the example of displaying a two-dimensional image in a passive mode, the left-eye image and the right-eye image must be spatially divided. At this time, if a polarizing film is used, there is a disadvantage that the image resolution is lowered. The display panel 1000 in this exemplary embodiment can change the polarization state to a checkerboard shape so that a high-quality three-dimensional image can be provided without the user perceiving a decrease in resolution. The display panel included in the display device according to this exemplary embodiment can display the left eye image and the right eye image by timesharing according to shutter-type glasses. Furthermore, the polarization state of display panel 1000 can vary with the rows or columns shown in Figure 2. Figure 24 is a schematic view showing a method of manufacturing the display device of Figure 23; First, in operation S10, a first polarization linear grid pq for transmitting a first polarization component and a second for transmitting a second polarization component are disposed in a checkerboard form on the first substrate 1A. The linear grid p_2 is polarized, whereby the color filter polarizing layer 300 is formed. The first color linear grid 310 of the color filter polarizing layer 3 is arranged at different pitches to emit light of different colors, such as red, green and blue. Forming a red metal linear grid having pitches less than 1/2 red light wavelength, and arranging them corresponding to the secondary pixels 41〇 to emit red light; forming green metal lines 30 each having a pitch less than 1/2 green wavelength 201234083. Sexual Grid 'and make Lin listen: The blue metal wire with a pitch less than 1/2 blue wavelength is placed in the sputum 41G corresponding to the secondary sputum (10) to emit blue light. The first-metal linear grid 310 is formed by sequentially stacking and patterning the first metal layer 3U, the insulating layer 313, and the first metal layer 315. A light absorbing layer 33 可 may be formed on the first metal linear grid 310 to absorb human light from the outside instead of absorbing light from the back reflector. Then, in operation S20, the polarizing layer 6 is formed on the second substrate 2〇〇 such that the first polarized linear grid ρ of the polarizing layer 600 can correspond to the second pole of the color filter polarizing layer 300. The linear grid p_2 is formed, and the polarizing layer 6〇〇, the second polarization linearity _P_2 may correspond to the first polarization linear grid p_1 of the color filter layer 3〇〇. In operation S30, a pixel layer 4 including a plurality of secondary halogens 41 is formed on one of the color filter polarizing layer 300 or the polarizing layer 6A. If the halogen layer 400 and the color calendering polarizing layer 300 are formed on the same substrate, the pixel layer 400 can be formed before the polarizing layer 6?. If the pixel layer 4 is formed on the same substrate as the polarizing layer 600, the pixel layer 4 can be formed prior to the color filter polarizing layer 300. Thereafter, in operation S40, the first substrate 1A and the second substrate 2'' are packaged, and liquid crystal is injected into the space formed between the first substrate 1'' and the second substrate 2''. The video server 4 that can provide the video data to the sub-stimulus 41 and the panel driver 9 that drives the pixel layer 400 are connected to the substrate, and the left-eye image data and the right-eye image data are applied to On the 昼 昼 〇 〇 以 以 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 Then, the user combines the left-eye image and the right-eye image seen through the polarized eyes 5〇〇〇 to perceive the left-eye image and the right-eye image as a three-dimensional image. As described above, according to an exemplary embodiment, a display panel and a display device including the display panel are provided, in which production cost can be reduced and a production process can be simplified. According to another exemplary embodiment, a display panel having better optical efficiency and a display device including the display panel are provided. According to still another embodiment, a display device is provided that can display a passive type of stereoscopic image with excellent visibility. Although only a few exemplary embodiments have been described and illustrated, it will be understood by those of ordinary skill in the art that the present invention may be modified, without departing from the inventive concept. The scope is subject to the definition of the patent application and its equivalents. Attention should be paid to the present invention, and the domain read at the same time as the present specification or published before the present specification is known to the public by the thief, and all of the papers and documents are incorporated into the document. This article. The features disclosed in the present specification (including the appended claims, the abstract and the drawings) and/or all steps of any method or process disclosed herein are in addition to having at least some mutually exclusive features and/or Alternatively or in combination of steps, it may be combined in any combination. 1 Each feature disclosed in this month's book (including its attached patent application, summary, and schema) may achieve the same effect unless otherwise stated.

32 201234083 . V— JL JL^lr =^效或類似目的之替代特徵取代。因此,除特別聲明 卜’母一揭露之特徵僅為等效或類似之-系列通常特徵之 -— &gt;[列 〇 本發明並不俯艮於前述實施例的細節。本發明延伸及 於t說明書所揭露之任何新穎特徵或任何新穎特徵的結合 (匕括其所附之申請專利範圍、摘要及圖式),或及於任 何與本說明書所揭露之任何新穎方法或任何新穎製程的步 驟’或其組合。 【圖式簡單說明】 圖1呈現根據-例示性實施例之顯示面板之層結構。 圖2為圖1之顯示面板之剖面圖。 圖3是呈現在圖丨的第一基板上的彩色濾光偏光層的 圖4A以及圖4B為說明次晝素之第一金屬線性網格之 示意圖。 圖5為圖3之彩色濾光偏光層之剖面圖。 圖6為在圖1之第二基板上的偏光層的剖面圖。 圖7為根據-例示性實施例的另一彩色據光偏光層之 剖面圖。 圖8為呈現根據另一例示性實施例之顯示面板之声垆 構的示意圖。 圖9至圖11為呈現根據另一例示性實施例呈現顯示 面板之彩色濾光偏光層以及偏光層之示意圖。 ’ 圖12為根據一例示性實施例’說明顯示面板之第一和 33 201234083 第二金屬線性網格之極化之示意圖。 圖13為根據另一例示性實施例,說明顯示面板之 和第二金屬線性網格之極化之示意圖。 〜 圖14為根據另一例示性實施例之顯示面板之剖面 圖15為根據又一例示性實施例之顯示面板之剖面。 圖16A至圖16D為根據一例示性實施例,說明° 板之第一基板之生產方法之示意圖。 不面 圖17A至圖17D為根據一例示性實施例,說明顯八 板之第二基板之生產方法之示意圖。 :^面 圖18A以及圖18B為根據一例示性實施例,說明 收層之形成方法之示意圖。 吸 圖19A和圖19B為根據另一例示性實施例,說明 收層之形成方法之示意圖。 吸 圖20A以及圖20B為根據一例示性實施例,說明附加 偏光層之形成方法之示意圖。 口 圖21為根據一例示性實施例之顯示裝置之示意圖。 圖22為根據一例示性實施例的顯示裝置之控制方塊 圖23為根據一例示性實施例,說明在顯示裝置中之三 維(3D)影像之呈現的示意圖。 圖24為說明圖23之顯示裝置之生產方法的示意圖。 【主要元件符號說明】 1 :顯示裝置 100 :第一基板32 201234083 . V— JL JL^lr = Replacement of alternative features for effect or similar purposes. Therefore, unless otherwise stated, the features disclosed herein are merely equivalent or similar - the usual features of the series - - &gt; [column </ RTI> The present invention does not deserve the details of the foregoing embodiments. The present invention extends to any novel feature or combination of novel features disclosed in the specification, including the appended claims, the abstract and the drawings, or any novel method disclosed in the specification or Any of the steps of a novel process' or a combination thereof. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 presents a layer structure of a display panel according to an exemplary embodiment. 2 is a cross-sectional view of the display panel of FIG. 1. Fig. 3 is a view showing a color filter polarizing layer on the first substrate of Fig. 4A and Fig. 4B are schematic views showing a first metal linear grid of a sub-tenk. Figure 5 is a cross-sectional view of the color filter polarizing layer of Figure 3. Figure 6 is a cross-sectional view of a polarizing layer on the second substrate of Figure 1. Figure 7 is a cross-sectional view of another color light polarizing layer in accordance with an exemplary embodiment. FIG. 8 is a schematic diagram showing a sound structure of a display panel according to another exemplary embodiment. 9 through 11 are schematic views showing a color filter polarizing layer and a polarizing layer of a display panel according to another exemplary embodiment. Figure 12 is a diagram illustrating the polarization of the first and 33 201234083 second metal linear grids of the display panel in accordance with an exemplary embodiment. Figure 13 is a diagram illustrating polarization of a display panel and a second metal linear grid, in accordance with another exemplary embodiment. 14 is a cross section of a display panel according to another exemplary embodiment. FIG. 15 is a cross section of a display panel according to still another exemplary embodiment. 16A through 16D are schematic views illustrating a method of producing a first substrate of a plate according to an exemplary embodiment. 1A to 17D are schematic views illustrating a method of producing a second substrate of a display panel, according to an exemplary embodiment. Fig. 18A and Fig. 18B are schematic diagrams illustrating a method of forming a layer, according to an exemplary embodiment. 19A and 19B are schematic views illustrating a method of forming a layer according to another exemplary embodiment. 20A and 20B are schematic views illustrating a method of forming an additional polarizing layer, according to an exemplary embodiment. Figure 21 is a schematic illustration of a display device in accordance with an exemplary embodiment. Figure 22 is a control block of a display device in accordance with an exemplary embodiment. Figure 23 is a schematic diagram illustrating the presentation of three-dimensional (3D) images in a display device, in accordance with an illustrative embodiment. Fig. 24 is a schematic view showing the production method of the display device of Fig. 23. [Main component symbol description] 1 : Display device 100 : First substrate

3434

201234083f y\j^ i pH 100-1 :平面化層 200 :第二基板 200-1 :黑矩陣 200-2 :外套層 200-3 :共用電極 300 :彩色濾光偏光層 310 :第一金屬線性網格 310-B :藍色金屬線性網格 310-G :綠色金屬線性網格 310-R :紅色金屬線性網格 311 :第一金屬層 313 :絕緣層 315 :第二金屬層 320 :介電層 330 :光吸收層 331 :第一光吸收層 400 :畫素層 410 :次晝素 410-B :藍色次晝素 410-G :綠色次畫素 410- R :紅色次晝素201234083f y\j^ i pH 100-1: planarization layer 200: second substrate 200-1: black matrix 200-2: overcoat layer 200-3: common electrode 300: color filter polarizing layer 310: first metal linearity Grid 310-B: blue metal linear grid 310-G: green metal linear grid 310-R: red metal linear grid 311: first metal layer 313: insulating layer 315: second metal layer 320: dielectric Layer 330: light absorbing layer 331: first light absorbing layer 400: pixel layer 410: ruthenium 410-B: blue ruthenium 410-G: green sub-pixel 410-R: red ruthenium

411 : TFT 411 -1 :閘極 411- 2 :閘極絕緣層 35 201234083. ji/〇zipif 411-3 :半導體層 411-4 :歐姆接觸層 411-5 :資料線路(源極) 411-6 :資料線路(汲極) 411-7:保護層 412 :晝素電極 413 :維持電極 500 :液晶層 600:偏光層 610 :第二金屬線性網格 611 :金屬層 612 :硬遮罩 631 :第二光吸收層 700 :反射限制層 800 :附加偏光層 810 :第三金屬線性網格 900 :面板驅動器 910 ··閘極驅動1C 920 :資料晶片膜封裝 930 :印刷電路板 1000 :顯示面板 2000 :背光組件 2100 :光學片 2200 :導光板 36 201234083. J 厶 1 pif 2300a :第一光源 2300b :第二光源 2400 :反射片 3100 :低容納器 3200 :中容納器 3300 :高容納器 4000 :視訊提供器 5000 :極化眼鏡 5100 :左眼透鏡 5200 :右眼透鏡 I :晝素 P-1 :第一極化線性網格 P-2 :第二極化線性網格 S10、S20、S30、S40、S50 :操作 37411 : TFT 411 -1 : Gate 411 - 2 : Gate insulating layer 35 201234083. ji / 〇 zipif 411-3 : Semiconductor layer 411-4 : Ohmic contact layer 411-5 : Data line (source) 411-6 : data line (drain) 411-7: protective layer 412: halogen electrode 413: sustain electrode 500: liquid crystal layer 600: polarizing layer 610: second metal linear grid 611: metal layer 612: hard mask 631: Two light absorbing layer 700: reflection limiting layer 800: additional polarizing layer 810: third metal linear grid 900: panel driver 910 · gate driving 1C 920: data wafer film package 930: printed circuit board 1000: display panel 2000: Backlight assembly 2100: optical sheet 2200: light guide plate 36 201234083. J 厶1 pif 2300a: first light source 2300b: second light source 2400: reflective sheet 3100: low container 3200: medium container 3300: high container 4000: video supply 5000: polarized glasses 5100: left-eye lens 5200: right-eye lens I: halogen P-1: first-polarized linear grid P-2: second-polarized linear grids S10, S20, S30, S40, S50: Operation 37

Claims (1)

201234083 o^u^ipif 七、申請專利範圍: 1. 一種顯示面板’具有液晶層’所述顯示面板包括: 第一基板和第二基板,彼此相對配置; 彩色濾光偏光層,其形成於介於所述第一基板和所述 第一基板之間的一表面上,且包括第一金屬線性網格,戶斤 述第一金屬線性網格以不同節距排列,從而以不同顏色發 射入射光的第一極化成份;以及 偏光層’其包括第二金屬線性網格’所述第二金屬線 性網格形成於與介於所述第一基板和所述第二基板之間的 所述表面的相對表面上。 2. 如申請專利範圍第1項所述之顯示面板,更包括畫 素層,其形成於介於所述第一基板和所述第二基板之間^ 所述表面上,且所述晝素層包括晝素,所述晝素包含多個 次晝素, 其中至少二個具有不同節距之次畫素形成於所述第 一金屬線性網格上。 3. 如申請專利範圍第1項所述之顯示面板,其中所述 第-金屬線性網格包括紅色金屬線性網格、 網格和藍色金屬線性網格,且 所述紅色金屬線性網格經安置使得各節距小於ι/2紅 光波長’所述綠色金屬線性網格經安置使得各節距小於】Ο 綠光波長’而所述藍色金屬線性網袼經安置使得各節距小 於1/2藍光波長。 4. 如申請專利範圍第1項所述之顯示面板,其中所述 38 201234083 f ± ριτ 第一金屬線性網格包括依序形成的第—金屬層、絕緣層和 第二金屬層。 5. 如申請專利範圍第4項所述之顯示面板,其中所述 第一金屬線性網格之高度大於其寬度。 6. 如申請專利範圍第丨項所述之顯示面板,其中所述 彩色濾光偏光層更包括介電層,所述介電層形成於所述第 '~金屬線性網格下。 7. 如申請專利範圍第1項所述之顯示面板,其中所述 第一金屬線性網格包括傳送所述第一極化成份的第一極化 線性網格,以及傳送所述第二極化成份的第二極化線性網 格,且 所述彩色濾光偏光層形塑為棋盤形式,且 所述第一極化線性網格和所述第二極化線性網格交 替地形成於所述棋盤的相鄰單元中。 8. 如申請專利範圍第7項所述之顯示面板,其中所述 第二金屬線性網格包括傳送所述第一極化成份的第一極化 線性網格’以及傳送所述第二極化成份的第二極化線性網 格,且 所述第二金屬線性網格之所述第一極化線性網格對 應於所述第一金屬線性網格之所述第二極化線性網格,且 所述第二金屬線性網格之第二極化線性網格對應於所述第 一金屬線性網格之第一極化線性網格。 9. 如申睛專利範圍第8項所述之顯示面板,更包括書 素層,所述畫素層形成於介於所述第一基板和所述第二^ 39 201234083. 板之間的一表面上,且所述晝素層包括畫素,所述晝素包 含多個次畫素, 其中所述棋盤之單元形成以對應於所述畫素。 10. 如申請專利範圍第1項所述之顯示面板,其中所 述第一金屬線性網格包括傳送所述第一極化成份的第一極 化線性網格,以及傳送所述第二極化成份的第二極化線性 網格,且 所述彩色濾光偏光層被分為多個行或多個列,且 所述第一極化線性網格以及所述第二極化線性網格 交替形成於所述彩色濾光偏光層之所述多個行或所述多個 列之中。 11. 如申請專利範圍第丨0項所述之顯示面板,其中所 述第二金屬線性網格包括傳送所述第一極化成份之第一極 化線性網格,以及傳送所述第二極化成份之第二極化線性 網格,且 所述第二金屬線性網格之第一極化線性網格對應於 所述第一金屬線性網格之第二極化線性網格,且所述第二 金屬線性網格之第二極化線性網格對應於所述第一金屬線 性網格之第一極化線性網格。 12. 如申請專利範圍第u項所述之顯示面板,更包括 晝素層,所述晝素層形成於介於所述第一基板和所述第二 基板之間的一表面上,且所述晝素層包括晝素,所述畫素 包含多個次晝素, 其中所述多個行或所述多個列形成以對應於畫素行 201234083 、 V*- Λ. fcJlX 或晝素列。 述第L3金ΐΐ請專利範圍第1項所述之顯示面板,其中所 第二金屬線^生、、罔格包含具有第一反射率的金屬,而所述 反射率低於包含具有第二反射率的金屬,所述第二 、所述第—反射率。 14·如申請專利範 第一光吸收層,其形成於戶、,所述之顯示面板,更包括 15.如申請專利範圏第一金屬線性網格上。 第二光吸收層,其形戍铃戶Μ項所述之顯示面板,更包括 一基板之間。 述第〜金屬線性網格和戶斤述第201234083 o^u^ipif VII. Patent application scope: 1. A display panel having a liquid crystal layer includes: a first substrate and a second substrate disposed opposite to each other; a color filter polarizing layer formed on the medium On a surface between the first substrate and the first substrate, and including a first metal linear grid, the first metal linear grid is arranged at different pitches to emit incident light in different colors. a first polarization component; and a polarizing layer 'which includes a second metal linear grid' formed by the second metal linear grid between the first substrate and the second substrate On the opposite surface. 2. The display panel of claim 1, further comprising a pixel layer formed on the surface between the first substrate and the second substrate, and the halogen The layer includes a halogen, the halogen containing a plurality of secondary halogens, wherein at least two sub-pixels having different pitches are formed on the first metal linear grid. 3. The display panel of claim 1, wherein the first metal linear grid comprises a red metal linear grid, a grid, and a blue metal linear grid, and the red metal linear grid The arrangement is such that the pitches are less than ι/2 red light wavelength 'the green metal linear grid is arranged such that the pitches are smaller than the Ο green light wavelength' and the blue metal linear mesh is arranged such that the pitches are less than 1 /2 blue wavelength. 4. The display panel of claim 1, wherein the first metal linear grid comprises a sequentially formed first metal layer, an insulating layer and a second metal layer. 5. The display panel of claim 4, wherein the height of the first metal linear grid is greater than its width. 6. The display panel of claim 2, wherein the color filter polarizing layer further comprises a dielectric layer, the dielectric layer being formed under the '~ metal linear grid. 7. The display panel of claim 1, wherein the first metal linear grid comprises a first polarization linear grid transmitting the first polarization component, and transmitting the second polarization a second polarization linear grid of components, and the color filter polarizing layer is shaped as a checkerboard, and the first polarization linear grid and the second polarization linear grid are alternately formed in the In the adjacent unit of the board. 8. The display panel of claim 7, wherein the second metal linear grid comprises a first polarization linear grid transmitting the first polarization component and transmitting the second polarization a second polarization linear grid of components, and the first polarization linear grid of the second metal linear grid corresponds to the second polarization linear grid of the first metal linear grid, And the second polarization linear grid of the second metal linear grid corresponds to the first polarization linear grid of the first metal linear grid. 9. The display panel of claim 8, further comprising a layer of a pixel, the pixel layer being formed between the first substrate and the second board; On the surface, and the elementary layer includes a pixel, the element includes a plurality of sub-pixels, wherein cells of the board are formed to correspond to the pixel. 10. The display panel of claim 1, wherein the first metal linear grid comprises a first polarization linear grid transmitting the first polarization component, and transmitting the second polarization a second polarization linear grid of components, and the color filter polarizing layer is divided into a plurality of rows or columns, and the first polarization linear grid and the second polarization linear grid alternate Formed in the plurality of rows or the plurality of columns of the color filter polarizing layer. 11. The display panel of claim 0, wherein the second metal linear grid comprises a first polarization linear grid transmitting the first polarization component, and transmitting the second pole a second polarization linear grid of components, and a first polarization linear grid of the second metal linear grid corresponds to a second polarization linear grid of the first metal linear grid, and A second polarization linear grid of the second metal linear grid corresponds to the first polarization linear grid of the first metal linear grid. 12. The display panel of claim 5, further comprising a halogen layer, the halogen layer being formed on a surface between the first substrate and the second substrate, and The morpheme layer includes a halogen, the pixel including a plurality of secondary elements, wherein the plurality of rows or the plurality of columns are formed to correspond to a pixel row 201234083, a V*- Λ.fcJlX, or a pixel column. The display panel of claim 1, wherein the second metal wire comprises a metal having a first reflectivity, and the reflectance is lower than comprising a second reflection. The metal of the rate, the second, the first reflectance. 14. The patent application vane first light absorbing layer, which is formed on the household, said display panel, and further comprises 15. as claimed in the first metal linear grid. The second light absorbing layer, which is shaped by the display panel described in the item, further includes a substrate. The first ~ metal linear grid and the household account
TW100133437A 2011-02-14 2011-09-16 Display panel TW201234083A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161442394P 2011-02-14 2011-02-14
KR1020110037631A KR101282261B1 (en) 2011-02-14 2011-04-22 Display panel and display apparatus comprising the same

Publications (1)

Publication Number Publication Date
TW201234083A true TW201234083A (en) 2012-08-16

Family

ID=46884793

Family Applications (3)

Application Number Title Priority Date Filing Date
TW100133437A TW201234083A (en) 2011-02-14 2011-09-16 Display panel
TW100133741A TW201234084A (en) 2011-02-14 2011-09-20 Display panel
TW100133742A TW201234085A (en) 2011-02-14 2011-09-20 Display panel

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100133741A TW201234084A (en) 2011-02-14 2011-09-20 Display panel
TW100133742A TW201234085A (en) 2011-02-14 2011-09-20 Display panel

Country Status (7)

Country Link
JP (3) JP2012168530A (en)
KR (4) KR101282138B1 (en)
BR (2) BR102012003335A2 (en)
CA (1) CA2826915A1 (en)
MX (3) MX2013009342A (en)
RU (2) RU2012105000A (en)
TW (3) TW201234083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489146B (en) * 2013-07-29 2015-06-21 惟勤科技股份有限公司 Lcd and method for generating 3d images by matching a software optical grating

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087927A1 (en) * 2012-12-06 2014-06-12 シャープ株式会社 Optical filter
CN105074554B (en) 2013-01-03 2018-04-17 英派尔科技开发有限公司 Display device including inorganic component and preparation method thereof and application method
KR102090713B1 (en) * 2013-06-25 2020-03-19 삼성디스플레이 주식회사 flexible display panel and the display apparatus comprising the flexible display panel
KR102150859B1 (en) * 2014-01-13 2020-09-03 삼성디스플레이 주식회사 Display device
KR102114965B1 (en) 2014-02-07 2020-05-26 삼성디스플레이 주식회사 Manufacturing method of reflective polarizer plate and display device having reflective polarizer plate
KR101587639B1 (en) * 2014-09-26 2016-01-21 광운대학교 산학협력단 Color switching device
KR102405943B1 (en) * 2014-11-11 2022-06-07 엘지디스플레이 주식회사 Color Filter Array Substrate and Method For Fabricating the Same, and Organic Light Emitting Diode Display Device Using the Same
KR102259048B1 (en) * 2014-11-20 2021-06-03 삼성디스플레이 주식회사 Polarizer integrated with color filters and method for manufacturing the same
KR102581465B1 (en) 2016-01-12 2023-09-21 삼성전자주식회사 Three-dimensional image display apparatus including the diffractive color filter
CN106125179B (en) * 2016-08-29 2019-02-26 武汉华星光电技术有限公司 Display device and its optical filter
KR20180045319A (en) 2016-10-25 2018-05-04 삼성전자주식회사 Directional backlight unit and three-dimensional image display apparatus including the same
US10989840B2 (en) * 2017-11-01 2021-04-27 Applied Materials, Inc. Non-absorptive trans-reflective nanostructured RGB filters
KR102497787B1 (en) * 2017-11-15 2023-02-09 삼성디스플레이 주식회사 Mehtod for manufacturing a display panel and display device comprising the display panel
JP7333943B2 (en) * 2019-06-26 2023-08-28 国立研究開発法人産業技術総合研究所 Polarizing element having wire grid structure and manufacturing method thereof
CN113138490A (en) * 2021-04-23 2021-07-20 武汉华星光电技术有限公司 Reflective display panel

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184711A (en) * 1994-12-29 1996-07-16 Sony Corp Polarization optical element
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
US6447120B2 (en) * 1999-07-28 2002-09-10 Moxtex Image projection system with a polarizing beam splitter
TWI256491B (en) * 2004-07-27 2006-06-11 Pavonine Inc Liquid crystal display device having thin polarizing film and thin phase retardation film
KR20070010472A (en) * 2005-07-19 2007-01-24 삼성전자주식회사 Hybrid type polarizer, method for manufacturing thereof and display device having the same
KR20070117816A (en) * 2006-06-09 2007-12-13 삼성전자주식회사 Polarizer, method for manufacturing the polarizer and display panel having the same
KR20080004880A (en) * 2006-07-07 2008-01-10 삼성전자주식회사 Color filter substrate, display panel having the color filter substrate and method of manufacturing the same
JP4778873B2 (en) * 2006-10-20 2011-09-21 株式会社 日立ディスプレイズ Liquid crystal display
KR101282323B1 (en) * 2006-10-26 2013-07-04 삼성디스플레이 주식회사 Liquid crystal display
JP5426071B2 (en) * 2006-11-14 2014-02-26 チェイル インダストリーズ インコーポレイテッド Liquid crystal display
KR20090025590A (en) * 2007-09-06 2009-03-11 삼성전자주식회사 Photo-luminescent liquid crystal display with reduced backscattering
JP2010049017A (en) * 2008-08-21 2010-03-04 Asahi Kasei E-Materials Corp Method for producing absorptive wire grid polarizer
KR20100084865A (en) * 2009-01-19 2010-07-28 삼성전자주식회사 Method of manufacturing display panel
JP2010197764A (en) * 2009-02-26 2010-09-09 Ricoh Co Ltd Polarization controlling element and image display apparatus using the same
JP5387377B2 (en) * 2009-12-14 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, and program
KR101007198B1 (en) * 2010-05-17 2011-01-12 광운대학교 산학협력단 Color filter based on nano-scale grating
JP5041045B2 (en) * 2010-08-03 2012-10-03 ソニー株式会社 Liquid crystal device, color filter substrate and array substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489146B (en) * 2013-07-29 2015-06-21 惟勤科技股份有限公司 Lcd and method for generating 3d images by matching a software optical grating

Also Published As

Publication number Publication date
JP2012168531A (en) 2012-09-06
KR20120093038A (en) 2012-08-22
KR20120093039A (en) 2012-08-22
KR101282138B1 (en) 2013-07-04
TW201234085A (en) 2012-08-16
CA2826915A1 (en) 2012-08-23
JP2012168530A (en) 2012-09-06
KR20120093040A (en) 2012-08-22
KR20120093037A (en) 2012-08-22
RU2012105000A (en) 2013-08-20
MX2012001614A (en) 2012-08-30
BR102012003335A2 (en) 2013-07-30
RU2012104999A (en) 2013-08-20
MX2012001613A (en) 2012-08-30
JP2012168532A (en) 2012-09-06
KR101282261B1 (en) 2013-07-10
KR101222566B1 (en) 2013-01-16
JP5577361B2 (en) 2014-08-20
TW201234084A (en) 2012-08-16
BR102012003319A2 (en) 2013-07-23
KR101197151B1 (en) 2012-11-09
MX2013009342A (en) 2014-07-30

Similar Documents

Publication Publication Date Title
TW201234083A (en) Display panel
US8587751B2 (en) Display panel and display apparatus having the same
US8964012B2 (en) Display panel having a polarizing layer and display apparatus having the same
US9268168B2 (en) Liquid crystal display device and method of fabricating the same
US8848141B2 (en) Display panel and display apparatus having the same
KR102028988B1 (en) Liquid crystal display device and method of fabricating the same
KR20130015470A (en) Display panel and display apparatus comprising the same
KR20130015471A (en) Display panel and display apparatus employing the same
JP2008102416A (en) Wire grid polarizer and liquid crystal display using the same
TW201027182A (en) Liquid crystal device and electronic apparatus
JP2016070949A (en) Display device
US20160313599A1 (en) Liquid crystal display device
TW201239468A (en) Display device
CN102636900A (en) Display panel and method of manufacuring display device
US9274347B2 (en) Polarized glasses type stereoscopic image display device and method of fabricating the same
US20130234916A1 (en) Stereoscopic Image Display Device and Method for Manufacturing the Same
TW201101258A (en) Substrate unit, display module and display apparatus
JP2021096363A (en) Liquid crystal display
JP2014002339A (en) Electro-optic device and electronic apparatus