TW201234084A - Display panel - Google Patents

Display panel Download PDF

Info

Publication number
TW201234084A
TW201234084A TW100133741A TW100133741A TW201234084A TW 201234084 A TW201234084 A TW 201234084A TW 100133741 A TW100133741 A TW 100133741A TW 100133741 A TW100133741 A TW 100133741A TW 201234084 A TW201234084 A TW 201234084A
Authority
TW
Taiwan
Prior art keywords
grid
layer
substrate
metal
linear grid
Prior art date
Application number
TW100133741A
Other languages
Chinese (zh)
Inventor
Dong-Hwan Kim
Seong-Eun Chung
Il-Yong Jung
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201234084A publication Critical patent/TW201234084A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133533Colour selective polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Abstract

A display panel and a display apparatus having the same, in which the display panel comprises a liquid crystal layer comprising first and second substrates which are disposed opposite to each other; and a color filter layer which is formed on a surface of one of the first and second substrates facing each other, and includes a first metal linear grid arranged at different pitches to emit a first polarized component of incident light with different colors. The provided display panel and display apparatus have decreased manufacturing costs and simplified manufacturing process.

Description

201234084 39622pif 六、發明說明: 【發明所屬之技術領域】 與範例實施例一致的裝置及方法是有關於一種顯示 面板及包含此顯示面板的顯示裝置,且特別是關於一種包 含液晶層的顯示面板及包含此顯示面板的顯示裝置。 【先前技術】 液晶顯示(liquid crystal display,LCD)面板包含兩者之 間配置有液晶層的第一基板及第二基板,以及用以偏振入 射至第一基板及第二基板的光的偏光膜。此外,為了使光 呈現色彩,此LCD面板内部包含具有色料的彩色濾光層。 當入射光通過偏光膜及彩色濾光層時,LCD面板的光效率 會降低。同時,LCD面板可更包括在入光侧的反射式增光 片(dual brightness enhance film,DBEF),以補償因偏振所 造成的光損失。 此偏光膜和反射式增光片增加LCD面板或顯示裝置的 製造成本且使製造的過程複雜化。 【發明内容】 因此’一個或多個範例實施例提供顯示面板及包含此 顯示面板的顯示裝置’其可降低製造成本及簡化製造過程。 另一範例實施例提供顯示面板及包含此顯示面板的 顯示裝置’其中顯示面板具有經改良的光效率。 又一範例實施例提供顯示裝置,其可為可視度 (visibility)優良之被動型立體影像。 根據本發明的裝置及方法提供於附屬請求項闡述 3 201234084 39622pif 中。其他本發明之特徵將會顯而易見於獨立請求項中,如 下所述。 前述及/或其他概念之實現可藉由提供具有液晶層的 顯不面板’此顯示面板包括:第一基板及第二基板,第一 基板及第二基板彼此對向配置;以及彩色濾光層,其形成 於第一基板與第二基板之間的第一基板與第二基板其中之 一者的表面上,且包括以不同間距(pitch)配置的第一金屬 線形栅格(metal linear grid),以發出具有不同顏色之入射光 的第一偏振分量。 顯示面板更可包含第一偏光層,以傳送不同於第一偏 振分量的第二偏振分量。 第一偏光層可包含第二金屬線性栅格,其形成於第一 基板與第二基板之間的另一個表面上。 顯示面板可更包含第二偏光層,其形成於彩色渡光層 之下方且包含能夠傳送第一偏振分量之筮_人租:曰 里乙弟二金屬線性柵 格。 [基板及第二基板可安置於顯示面板之相對面 (op—ef)上。第-基板及第二基板可安置 彩色濾光層、第一金屬線性栅格、第—偏光 曰 多者的相對面/側上以傳送。 ^八中一者或 ’其形成於第—基板及第 第一偏光層可包含偏光膜 基板其中另一者之外表面上。 顯示面板可更包含像素層,其形成於第 基板之間的一個表面上,且形成有肖丞板與弟一 ’匕括多個二欠像素之像 201234084 39622pif 素’且至少三個次像素可具有不同於第—金屬線性拇格的 間距。 第一金屬線性栅格可包含紅色金屬線性柵格、綠色金 屬線性拇格及藍色金屬線性柵·格,且紅色金屬線性彳冊格 以每個間距小於1/2紅光波長的方式配置、綠色金屬線性 柵格可以每個間距小於1/2綠光波長的方式配置’、及藍色 金屬線性栅格可以每個間距小於1/2藍光波長的方^配 置。 第一金屬線性柵格可包含依序堆疊的第一金屬層、絕 緣層、及第二金屬層。 曰、 第一金屬線性栅格之高度可大於其寬度。 彩色濾光層可更包含介電層,其堆疊於第一 柵格下方。 第-金屬雜栅格可包含第—偏振、_柵格以傳送 第-偏振分量及第二偏振_栅格以傳送第 分割成棋盤格形式,且第一偏振線二格 ^第一偏振線形栅格交替形成於的相鄰棋盤式單it格(cell) 第一 栅格可包含第—偏振線形柵格以傳送 屬線性柵格的第2ϊ :偏振線形柵格可對應於第一金 線形柵格。 對應於第—金屬雜栅格的第-偏振 5 201234084 39622pif 顯示面板可更包含像素層,其形成於苐—基板及第一 基板,間的一個表面上,且形成有包括多個::像素的; 素,其中棋盤式單元格以對應像素的方式形成。 第-金屬線性柵格可包含第-偏振線形栅格以傳送 第一偏振分量及第二偏振線形柵格以傳送第二偏振分量, 彩色遽光層可被分割成多個行或多個列,且第―偏^二形 柵格及第二偏振線形柵格可交替形成於彩色濾光層之多^ 行或多個列中。 第二金屬線性柵格可包含第〆偏振線形柵格以傳送 第-偏振分量及第二偏振線形栅格以傳送第二偏振分量, 且第二金屬線性栅格的第一偏振線形柵格可對應於第一金 屬線性栅格的第二偏振線形栅格,且第二金^性拇格的 第二偏振線形栅格可對應於第一金屬線性柵格的第一 線形拇格。 顯示面板可更包含像素層,其形成於第一基板與第二 基板之_-個表面上,且形成有包含多心像素'的& 素,其中前述行或前述列以對應像素行或像素列的方式形 成。 —其他,念可經由提供包含有液晶層之顯示面板的顯 示裝置來實現,其中顯示面板包含對向設置的第一基板及 第二基板及彩色濾光層,彩色濾光層形成於第一 二基板其中之一者上且位於第一基板及第二基板二間,且 彩色濾光層包含第一金屬線性栅格及背光組件,第一金屬 線性柵格以不同間距配置以使入射光之第—偏振分量發出 201234084 39622pif 不同顏色的光,背光組件傳送光至顯示面板上。 【實施方式】 以下’範例實施例將會參照附圖詳述,使所屬技術領 域中之通常知識者可實施。範例實施例可以多種形式呈現 而不限於此處所闡述之範例實施例。為了清楚說明之目 的’省略習知部份的描述,且全文中相同符號表示相同元 件。 圖1展示根據範例實施例之顯示面板的層結構。 如圖中所示,此範例實施例中的顯示面板1〇〇〇包含 彼此相對的第一基板1〇〇及第二基板200,及依序配置於 第一基板100及第二基板200之間的彩色濾光層300、像 素層400及液晶層500。包含液晶層500的顯示面板1〇〇〇 可用於電視、家庭電器(諸如顯示器)、行動電話、便攜式 多媒體播放器(portable multimedia player,PMP)、隨身型 易網機(Netbook)、筆記型電腦、可攜式終端機(諸如電子書 終端機或其類似物)、用於展示及廣告的顯示裝置等等。 彩色濾光層300及像素層400依序形成在第一基板 100上。配置受施加電壓調整的液晶層500是插於第一基 板100及第二基板200之間。根據扭轉向列 nematic ’ TN)模式、垂直配向(vertical alignment,VA)模式、 圖案垂直配向(patterned vertical alignment,PVA)模式、平 面轉換(in-plane switching)模式或顯示面板looo的類似操 作模式控制液晶層500的陣列。為改良光學視角,對次像 素進行分割或圖樣佈局,均勻地調整液晶層的反射係數, 201234084 39622pif 或可使用純吨術。201234084 39622pif 6. Description of the Invention: [Technical Field] The present invention is directed to a display panel and a display device including the same, and more particularly to a display panel including a liquid crystal layer and A display device containing this display panel. [Prior Art] A liquid crystal display (LCD) panel includes a first substrate and a second substrate in which a liquid crystal layer is disposed therebetween, and a polarizing film for polarizing light incident on the first substrate and the second substrate . Further, in order to make the light appear color, the inside of the LCD panel contains a color filter layer having a colorant. When incident light passes through the polarizing film and the color filter layer, the light efficiency of the LCD panel is lowered. At the same time, the LCD panel may further include a dual brightness enhancer (DBEF) on the light incident side to compensate for light loss due to polarization. This polarizing film and reflective addition sheet increase the manufacturing cost of the LCD panel or the display device and complicate the manufacturing process. SUMMARY OF THE INVENTION Accordingly, one or more exemplary embodiments provide a display panel and a display device including the same, which can reduce manufacturing costs and simplify the manufacturing process. Another exemplary embodiment provides a display panel and a display device comprising the display panel wherein the display panel has improved light efficiency. Yet another exemplary embodiment provides a display device that can be a passive stereoscopic image with excellent visibility. The apparatus and method according to the present invention are provided in the accompanying claim specification 3 201234084 39622pif. Other features of the invention will be apparent in the independent claims, as described below. The foregoing and/or other concepts can be achieved by providing a display panel having a liquid crystal layer. The display panel includes: a first substrate and a second substrate, the first substrate and the second substrate are disposed opposite to each other; and a color filter layer Forming on a surface of one of the first substrate and the second substrate between the first substrate and the second substrate, and including a first metal linear grid arranged at different pitches To emit a first polarization component of incident light having a different color. The display panel may further include a first polarizing layer to transmit a second polarization component different from the first polarization component. The first polarizing layer may include a second metal linear grid formed on the other surface between the first substrate and the second substrate. The display panel may further comprise a second polarizing layer formed below the color light-passing layer and comprising a linear grid of smectites capable of transmitting a first polarization component. [The substrate and the second substrate may be disposed on the opposite side (op-ef) of the display panel. The first substrate and the second substrate may be disposed on opposite sides/sides of the color filter layer, the first metal linear grid, and the first polarizing film. Or one of the eight or one of the first substrate and the first polarizing layer may include the other surface of the polarizing film substrate. The display panel may further include a pixel layer formed on one surface between the first substrates, and formed with a pattern of a plurality of two under-pixels, such as 201234084 39622pif prime, and at least three sub-pixels. It has a spacing different from that of the first metal linear thumb. The first metal linear grid may comprise a red metal linear grid, a green metal linear thumb grid and a blue metal linear grid grid, and the red metal linear grid grid is arranged in such a manner that each pitch is less than 1/2 red wavelength. The green metal linear grid can be configured in such a way that each pitch is less than 1/2 green wavelength, and the blue metal linear grid can be configured with less than 1/2 blue wavelength per pitch. The first metal linear grid may include a first metal layer, an insulating layer, and a second metal layer stacked in sequence. The height of the first metal linear grid may be greater than its width. The color filter layer may further comprise a dielectric layer stacked under the first grid. The first-metal miscellaneous grid may include a first polarization, a grid to transmit a first polarization component and a second polarization grid to transmit a first division into a checkerboard format, and the first polarization line is a first polarization linear grid An adjacent checkerboard single cell formed alternately in a cell may include a first-polarized linear grid to transmit a second ridge of the linear grid: the polarized linear grid may correspond to the first gold linear grid . The first polarization 5 corresponding to the first metal grid 6 201234084 39622pif display panel may further include a pixel layer formed on one surface between the substrate and the first substrate, and formed with a plurality of pixels: a prime, in which a checkerboard cell is formed in a corresponding pixel manner. The first-metal linear grid may include a first-polarized linear grid to transmit a first polarization component and a second polarization linear grid to transmit a second polarization component, and the color light-emitting layer may be divided into a plurality of rows or columns. And the first-dipole-shaped grid and the second polarization-line grid are alternately formed in the plurality of rows or columns of the color filter layer. The second metal linear grid may include a second polarization linear grid to transmit the first polarization component and the second polarization linear grid to transmit the second polarization component, and the first polarization linear grid of the second metal linear grid may correspond And a second polarization linear grid of the first metal linear grid, and the second polarization linear grid of the second gold linear grid may correspond to the first linear shape of the first metal linear grid. The display panel may further include a pixel layer formed on the surfaces of the first substrate and the second substrate, and formed with a pixel containing a multi-heart pixel, wherein the row or the foregoing column corresponds to a pixel row or pixel The way the columns are formed. - Others can be realized by providing a display device including a display panel including a liquid crystal layer, wherein the display panel includes opposite first and second substrates and a color filter layer, and the color filter layer is formed on the first two One of the substrates is located between the first substrate and the second substrate, and the color filter layer comprises a first metal linear grid and a backlight assembly, and the first metal linear grid is arranged at different pitches to make the incident light - The polarization component emits 201234084 39622pif different colors of light, and the backlight assembly transmits light to the display panel. [Embodiment] The following 'example embodiment' will be described in detail with reference to the accompanying drawings, and can be implemented by those of ordinary skill in the art. The example embodiments can be presented in various forms and are not limited to the example embodiments set forth herein. For the sake of clarity, the description of the conventional parts is omitted, and the same reference numerals are used throughout the drawings to refer to the same elements. FIG. 1 shows a layer structure of a display panel according to an exemplary embodiment. As shown in the figure, the display panel 1A of the exemplary embodiment includes a first substrate 1 and a second substrate 200 opposite to each other, and is sequentially disposed between the first substrate 100 and the second substrate 200. The color filter layer 300, the pixel layer 400, and the liquid crystal layer 500. The display panel 1 including the liquid crystal layer 500 can be used for a television, a home appliance (such as a display), a mobile phone, a portable multimedia player (PMP), a portable netbook (Netbook), a notebook computer, A portable terminal (such as an e-book terminal or the like), a display device for display and advertising, and the like. The color filter layer 300 and the pixel layer 400 are sequentially formed on the first substrate 100. The liquid crystal layer 500 disposed with the applied voltage adjustment is interposed between the first substrate 100 and the second substrate 200. Similar operating mode control according to twisted nematic 'TN) mode, vertical alignment (VA) mode, patterned vertical alignment (PVA) mode, in-plane switching mode or display panel looo An array of liquid crystal layers 500. In order to improve the optical viewing angle, the secondary pixels are segmented or patterned, and the reflection coefficient of the liquid crystal layer is uniformly adjusted. 201234084 39622pif or pure tons can be used.

舞二^據光層3_成於第一基板100上,且控制液曰 i。圖2 t影像的像素層_形成於彩色遽光層: 是展it現圖1中之彩色滤光層的圖,圖3A及圖3B 第—金屬線性栅格的圖,及圖4是圖2中 配晋光層的戴面圖。彩色濾、光層包含以不同間距 配置的第-金屬線性栅格Mq,使人射 可以發出不同色彩的光。 *偏振刀里 如圖中所示,第一金屬線性栅格31〇 :=,一基板100上。第-金屬綠性=: 女,、有特疋之長度(H)及寬度(W)。其週期(亦即第一金 屬線性柵格310之間距)根據所需色彩的光而受不一 控制。 7 如果將繞射光栅的間距調整為相等或短於光之1/2波 長,則無法形成繞射波,而僅會存在透射光(transmitted light)及反射光。如圖中所示,當入射光通過狀似狹縫的第 金屬線性栅格310時,垂直於第一金屬線性栅格31〇之 入射光的第一偏振分量會被第一基板1〇〇傳送,而平行於 第一金屬線性柵格310之第二偏振分量會成為反射光。亦 即,通過彩色濾光層300之入射光會關於特定方向而偏 振。同時,空氣可形成在第一金屬線性柵格31〇之間。 圖3A是展示像素I及組成像素I之次像素41〇_r、 410-G、410-B。在此範例實施例中,像素I包含形成於傳 送紅光的區域的紅色次像素410-R、形成於傳送綠光的區 201234084 39622pif 二=^ t像素41G _ G以及形成於傳送藍光的區域的藍色 有第應於像素層400之彩色遽光層300形成 π 栅格310,所述第一金屬線性栅格310根 據H象^1G_R、41G_G、41G_B而具有不同的間距。 金屬線性栅象 於對應於紅色次像辛性栅格31G包含形成 ΉΠΡ w 像素 之區域的紅色金屬線性栅格 310R、喊於軸闕色次像素4 t^=31Q_G«及形成於職於藍色次 £域的藍色金屬線性柵格310-B。 先之f生栅格31〇_R是以每個間距小於1/2紅色 ^波長的方式排列,綠色金屬線性栅格3财是以每個 間距小於1/2綠色光之油县_ & 士 4、μ 柵格式排列,及藍色金屬線性 、於1/2藍色光之波長的方式排 。因此^金屬線性栅格3财,抓G及跡Β之每個 間距可根據次像素410-R,410-G月r» =射光的波長可被控制而允許次像素 紅色金屬線性柵格跡R之間距小於 長,亦即,約330〜390奈米,且人射 性柵格臟時被分成具有第_偏 ς二 '=:==;=色光波長,;即, 時被分成具有第-偏振分量之綠以藍:栅屬格:: 201234084 39622pif 格310·Β之間距可設定為小於1/2藍色光波長,亦即,約 220〜240奈米。通過藍色金屬線性柵格3i〇_b的光被分成 具有第H+1:之藍&光譜。換言之’金屬線性拇格31〇 之間距依照紅色金屬雜栅格31〇_R、綠色金屬線性柵格 310-G及藍色金屬線性栅格310_B的順序而減少。可根據 從顯示面板1000發出的所需色彩之光波長而調整第一金 屬線性柵格310之間距,且可發射代替前述的紅色光、綠 色光、及藍色光的黃色光、青藍色光及紅紫色光。 如圖4所不,在此範例實施例中之第一金屬線性柵格 310包含依序堆疊之第一金屬層311、絕緣層313及第二金 屬315。第一金屬層311和第二金屬層315可由金屬(諸如 紹、銀等)製成且其高度可小於1〇〇奈米。在此範例實施例 中,第一金屬層311及第二金屬層315中的每一者的高度 可形成為約4〇奈米。絕緣層313堆疊於第一金屬層311 及第一金屬層315之間,絕緣層313可包含介電材料(諸如 ZnSe及Τι〇2),且形成之高度可小於15〇奈米。第一金屬 線性栅格31G之高度大於其寬度,且高賴寬度的比值可 為2 4,例如3。在第一金屬線性柵格31〇中,其寬度、 咼度、間距、高度對寬度比值、及間距對寬度的比值可視 形成第一金屬線性栅格31〇之材料而改變。亦即,考慮所 使用的金屬種類、介電材料之高度等來進行光穿透度模 擬’如此可選定最佳條件。此外,第一金屬線性栅格310 之寬度、高度、間距及高度對寬度的比值可根據所發射之 光的顏色(即每個次像素410)而改變。 201234084 39622pif 從第一金屬線性栅格310中之金屬層311、315發射 彩色光是根據電漿子(Plasmon)的原理,此原理為金屬中的 自由電子集體震動。由於自由電子的振動,奈米尺度之金 屬在金屬表面上展現電漿·子共振(Plasmon resonance)。表面 電漿子共振是金屬膜表面上的電子之集體電荷密度震動 (collective charge density oscillation),且由表面電漿子共振 產生的表面電漿子波是一種表面電磁波,所述表面電磁波 沿著金屬及與金屬相鄰的介電材料之間的邊界表面 (boundary surface)傳波。由於其為一種沿著金屬及介電材 料之間的邊界表面傳波的表面電磁波,表面電漿子波相當 為一種當照射於金屬表面且具有特定波長的光未被全部反 射且引起表面波時所產生的波。如果包含第一金屬層 311、絕緣層313、及第二金屬層315的金屬線性柵格310 是以具有特定週期的狹縫形式配置,則所發射光的色彩會 根據所述週期而改變。 根據此範例實施例’第一金屬線性柵格31〇經配置以 使白光濾出遍及可見光區的個別色彩。如此達成在特定振 盪波長(oscillation wavelength)内進行量子-電漿子_量子轉 換的奈米振動,以提高通帶寬度(passbandwidth)且與其他 色彩濾光方法相比使緊密度(compactness)有可能實現。此 外,經濾過的光是已自然地受偏振,使得經濾過的光可以 直接應用於不具有任何獨立偏光層的LCD面板或其相似 者中。 因此,顯示面板100可藉由彩色濾光層3〇〇(而非現有 11 201234084 39622pif 的偏光膜及彩色濾光器)產生偏振色光。此外,非經第一基 板1〇〇傳送的光亦不會被吸收,而是被第一金屬線性柵格 310中的第一金屬層311反射,使得此光可能再次向顯示 面板1000反射。亦即,總光學效率得以改良,因此可省略 傳統之反射式增光片(dual brightness enhance film, DBEF)。 像素層400包含多個像素(未繪示),其用於改變填充 於液晶層500中的液晶陣列以回應從外部接收的控制訊 號0 圖5為根據範例實施例的另一種彩色濾光層之截面 圖。 如其中所示’彩色濾光層300可更包含堆疊於第一金 屬線性柵格310下方之介電層320。介電層320可由與第 —基板310相似之材料製成,且可包含氟化鎂(MgF2)。介 電層320可以與第一基板連接的層的形式提供。在此,介 電層320可取代第一基板100或者可被省略。 圖6為根據另一範例實施例的顯示面板之層結構的 圖,以及圖7為圖6之顯示面板的截面圖。如其中所示, 顯示面板1000可更包含位於液晶層500與第二基板2〇〇 之間的第一偏光層600。第一偏光層6〇〇更可包含第二金 屬線性栅格610,所述第二金屬線性栅格61〇傳送不同於 第一偏振分里的第一偏振分量,且只改變入射光之偏振狀 態。 在彩色濾光層300上形成用於保護且平坦化第一金屬 12 201234084 39622pif 線性栅格310的平坦層·]。形成於平坦層咖 素層·包含多個像素(未㈣)於改變填充於液= 500中的液晶陣列,且每個像素包含多個次像素41〇 範例實施例中,次像素彻代表最小單位像素,盆中對昭 於紅、綠、及藍的視像訊號值為輸人,以及包含多個^ 素410及傳達一個訊號的單元被視為像素。次像素41〇包 含作為開關元件的薄膜電晶體(thin film廿妨也㈣, TFT)411及像素電極412。在此範例實施例中,次像素4l〇 有二維空間概念以及包含TFT4U與像素電極412之物理 概念。 在第一基板100中的平坦層iOOd上形成閘極411小 閘極411-1可為單-層或含有金屬❹重層。在與問極 411-1所在的相同層上,更形成有連接於閘極且排列於顯 示面板10〇2之橫向上的閘極線(未繪示)以及連接於閘極驅 動器(未繪示)及傳送驅動訊號至閘極線的閘極銲墊(未緣 示)。此外,在與閘極411-1所在的相同層上,形成增強電 射(electric charges)的維持電極(sustain ejec^r〇de)4i3 〇 在第一基板100上’含有;ε夕氮化物(&Νχ)或相似物之 閘絕緣層411-2覆蓋閘極411-1與維持電極413。 在閘極411-1的閘絕緣層411_2上,形成含有非晶矽 或其相似半導體之半導體層411_3。在半導體層411-3上形 成歐姆接觸層411-4,其含有n+氫化的非晶矽或高度摻雜 矽化物或η型雜質之相似材料。此外,移除在而後詳述之 源極411-5與汲極411-6之間的通道部份中的歐姆接觸層 13 201234084 39622pif 411-4 。 在歐姆接觸層411_4及閘絕緣層4U_2上形成資料配 線線路411-5及411-6。資料配線線路411_5、4116亦可 為含有金屬之單層或多層。資料配線線路4li_5、4ii_6包 含資料配線(未綠示)、源極411_5以歧極4ιι_6,所述資 料配線形成在垂直方向上且與閘極線交錯(切示)以形成 次像素410,源極411_5自f料配線分支且延伸至歐姆接 觸層411·4之上部份,與源極411_5分開且形成在歐姆接 觸層411 4之上部份上的及極411-6與源極411_5相對。 在閘絕緣層411 -2及未被資料配線線路4丨丨·5及4丨!_6 覆蓋的半導體層411-3上形成保護層411-7。此時,矽氮化 物或相似之無機絕緣膜可更形成於保護層41丨_7與TFT 411之間’從而確保TFr411之可靠度。 典型地,形成於保護層411-7上的像素電極412含有 銦錫氧化物(indium tin oxide,ITO)或銦辞氧化物(― zinc oxide ’ IZO)或相似之透明導體材料。像素電極412電 連接於源極411-5。 如圖7所示,第二基板200與第一偏光層600、黑色 矩陣200-1以及共用電極2〇〇_3 一起形成,其中黑色矩陣 200-1所在的區域對應於第一基板1〇〇上的TFT 411,以及 共用電極200-3產生對應於像素電極412的電壓。 圖8為第一偏光層6〇〇之截面圖。如圖8所示,第一 偏光層600包含第二金屬線性柵格610,第二金屬線性柵 格610以類似條狀排列於垂直第一金屬線性柵格31()之方 14 201234084 39622pif =° ^’第二金屬線性栅格610傳送垂直於第-偏振 ^量^第二偏^分量。因第二金屬線性柵格61G只需要^ 达第一偏振分量’第二金屬線性栅格⑽具有能傳送所 波長入射光_距。特別是,第二金屬線性柵格61〇之間 距可形成為Μ於1/2藍光波長。在此範例實關中,第二 金屬線性柵格610具有'約15〇奈米的高度及1〇〇奈米至15〇 不米的間距。此外,第二金屬線性栅格61()之高度與寬度 的比值可在2至4之間作調整。 第一金屬線性栅格61〇包含金屬層611及形成於金屬 層611上的硬罩幕612。金屬層611可包含與第-金屬線 性柵格31G相同或不相同之金屬。換言之,金屬層611可 包含金屬’諸如銘、銀、銅等等,或可包含鶴翻(M〇w)或 相似之硬合金。可選地,金屬層611可由導電聚合物製成 或可包含導電聚合物。硬罩幕612用來保護金屬層6n及 改良金屬層611之偏光效能,且可包含諸如二氧化矽(si〇2) 的介電材料。 根據另一範例實施例,第一金屬線性柵格31〇及第二 金屬線性栅格610可有相同偏振方向。由於無論施加電壓 與否皆可根據液晶的排列狀態來設定阻擔光或傳送光,因 此不需要使第一金屬線性柵格31〇與第二金屬線性柵格 61〇之偏振方向相互垂直。此可根據液晶的排列方向來進 行調整。 平坦層100-1形成於第一金屬線性柵格31〇上,以保 護及平坦化第一金屬線性柵格310。 15 201234084 39622pif 在平坦層100-1上的一區域中形成黑色矩陣2004 ’ 其中所述區域對應於第一基板1〇〇的TFT 41丨。一般而言, 黑色矩陣2〇〇-1用來分割次像素·和避免TFT411暴露 於外部光。黑色矩陣2G(M含有具黑色染料之光靈敏有機 材料。使用碳黑、二氧化鈦或相似物作為黑色染料。 、在…色矩陣200-1上形成坡覆層(〇verc〇at layer)200-2 ^平坦化及保護黑色轉2G(M。通常使賴克力環氧樹 脂(acrylic epoxy)材料作為披覆層2〇〇 2。 在披覆層200-2上形成共用電極2〇〇_3。共用電極 200 3由透明導電材料,諸如銦錫氧化物(indium 〇xjde , ΙΤΟ)、銦鋅氧化物(indium zinc oxide,IZO)等等製成。共 用電極200-3與第一基板i〇〇上的像素電極412直接施加 電壓於液晶層500。 圖9至圖11為根據另一範例實施例的彩色濾光層與 偏光層之圖。圖9至圖11中的顯示面板1〇〇〇包含第一金 屬線性柵格310及第二金屬線性栅格61〇,所述第二金屬 線性柵格610與第一金屬線性栅格31〇的材料不同,特別 疋其所包含的金屬材料不同。第一金屬線性栅格31〇及第 二金屬線性柵格610所包含的金屬可在反射率及硬度上彼 此不同。 圖9中的顯示面板1〇〇〇包含第一金屬線性柵格31〇 及第二金屬線性柵格610 ,所述第一金屬線性栅格31〇包 含具有高反射率的金屬,所述第二金屬線性栅格61〇包含 具有低反射率的金屬《如果光從第一基板1〇〇的底部進入 16 201234084 39622pif 且由第一基板200離開,則只有第一偏振分量的光進入液 晶層500且第二偏振分量的光自第一基板1〇〇反射。一般 來說,在顯示面板1000下方發光的背光組件(未繪示)包含 反射片,所述反射片反射自第一基板1〇〇向顯示面板J00Q 再反射的光。包含於第一金屬線性柵格31〇之金屬可具有 高反射率’以使更多光可藉由反射片回收且進入反射片, 諸如更多的第二偏振分量的光可進入反射片。舉例而言, 第一金屬線性栅格310可包含具有高反射率的金屬,諸如 鋁、銀、銅等等。所以,如果高反射性金屬造成第一金屬 線性柵格310之反射’則可能可以省略使用於習知顯示面 板中的反射式增光片(duai brightness enhance film, DBEF)。因此,有減少顯示面板1〇〇〇的製造成本的功效, 且有可能製造包含顯示面板1〇〇〇之薄輕型的顯示裝置。 第一金屬線性柵格610可包含具有低反射率之金屬, 從而抑制外部光的反射及吸收光。第二金屬線性柵格61〇 可進行其他製程以減低金屬之反射率,或可包含碳、鉻氧 化物等或經碳、鉻氧化物等組態,以吸收光。 同時,根據另一範例實施例的第二金屬線性柵格 610 ’考畺與外部的多數接觸,其可包含具有高壓強度之金 屬。舉例而言,第二金屬線性柵格61〇可包含鎢鉬或相似 的合金,或可包含實質上可進行與金屬層相同的功能的 電聚合物。 圖10中的顯示面板10⑻可更包含光吸收層330,所 述光吸收層330形成於包含在第一基板1〇〇中之第一金屬 17 201234084 39622pif 線性柵格310上且吸收光。如果外部光進入顯示面板1〇〇〇 且再反射’則有因反射光導致顯示面板丨〇⑻之對比度下降 與圖像品質劣化的問題存在。為避免這些問題,根據此範 例貫施例之第一基板100包含在第一金屬線性柵格31〇上 的光吸收層330,以吸收不需要的外界光。 光吸收層330可含具有低反射率的金屬,及或可包含 碳、鉻氧化物等或經碳、鉻氧化物等組態,以吸收光。 可選地,光吸收層330可不形成於第一基板上而是在 第二基板200的第二金屬線性柵格610下方。亦即,外部 光藉由形成於第二金屬線性栅格610下方之光吸收層330 截取’進而防止進入顯示面板1〇〇〇。 圖11展示形成於第一基板100上之第一吸收層331 及形成於第二基板200上之第二吸收層631。為了降低與 自背光組件(未緣示)發射的光無關但與外部光反射相關的 問題’根據此範例實施例之顯示面板1000包括在第一基板 100及第二基板200上的光吸收層331及631。光吸收層 331及631可經碳、鉻氧化物等組態’但不限於此,只要 光吸收層331及631包含可吸收光的金屬即可。 第一光吸收層331及第二光吸收層631可如圖10所 示形成於其中一基板上,或可省略配置兩者。 圖12為根據另一範例實施例的顯示面板之層結構, 及圖13為圖12之顯示面板的截面圖。 如其中所示,根據此範例實施例之顯示面板1000可 更包含第二偏光層700,其提供在彩色濾光層300下方並 18 201234084 39622pif 傳送第一偏振分量。第二偏光層700可包含第三金屬線性 栅格710,第三金屬線性栅格71〇以實質上與第一金屬線 性柵格310的第二金屬線性柵格610或第二金屬飧抖她玫 610相同的金屬製成,且第三金屬線性柵格71〇與第一: 屬線性柵格310定向於相同方向。第三金屬線性^格71&〇 與第一金屬線性栅格310定向於相同方向,因此傳送第一 偏振分量。經過第二偏光層700之具第一偏振分量的光在 經過彩色濾光層300時發出紅色、綠色及藍色。 包含於弟二金屬線性拇格71〇之金屬層可含呈有$反 射率之金屬,諸如鋁、銀、及銅中至少之一者。此外,光 吸收層可更配置於金屬層上以吸收外部光。 圖14A至圖14F為展示s兒明根據另一範例實施例之顯 示面板的第一基板的製造方法。 如圖14A所示,金屬層711及作為保護金屬層711之 ^幕712堆疊於第一基板⑽上,以形成第二偏光層 、接著二進行一般的圖案化製程。換言之,沉積光阻、 ,光罩曝光光_及進行顯影與_,從而形成第三金屬 線性栅格71〇(參照圖mb)。 接著,如圖14C所示,於第二偏光層7〇〇上形成平坦 層1〇(M。W旦層刚-1可包含石夕氮化物(SiNx)。 如圖14D戶斤示,第一金屬層31卜絕緣層313及第二 金屬層315藉由賤鍍或相似方法依 1〇(M上形_色渡光偏光層300。 201234084 39622pif 如圖14E所示,藉由進行一次的微影或蝕刻製程形成 第一金屬線性柵格310 (311、313及315)。 接著,如圖14F所示,形成平坦層ι〇α>1以保護及平 坦化第一金屬線性柵格31〇之表面,且在平坦層^0“上 形成TFT411及電連接於TFT4u之像素電極412。像素 電極412可藉由濺鍍以沉積金屬及圖案化之而形成。’、 一圖15A至圖15D為展示說明根據另—範例實施例之 顯示面板的第二基板的製造方法。 第二基板200中的第一偏光層6〇〇之形成方法和第〜 基板10G中的彩色遽光偏光層·之形成方法相似。亦即, 如圖15A所示,金屬層611及作為保護金屬層6ιι之硬 幕612堆疊於第二基板2〇〇上。 接著,藉由進行微影或蝕刻製程而形成第二金屬線 柵格610(參照圖15B)。 在形成第二金屬線性柵格610後,如圖15C所示,形 11^1為保°蒦及平坦化第二金屬線性柵格610表面的平坦層 ^ ® 15D所不,在平坦層1〇〇1上的一區域中形成累 化應™^且形成_ 含有透明導電材料之共車用2=卜。’藉_方法形成 封裝圖ίΓ j4F中的二基板100 * 200彼此經結合與 、 :插入液晶,進而完成顯示面板1000。 6 :'、、根據另—範例實施例中的顯示面板之截面圖。 201234084 39622pif 如其中所示,根據此範例實施例中的顯示面板1〇〇〇 包含形成在第一基板1〇〇上的第一偏光層6〇〇、彩色濾光 層300以及形成於第二基板200上的第二偏光層。換 言之,彩色濾光層300及第二偏光層700可安置在形成有 黑色矩陣200-1的基板上而非在像素層4〇〇上。如果光經 由第一基板100的底層進入、通過第一偏光層6〇〇之具有 第二偏振分量的光將通過液晶層500,接著在通過彩色濾 光層300及第一偏光層700時發出不同顏色之具有第一偏 振分量的光。彩色濾光層300及第一偏光層600中每一者 可選擇性地形成基板上,此基板與像素電極412所形成於 其上的基板相同或不同。當然,光可從第二基板2〇〇進入 且從第一基板100離開。 根據另一範例實施例中的顯示面板1〇〇〇可包含安置 於第一基板100或第二基板200其中之任一者上的反射抑 制層(reflection constraining layer,未缘示),亦即,光實質 上從基板上之外表面發射。顯示面板1〇〇〇為發射型面板, 其中影像只與入射光和全部傳送的光一起顯示,顯示面板 1000可更包含反射抑制層以減少因外部光所造成的反 射。此外’反射抑制層可更包含抗反射膜或防光眩膜,或 可包含由奈米技術形成於第二基板200之外表面上的蛾眼 圖案層(moth-eye patten layer)。此外’反射抑制層可經由諸 如低反射(LR)、抗反射(AR)、表面硬化(HR)等或經由結合 上述處理而形成。此表面處理可進行解析度增強、抗放電、 抗污染、抗磨損等以及抗反射。有時,反射抑制層可因入 21 201234084 39622pif 射光而增加於基板上或顯示面板1000的中間部分中。 雖然未繪示,但顯示面板1000可更包含設置有閘極 驅動積體晶片(1C)之印刷電路板及資料晶片膜封裝(data chip film package)。此外,補償膜(未繪示)可更提供於第一 基板100及第二基板200之外部。 圖17為說明根據範例實施例的顯示面板之第一及第 二金屬線性柵格之偏振。圖17中之線條描繪說明形成於彩 色濾光層300上的第一金屬線性柵格31〇之方向及形成於 第一偏光層600上的第二金屬線性栅格61〇之方向。根據 方向,經傳送之光的偏振分量不同。舉例而言,如果水平 線傳送光之第一偏振分量,則垂直方向傳送光之第二偏振 分量。根據此範例實施例之顯示面板1000可用於顯示三維 (3D)影像之顯示裝置中,特別是顯示被動型3d影像模式 之顯示裝置中。在顯示被動型3D影像的情況下,使用者 可藉由具有不同偏振狀態之偏振眼鏡觀看影像。 如其中所示,彩色濾光層3〇〇被分割成多個列,且第 一金屬線性栅格310包含第一偏振線形柵格與第二偏 振線形柵格P-2,第一偏振線形栅格P—〗用於傳送第一偏 振分量,第二偏振線形柵格P-2用於傳送第二偏振分量。 第一偏振線形柵格P-1形成於奇數列中及第二偏振線形栅 格P-2形成於偶數列中,兩者彼此交替排列。類似地,第 二金屬線性柵格610包含第—偏振線形栅格ρ」與第二偏 振線形柵格P-2,第一偏振線形栅格pj用於傳送第一偏 振分量,第二偏振線形柵格P-2用於傳送第二偏振分量。 22 201234084 39622pif 然而,不同於第一金屬線性柵格31〇,第二金屬線性柵格 61〇中的第一偏振線形栅格P-1是形成於偶數列中,且第 二偏振線形柵格p_2是形成於奇數列中,兩者彼此交替排 列。 換言之,第二金屬線性栅格61〇中的第一偏振線形栅 格P-1是以對應於第一金屬線性栅格31〇中的第二偏振線 形拇格P-2的方式形成,且第二金屬線性柵格61〇中的第 二偏振線形栅格P_2是以對應於第一金屬線性柵格31〇中 的第一偏振線形柵格pq的方式形成,兩者彼此交替排列。 若將對應到左眼影像之視訊訊號及對應到右眼影像 之視訊訊號交替地個別施加至奇數列與偶數列時,則左眼 影像會經由第-金屬線性柵格31〇中的第一偏振線形桃格 P-1與第二金屬線性栅格610中的第二偏振線形桃格P 2 呈現於顯示面板1000上,且右眼影像會經由第一金屬線性 栅格310中的第二偏振線形柵格p_2與第二金屬線性柵格 610中的第一偏振線形栅格p-丨呈現於顯示面板1〇〇〇上。 雖然左眼影像與右眼影像同時呈現於顯示面板1〇〇〇上,但 使用者之兩眼是經由只可傳送左眼與右眼影像之一偏振分 里的偏振眼鏡分別地看見不同影像,從而觀看三維影像。 第一偏振線形柵格P-1與第二偏振線形柵格p_2之重 複週期(repeated cycle)可以是根據一個像素列或多個像素 列。 可選地,彩色濾光層300可被分割成多個行,且第一 偏振線形柵格P-1與第二偏振線形栅格p_2可交替形成在 23 201234084 39622pif 每個行中。 圖18為說明根據另一範例實施例的顯示面板之第一 及第二金屬線性柵格之偏振。 如其中所示’此範例實施例中之彩色濾光層300依棋 盤格形式分割,且第一偏振線形柵格P-ι與第二偏振線形 柵格P-2交替形成在之相鄰棋盤式單元格中。當然,第— 金屬線性柵格310中的第一偏振線形栅格PJ對應於第二 金屬線性柵格610中的第二偏振線形栅格p_2,且第一金 屬線性栅格310中的第二偏振線形柵格p_2對應於第二金 屬線性栅格61〇中的第一偏振線形栅格P-1。 在此情況下,左眼影像與右眼影像可交替呈現於相鄰 式單元格中,且使用者可從如同前述之範例實施例中 合f的相同偏振眼鏡觀看3D影像。在此範例實施例中, 像,^解析度實質上低於顯示面板1000之解析度的影 使用眼影像與右眼影像以柵格圖案形式重複,以使得 析度心f察覺到解析度之降低。亦即,使用者可觀看解 棋盤圖。17所示之範例實施例中之解析度的影像。 可對應於可對應於像素層4⑻中之單—像素,且 此外,1 π 包含偏光扣圖及圖18所示之顯示面板1000可在外部 光改變成R1 於將㈣第-偏光層_傳送之線性偏振 度觀看31)1^光。為雜視角且使得使时可從任何角 圖^衫像,顯示面板1000可發射圓偏振光。 回9為根據另—範例實施例之顯示面板的截面圖。 24 201234084 39622pif 如其中所示’根據此範例實施例之顯示面板1000包 含偏光膜800,所述偏光膜800提供於第二基板2〇〇之外 部,以偏振入射光。偏光膜8〇〇傳送不同於第一偏振分量 之第二偏振分量,且其偏振狀態是垂直於彩色濾光層3〇〇 的偏振狀態。 偏光膜800包含藉由聚乙稀醇與峨或染料染色來控 制偏振特徵之偏振元件、置於偏振元件之對側且保護偏振 元件之二醋酸纖維素(triacetyi ceiiui〇se,tac)異方性膜、 及附著於第二基板200之黏合劑。此外,貼附有作為保護 黏合劑之離型薄膜(release film)及作為保護偏光膜表面之 聚對苯二曱酸乙二醋(p〇lyethyiene terephtalate,PET),從 而形成偏光膜的基本結構。 TAC表面經表面處理以具有抗反射或抗刮性之功 能。亦即,此範例實施例之顯示面板1〇00包含在第一基板 100上彩色濾光層300及在第二基板200上的偏光膜 8〇〇,其中彩色濾光層300具有第一線形金屬線性栅格3i〇。 圖20為另一範例實施例中之顯示面板的截面圖。如 其中所示,此範例實施例中之顯示面板1〇〇〇可包含在第二 基板200上偏光膜800且更可包含在第一基板1〇〇上且在 彩色濾光層300旁的第二偏光層700。 第二偏光層700可更包括第三金屬線性柵格710,第 三金屬線性柵格710含有與第一金屬線性柵格310所含之 金屬實質上相同的金屬,且第三金屬線性柵格710排列在 與第一金屬線性柵格310相同的方向上。第三金屬線性柵 25 201234084 39622pif 格710排列在與第一金屬線性柵格310相同的方向上,因 此傳送第一偏振分量。 圖21為根據範例實施例之顯示裝置的示意圖,及圖 22為根據範例實施例之顯示裝置的控制方塊圖。 如其中所示,顯示裝置1包含顯示面板1000、背光組 件2000、容納前述之集裝箱(accomm〇dating container)31〇〇、3200、3300、以及影像提供器(video provider)4000(見圖 22)。 顯示面板1000包含第一基板100、與第一基板100相 對之第二基板200、介於第一基板1〇〇及第二基板2〇〇之 間的液晶層(未繪示),及驅動像素層400以顯示視頻訊號 之面板驅動器。面板驅動器可包含閘極驅動1(:91()、資料 晶片薄膜封裝(data chip film package)920、以及印刷電路板 930。 第一基板100與第二基板200可形成有像素層4〇〇、 彩色濾光偏光層300、第一偏光層600、黑色矩陣200]、 共用電極200-3等。彩色濾光偏光層3〇〇偏振進入第一基 板1〇〇之入射光,且第一偏光層600偏振從顯示面板1〇〇〇 離開之光。 顯示面板1000接收外部光且控制通過介於第一某板 =及第二基板間的液晶層的光的強度,藉此顯二影 閘極驅動器1C 910整合於且形成於第—某 且連接於形成在第-基板1〇〇 ±之每個閘極線(未綠示 26 201234084 39622pif 此外’資料晶片薄膜封裝92〇可連接於形成在第一基板1〇〇 上之母個資料配線(未綠示)。於此’資料晶片薄膜封裝920 可包含捲帶式自動接合(tape automated bonding,TAB)帶, 其中藉由TAB技術將半導體晶片黏著於形成在基底膜上 的佈線圖案。捲帶载體封裝(tape carrier package,TCP)、 膜上晶片(chip on fiim,C0F)等可用作晶片薄膜封裝的例 子。 同時’印刷電路板930可與驅動元件一起安裝,以用 於將閘訊號輸入至閘極驅動1C 931及用於將資料驅動訊號 輸入至資料晶片薄膜封裝920。 背光組件2000可包含用於引導光之導光板22〇〇、用 於發光之第一光源2300a及第二光源2300b、置於導光板 2200下方之反射片2400、及一個或多個光學片2100。 導光板2200作為引導被供應至顯示面板1000的光。 導光板2200可由諸如壓克力之透明塑膠板製成,且導引光 從第一光源2300a及第二光源2300b所發出的光朝向形成 於導光板2000上的顯示面板1〇〇〇前進。在導光板2200 的後面可有不同圖案,用來改變光從入射至導光板2200 的内側而朝向顯示面板1000前進時的方向。 如圖21所示,第一光源2300a及第二光源2300b可 包含作為點光源的發光二極體(light emitting diode, LED)。光源並不限於LED,且可包含諸如冷陰極螢光燈管 (cold cathode fluorescent lamp,CCFL)或熱勞光燈管(hot fluorescent lamp ’ HCFL)等線光源。第一光源 2300a 及第 27 201234084 39622pif 二光源2300b電連接於提供電源之反向器(未繪示)且接收 電源。 反射片2400被提供於導光板2200下且將所發出的光 線向上反射至導光板2200的下方。特別是,沒有被形成在 導光板2200背面上的微細點圖案反射的光線,會被反射至 導光板2200,因此使進入至顯示面板1〇〇〇中的光線的損 耗降低且使從導光板2200的射出表面穿透的光之均勻度 增加。 一個或多個光學片2100提供於導光板2200的頂部且 作為擴散與聚集從導光板2200傳送的光。光學片21〇〇可 包含擴散片、稜鏡片及保護片等。擴散片可置於導光板 2200與棱鏡片之間,且擴散來自導光板22〇〇的光,從而 避免光被部分集中。稜鏡片可包含規則地排列在頂部的三 角形棱鏡,且使被擴散片所擴散的光線聚集於垂直於顯示 面板1000的方向上。保護片可形成於棱鏡片上,以保護棱 鏡片的表面且將光線擴散,使得光線均勻地分佈。 集裝ίΐ包括下集裝箱(l〇wer accommodating container)31 〇〇、中集裝箱 32〇〇(middle accommodating container)和上集裝箱(Upper acc〇mm〇dating container)3300。下集裝箱3100可容納反射片24〇〇、第一 光源2300a、第二光源2300b、導光板2200和一個或更多 個光學片2100。下集裝箱3100可由具耐外界衝擊和接地 能力的金屬所製造而成。 影像提供器4000連結至顯示面板1〇〇〇並提供影像訊 28 201234084 39622pif 號雖然在圖21中未繪示出影像提供器4〇〇〇,但影像提 供器4000可配置於反射片24〇〇和下集裝箱31〇〇上或可放 置在下集裝箱3100的後方。 圖23為說明顯示於根據範例實施例之顯示裝置中的 三維(3D)影像之圖。 圖23說明以棋盤格形式提供的彩色濾光層300、第一 偏光層6〇2和偏光眼鏡5〇〇〇。根據此範例實施例之顯示裝 置包含顯*板麵、制於分顺看齡在齡面板1〇〇〇 上的左眼景>像及右顯影像的偏振眼鏡5〇〇〇。 ,振眼鏡5000包含分別傳送彼此垂直之偏振分量(亦 即傳送第-偏振分量及第二偏振分量)的左眼透鏡51〇〇及 右眼透鏡5200。左眼透鏡51〇〇和右眼透鏡52〇〇各別傳送 不同的偏振光。因此,穿透左眼透鏡51〇〇的光無法穿透右 眼透鏡遍,且穿透右眼透鏡的光無法穿透左眼透 鏡 5100 。 在此範例實施例中,影像提供器4000將左眼影像資 料及右眼影像資料提供至與單元格對應之次像素41〇,使 左眼影像與右眼影像可交替地顯示於棋盤式單元格上。左 眼影像與右眼影像可根據偏振㈣僅傳送至兩透鏡· 及5200其中之-者。所以’使用者結合他/她的眼睛所見 的左眼影像及右眼影像,以感受到三維影像。 在光離開的第二基板的外表面上,可提供偏光器以將 線性偏振光改變成圓偏振光。此外,偏振眼鏡5〇〇〇可包含 用以傳送圓偏振光的圓偏光器。 29 201234084 39622pif 根據此範例實施例之顯示裝置,第一金屬線性栅格 310及第二金屬線性柵格61〇以棋盤格形式形成於顯示面 板1000中’從而促使被動型3D影像的實現。在顯示被動 型模式的3D影像的情況下,必須在空間上將左眼影像與 右眼影像分開。在此時,如果使用偏光膜,將會有許多使 解析度下降之缺點。在此範例實施例中的顯示面板1〇〇〇 可將偏振狀態改變成棋盤格形式,因此可提供高晝質三維 影像而不會降低使用者感受的解析度。 根據此範例實施例之包含於顯示裝置中的顯示面板 1000可根據快門眼鏡以分時方式顯示左眼影像與右眼影 像。此外’顯示面板1000之偏振狀態可根據行與列形式(如 圖17)而改變。 圖24為說明圖23中之顯示裝置的製造方法之圖。 首先,於步驟S10中,在第一基板1〇〇〇上提供棋盤 格形式的第-偏振線形栅格M肖第二偏振線形桃格 P-2^進而形成彩色渡光層300,其中第一偏振線形拇格p_丄 傳送第-偏振分1及第二偏振線形栅格p_2傳送第二偏振 分量。彩色遽光層3〇〇的第一金屬線性柵格谓以不同間 距配置以發射出不同顏色的光,諸如紅色光、綠色光、藍 色光。形成鱗_距小於1/2紅光波長的方式配置的紅 色,屬線性栅格,騎狀:欠料时躲光;形成 以^^距小於i/2綠光波長的方式配置的綠色 性 拇格’其對應於次像素以發鱗光,形成以每個間距 小於W減波長的方植置料色金屬雜栅格,其對 201234084 39622pif 應於夂像素410以發射誌伞。楚— 由依序堆疊且圖荦化^^人金屬線性柵格310是藉 金屬層祀而= 屬U、絕緣層313及第二 33〇 310 接著於步驟d自=件繼的入射光。 光層600 ’使第一偏振線:二:上: =對的= 線形柵格一及第== n彩色遽光層300中的第一偏振線形柵格p-ι。 巴應尤層300或弟一偏光層6〇〇其中之一者之 果像素層伽形成於和彩色渡光層所在的侧 二要德j1可在域第—偏光層刪之前形成像素層400。 形成於和第—偏光層_所在的相同基板 11在形成彩色濾光層3〇〇之前形成像素層4〇〇。 搞Z著,在於步驟⑽中,封裝第一基板100與第二基 板200,且注入液晶層。 =可供應視頻㈣至次像素之影像提供器侧 用以驅動像素層_之驅動板_連接至基板,以及 將左眼影像資料及右眼影像㈣輸入至次像素物,使左 目^如像與右眼影像可交替_示於_鄰棋盤式單元格 中。因此,使用者可藉由偏振眼鏡5000結合左眼影像及右 目、/冢及右 如上所述,根據範例實施例,提供顯示面板及具有此 31 201234084 39622pif 示面板之顯示裝置,其中製造成本得以降低及製造製程 以簡化。 顯 得以簡化 間化。 根據另一範例實施例,提供光學效率獲改良之顯示面 板及含有此顯示面板之顯示裝置。 根據又另一範例實施例,提供可視度優化之被動型立 體影像之顯示裝置。 雖然已陳述一些範例實施例,但可理解的是,在不脫 離本發明之原理下,所屬技術領域者可對範例實施例進行 因此本發明之保護範圍是由_之申請專利範圍及 其4效物來界定。 所^^於本中請案相關的本說明書之前或同時申請的 二 件以及與本說明書一起進行公開檢閱的所有 及所咖物及文件的内容將以引用: 方式二會可?任=1=中之至少 一些的組合 項、摘要及圖式此說明書(包含任何附屬 製程之步驟。 、Ϋ特徵及/或所揭露的方法或 圖示)所揭露的每::徵任何附屬項、摘要及 其他特徵置換H "同、均等或相似目的的 徵1均等物或相似特徵屬所揭露的每個特 本發明不限於於、+、# 蜀系列的—個實例。 書(包含任何附細節。本發明可由說明 不)所揭露的特徵延伸至任 32 201234084 39622pif 何新穎物或任何新穎組合,或由所揭露的方法或步驟延伸 至任何新穎物或任何新穎之組合。 【圖式簡單說明】 上述及/或其他概念經由範例實施例的描述與附圖而 清晰且顯而知悉。 圖1展示根據範例實施例之顯示面板的層結構。 圖2是展示圖1之彩色濾光層的圖。 圖3A及圖3B展示次像素的第一金屬線性栅格。 圖4是圖2中之彩色濾光層的截面圖。 圖5為根據範例實施例的另一種彩色濾光層之截面 圖。 圖6為根據另一範例實施例的顯示面板之層結構的 圖。 圖7為圖6之顯不面板的截面圖。 圖8為圖7之第二基板上的偏光層的截面圖。 圖9至圖11為根據另一範例實施例的顯示面板之彩 色濾光層及偏光層的圖。 圖12為根據另一範例實施例的顯示面板的層結構的 圖。 圖13為圖12的顯示面板的截面圖。 圖14A至圖14F為說明根據另一範例實施例的顯示面 板之第一基板的製造方法的圖。 圖15A至圖15D為說明根據另一範例實施例的顯示 面板之第二基板的製造方法的圖。 33 201234084 39622pif 圖16為枢捕 Ώ 圖17 ^康另—範例實施例的顯示面板的截面圖。 金屬線性拇格實施例的顯示面板之第-及第二 一 a ΐ 為說明另—範例實施例的顯示面板之第一及第 二金屬線性柵格之偏振的圖。 圖為根據另一範例實施例的顯示面板的截面圖。 圖20為根據另一範例實施例的顯示面板的截面圖。 圖21為根據—範例實施例的顯示裝置的示意圖。 圖22為根據一範例實施例的顯示裝置的控制方塊圖。 圖23為說明根據一範例實施例的顯示裝置中的三維 影像(3D image)的顯示。 圖24為說明圖23的顯示裝置之製造方法的圖。 【主要元件符號說明】 100:第一基板 100-1 .平坦層 200 :第二基板 200-1 :黑色矩陣 200-2 :披覆層 200-3 :共用電極 3〇〇 :彩色濾光層 310 :第一金屬線性柵格 310-R:紅色金屬線性柵格 310-G :綠色金屬線性柵格 310-B :藍色金屬線性栅格 34 201234084 39622pif 311 第一金屬層 313 絕緣層 315 第二金屬層 320 介電層 330 光吸收層 331、631 :吸收層 400 :像素層 410 :次像素 410- R、410-G、410-B :次像素 411 :薄膜電晶體 411- 1 :閘極 411-2 :絕緣層 411-3 :半導體層 411-4 :歐姆接觸層 411-5 :源極 411-6 :汲極 411-7 :保護層 412 :像素電極 413 :維持電極 500 :液晶層 600:第一偏光層 610 :第二金屬線性柵格 611、 711 :金屬層 612、 712 :硬罩幕 35 201234084 39622pif 700 :第二偏光層 710 :第三金屬線性栅格 800 :偏光膜 900 :驅動板The dance layer 2 is formed on the first substrate 100, And control the liquid 曰 i. Figure 2 The pixel layer of the t image is formed in the color phosphor layer:  It is a picture of the color filter layer in Figure 1. Figure 3A and Figure 3B are diagrams of the first metal linear grid, And Fig. 4 is a front view of the matte layer of Fig. 2. Color filter, The light layer contains a first-metal linear grid Mq arranged at different pitches, Make people shoot light that can emit different colors.  *Polarization knife as shown in the figure, The first metal linear grid 31〇: =, On a substrate 100. First - metal green =  Female, , There are special lengths (H) and widths (W). The period (i.e., the distance between the first metal linear grids 310) is not controlled according to the light of the desired color.  7 If the pitch of the diffraction grating is adjusted to be equal or shorter than 1/2 wavelength of light, Then a diffraction wave cannot be formed. There will only be transmitted light and reflected light. As shown in the figure, When incident light passes through the metal-like linear grid 310 like a slit, The first polarization component of the incident light perpendicular to the first metal linear grid 31 is transmitted by the first substrate 1 The second polarization component parallel to the first metal linear grid 310 will become reflected light. That is, The incident light passing through the color filter layer 300 is polarized with respect to a specific direction. Simultaneously, Air may be formed between the first metal linear grids 31A.  FIG. 3A is a view showing a pixel I and a sub-pixel 41〇_r constituting the pixel I,  410-G, 410-B. In this exemplary embodiment, The pixel I includes a red sub-pixel 410-R formed in a region where red light is transmitted, Formed in a region that transmits green light 201234084 39622pif two = ^ t pixels 41G _ G and blue formed in a region where blue light is transmitted. A color light-emitting layer 300 corresponding to the pixel layer 400 forms a π grid 310, The first metal linear grid 310 is based on the H image ^1G_R, 41G_G, 41G_B with different spacing.  The metal linear gate is like a red metal linear grid 310R corresponding to the red sub-image symplectic grid 31G including the region where the ΉΠΡ w pixel is formed, Shouted on the axis sub-pixel 4 t ^ = 31Q_G « and formed in the blue metal linear grid 310-B in the blue sub-domain.  First, the f-grid 31〇_R is arranged in such a way that each pitch is less than 1/2 red ^ wavelength. Green metal linear grid 3 is the oil county with less than 1/2 green light per spacing _ &  4 μ grid arrangement, And blue metal linear, Arranged in the form of wavelengths of 1/2 blue light. Therefore ^ metal linear grid 3, Each of the G and traces can be spaced according to the sub-pixel 410-R. 410-G month r» = the wavelength of the light can be controlled to allow the sub-pixel red metal linear traces R to be less than long, that is, About 330~390 nm, And when the human-radio grid is dirty, it is divided into the first _ partial ' two '=: ==; = color wavelength, ; which is,  Time is divided into green to blue with a first-polarized component: Grid genre: :  201234084 39622pif lattice 310·Β distance can be set to less than 1/2 blue light wavelength, that is, About 220~240 nm. The light passing through the blue metal linear grid 3i〇_b is divided into having the H+1th: Blue & spectrum. In other words, the distance between the metal linear thumb lattices and the red metal grid 31〇_R, The order of the green metal linear grid 310-G and the blue metal linear grid 310_B is reduced. The distance between the first metal linear grids 310 can be adjusted according to the wavelength of light of the desired color emitted from the display panel 1000, And can emit instead of the aforementioned red light, Green light, And the yellow light of blue light, Blue-blue light and red-violet light.  As shown in Figure 4, The first metal linear grid 310 in this exemplary embodiment includes a first metal layer 311 stacked in sequence, The insulating layer 313 and the second metal 315. The first metal layer 311 and the second metal layer 315 may be made of metal (such as Made of silver, etc. and its height can be less than 1 nanometer. In this exemplary embodiment, The height of each of the first metal layer 311 and the second metal layer 315 may be formed to be about 4 nanometers. The insulating layer 313 is stacked between the first metal layer 311 and the first metal layer 315. The insulating layer 313 may include a dielectric material such as ZnSe and Τι〇2. And the height formed can be less than 15 nanometers. The height of the first metal linear grid 31G is greater than its width, And the ratio of the high width can be 2 4, For example, 3. In the first metal linear grid 31〇, Its width,  Twist, spacing, Height to width ratio, And the ratio of pitch to width may vary depending on the material forming the first metal linear grid 31〇. that is, Consider the type of metal used, The height of the dielectric material or the like is used to perform the light transmittance simulation' so that the optimum conditions can be selected. In addition, The width of the first metal linear grid 310, height, The pitch and height to width ratios may vary depending on the color of the emitted light (i.e., each sub-pixel 410).  201234084 39622pif from the metal layer 311 in the first metal linear grid 310, 315 emission color light is based on the principle of plasma (Plasmon), This principle is a collective vibration of free electrons in a metal. Due to the vibration of free electrons, The metal of the nanometer scale exhibits plasma resonance on the metal surface. Surface plasmon resonance is the collective charge density oscillation of electrons on the surface of a metal film. And the surface plasmonic wave generated by surface plasmon resonance is a surface electromagnetic wave. The surface electromagnetic waves propagate along a boundary surface between the metal and a dielectric material adjacent to the metal. Since it is a surface electromagnetic wave that transmits waves along the boundary surface between the metal and the dielectric material, The surface plasmonic wave is equivalent to a wave generated when light irradiated to a metal surface and having a specific wavelength is not totally reflected and causes a surface wave. If the first metal layer 311 is included, Insulation layer 313, And the metal linear grid 310 of the second metal layer 315 is configured in the form of a slit having a specific period. Then the color of the emitted light changes according to the period.  According to this exemplary embodiment, the first metal linear grid 31 is configured to filter white light out of individual colors throughout the visible region. Thus, nano-vibration of quantum-plasma-quantum conversion in a specific oscillation wavelength is achieved, To increase the passband width and make compactness possible compared to other color filtering methods. In addition, The filtered light is naturally polarized, The filtered light can be directly applied to an LCD panel or the like without any independent polarizing layer.  therefore, The display panel 100 can generate polarized light by the color filter layer 3 (rather than the polarizing film and color filter of the existing 11 201234084 39622pif). In addition, Light that is not transmitted through the first substrate will not be absorbed. Instead, it is reflected by the first metal layer 311 in the first metal linear grid 310. This light may be reflected again to the display panel 1000. that is, The total optical efficiency is improved, Therefore, the conventional brightness enhancement film (dual brightness enhance film) can be omitted.  DBEF).  The pixel layer 400 includes a plurality of pixels (not shown), It is used to change the liquid crystal array filled in the liquid crystal layer 500 in response to a control signal received from the outside. Fig. 5 is a cross-sectional view of another color filter layer according to an exemplary embodiment.  The color filter layer 300 as shown therein may further comprise a dielectric layer 320 stacked under the first metal linear grid 310. The dielectric layer 320 may be made of a material similar to the first substrate 310. It may also contain magnesium fluoride (MgF2). Dielectric layer 320 can be provided in the form of a layer that is coupled to the first substrate. here, The dielectric layer 320 may be substituted for the first substrate 100 or may be omitted.  FIG. 6 is a diagram of a layer structure of a display panel according to another exemplary embodiment, And Figure 7 is a cross-sectional view of the display panel of Figure 6. As shown therein,  The display panel 1000 may further include a first polarizing layer 600 between the liquid crystal layer 500 and the second substrate 2A. The first polarizing layer 6〇〇 may further include a second metal linear grid 610. The second metal linear grid 61 transmits a first polarization component different from the first polarization component, And only change the polarization state of the incident light.  A flat layer for protecting and planarizing the first metal 12 201234084 39622pif linear grid 310 is formed on the color filter layer 300. Formed in the flat layer of the layer of the liquid layer, including a plurality of pixels (not (four)) for changing the liquid crystal array filled in the liquid = 500, And each pixel includes a plurality of sub-pixels 41 〇 in an exemplary embodiment, The sub-pixels represent the smallest unit pixel, In the basin, it is red, green, And the blue video signal value is input, And a unit containing a plurality of elements 410 and conveying a signal is regarded as a pixel. The sub-pixel 41 〇 includes a thin film transistor as a switching element (thin film) (four),  TFT) 411 and pixel electrode 412. In this exemplary embodiment, The sub-pixel 4l has a two-dimensional space concept and a physical concept including the TFT 4U and the pixel electrode 412.  Forming the gate 411 on the flat layer iOOd in the first substrate 100 The small gate 411-1 may be a single-layer or contain a metal germanium layer. On the same layer as the question pole 411-1, Further formed with a gate line (not shown) connected to the gate and arranged in the lateral direction of the display panel 10〇2, and a gate electrode connected to the gate driver (not shown) and transmitting the driving signal to the gate line Pad (not shown). In addition, On the same layer as the gate 411-1, A sustain electrode (sustain ejec^r〇de) 4i3 形成 forming an electric charge is contained on the first substrate 100; ε夕氮(& The gate insulating layer 411-2 of the Νχ) or the like covers the gate 411-1 and the sustain electrode 413.  On the gate insulating layer 411_2 of the gate 411-1, A semiconductor layer 411_3 containing amorphous germanium or a similar semiconductor thereof is formed. An ohmic contact layer 411-4 is formed on the semiconductor layer 411-3, It contains n+ hydrogenated amorphous germanium or a similar material highly doped telluride or n-type impurity. In addition, The ohmic contact layer 13 201234084 39622pif 411-4 in the channel portion between the source 411-5 and the drain 411-6, which will be described later in detail, is removed.  The data wiring lines 411-5 and 411-6 are formed on the ohmic contact layer 411_4 and the gate insulating layer 4U_2. Data distribution line 411_5, 4116 can also be a single layer or multiple layers containing a metal. Data wiring line 4li_5, 4ii_6 includes data wiring (not shown in green), Source 411_5 with a dipole 4ιι_6, The data wiring is formed in a vertical direction and interleaved (shown) with the gate lines to form sub-pixels 410, The source 411_5 branches from the f-wiring and extends to the upper portion of the ohmic contact layer 411·4. The sum pole 411-6, which is separated from the source 411_5 and formed on the upper portion of the ohmic contact layer 411 4, is opposed to the source 411_5.  In the gate insulating layer 411-2 and the data wiring line 4丨丨5 and 4丨! A protective layer 411-7 is formed on the covered semiconductor layer 411-3. at this time, A tantalum nitride or a similar inorganic insulating film may be formed between the protective layer 41丨_7 and the TFT 411 to ensure the reliability of the TFr411.  Typically, The pixel electrode 412 formed on the protective layer 411-7 contains indium tin oxide (indium tin oxide). ITO) or indium oxide ("Zinc oxide" IZO) or a similar transparent conductor material. The pixel electrode 412 is electrically connected to the source 411-5.  As shown in Figure 7, The second substrate 200 and the first polarizing layer 600, The black matrix 200-1 and the common electrode 2〇〇_3 are formed together. The area in which the black matrix 200-1 is located corresponds to the TFT 411 on the first substrate 1? And the common electrode 200-3 generates a voltage corresponding to the pixel electrode 412.  Figure 8 is a cross-sectional view of the first polarizing layer 6A. As shown in Figure 8, The first polarizing layer 600 includes a second metal linear grid 610. The second metal linear grid 610 is arranged in a strip-like manner on the side of the vertical first metal linear grid 31 (). 201234084 39622pif = ° ^ 'The second metal linear grid 610 transmits perpendicular to the first polarization ^ the second Partial component. Since the second metal linear grid 61G only needs to reach the first polarization component, the second metal linear grid (10) has the ability to transmit the incident light_wavelength of the wavelength. especially, The second metal linear grid 61 turns may be formed at a distance of 1/2 of the blue light wavelength. In this example, The second metal linear grid 610 has a height of about 15 nanometers and a pitch of 1 nanometer to 15 inches. In addition, The ratio of the height to the width of the second metal linear grid 61() can be adjusted between 2 and 4.  The first metal linear grid 61A includes a metal layer 611 and a hard mask 612 formed on the metal layer 611. The metal layer 611 may include the same or different metal as the first metal linear grid 31G. In other words, The metal layer 611 may comprise a metal such as Ming silver, Copper, etc. It may contain a hard alloy (M〇w) or similar hard alloy. Optionally, The metal layer 611 may be made of a conductive polymer or may comprise a conductive polymer. The hard mask 612 is used to protect the polarizing performance of the metal layer 6n and the modified metal layer 611. And may include a dielectric material such as cerium oxide (si 〇 2).  According to another exemplary embodiment, The first metal linear grid 31 and the second metal linear grid 610 may have the same polarization direction. Since the blocking light or the transmitting light can be set according to the arrangement state of the liquid crystal regardless of the applied voltage or not, Therefore, it is not necessary to make the polarization directions of the first metal linear grid 31 〇 and the second metal linear grid 61 相互 perpendicular to each other. This can be adjusted according to the arrangement direction of the liquid crystals.  The flat layer 100-1 is formed on the first metal linear grid 31〇, The first metal linear grid 310 is protected and planarized.  15 201234084 39622pif A black matrix 2004' is formed in a region on the flat layer 100-1, wherein the region corresponds to the TFT 41A of the first substrate 1?. In general,  The black matrix 2〇〇-1 is used to divide the sub-pixels and to prevent the TFT 411 from being exposed to external light. Black matrix 2G (M contains a light sensitive organic material with a black dye. Using carbon black, Titanium dioxide or the like acts as a black dye.  , A slope layer (〇verc〇at layer) 200-2 is formed on the color matrix 200-1. ^ Flattening and protection black to 2G (M. The acrylic epoxy material is usually used as a coating layer 2〇〇2.  A common electrode 2〇〇_3 is formed on the cladding layer 200-2. The common electrode 200 3 is made of a transparent conductive material. Such as indium tin oxide (indium 〇xjde,  ΙΤΟ), Indium zinc oxide (indium zinc oxide, IZO) and so on. The common electrode 200-3 directly applies a voltage to the liquid crystal layer 500 with the pixel electrode 412 on the first substrate i.  9 through 11 are diagrams of a color filter layer and a polarizing layer according to another exemplary embodiment. The display panel 1A in FIGS. 9 to 11 includes a first metal linear grid 310 and a second metal linear grid 61〇. The second metal linear grid 610 is different from the material of the first metal linear grid 31〇, In particular, the metal materials it contains are different. The metals included in the first metal linear grid 31 and the second metal linear grid 610 may differ in reflectance and hardness.  The display panel 1A in FIG. 9 includes a first metal linear grid 31〇 and a second metal linear grid 610. The first metal linear grid 31 〇 comprises a metal having a high reflectivity, The second metal linear grid 61 〇 includes a metal having a low reflectance "if light enters from the bottom of the first substrate 1 16 16 201234084 39622pif and is separated by the first substrate 200, Then, only the light of the first polarization component enters the liquid crystal layer 500 and the light of the second polarization component is reflected from the first substrate 1 . In general, A backlight assembly (not shown) that emits light under the display panel 1000 includes a reflective sheet. The reflection sheet reflects light that is reflected from the first substrate 1 to the display panel J00Q. The metal contained in the first metal linear grid 31〇 may have a high reflectance ′ such that more light can be recovered by the reflective sheet and enter the reflective sheet.  Light such as more second polarization components can enter the reflective sheet. For example,  The first metal linear grid 310 may comprise a metal having a high reflectivity. Such as aluminum, silver, Copper and so on. and so, If the highly reflective metal causes reflection of the first metal linear grid 310, it may be possible to omit the duai brightness enhance film (duai brightness enhance film) used in conventional display panels.  DBEF). therefore, It has the effect of reducing the manufacturing cost of the display panel 1,,  It is also possible to manufacture a thin and light display device including the display panel 1〇〇〇.  The first metal linear grid 610 can comprise a metal having a low reflectivity,  Thereby suppressing reflection of external light and absorbing light. The second metal linear grid 61〇 can perform other processes to reduce the reflectivity of the metal. Or may contain carbon, Chromium oxide or the like, or carbon, Configurations such as chrome oxide, To absorb light.  Simultaneously, The second metal linear grid 610' according to another exemplary embodiment considers a majority contact with the outside, It may contain a metal having a high pressure strength. For example, The second metal linear grid 61〇 may comprise tungsten molybdenum or a similar alloy, Or it may comprise an electropolymer that is substantially capable of performing the same function as the metal layer.  The display panel 10 (8) in FIG. 10 may further include a light absorbing layer 330, The light absorbing layer 330 is formed on the first metal 17 201234084 39622pif linear grid 310 included in the first substrate 1 且 and absorbs light. If external light enters the display panel 1 再 and is reflected again, there is a problem that the contrast of the display panel 丨〇 (8) is degraded and the image quality is deteriorated due to the reflected light. To avoid these problems, The first substrate 100 according to this exemplary embodiment includes a light absorbing layer 330 on the first metal linear grid 31〇, To absorb unwanted external light.  The light absorbing layer 330 may contain a metal having a low reflectance. And or may contain carbon, Chromium oxide or the like, or carbon, Configurations such as chrome oxide, To absorb light.  Optionally, The light absorbing layer 330 may not be formed on the first substrate but under the second metal linear grid 610 of the second substrate 200. that is, The external light is intercepted by the light absorbing layer 330 formed under the second metal linear grid 610 to prevent entry into the display panel 1''.  FIG. 11 shows a first absorption layer 331 formed on the first substrate 100 and a second absorption layer 631 formed on the second substrate 200. In order to reduce the problems associated with light emitted from the backlight assembly (not shown) but related to external light reflection, the display panel 1000 according to this exemplary embodiment includes the light absorbing layer 331 on the first substrate 100 and the second substrate 200. And 631. The light absorbing layers 331 and 631 can pass through carbon, Configurations such as chrome oxide 'but are not limited to this, The light absorbing layers 331 and 631 may contain a metal that can absorb light.  The first light absorbing layer 331 and the second light absorbing layer 631 may be formed on one of the substrates as shown in FIG. Or both configurations can be omitted.  FIG. 12 is a layer structure of a display panel according to another exemplary embodiment,  And FIG. 13 is a cross-sectional view of the display panel of FIG.  As shown therein, The display panel 1000 according to this exemplary embodiment may further include a second polarizing layer 700, It is provided below the color filter layer 300 and transmits a first polarization component at 18 201234084 39622pif. The second polarizing layer 700 can include a third metal linear grid 710. The third metal linear grid 71 is made of substantially the same metal as the second metal linear grid 610 of the first metallic linear grid 310 or the second metal twitching her rose 610. And the third metal linear grid 71〇 and the first:  The linear grids 310 are oriented in the same direction. Third metal linear ^71 & 定向 being oriented in the same direction as the first metal linear grid 310, Therefore, the first polarization component is transmitted. The light having the first polarization component passing through the second polarizing layer 700 emits red when passing through the color filter layer 300. Green and blue.  The metal layer contained in the linear thumb lattice of the second metal may contain a metal having a reflectivity of Such as aluminum, silver, And at least one of the copper. In addition, The light absorbing layer may be further disposed on the metal layer to absorb external light.  14A through 14F are diagrams showing a method of manufacturing a first substrate of a display panel according to another exemplary embodiment.  As shown in FIG. 14A, The metal layer 711 and the curtain 712 as the protective metal layer 711 are stacked on the first substrate (10). To form a second polarizing layer, The second is followed by a general patterning process. In other words, Deposited photoresist,  , Photomask exposure light _ and development and _, Thereby, a third metal linear grid 71 is formed (refer to Fig. mb).  then, As shown in Figure 14C, A flat layer 1 〇 (M) is formed on the second polarizing layer 7A. The W-denier layer -1 may comprise Shi Ni nitride (SiNx).  As shown in Figure 14D, The first metal layer 31, the insulating layer 313, and the second metal layer 315 are formed by a ruthenium plating or the like (M-shaped ytterbium polarizing layer 300).  201234084 39622pif as shown in Figure 14E, Forming a first metal linear grid 310 by performing a lithography or etching process (311, 313 and 315).  then, As shown in FIG. 14F, Forming a flat layer ι〇α> 1 to protect and smooth the surface of the first metal linear grid 31〇, Further, a TFT 411 and a pixel electrode 412 electrically connected to the TFT 4u are formed on the flat layer. The pixel electrode 412 can be formed by sputtering to deposit metal and pattern. ’,  15A through 15D are views showing a method of fabricating a second substrate of a display panel according to another exemplary embodiment.  The method of forming the first polarizing layer 6〇〇 in the second substrate 200 is similar to the method of forming the color calendering polarizing layer in the first substrate 10G. that is,  As shown in FIG. 15A, The metal layer 611 and the hard curtain 612 as the protective metal layer 6 ι are stacked on the second substrate 2''.  then, The second metal line grid 610 is formed by performing a lithography or etching process (see Fig. 15B).  After forming the second metal linear grid 610, As shown in Figure 15C, Shape 11^1 is the flat layer of the surface of the second metal linear grid 610 which is preserved and flattened ^ 15D, A recombination should be formed in a region on the flat layer 1〇〇1 and formed as a common vehicle 2=b containing a transparent conductive material. Forming a package image by the method Γ 二 二 二 二 二 二 4 4 4 4 4 4 4 4 4 4 4 4 4 4  : Insert the liquid crystal, The display panel 1000 is completed.  6 : ', , A cross-sectional view of a display panel in accordance with another exemplary embodiment.  201234084 39622pif As shown in it, The display panel 1A according to this exemplary embodiment includes a first polarizing layer 6〇〇 formed on the first substrate 1〇〇, The color filter layer 300 and a second polarizing layer formed on the second substrate 200. In other words, The color filter layer 300 and the second polarizing layer 700 may be disposed on the substrate on which the black matrix 200-1 is formed instead of on the pixel layer 4''. If light enters through the bottom layer of the first substrate 100, Light having the second polarization component passing through the first polarizing layer 6 will pass through the liquid crystal layer 500, Then, light having a first polarization component of a different color is emitted while passing through the color filter layer 300 and the first polarizing layer 700. Each of the color filter layer 300 and the first polarizing layer 600 can be selectively formed on the substrate. This substrate is the same as or different from the substrate on which the pixel electrode 412 is formed. of course, Light can enter from the second substrate 2 and exit from the first substrate 100.  The display panel 1 according to another exemplary embodiment may include a reflection constraining layer disposed on any of the first substrate 100 or the second substrate 200. Not shown), that is, The light is substantially emitted from the outer surface of the substrate. The display panel 1〇〇〇 is an emission type panel.  The image is displayed only with the incident light and all the transmitted light. The display panel 1000 may further include a reflection suppressing layer to reduce reflection caused by external light. Further, the reflection suppressing layer may further comprise an antireflection film or an antiglare film. Or a moth-eye patten layer formed on the outer surface of the second substrate 200 by nanotechnology may be included. Further, the reflection suppression layer can be via, for example, low reflection (LR), Anti-reflection (AR), Surface hardening (HR) or the like is formed by combining the above treatments. This surface treatment can be enhanced in resolution, Anti-discharge,  Anti-pollution, Anti-wear and the like as well as anti-reflection. sometimes, The reflection suppressing layer may be added to the substrate or the intermediate portion of the display panel 1000 due to the exposure of 21 201234084 39622pif.  Although not shown, However, the display panel 1000 may further include a printed circuit board provided with a gate driving integrated wafer (1C) and a data chip film package. In addition, A compensation film (not shown) may be further provided outside the first substrate 100 and the second substrate 200.  Figure 17 is a diagram illustrating polarization of first and second metal linear grids of a display panel in accordance with an exemplary embodiment. The line in Fig. 17 depicts the direction of the first metal linear grid 31 形成 formed on the color filter layer 300 and the direction of the second metal linear grid 61 形成 formed on the first polarizing layer 600. According to the direction, The transmitted light has a different polarization component. For example, If the horizontal line transmits the first polarization component of the light, The second polarization component of the light is then transmitted in the vertical direction. The display panel 1000 according to this exemplary embodiment can be used in a display device for displaying three-dimensional (3D) images. In particular, it is displayed in a display device that displays a passive 3D image mode. In the case of displaying passive 3D images, The user can view the image by polarized glasses having different polarization states.  As shown therein, The color filter layer 3 is divided into a plurality of columns. And the first metal linear grid 310 includes a first polarization linear grid and a second polarization linear grid P-2. The first polarization linear grid P- is used to transmit the first polarization component, The second polarization linear grid P-2 is for transmitting a second polarization component.  The first polarization linear grid P-1 is formed in the odd column and the second polarization linear grid P-2 is formed in the even column. The two are arranged alternately with each other. Similarly, The second metal linear grid 610 includes a first polarization linear grid ρ" and a second polarization linear grid P-2. The first polarization linear grid pj is used to transmit the first polarization component, The second polarization linear grid P-2 is for transmitting a second polarization component.  22 201234084 39622pif However, Different from the first metal linear grid 31〇, The first polarization linear grid P-1 in the second metal linear grid 61〇 is formed in an even column, And the second polarization linear grid p_2 is formed in an odd column, The two are alternately arranged.  In other words, The first polarization linear grid P-1 in the second metal linear grid 61 is formed in a manner corresponding to the second polarization line P-2 in the first metal linear grid 31〇. And the second polarization linear grid P_2 of the second metal linear grid 61〇 is formed in a manner corresponding to the first polarization linear grid pq in the first metal linear grid 31〇, The two are arranged alternately with each other.  If the video signal corresponding to the left eye image and the video signal corresponding to the right eye image are alternately and individually applied to the odd column and the even column, Then, the left eye image is presented on the display panel 1000 via the first polarization linear lattice P-1 in the first metal linear grid 31〇 and the second polarization linear lattice P 2 in the second metal linear grid 610. And the right eye image is presented on the display panel 1 through the second polarization linear grid p_2 in the first metal linear grid 310 and the first polarization linear grid p-丨 in the second metal linear grid 610. .  Although the left eye image and the right eye image are simultaneously displayed on the display panel 1 ,, However, the user's two eyes separately see different images through polarized glasses that can only transmit polarization in one of the left and right eye images. Thereby viewing the 3D image.  The repeated cycle of the first polarization linear grid P-1 and the second polarization linear lattice p_2 may be based on one pixel column or a plurality of pixel columns.  Optionally, The color filter layer 300 can be divided into a plurality of rows. And the first polarization linear grid P-1 and the second polarization linear grid p_2 are alternately formed in each row of 23 201234084 39622pif.  Figure 18 is a diagram illustrating polarization of first and second metal linear grids of a display panel in accordance with another exemplary embodiment.  As shown therein, the color filter layer 300 in this exemplary embodiment is divided in the form of a checkerboard. And the first polarization linear grid P-ι and the second polarization linear grid P-2 are alternately formed in adjacent checkerboard cells. of course, The first polarization linear grid PJ in the first metal linear grid 310 corresponds to the second polarization linear grid p_2 in the second metal linear grid 610, And the second polarization linear grid p_2 in the first metal linear grid 310 corresponds to the first polarization linear grid P-1 in the second metal linear grid 61.  In this situation, The left eye image and the right eye image may be alternately presented in adjacent cells. And the user can view the 3D image from the same polarized glasses as in the previous exemplary embodiment. In this exemplary embodiment,  image, ^The resolution is substantially lower than the resolution of the display panel 1000. The eye image and the right eye image are repeated in a grid pattern. So that the resolution heart f perceives a decrease in resolution. that is, The user can view the solution board map. An image of the resolution in the exemplary embodiment shown in FIG.  Corresponding to a single-pixel that can correspond to pixel layer 4 (8), And, in addition, 1 π includes a polarizing button diagram and the display panel 1000 shown in Fig. 18 can change the external light to R1 to view the linear polarization degree of the (four) first-polarized layer_transmission 31). For a miscellaneous viewing angle and so that the time can be seen from any angle, The display panel 1000 can emit circularly polarized light.  Back to 9 is a cross-sectional view of a display panel according to another exemplary embodiment.  24 201234084 39622pif As shown therein, the display panel 1000 according to this exemplary embodiment includes a polarizing film 800, The polarizing film 800 is provided outside the second substrate 2〇〇, The incident light is polarized. The polarizing film 8 transmits a second polarization component different from the first polarization component, And its polarization state is a polarization state perpendicular to the color filter layer 3〇〇.  The polarizing film 800 includes a polarizing element that controls polarization characteristics by dyeing polyethylene glycol with hydrazine or dye, a cellulose diacetate (triacetyi ceiiui〇se, placed on the opposite side of the polarizing element and protecting the polarizing element Tac) anisotropic film,  And an adhesive attached to the second substrate 200. In addition, A release film as a protective adhesive and a polyethylene terephthalate (p〇lyethyiene terephtalate) as a surface for protecting the polarizing film are attached. PET), Thus, the basic structure of the polarizing film is formed.  The TAC surface is surface treated to provide anti-reflective or scratch-resistant properties. that is, The display panel 1 00 of this exemplary embodiment includes a color filter layer 300 on the first substrate 100 and a polarizing film 8 在 on the second substrate 200. The color filter layer 300 has a first linear metal linear grid 3i.  Figure 20 is a cross-sectional view of a display panel in another exemplary embodiment. As shown in it, The display panel 1 in this exemplary embodiment may include a polarizing film 800 on the second substrate 200 and may further include a second polarizing layer 700 on the first substrate 1A and beside the color filter layer 300.  The second polarizing layer 700 may further include a third metal linear grid 710. The third metal linear grid 710 contains substantially the same metal as the metal contained in the first metal linear grid 310, And the third metal linear grid 710 is arranged in the same direction as the first metal linear grid 310. The third metal linear grid 25 201234084 39622pif grid 710 is arranged in the same direction as the first metal linear grid 310, Therefore, the first polarization component is transmitted.  21 is a schematic diagram of a display device according to an example embodiment, 22 is a control block diagram of a display device according to an exemplary embodiment.  As shown therein, The display device 1 includes a display panel 1000, Backlight component 2000, Accommodating the aforementioned container (accomm〇dating container) 31〇〇, 3200, 3300, And a video provider 4000 (see Figure 22).  The display panel 1000 includes a first substrate 100, The second substrate 200 opposite to the first substrate 100, a liquid crystal layer (not shown) interposed between the first substrate 1〇〇 and the second substrate 2〇〇, And a panel driver that drives the pixel layer 400 to display video signals. The panel driver can include gate drive 1 (: 91(), Data chip film package 920, And a printed circuit board 930.  The first substrate 100 and the second substrate 200 may be formed with a pixel layer 4,  Color filter polarizing layer 300, First polarizing layer 600, Black matrix 200],  The electrode 200-3 is shared. The color filter polarizing layer 3 〇〇 polarizes into the incident light of the first substrate 1 , And the first polarizing layer 600 polarizes light that is separated from the display panel 1A.  The display panel 1000 receives external light and controls the intensity of light passing through the liquid crystal layer between the first plate and the second substrate. The second shadow gate driver 1C 910 is integrated and formed on the first and connected to each of the gate lines formed on the first substrate 1 〇〇 ± (not green 26 201234084 39622pif further 'data wafer film package 92 The crucible may be connected to a parent data wiring (not shown) formed on the first substrate 1A. The data wafer film package 920 may include tape automated bonding (tape automated bonding). TAB) belt,  The semiconductor wafer is adhered to the wiring pattern formed on the base film by TAB technique. Tape carrier package (tape carrier package, TCP),  Chip on fiim, C0F) or the like can be used as an example of a wafer film package.  At the same time, the printed circuit board 930 can be mounted together with the drive components. It is used to input the gate signal to the gate driver 1C 931 and to input the data driving signal to the data wafer film package 920.  The backlight assembly 2000 can include a light guide plate 22 for guiding light, a first light source 2300a and a second light source 2300b for emitting light, a reflection sheet 2400 placed under the light guide plate 2200, And one or more optical sheets 2100.  The light guide plate 2200 serves as a guide for light that is supplied to the display panel 1000.  The light guide plate 2200 can be made of a transparent plastic plate such as acrylic. The light emitted from the first light source 2300a and the second light source 2300b is guided toward the display panel 1A formed on the light guide plate 2000. There may be different patterns behind the light guide plate 2200, It is used to change the direction in which light is incident from the inside to the light guide plate 2200 toward the display panel 1000.  As shown in Figure 21, The first light source 2300a and the second light source 2300b may include a light emitting diode as a point source.  LED). The light source is not limited to LEDs. And may include, for example, a cold cathode fluorescent lamp (cold cathode fluorescent lamp) CCFL) or hot fluorescent lamp (HCFL) line source. The first light source 2300a and the 27th 201234084 39622pif two light source 2300b are electrically connected to an inverter (not shown) that supplies power and receive power.  The reflection sheet 2400 is provided under the light guide plate 2200 and reflects the emitted light upward to the lower side of the light guide plate 2200. especially, There is no light reflected by the fine dot pattern formed on the back surface of the light guide plate 2200, Will be reflected to the light guide plate 2200, Therefore, the loss of light entering the display panel 1 降低 is reduced and the uniformity of light penetrating from the exit surface of the light guide plate 2200 is increased.  One or more optical sheets 2100 are provided on the top of the light guide plate 2200 and diffused and collected as light transmitted from the light guide plate 2200. The optical sheet 21 can include a diffusion sheet, Bracts and protective sheets. The diffusion sheet can be placed between the light guide plate 2200 and the prism sheet. And diffusing light from the light guide plate 22, Thereby preventing the light from being partially concentrated. The cymbal may include a triangular prism regularly arranged at the top. And the light diffused by the diffusion sheet is concentrated in a direction perpendicular to the display panel 1000. The protective sheet can be formed on the prism sheet. To protect the surface of the prism and spread the light, The light is evenly distributed.  The assembly ΐ includes the lower container (l〇wer accommodating container) 31 〇〇, Middle container accommodating container and upper container (Upper acc〇mm〇dating container) 3300. The lower container 3100 can accommodate the reflective sheet 24〇〇, First light source 2300a, Second light source 2300b, Light guide plate 2200 and one or more optical sheets 2100. The lower container 3100 can be manufactured from a metal that is resistant to external impact and grounding.  The image provider 4000 is connected to the display panel 1 and provides an image. 28 201234084 39622pif Although the image provider 4 is not shown in FIG. 21, However, the image feeder 4000 may be disposed on the reflective sheet 24〇〇 and the lower container 31〇〇 or may be placed behind the lower container 3100.  Fig. 23 is a view for explaining a three-dimensional (3D) image displayed in a display device according to an exemplary embodiment.  Figure 23 illustrates a color filter layer 300 provided in the form of a checkerboard, The first polarizing layer 6〇2 and the polarizing glasses 5〇〇〇. The display device according to this exemplary embodiment includes a display panel, The left eye view on the ageing panel 1 & Polarized glasses like the right and right image 5〇〇〇.  , The spectacles 5000 include a left-eye lens 51A and a right-eye lens 5200 that respectively transmit polarization components perpendicular to each other (i.e., transmit a first-polarization component and a second polarization component). The left-eye lens 51〇〇 and the right-eye lens 52〇〇 respectively transmit different polarized lights. therefore, Light that penetrates the left-eye lens 51〇〇 cannot penetrate the right-eye lens. Light that penetrates the right eye lens cannot penetrate the left eye lens 5100.  In this exemplary embodiment, The image provider 4000 provides the left eye image data and the right eye image data to the sub-pixel 41 corresponding to the cell. The left eye image and the right eye image are alternately displayed on the checkerboard cell. The left eye image and the right eye image can be transmitted only to the two lenses · and 5200 according to the polarization (4). So, the user combines the left eye image and the right eye image seen by his/her eyes. To feel the 3D image.  On the outer surface of the second substrate from which the light leaves, A polarizer can be provided to change the linearly polarized light into circularly polarized light. In addition, The polarized glasses 5A may include a circular polarizer for transmitting circularly polarized light.  29 201234084 39622pif a display device according to this exemplary embodiment, The first metal linear grid 310 and the second metal linear grid 61 are formed in a checkerboard format in the display panel 1000 to facilitate the implementation of passive 3D images. In the case of displaying a passive mode 3D image, The left eye image must be spatially separated from the right eye image. currently, If using a polarizing film, There will be many disadvantages that will reduce the resolution. The display panel 1 in this exemplary embodiment can change the polarization state to a checkerboard format. Therefore, it is possible to provide a high-quality three-dimensional image without degrading the resolution of the user's feeling.  The display panel 1000 included in the display device according to this exemplary embodiment can display the left eye image and the right eye image in a time sharing manner according to the shutter glasses. Further, the polarization state of the display panel 1000 can be changed in accordance with the row and column form (e.g., Fig. 17).  Fig. 24 is a view for explaining a method of manufacturing the display device of Fig. 23.  First of all, In step S10, Providing a first-polarized linear grid in the form of a checkerboard on the first substrate 1〇〇〇, a second polarized linear lattice P-2^, thereby forming a color light-emitting layer 300, The first polarization line form p_丄 transmits the first polarization component 1 and the second polarization linear grid p_2 to transmit the second polarization component. The first metal linear grid of the color light-emitting layer 3〇〇 is arranged at different intervals to emit light of different colors. Such as red light, Green light, Blue light. Forming a scale _ red in a manner that is less than 1/2 red wavelength, Is a linear grid, Riding: Hide light when not expected; Forming a greenish thumbgear disposed in such a manner that the distance is less than the i/2 green wavelength, which corresponds to the sub-pixel to scaly light, Forming a square metal color grid with a spacing of less than W minus each wavelength, Its pair of 201234084 39622pif should be launched at 夂 pixel 410 to launch the umbrella. Chu - by sequential stacking and graphing ^^ human metal linear grid 310 is by metal layer 祀 = genus U, The insulating layer 313 and the second 33 〇 310 are then followed by the incident light from the step d.  The light layer 600' causes the first polarization line: two: on:  = Pair = linear grid one and the first polarized grid p-ι in the == n color calender layer 300.  The pixel layer of the Ba Yingyu layer 300 or the polarization layer 6 is formed on the side where the color light-emitting layer is located. The second layer j1 can form the pixel layer 400 before the domain-polarization layer is deleted.  The same substrate 11 formed on the same as the first polarizing layer _ is formed to form the pixel layer 4 〇〇 before the color filter layer 3 is formed.  Engage in Z, In step (10), Packaging the first substrate 100 and the second substrate 200, And injected into the liquid crystal layer.  = can supply video (four) to the sub-pixel image provider side to drive the pixel layer _ the driver board _ connected to the substrate, And inputting the left eye image data and the right eye image (4) into the sub-pixel object, Make the left eye image and the right eye image alternately appear in the _ adjacent checkerboard cell. therefore, The user can combine the left eye image and the right eye with the polarized glasses 5000, /冢 and right as mentioned above, According to an example embodiment, Providing a display panel and a display device having the 31 201234084 39622pif display panel, Manufacturing costs are reduced and manufacturing processes are simplified.  Significantly simplified.  According to another exemplary embodiment, A display panel with improved optical efficiency and a display device including the display panel are provided.  According to yet another exemplary embodiment, A display device for passive stereoscopic images with improved visibility.  Although some example embodiments have been set forth, But understandably, Without departing from the principles of the invention, The exemplary embodiments can be made by those skilled in the art, and thus the scope of protection of the present invention is defined by the scope of the patent application and its four effects.  The contents of all the items and documents and documents that were filed before or at the same time in this manual related to this document and the public review together with this manual will be cited:  The second way is OK? a combination of at least some of =1= Summary and Drawings This manual contains the steps for any accompanying process.  , Each of the features disclosed in the Ϋ feature and/or the disclosed method or illustration): : Any subsidiary, Summary and other features replacement H " with, Each of the inventions disclosed for equal or similar purposes is not limited to +, # 蜀Series - an instance.  Book (including any details). The present invention may be extended to any of the features disclosed herein, or any novel combination, Or the method or step disclosed may be extended to any novel or any novel combination.  BRIEF DESCRIPTION OF THE DRAWINGS The above and/or other concepts are apparent and apparent from the description of the example embodiments.  FIG. 1 shows a layer structure of a display panel according to an exemplary embodiment.  Figure 2 is a diagram showing the color filter layer of Figure 1.  3A and 3B show a first metal linear grid of sub-pixels.  Figure 4 is a cross-sectional view of the color filter layer of Figure 2.  Figure 5 is a cross-sectional view of another color filter layer in accordance with an exemplary embodiment.  FIG. 6 is a diagram of a layer structure of a display panel according to another exemplary embodiment.  Figure 7 is a cross-sectional view of the display panel of Figure 6.  Figure 8 is a cross-sectional view of a polarizing layer on the second substrate of Figure 7.  9 to 11 are views of a color filter layer and a polarizing layer of a display panel according to another exemplary embodiment.  FIG. 12 is a diagram of a layer structure of a display panel according to another exemplary embodiment.  Figure 13 is a cross-sectional view of the display panel of Figure 12 .  14A through 14F are diagrams illustrating a method of fabricating a first substrate of a display panel, according to another exemplary embodiment.  15A through 15D are diagrams illustrating a method of fabricating a second substrate of a display panel, according to another exemplary embodiment.  33 201234084 39622pif Figure 16 is a pivotal capture Ώ Figure 17 is a cross-sectional view of a display panel of an exemplary embodiment.  The first and second panels of the display panel of the metal linear thumb embodiment are diagrams illustrating the polarization of the first and second metal linear grids of the display panel of the other exemplary embodiment.  The figure is a cross-sectional view of a display panel according to another exemplary embodiment.  20 is a cross-sectional view of a display panel in accordance with another example embodiment.  21 is a schematic diagram of a display device in accordance with an exemplary embodiment.  FIG. 22 is a control block diagram of a display device according to an exemplary embodiment.  23 is a diagram illustrating display of a three-dimensional image (3D image) in a display device, according to an exemplary embodiment.  Fig. 24 is a view for explaining a method of manufacturing the display device of Fig. 23;  [Main component symbol description] 100: First substrate 100-1 . Flat layer 200: second substrate 200-1: black matrix 200-2: cladding layer 200-3: common electrode 3〇〇: color filter layer 310: first metal linear grid 310-R: red metal linear grid Grid 310-G: Green Metal Linear Grid 310-B: Blue Metal Linear Grid 34 201234084 39622pif 311 First Metal Layer 313 Insulation Layer 315 Second Metal Layer 320 Dielectric Layer 330 Light Absorbing Layer 331, 631: Absorbing Layer 400: pixel layer 410: sub-pixel 410-R, 410-G, 410-B: sub-pixel 411: thin film transistor 411-1: gate 411-2: insulating layer 411-3: semiconductor layer 411-4: ohm Contact layer 411-5: source 411-6: drain 411-7: protective layer 412: pixel electrode 413: sustain electrode 500: liquid crystal layer 600: first polarizing layer 610: second metal linear grid 611, 711: Metal layer 612, 712: hard mask 35 201234084 39622pif 700: second polarizing layer 710: third metal linear grid 800: polarizing film 900: driving board

910 :閘極驅動1C 920 :資料晶片薄膜封裝 930 :印刷電路板 1000 :顯示面板 2000 :背光組件 2100 :光學片 2200 :導光板 2300a、2300b :光源 2400 :反射片 3100、3200、3300 :容納器 4000 :影像提供器 5000 :偏振眼鏡 5100 :左眼透鏡 5200 :右眼透鏡 Η :高度 I :像素 Ρ :間距 W :寬度 Ρ-1 ··第一偏振線形柵格 Ρ-2 :第二偏振線形柵格 S10〜S50 :步驟 36910: gate drive 1C 920: data wafer film package 930: printed circuit board 1000: display panel 2000: backlight assembly 2100: optical sheet 2200: light guide plate 2300a, 2300b: light source 2400: reflection sheet 3100, 3200, 3300: container 4000: Image provider 5000: Polarized glasses 5100: Left-eye lens 5200: Right-eye lens Η: Height I: Pixel Ρ: Pitch W: Width Ρ-1 · First polarized linear grid Ρ-2: Second polarized line Grid S10~S50: Step 36

Claims (1)

201234084 39622pif 七、申請專利範圍: L -麵示面板,其包含液晶層,所述顯示面板包括: 第一基板及第二基板,彼此對向配置;及 彩色濾光層,形成於所述第一基板與所 間的所述第-基板與所述第二基板的一個=- 以不同間距配置的第一金屬線形拇:,=有= 色之入射光的第-偏振分量。 發出具有不同顏 一偏2 ^利範圍第1項所述之顯示面板,更包括第 其傳賴述人縣H振分量 偏振所述人射光之所述第1振分量。 望-i丄如申請專利範圍第2項所述之顯示面板,i中所述 :形成於所述第-基板與所述第二基板= 第-1· Λ申請專利範圍第3項所述之顯示面板,更包括-所述苐二基板其令之一者==與所述第-基板及 振分金屬線性柵格能夠傳送所述入射光之所述第一偏 第一第2項所述之顯示面板,其令所述 士申°月專利範圍第4項所诚 _ 像素層,所述像素層形成於所述第—基 37 201234084 39622pif 之間的-個表面上,且具有包括多個次像 具^同間距之至少三個次像素形成於所述第—金屬^ 栅格上。 t屬線性 7. 如申請專利範圍第4項所述之顯示面板, 第-金屬線性柵格包括紅色金屬線性拇格 2中所述 柵格及藍色金屬線性栅格,以及 〜、巴金屬線性 所述紅色金屬線性栅格具有小於1/2 * 距、所述綠色金屬線性柵格具有小於1/2 波長之間 距、及所述藍色金屬線性栅格具有小於長之間 距。 尤波長之間 8. 如申請專利範圍第4項所述之 第-金屬、,包括依序堆疊的第二金屬層= 及第二金屬層。 蜀 絕緣層、 〜二申利範圍第1項所述之顯示面板,I中所、t、 衫色慮光層更包括介電層,所述介 所迷 形金屬線性栅格與所述第-基板及所述第t 線 者之間。 k弟一基板其中之一 10.如申請專利範圍第4項所 述第-金屬線性柵格包括第一偏振線形 形柵格,崎第—偏振_栅__料—線 所达如色慮光層轉盤格形式 ^ 栅格及所述第二偏振線形栅格交替偏振線形 式單元格中。 ^成於相鄰的所述棋盤 38 201234084 39622pif 述第Γ全專2圍第10項所述之顯示面板,其中所 形栅格,所述Lift第—偏振線形柵格及第二偏振線 所述第二偏振線形拇格傳送所述第二^ 應於二^ff性栅格的所述第—偏振線形栅格對 述柵格的所述第二偏振線形栅格對應於所 第-至屬線性柵格的所述第一偏振線形柵柊。 像專利範圍第11項所述之顯示面板,更包括 ::層:其形成於所述第一基板及所述第二基板之間的表 上,且具有包括多個次像素的像素。 所述光射呈棋域的單元格是以對應 13.如申請專利範圍第4項所述之顯示面板,其中所 =第-金屬線性栅格包括第-偏振線形栅格以及第二偏振 、曰七柵格’所述第-偏振線形栅格傳送所述第一偏振分 直,所述第二偏振線形柵格傳送所述第二偏振分量,及 所述彩色濾光層被分割成多個行或多個列,及 所述第一偏振線形柵格與所述第二偏振線形栅格交 幵ν成於所述彩色/慮光層之所述多個行或所述多個列中。 、、I4.如申請專利範圍第13項所述之顯示面板,其中所 述第二金屬線性栅格包括第一偏振線形柵格以及第二偏振 ,形栅格,所述第一偏振線形柵格傳送所述第一偏振分 里,所述第二偏振線形栅格傳送所述第二偏振分量,及 39 201234084 39622pif 所述第—金屬線性柵格的所述第 應於所述第-金屬線性栅格 柵格對 所述第格的所且 述第-金屬線性栅格的所述第—偏振線形柵格。〜、所 像辛範圍第Μ項所述之顯示面板,更包括 =層細成於所述第一基板及所述第二基板之間 上,且具有包括多個次像素的像素, 其中所述彩色濾光層的所述多個行或述多個 以對應像素行錄素關減減。^201234084 39622pif VII. Patent application scope: L-face panel comprising a liquid crystal layer, the display panel comprising: a first substrate and a second substrate disposed opposite to each other; and a color filter layer formed on the first A first metal linear shape of the substrate and one of the first substrate and the second substrate between the first substrate and the second substrate are at a different pitch: a = polarization component of the incident light having a color. The display panel according to the first item of the second aspect of the invention is further provided, and the first vibration component of the human light emitted by the H-vibration component of the Laihu County is further included. The display panel described in claim 2, wherein the first substrate and the second substrate are formed in the third substrate of the first substrate and the third substrate. The display panel further includes: the second substrate, wherein the one of the first substrate and the second substrate and the vibrating metal linear grid capable of transmitting the incident light are a display panel, which is in accordance with item 4 of the patent application scope, wherein the pixel layer is formed on a surface between the first base 37 201234084 39622pif and has a plurality of At least three sub-pixels having the same pitch are formed on the first metal grid. The linear display of the display panel of the fourth aspect of the invention, the first metal linear grid comprises the grid of the red metal linear thumb grid 2 and the blue metal linear grid, and the linearity of the bar and the metal The red metal linear grid has a distance less than 1/2*, the green metal linear grid has a spacing less than 1/2 wavelength, and the blue metal linear grid has a length less than a long distance. Between the wavelengths 8. The metal as described in claim 4, including the second metal layer in sequence and the second metal layer.蜀Insulation layer, the display panel according to item 1 of the second application, wherein the t, the color layer of the shirt further comprises a dielectric layer, the singular metal linear grid and the first Between the substrate and the t-th line. One of the substrates of the k-one substrate. 10. The first-metal linear grid according to item 4 of the patent application scope includes a first polarization linear grid, and the Saki-polarization_gate_-material-line is colored. The layer turntable grid form ^ grid and the second polarization linear grid alternately polarized in the form of cells. The display panel of the tenth item of the fourth aspect of the present invention, wherein the shaped grid, the Lift-polarized grid and the second polarized line are described in the above a second polarized line-shaped thumbgear conveys the second polarized linear grid of the first polarized linear grid of the second grid corresponding to the grid to correspond to the first-to-north linearity The first polarization linear grid of the grid. The display panel of claim 11, further comprising a layer: formed on a surface between the first substrate and the second substrate, and having pixels including a plurality of sub-pixels. The display panel of the fourth aspect of the invention, wherein the =-metal linear grid comprises a first-polarized linear grid and a second polarization, 曰a seven grid 'the first polarization linear grid transmits the first polarization division, the second polarization linear grid transmits the second polarization component, and the color filter layer is divided into a plurality of rows Or a plurality of columns, and the first polarization linear grid and the second polarization linear grid are interposed in the plurality of rows or the plurality of columns of the color/lighting layer. The display panel of claim 13, wherein the second metal linear grid comprises a first polarization linear grid and a second polarization, a shape grid, the first polarization linear grid Transmitting the first polarization, the second polarization linear grid transmitting the second polarization component, and 39 201234084 39622pif the first metal linear grid of the first metal linear grid A grid of said first polarization lines of said first metal linear grid of said first grid. The display panel of the ninth aspect, further comprising: a layer finely formed between the first substrate and the second substrate, and having pixels including a plurality of sub-pixels, wherein The plurality of rows or the plurality of color filter layers are reduced by a corresponding pixel row. ^
TW100133741A 2011-02-14 2011-09-20 Display panel TW201234084A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161442394P 2011-02-14 2011-02-14
KR1020110037630A KR101222566B1 (en) 2011-02-14 2011-04-22 Display panel and display apparatus comprising the same

Publications (1)

Publication Number Publication Date
TW201234084A true TW201234084A (en) 2012-08-16

Family

ID=46884793

Family Applications (3)

Application Number Title Priority Date Filing Date
TW100133437A TW201234083A (en) 2011-02-14 2011-09-16 Display panel
TW100133741A TW201234084A (en) 2011-02-14 2011-09-20 Display panel
TW100133742A TW201234085A (en) 2011-02-14 2011-09-20 Display panel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100133437A TW201234083A (en) 2011-02-14 2011-09-16 Display panel

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100133742A TW201234085A (en) 2011-02-14 2011-09-20 Display panel

Country Status (7)

Country Link
JP (3) JP2012168531A (en)
KR (4) KR101282138B1 (en)
BR (2) BR102012003319A2 (en)
CA (1) CA2826915A1 (en)
MX (3) MX2013009342A (en)
RU (2) RU2012105000A (en)
TW (3) TW201234083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261730B2 (en) 2013-01-03 2016-02-16 Empire Technology Development Llc Display devices including inorganic components and methods of making and using the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150301236A1 (en) * 2012-12-06 2015-10-22 Sharp Kabushiki Kaisha Optical filter
KR102090713B1 (en) * 2013-06-25 2020-03-19 삼성디스플레이 주식회사 flexible display panel and the display apparatus comprising the flexible display panel
TWI489146B (en) * 2013-07-29 2015-06-21 惟勤科技股份有限公司 Lcd and method for generating 3d images by matching a software optical grating
KR102150859B1 (en) * 2014-01-13 2020-09-03 삼성디스플레이 주식회사 Display device
KR102114965B1 (en) 2014-02-07 2020-05-26 삼성디스플레이 주식회사 Manufacturing method of reflective polarizer plate and display device having reflective polarizer plate
KR101587639B1 (en) * 2014-09-26 2016-01-21 광운대학교 산학협력단 Color switching device
KR102405943B1 (en) * 2014-11-11 2022-06-07 엘지디스플레이 주식회사 Color Filter Array Substrate and Method For Fabricating the Same, and Organic Light Emitting Diode Display Device Using the Same
KR102259048B1 (en) * 2014-11-20 2021-06-03 삼성디스플레이 주식회사 Polarizer integrated with color filters and method for manufacturing the same
KR102581465B1 (en) 2016-01-12 2023-09-21 삼성전자주식회사 Three-dimensional image display apparatus including the diffractive color filter
CN106125179B (en) * 2016-08-29 2019-02-26 武汉华星光电技术有限公司 Display device and its optical filter
KR20180045319A (en) 2016-10-25 2018-05-04 삼성전자주식회사 Directional backlight unit and three-dimensional image display apparatus including the same
US10989840B2 (en) * 2017-11-01 2021-04-27 Applied Materials, Inc. Non-absorptive trans-reflective nanostructured RGB filters
KR102497787B1 (en) * 2017-11-15 2023-02-09 삼성디스플레이 주식회사 Mehtod for manufacturing a display panel and display device comprising the display panel
JP7333943B2 (en) * 2019-06-26 2023-08-28 国立研究開発法人産業技術総合研究所 Polarizing element having wire grid structure and manufacturing method thereof
CN113138490A (en) * 2021-04-23 2021-07-20 武汉华星光电技术有限公司 Reflective display panel

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184711A (en) * 1994-12-29 1996-07-16 Sony Corp Polarization optical element
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
US6447120B2 (en) * 1999-07-28 2002-09-10 Moxtex Image projection system with a polarizing beam splitter
TWI256491B (en) * 2004-07-27 2006-06-11 Pavonine Inc Liquid crystal display device having thin polarizing film and thin phase retardation film
KR20070010472A (en) * 2005-07-19 2007-01-24 삼성전자주식회사 Hybrid type polarizer, method for manufacturing thereof and display device having the same
KR20070117816A (en) * 2006-06-09 2007-12-13 삼성전자주식회사 Polarizer, method for manufacturing the polarizer and display panel having the same
KR20080004880A (en) * 2006-07-07 2008-01-10 삼성전자주식회사 Color filter substrate, display panel having the color filter substrate and method of manufacturing the same
JP4778873B2 (en) * 2006-10-20 2011-09-21 株式会社 日立ディスプレイズ Liquid crystal display
KR101282323B1 (en) * 2006-10-26 2013-07-04 삼성디스플레이 주식회사 Liquid crystal display
JP5426071B2 (en) * 2006-11-14 2014-02-26 チェイル インダストリーズ インコーポレイテッド Liquid crystal display
KR20090025590A (en) * 2007-09-06 2009-03-11 삼성전자주식회사 Photo-luminescent liquid crystal display with reduced backscattering
JP2010049017A (en) * 2008-08-21 2010-03-04 Asahi Kasei E-Materials Corp Method for producing absorptive wire grid polarizer
KR20100084865A (en) * 2009-01-19 2010-07-28 삼성전자주식회사 Method of manufacturing display panel
JP2010197764A (en) * 2009-02-26 2010-09-09 Ricoh Co Ltd Polarization controlling element and image display apparatus using the same
JP5387377B2 (en) * 2009-12-14 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, and program
KR101007198B1 (en) * 2010-05-17 2011-01-12 광운대학교 산학협력단 Color filter based on nano-scale grating
JP5041045B2 (en) * 2010-08-03 2012-10-03 ソニー株式会社 Liquid crystal device, color filter substrate and array substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261730B2 (en) 2013-01-03 2016-02-16 Empire Technology Development Llc Display devices including inorganic components and methods of making and using the same

Also Published As

Publication number Publication date
KR101282261B1 (en) 2013-07-10
TW201234085A (en) 2012-08-16
MX2013009342A (en) 2014-07-30
KR101197151B1 (en) 2012-11-09
KR101222566B1 (en) 2013-01-16
RU2012105000A (en) 2013-08-20
KR101282138B1 (en) 2013-07-04
JP2012168530A (en) 2012-09-06
BR102012003335A2 (en) 2013-07-30
JP2012168531A (en) 2012-09-06
MX2012001614A (en) 2012-08-30
BR102012003319A2 (en) 2013-07-23
MX2012001613A (en) 2012-08-30
JP2012168532A (en) 2012-09-06
CA2826915A1 (en) 2012-08-23
KR20120093038A (en) 2012-08-22
KR20120093039A (en) 2012-08-22
RU2012104999A (en) 2013-08-20
KR20120093037A (en) 2012-08-22
JP5577361B2 (en) 2014-08-20
KR20120093040A (en) 2012-08-22
TW201234083A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TW201234084A (en) Display panel
US8587751B2 (en) Display panel and display apparatus having the same
US8964012B2 (en) Display panel having a polarizing layer and display apparatus having the same
US8848141B2 (en) Display panel and display apparatus having the same
KR20130015470A (en) Display panel and display apparatus comprising the same
US20120206677A1 (en) Display panel and display apparatus having the same
US20130033659A1 (en) Display panel and display apparatus employing the same
CN106133435A (en) Illuminator and display device
TW201027182A (en) Liquid crystal device and electronic apparatus
US20160313599A1 (en) Liquid crystal display device
CN106324890A (en) Display device
KR20200034909A (en) Display device and method for manufacturing the same
KR20090079779A (en) Dual Liquid Crystal Display device
CN117666206A (en) Display device and head-mounted display