WO2019000899A1 - 显示模式控制装置及其控制方法、显示装置 - Google Patents

显示模式控制装置及其控制方法、显示装置 Download PDF

Info

Publication number
WO2019000899A1
WO2019000899A1 PCT/CN2018/071474 CN2018071474W WO2019000899A1 WO 2019000899 A1 WO2019000899 A1 WO 2019000899A1 CN 2018071474 W CN2018071474 W CN 2018071474W WO 2019000899 A1 WO2019000899 A1 WO 2019000899A1
Authority
WO
WIPO (PCT)
Prior art keywords
display mode
substrate
display panel
liquid crystal
electrode
Prior art date
Application number
PCT/CN2018/071474
Other languages
English (en)
French (fr)
Inventor
高健
陈小川
杨亚锋
谭纪风
孟宪芹
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/077,427 priority Critical patent/US10969616B2/en
Publication of WO2019000899A1 publication Critical patent/WO2019000899A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display mode control device, a control method thereof, and a display device.
  • the conventional flat panel display device has the advantages of being thin and light, saving physical space, and the like, and has been widely used in the display field.
  • the light intensity gradually weakens as the viewing distance gradually increases, thereby causing a poor visual experience for the user.
  • this effect is particularly noticeable.
  • the enveloping effect of the surface display enhances the user's visual impact, providing a good visual experience for the user.
  • the disadvantage is that the physical bending engineering of the curved display device is difficult, the thickness is uneven, and the display is abnormal, and the device is relatively thick.
  • the thin and light properties of the flat panel display device can be effectively combined with the visual effects of the curved display device, it is inevitable to provide the user with a display device with better experience.
  • a display mode control apparatus configured to switch a planar display mode and a virtual curved display mode of a display panel; the display mode control apparatus comprising: a first substrate including a plurality of lenses distributed in an array a unit, each of the lens units is provided with a ring-shaped diffraction phase grating; a second substrate disposed opposite the first substrate; and a liquid crystal layer between the first substrate and the second substrate; The control electrode is configured to form a preset electric field to control a deflection state of the liquid crystal molecules.
  • each of the lens units corresponds to a pixel area of the display panel.
  • focal lengths of respective lens units corresponding to different pixel regions of the display panel are incremented from a center to an edge of the first substrate.
  • each of the lens units corresponds to a sub-pixel region of the display panel.
  • focal lengths of respective lens units corresponding to different pixel regions of the display panel are incremented from a center to an edge of the first substrate, and correspond to the same pixel region of the display panel
  • the focal lengths of the lens units in different sub-pixel regions are the same.
  • the imaging image distance trajectories of all of the lens units are curved.
  • the first substrate includes a substrate body, and the annular diffraction phase grating has an integrated structure with the substrate body.
  • the height of each of the steps is:
  • the width of each of the steps is:
  • is the wavelength of the outgoing light of the display panel
  • n is the refractive index of the first substrate
  • n o is the minimum refractive index of the liquid crystal molecules with respect to the outgoing light of the display panel
  • j is the Fresnel zone number
  • d is the phenanthrene
  • the width of the inner band, i is a positive integer.
  • the liquid crystal molecules have a first refractive index with respect to the emitted light of the display panel in a first deflected state, and the liquid crystal molecules are opposite to the second deflected state
  • the emitted light of the display panel has a second refractive index; wherein a first refractive index of the liquid crystal molecules is the same as a refractive index of the first substrate and the second substrate.
  • a long axis direction of an initial orientation of the liquid crystal molecules is perpendicular to a polarization direction of an outgoing light of the display panel; or, a long axis direction of an initial orientation of the liquid crystal molecules is parallel to The polarization direction of the outgoing light of the display panel.
  • the control electrode includes a first electrode and a second electrode; the first electrode and the second electrode are both disposed on the second substrate; wherein, the An electrode and the second electrode are disposed in different layers, and the first electrode is a plate electrode, and the second electrode is a strip electrode; or the first electrode and the second electrode are disposed in the same layer, And the first electrode and the second electrode are strip electrodes and are alternately arranged.
  • a display device including a display panel, the above display mode control device, and a control circuit; wherein the control circuit is configured to supply power to the display mode control device to render the display panel in a plane Display mode, and powering down the display mode control device to cause the display panel to assume a virtual curved surface display mode.
  • a display mode control method which is configured to switch a display mode of the display device; the display mode control method includes: by supplying power to a control electrode, causing liquid crystal molecules to be in a first deflection state to present The flat display mode; the liquid crystal molecules are placed in the second deflected state by powering off the control electrodes to present a virtual curved surface display mode.
  • the display mode control device provided by the exemplary embodiment of the present disclosure is essentially a liquid crystal cell device, and the substrate surface of the liquid crystal cell device is provided with a ring-shaped diffraction phase grating.
  • the liquid crystal molecules in the liquid crystal layer can be controlled to exhibit a first deflection state.
  • the liquid crystal molecules can form a flat glass with the circular diffraction phase grating, thereby realizing a flat display; when a virtual curved surface display is required, The liquid crystal molecules in the liquid crystal layer can be controlled to exhibit a second deflection state.
  • the liquid crystal molecules can form a diffractive lens array with the annular diffraction phase grating.
  • the image-image distance of the display screen can be arranged in a curved surface, thereby realizing the display effect of the virtual curved surface based on the flat-panel display device.
  • switching between the planar display mode and the virtual curved surface display mode can be achieved by the control electrodes providing different preset electric fields to cause the liquid crystal molecules to exhibit different deflection states.
  • FIG. 1 is a schematic view showing a relative position of a display mode control device and a display panel in an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic structural view 1 of a display mode control device in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic structural view showing a ring-shaped diffraction phase grating in an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram 2 of a display mode control device in an exemplary embodiment of the present disclosure
  • FIG. 5 is a view schematically showing a virtual curved surface display state diagram 1 of a display device in an exemplary embodiment of the present disclosure
  • FIG. 6 is a view schematically showing an imaging principle diagram of a lens in an exemplary embodiment of the present disclosure
  • FIG. 7 is a view schematically showing a virtual curved surface display state diagram 2 of the display device in an exemplary embodiment of the present disclosure
  • FIG. 8 is a view schematically showing a virtual curved surface display state diagram 3 of the display device in an exemplary embodiment of the present disclosure
  • FIG. 9 is a schematic view showing an optical relationship between a pixel and a lens array in an exemplary embodiment of the present disclosure.
  • FIG. 10 schematically shows a second schematic diagram of an optical relationship between a pixel and a lens array in an exemplary embodiment of the present disclosure.
  • 110-display mode control device 120-display panel; 100-lens unit; 210-first substrate; 220-second substrate; 230-liquid crystal layer; 240-control electrode; 241-first electrode; 242-second electrode 300-ring diffraction phase grating.
  • FIG. 1 is a schematic diagram showing the relative position of the display mode control device 110 and the display panel 120, which may be disposed on the light exiting side of the display panel 120 to control the refractive state of the outgoing light of the display panel 120.
  • the display mode control device 110 may include a plurality of lens units 100 distributed in a plurality of arrays, and each lens unit 100 corresponds to a sub-pixel or a pixel in the display panel 120. Of course, it may also be more than the display panel 120.
  • the sub-pixels correspond to each other, and the correspondence relationship between the lens unit 100 and the sub-pixels is not specifically limited herein.
  • the display panel 120 can be an LCD (Liquid Crystal Display), an OLED (Organic Light Emitting Diode) display panel, a PLED (Polymer Light-Emitting Diode) display panel, or a PDP (Plasma Display). Any of the display panels such as a panel, a plasma display panel, and the like, the present embodiment does not limit the specific type of the display panel.
  • the display mode control device 110 may include:
  • the first substrate 210 and the second substrate 220 are oppositely disposed;
  • liquid crystal layer 230 between the first substrate 210 and the second substrate 220;
  • the control electrode 240 is configured to form a preset electric field to control the deflection state of the liquid crystal molecules in the liquid crystal layer 230.
  • control electrode 240 may include a first electrode 241 and a second electrode 242, and the first electrode 241 and the second electrode 242 are both transparent electrodes; wherein the first electrode 241 and the second electrode 242 may both They are disposed on the first substrate 210 or both on the second substrate 220. Of course, one of them may be disposed on the first substrate 210 and the other may be disposed on the second substrate 220.
  • a ring-shaped diffraction phase grating 300 may be disposed on a surface of the first substrate 210, and liquid crystal molecules in the liquid crystal layer 230 may be filled in the grooves of the ring-shaped diffraction phase grating 300.
  • a transparent substrate such as a glass substrate should be selected for both the first substrate 210 and the second substrate 220.
  • the display mode control device 110 provided by the exemplary embodiment of the present disclosure is essentially a liquid crystal cell device, and the substrate surface of the liquid crystal cell device is provided with a ring-shaped diffraction phase grating 300.
  • the liquid crystal molecules in the liquid crystal layer 230 can be controlled to exhibit a first deflection state.
  • the liquid crystal molecules can form a flat glass with the circular diffraction phase grating 300, thereby realizing a flat display;
  • the liquid crystal molecules in the liquid crystal layer 230 can be controlled to exhibit a second deflection state.
  • the liquid crystal molecules can form a diffractive lens array with the ring diffraction phase grating 300.
  • the imaging image of the display image is arranged in a curved surface, thereby realizing the display effect of the virtual curved surface based on the flat panel display device.
  • switching between the planar display mode and the virtual curved surface display mode can be achieved by the control electrode 240 providing different preset electric fields to cause the liquid crystal molecules to exhibit different deflection states.
  • the virtual curved surface display mode in the present exemplary embodiment is a virtual curved surface display effect, that is, the display device composed of the ordinary display panel 120 and the above display mode control device 110 is still a flat display device.
  • the effect that the display device presents to the human eye is a curved surface effect.
  • the display device provided by the exemplary embodiment can not only avoid physical bending engineering, simplify processing difficulty, but also effectively save space, and can obtain the embracing effect brought by the curved surface display, thereby providing a good user. Visual experience.
  • the first substrate 210 may include a substrate body such as a glass substrate, and the annular diffraction phase grating 300 may be integrated with the substrate body. That is, the annular diffraction phase grating 300 having a periodic structure may be directly formed on the surface of the base body of the first substrate 210 by an etching process, thereby causing the first substrate 210 to constitute a diffractive lens array.
  • the first substrate 210 may include a thin film layer on the surface of the substrate body in addition to the substrate body, and the annular diffraction phase grating 300 may be formed in the thin film layer on the surface of the substrate body.
  • the manner in which the annular diffraction phase grating 300 is formed in the present embodiment is not particularly limited as long as the diffractive lens array can be formed. However, in view of the complexity of the preparation process, it is preferred to form the annular diffraction phase grating 300 by etching directly on the surface of the glass substrate.
  • the height of each step can be:
  • is the wavelength of the outgoing light of the display panel
  • n is the refractive index of the first substrate
  • n o is the minimum refractive index of the liquid crystal molecules with respect to the emitted light of the display panel.
  • the step width distribution of the annular diffractive phase grating is a ridged outer dense type which is related to the width distribution of the Fresnel zone.
  • n 1 is the refractive index of the object medium on which the lens array substrate is placed.
  • the annular diffraction phase grating have a step width t j , and its width is related to the parity of the Fresnel zone ring number. That is, the width of each step is:
  • i is a positive integer.
  • liquid crystal molecules may be filled in the grooves of the ring-shaped diffraction phase grating 300, and the first substrate 210 and the second substrate 220 may be filled.
  • the display mode control device 110 is formed by the pair of boxes. Based on this, the manner in which the preset electric field generated by the display mode control device 110 is distributed is related to the manner in which the control electrode 240 is disposed.
  • the control electrode 240 is preferably disposed on the second substrate 220.
  • the first electrode 241 and the second electrode 242 may be disposed in different layers, and the first electrode 241 may be a plate electrode, and the second electrode 242 may be a strip electrode.
  • the electric field formed at this time is a multi-dimensional electric field.
  • the first electrode 241 and the second electrode 242 may also be disposed in the same layer, and the first electrode 241 and the second electrode 242 may both be strip electrodes and alternately disposed, and the electric field formed at this time is a transverse electric field.
  • an insulating layer is further disposed between the first electrode 241 and the second electrode 242, and the insulating layer may be selected from one or more of transparent materials such as silicon nitride, silicon oxide, and silicon oxynitride.
  • control electrode 240 is preferably disposed on the second substrate 220 in this embodiment, this should not be construed as limiting the manner in which the electrodes are disposed. This embodiment only requires the control electrode 240 to form a deflection of the liquid crystal molecules.
  • the preset electric field can be preset, and the specific setting position and setting manner are not limited.
  • the deflection state of the liquid crystal molecules is determined by the preset electric field, and the technical solution of the embodiment only needs the liquid crystal molecules to exhibit two deflection states, so that the functions of the display mode control device 110 are equivalent to the flat glass and the diffraction, respectively.
  • the lens array is optional. Therefore, in this embodiment, the control electrode 240 can be powered and de-energized to achieve the above two deflection states, and the liquid crystal molecules have a higher first refractive index n e in the first deflection state. And having a lower second refractive index n o in the second deflected state.
  • the display mode control device 110 in order to ensure that the display mode control device 110 has the effect of the flat glass in the flat display mode, it is also necessary to make the first refractive index n e of the liquid crystal molecules the same as the refractive indices of the first substrate 210 and the second substrate 220.
  • a voltage can be respectively applied to the first electrode 241 and the second electrode 242 to cause the liquid crystal molecules in the liquid crystal layer 230 to assume a first deflection state, and at this time, the liquid crystal molecules are displayed relative to the display.
  • the emitted light of the panel 120 has a higher first refractive index n e ; in this case, since the first refractive index n e of the liquid crystal molecules is the same as the refractive indices of the first substrate 210 and the second substrate 220, the display The effect of the mode control device 110 is equivalent to a flat glass, and the refractive state of the outgoing light of the display panel 120 is not affected.
  • the virtual curved surface display When the virtual curved surface display needs to be implemented, no voltage may be applied to the first electrode 241 and the second electrode 242 to cause the liquid crystal molecules in the liquid crystal layer 230 to assume a second deflected state, and at this time, the liquid crystal molecules are opposite to the display panel 120.
  • the emitted light has a lower second refractive index n o ; in this case, by controlling the focal length of each lens unit 100 to increase from the center to both sides, the effect of the display mode control device 110 is equivalent to a diffractive lens array. Therefore, the imaged image distance trajected by the refracted light of the display panel 120 can be arranged in a curved surface.
  • the manner of setting the display mode control device 110 will be exemplarily described below with reference to FIGS. 2 and 4.
  • the display mode control device 110 can be disposed on the light exiting side of the LCD display panel, and display the long-axis direction of the initial orientation of the liquid crystal molecules in the mode control device 110 (in the plane of FIG. 2 perpendicular to the paper) and the light emitted from the display panel 120.
  • the polarization direction ie, the transmission axis direction of the polarizer on the light exit side of the LCD display panel
  • the polarization direction is perpendicular to each other.
  • the display mode control device 110 When a different voltage is applied to the plate-shaped first electrode 241 and the strip-shaped second electrode 242, a predetermined electric field is generated between the electrodes, as shown in FIG. 4, the long axis of the liquid crystal molecules in the liquid crystal layer 100.
  • the direction is changed from perpendicular to the paper surface to be parallel to the paper surface and the substrate surface, that is, the long axis direction of the liquid crystal molecules is parallel to the polarization direction of the outgoing light of the display panel; at this time, the liquid crystal molecules are opposite to the display mode control device 110.
  • the polarized light has a first refractive index n e , and the first refractive index n e is the same as the refractive index of the upper and lower substrates, then the display mode control device 110 is equivalent to a flat glass;
  • the long-axis direction of the liquid crystal molecules is still the initial orientation.
  • the axial direction i.e., perpendicular to the paper inward; at this time, the liquid crystal molecules have a second refractive index n o with respect to the polarized light entering the display mode control device 110, and the display mode control device 110 is equivalent to a diffractive lens array.
  • the long-axis direction of the initial orientation of the liquid crystal molecules in the embodiment may be parallel to the polarization direction of the emitted light of the display panel 120.
  • only the power supply mode of the electrodes may be changed according to the deflection state of the liquid crystal molecules.
  • the liquid crystal molecules may not be initially aligned under certain conditions, which mainly depends on the shape of the liquid crystal molecules; for example, the blue phase liquid crystal molecules have a spherical initial state, so that initial alignment is not required.
  • each lens unit 100 can be made to correspond to a pixel area of the display panel 120, for example, by a red sub-pixel R and a green sub-pixel.
  • the design principle of the diffractive lens unit for realizing the virtual curved surface display is as follows: the display principle of the positive lens into the enlarged virtual image is as shown in FIG. 6 , that is, the object AB is placed in front of the lens, and the object distance is less than the focal length, so that the object can be made AB is received by the human eye as an enlarged virtual image A'B'.
  • the relevant optical formula for this design principle is as follows:
  • n 1 is the diffractive lens unit
  • the refractive index of the medium of the object, n 1 ' is the refractive index of the image medium of the diffractive lens unit.
  • of the lens unit 100 can be made larger than the object distance
  • the virtual surface of the display shows the effect.
  • the above problem can be solved by controlling the aperture ratio of the pixel. Since the magnification of the intermediate imaging is large and the magnification of the edge imaging is small, the pixel aperture ratio of the intermediate region of the display panel 120 is small, and the pixel aperture ratio of the edge region is large, thereby controlling the coincidence region of the intermediate imaging to be smaller than the coincidence of the edge imaging.
  • the area is such that the overlapping area of the enlarged imaging of each pixel is minimized, so that the image blurring phenomenon of the pixel boundary can be effectively reduced, thereby improving the virtual surface display effect and improving the image quality of the virtual curved surface display.
  • this scheme reduces the aperture ratio of the pixel to a certain extent, and thus has a certain influence on the light efficiency.
  • each lens unit 100 may be corresponding to a sub-pixel region of the display panel 120, such as a red sub-pixel R, a green sub-pixel G, or a blue sub-pixel B.
  • the center of the display panel 120 is symmetrically distributed, the intermediate focal length is small, the focal lengths on both sides are large, and the focal lengths of the respective sub-pixels in the same pixel are the same, so that different pixels are There is no image overlap between the two, so the image blurring at the pixel boundary can be eliminated, thereby improving the display effect of the virtual surface; at the same time, the image overlap generated between different sub-pixels in the same pixel will not cause the display image.
  • the effect is also more conducive to the color modulation of the image quality.
  • the aperture p of the diffractive lens unit and the deviation value h k of the diffractive lens central axis from each corresponding sub-pixel central axis are defined in combination with the viewing distance L, the size t of the sub-pixel, and the number k .
  • the display mode control device 110 provided in this embodiment can be combined with the display panel 120 to implement switching between the flat display mode and the virtual curved display mode.
  • the display mode control device 110 functions as a diffractive lens array, a virtual curved surface display effect can be realized, which enhances the visual effect impact of the viewing;
  • a conventional flat display effect can be realized.
  • the present exemplary embodiment further provides a display device, as shown in FIG. 1, including the above-described display mode control device 110, display panel 120, and control circuit; wherein the control circuit is configured to supply power to the display mode control device 110 to enable
  • the display panel 120 presents a flat display mode and powers down the display mode control device 110 to cause the display panel 120 to assume a virtual curved surface display mode.
  • the display device may include, for example, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, or the like, any product or component having a display function.
  • modules or units of devices arranged for action execution are mentioned in the detailed description above, such division is not mandatory. Indeed, in accordance with embodiments of the present disclosure, the features and functions of two or more modules or units described above can be implemented in a single module or unit. Conversely, the features and functions of one of the modules or units described above can be divided into multiple modules or units.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示模式控制装置及其控制方法、显示装置,涉及显示技术领域。该显示模式控制装置(110)包括:第一基板(210),包括阵列分布的多个透镜单元(100),每个透镜单元(100)均设置有环形衍射相位光栅(300);第二基板(220),与第一基板(210)对盒设置;液晶层(230),位于第一基板(210)和第二基板(220)之间;控制电极(240),设置为形成预设电场以控制液晶分子的偏转状态,可实现平面显示模式和虚拟曲面显示模式之间的切换。

Description

显示模式控制装置及其控制方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示模式控制装置及其控制方法、显示装置。
背景技术
传统的平板显示装置具有轻薄、节省物理空间等优点,已经在显示领域得到了广泛的应用。但由于其光分布属性使得从显示器正对人眼的位置向两侧,随着观看距离的逐渐增加光强逐渐变弱,从而造成用户的视觉体验不佳。尤其是大型的平板显示装置,此效应尤为明显。
曲面显示的环抱效果可以增强用户的视觉效果冲击,从而为用户提供良好的视觉体验。但其缺点在于曲面显示装置的物理弯曲工程难度较大,容易产生厚度不均而造成显示异常,且器件相对厚重。
基于此,如果能将平板显示装置的轻薄属性与曲面显示装置的视觉效果有效的结合,必然可以为用户提供一种体验感更好的显示装置。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的相关技术的信息。
发明内容
本公开的目的在于提供一种显示模式控制装置及其控制方法、显示装置,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种显示模式控制装置,设置为切换一显示面板的平面显示模式和虚拟曲面显示模式;所述显示模式控制装置包括:第一基板,包括阵列分布的多个透镜单元,每个所述透镜单元均设置有环形衍射相位光栅;第二基板,与所述第一基板对盒设置;液晶层,位于所述第一基板和所述第二基板之间;以及,控制电极,设置为形成预设电场以控制所述液晶分子的偏转状态。
本公开的一种示例性实施例中,每个所述透镜单元对应于所述显示面板的一像素区域。
本公开的一种示例性实施例中,对应于所述显示面板的不同像素区域的各个透镜单元的焦距自所述第一基板的中心到边缘递增。
本公开的一种示例性实施例中,每个所述透镜单元对应于所述显示面板的一子像素区域。
本公开的一种示例性实施例中,对应于所述显示面板的不同像素区域的各个透镜单元的焦距自所述第一基板的中心到边缘递增,且对应于所述显示面板的同一像素区域内不同子像素区域的所述透镜单元的焦距相同。
本公开的一种示例性实施例中,在虚拟曲面显示模式下,所有所述透镜单元的成像像距轨迹呈曲面排布。
本公开的一种示例性实施例中,所述第一基板包括基板本体,且所述环形衍射相位光栅与所述基板本体具有一体化结构。
本公开的一种示例性实施例中,所述环形衍射相位光栅包括N个台阶且相邻所述台阶之间的相位差为2π/N;其中,N=2 m,m为正整数。
本公开的一种示例性实施例中,每个所述台阶的高度为:
Figure PCTCN2018071474-appb-000001
每个所述台阶的宽度为:
Figure PCTCN2018071474-appb-000002
其中,λ为显示面板的出射光的波长,n为第一基板的折射率,n o为液晶分子相对于显示面板的出射光的最小折射率,j为菲涅耳波带数,d为菲涅耳波带宽度,i为正整数。
本公开的一种示例性实施例中,所述液晶分子在第一偏转状态时相对于所述显示面板的出射光具有第一折射率,所述液晶分子在第二偏转状态时相对于所述显示面板的出射光具有第二折射率;其中,所述液晶分子的第一折射率与所述第一基板以及所述第二基板的折射率均相同。
本公开的一种示例性实施例中,所述液晶分子的初始取向的长轴方向垂直于所述显示面板的出射光的偏振方向;或者,所述液晶分子的初始取向的长轴方向平行于所述显示面板的出射光的偏振方向。
本公开的一种示例性实施例中,所述控制电极包括第一电极和第二电极;所述第一电极和所述第二电极均设置在所述第二基板上;其中,所述第一电极和所述第二电极异层设置,且所述第一电极为板状电极、所述第二电极为条状电极;或者,所述第一电极和所述第二电极同层设置,且所述第一电极和所述第二电极均为条状电极并交替设置。
根据本公开的一个方面,提供一种显示装置,包括显示面板、上述的显示模式控制装置、以及控制电路;其中,所述控制电路设置为对所述显示模式控制装置供电以使显示面板呈现平面显示模式,以及对所述显示模式控制装置断电以使显示面板呈现虚拟曲面显示 模式。
根据本公开的一个方面,提供一种显示模式控制方法,设置为切换上述显示装置的显示模式;所述显示模式控制方法包括:通过对控制电极供电,使液晶分子处于第一偏转状态,以呈现平面显示模式;通过对控制电极断电,使液晶分子处于第二偏转状态,以呈现虚拟曲面显示模式。
本公开示例性实施方式所提供的显示模式控制装置本质为一液晶盒装置,且该液晶盒装置的基板表面设置有环形衍射相位光栅。在需要实现平面显示时,可以控制液晶层中的液晶分子呈现为第一偏转状态,此时液晶分子可与环形衍射相位光栅构成一平板玻璃,从而实现平面显示;在需要实现虚拟曲面显示时,可以控制液晶层中的液晶分子呈现为第二偏转状态,此时液晶分子可与环形衍射相位光栅构成一衍射透镜阵列,在此基础上,通过控制各个透镜单元的焦距由中心向两侧递增,即可使显示画面的成像像距轨迹呈曲面排布,从而基于平板式的显示装置实现虚拟曲面的显示效果。这样一来,通过控制电极提供不同的预设电场以使液晶分子呈现出不同的偏转状态,即可实现平面显示模式和虚拟曲面显示模式之间的切换。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出本公开示例性实施例中显示模式控制装置与显示面板的相对位置示意图;
图2示意性示出本公开示例性实施例中显示模式控制装置的结构示意图一;
图3示意性示出本公开示例性实施例中环形衍射相位光栅的结构示意图;
图4示意性示出本公开示例性实施例中显示模式控制装置的结构示意图二;
图5示意性示出本公开示例性实施例中显示装置的虚拟曲面显示状态图一;
图6示意性示出本公开示例性实施例中透镜的成像原理图;
图7示意性示出本公开示例性实施例中显示装置的虚拟曲面显示状态图二;
图8示意性示出本公开示例性实施例中显示装置的虚拟曲面显示状态图三;
图9示意性示出本公开示例性实施例中像素与透镜阵列的光学关系示意图一;
图10示意性示出本公开示例性实施例中像素与透镜阵列的光学关系示意图二。
附图标记:
110-显示模式控制装置;120-显示面板;100-透镜单元;210-第一基板;220-第二基板;230-液晶层;240-控制电极;241-第一电极;242-第二电极;300-环形衍射相位光栅。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免使本公开的各方面变得模糊。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
本示例实施方式提供了一种显示模式控制装置,设置为切换一显示面板的平面显示模式和虚拟曲面显示模式。图1为该显示模式控制装置110与显示面板120的相对位置示意图,其可以设置在显示面板120的出光侧以控制显示面板120的出射光的折射状态。
显示模式控制装置110可以包括多个阵列分布的多个透镜单元100,且每个透镜单元100均与显示面板120中的一子像素或者一像素对应,当然其也可以与显示面板120中的多个子像素对应,这里对于透镜单元100与子像素的对应关系不做具体限定。
显示面板120可以为LCD(Liquid Crystal Display,液晶显示面板)、OLED(Organic Light Emitting Diode,有机发光二极管)显示面板、PLED(Polymer Light-Emitting Diode,高分子发光二极管)显示面板、PDP(Plasma Display Panel,等离子显示面板)等显示面板中的任一种,本实施例对于显示面板的具体类型不做限制。
如图2所示,显示模式控制装置110可以包括:
相对设置的第一基板210和第二基板220;
液晶层230,位于第一基板210和第二基板220之间;以及
控制电极240,设置为形成预设电场以控制液晶层230中的液晶分子的偏转状态。
在本示例实施方式中,控制电极240可以包括第一电极241和第二电极242,且第一电极241和第二电极242均为透明电极;其中,第一电极241和第二电极242可以均设置在第一基板210上,或者均设置在第二基板220上,当然也可以其中一个设置在第一基板210上、另一个设置在第二基板220上。
如图3所示,在每个透镜单元100中,第一基板210的表面可以设置环形衍射相位光栅300,且液晶层230中的液晶分子可以填充在该环形衍射相位光栅300的沟槽中。
需要说明的是:为了保证显示面板的出光效果,第一基板210和第二基板220均应选用透明基板例如玻璃基板。
本公开示例性实施方式所提供的显示模式控制装置110本质为一液晶盒装置,且该液晶盒装置的基板表面设置有环形衍射相位光栅300。在需要实现平面显示时,可以控制液晶层230中的液晶分子呈现为第一偏转状态,此时液晶分子可与环形衍射相位光栅300构成一平板玻璃,从而实现平面显示;在需要实现虚拟曲面显示时,可以控制液晶层230中的液晶分子呈现为第二偏转状态,此时液晶分子可与环形衍射相位光栅300构成一衍射透镜阵列,在此基础上,通过控制各个透镜单元100的焦距由中心向两侧递增,即可使显示画面的成像像距轨迹呈曲面排布,从而基于平板式的显示装置实现虚拟曲面的显示效果。这样一来,通过控制电极240提供不同的预设电场以使液晶分子呈现出不同的偏转状态,即可实现平面显示模式和虚拟曲面显示模式之间的切换。
基于上述描述可知,本示例实施方式中的虚拟曲面显示模式是一种虚拟的曲面显示效果,即,由普通的显示面板120以及上述的显示模式控制装置110所组成的显示器件仍为平面显示器件,但该显示器件呈现给人眼的效果为曲面效果。这样一来,本示例实施方式所提供的显示器件不仅可以避免物理弯曲工程、简化加工难度,同时还能有效地节约占用空间,并且能够获取曲面显示带来的环抱效果,从而为用户提供良好的视觉体验。
为了实现上述的衍射透镜阵列,第一基板210可以包括基板本体例如玻璃基板,且环形衍射相位光栅300可以与该基板本体为一体化结构。也就是说,具有周期结构的环形衍射相位光栅300可以通过刻蚀工艺直接形成在第一基板210的基体本体表面,从而使得第一基板210构成衍射透镜阵列。
需要说明的是:第一基板210除了包括基板本体之外,还可以包括位于基板本体表面的薄膜层,且环形衍射相位光栅300可以形成在该基板本体表面的薄膜层中。
本实施例对于环形衍射相位光栅300的形成方式不做具体限定,只要能够形成衍射透镜阵列即可。但考虑到制备工艺的复杂程度,这里优选采用直接在玻璃基板表面刻蚀的方法来形成环形衍射相位光栅300。
在此基础上,每个透镜单元100中的环形衍射相位光栅300的结构可参考图3,其例如可以包括N=2 m个台阶,且相邻台阶之间的相位差可以为2π/N;其中,m为正整数。
每个台阶的高度可以为:
Figure PCTCN2018071474-appb-000003
其中,λ为显示面板的出射光的波长,n为第一基板的折射率,n o为液晶分子相对于显示面板的出射光的最小折射率。
在一实施例中,环形衍射相位光栅的台阶宽度分布为里疏外密型,它与菲涅耳波带的宽度分布相关。当N=2(m=1)时,其台阶宽度分布与菲涅耳波带宽度分布相同。
设菲涅耳波带宽度为d j,则:
d j=r j-r j-1               (2)
Figure PCTCN2018071474-appb-000004
其中,j为菲涅耳波带数,r j为菲涅耳波带半径,f为菲涅耳透镜的物方焦距,n 1为透镜阵列基板所处物方介质的折射率。
设环形衍射相位光栅的台阶宽度为t j,它的宽度与菲涅耳波带环数的奇偶相关。即,每个台阶的宽度为:
Figure PCTCN2018071474-appb-000005
其中,i为正整数。
以上即为各个透镜单元100中环形衍射相位光栅300的结构参数。在上述公式(4)中,当菲涅耳波带数j取偶数时,具有N-1个相同的t j宽度的台阶,当菲涅耳波带数j取奇数时,只有一个t j宽度的台阶。
本示例实施方式中,在每个透镜单元100中形成上述的环形衍射相位光栅300之后,可将液晶分子填充在环形衍射相位光栅300的沟槽中,并将第一基板210和第二基板220对盒,这样即可形成显示模式控制装置110。在此基础上,显示模式控制装置110产生的预设电场的分布方式与控制电极240的设置方式有关。
考虑到制备工艺的难易程度,由于环形衍射相位光栅300设置在第一基板210上,因此控制电极240优选设置在第二基板220上。其中,第一电极241和第二电极242可以异层设置,且第一电极241可以为板状电极、第二电极242可以为条状电极,此时所形成的电场为多维电场。或者,第一电极241和第二电极242也可以同层设置,且第一电极241和第二电极242可以均为条状电极并交替设置,此时所形成的电场为横向电场。当然,在第一电极241和第二电极242之间还设置有绝缘层,且该绝缘层可选用透明材质例如氮化硅、氧化硅、以及氮氧化硅中的一种或多种。
需要说明的是:虽然本实施例优选将控制电极240设置在第二基板220上,但这不应理解为对电极设置方式的限定,本实施例仅要求控制电极240能够形成控制液晶分子偏转的预设电场即可,对其具体的设置位置以及设置方式不做限定。
由于液晶分子的偏转状态是由预设电场决定的,且本实施例的技术方案仅需液晶分子呈现出两种偏转状态,以使该显示模式控制装置110的作用分别等效于平板玻璃和衍射透镜阵列即可,因此本实施例可通过对控制电极240进行供电和断电,以实现上述的两种偏转状态,并使液晶分子在第一偏转状态下具有较高的第一折射率n e,在第二偏转状态下具有较低的第二折射率n o
基于此,为了保证在平面显示模式下该显示模式控制装置110具有平板玻璃的效果,还需使液晶分子的第一折射率n e与第一基板210以及第二基板220的折射率相同。
这样一来,在需要实现平面显示时,即可对第一电极241和第二电极242分别施加电压,以使液晶层230中的液晶分子呈现为第一偏转状态,此时液晶分子相对于显示面板120的出射光具有较高的第一折射率n e;在此情况下,由于液晶分子的第一折射率n e与第一基板210以及第二基板220的折射率均相同,因此该显示模式控制装置110的效果相当于一平板玻璃,则显示面板120的出射光的折射状态不受影响。
而在需要实现虚拟曲面显示时,可以对第一电极241和第二电极242不施加电压,以使液晶层230中的液晶分子呈现为第二偏转状态,此时液晶分子相对于显示面板120的出射光具有较低的第二折射率n o;在此情况下,通过控制各个透镜单元100的焦距由中心向两侧递增,则该显示模式控制装置110的效果便相当于一衍射透镜阵列,从而使得显示面板120的出射光经过折射后的成像像距轨迹可呈曲面排布。
下面结合图2和图4对显示模式控制装置110的设置方式进行示例性说明。该显示模式控制装置110可设置在LCD显示面板的出光侧,且显示模式控制装置110中的液晶分子的初始取向的长轴方向(图2中垂直于纸面向内)与显示面板120的出射光的偏振方向(即LCD显示面板出光侧的偏光片的透过轴方向)相互垂直。
当对板状的第一电极241和条状的第二电极242分别施加不同的电压时,两电极之间便会产生预设电场,如图4所示,液晶层100中液晶分子的长轴方向会由垂直于纸面向内转变为平行于纸面以及基板表面,即液晶分子的长轴方向平行于显示面板的出射光的偏振方向;此时液晶分子相对于进入该显示模式控制装置110的偏振光具有第一折射率n e,且该第一折射率n e与上下两基板的折射率相同,那么该显示模式控制装置110等效于一平板玻璃;
当对板状的第一电极241和条状的第二电极242不施加电压时,两电极之间便不会产生电场,如图2所示,液晶分子的长轴方向仍为初始取向的长轴方向(即垂直于纸面向内);此时液晶分子相对于进入该显示模式控制装置110的偏振光具有第二折射率n o,那么该显示模式控制装置110等效于一衍射透镜阵列。
当然,本实施例中液晶分子的初始取向的长轴方向还可以平行于显示面板120的出射光的偏振方向设置,此时仅需根据液晶分子的偏转状态变换电极的供电方式即可。
需要说明的是:本实施例在一定情况下也可以不对液晶分子进行初始配向,这主要取决于液晶分子的形状;例如蓝相液晶分子,其分子初始状态为球状,故无需进行初始配向。
基于此,当该显示模式控制装置110与显示面板120相结合时,如图5所示,可使每个透镜单元100对应显示面板120的一像素区域,例如由红色子像素R、绿色子像素G和蓝色子像素B组成的一像素单元。在此情况下,通过设置各个透镜单元100的焦距按照一定的规律变化,使得各个像素的成像后置且像距轨迹呈曲面排布,便可以实现虚拟曲面的显示效果。
其中,实现虚拟曲面显示的衍射透镜单元的设计原理如下:正透镜成放大虚像的显示原理如图6所示,即,将物体AB放置于透镜前方,并使物距小于焦距,便可使物体AB成一放大的虚像A’B’而被人眼接收。该设计原理的相关光学公式如下:
物象关系:
Figure PCTCN2018071474-appb-000006
Figure PCTCN2018071474-appb-000007
垂轴放大倍率:
Figure PCTCN2018071474-appb-000008
其中,l为物距(负值),l′为像距(负值),f为衍射透镜的物方焦距(负数),f′为衍射透镜的像方焦距,n 1为衍射透镜单元所处物方介质的折射率,n 1′为衍射透镜单元像方介质的折射率。
由此可知,当物距l一定时,不同的焦距f对应不同的像距l′。基于这一性质,可使透镜单元100的焦距|f|大于物距|l|,并使衍射透镜阵列中各个透镜单元100的焦距|f|以显 示面板的中心为轴呈对称分布,中间焦距小、两侧焦距大,且每个透镜单元100对应显示面板的一像素区域,这样便可实现图5所示的成像后置且像距轨迹呈曲面排布的显示效果,即实现一种平板显示器的虚拟曲面显示效果。
应当注意的是,以上实施例虽然可以实现虚拟曲面的显示效果,但各个像素所成的放大像之间存在相互重叠的现象,这样便会造成图像边界显示模糊,从而影响显示品质。
在第一种优化方案中,如图7所示,可以通过控制像素的开口率来解决上述问题。由于中间成像的放大倍率大、边缘成像的放大倍率小,因此可使显示面板120的中间区域的像素开口率小、边缘区域的像素开口率大,从而控制中间成像的重合区域小于边缘成像的重合区域,使得每个像素的放大成像的重叠区域尽量减小,这样可以有效的减轻像素边界的图像模糊现象,从而改善虚拟曲面显示效果,提升虚拟曲面显示的画质。但是,该方案在一定程度上降低了像素的开口率,因此会对光效产生一定的影响。
在第二种优化方案中,如图8所示,可使每个透镜单元100对应显示面板120的一子像素区域,例如红色子像素R、绿色子像素G、或者蓝色子像素B。在此情况下,通过控制不同像素的焦距以显示面板120的中心为轴呈对称分布,中间焦距小、两侧焦距大,并使同一像素内各个子像素的焦距相同,这样一来不同像素之间便不会产生成像重叠,因此可以消除像素边界的图像模糊现象,从而改善虚拟曲面的显示效果;与此同时,同一像素内不同子像素间所产生的成像重叠,不仅不会对显示图像造成影响,还更有利于实现画质的色彩调制。
在上述实施例中,还需设计衍射透镜单元的中心轴与每个相对应的像素或者子像素的中心轴之间的位置关系,以使人眼处于最佳观看距离处时能够观看到整个虚拟曲面显示画面。下面结合观看距离L、子像素的大小t和数量k,来定义衍射透镜单元的口径p以及衍射透镜中心轴与每个相对应的子像素中心轴的偏离值h k
以一个子像素对应一个衍射透镜单元为例,如图9和图10所示,根据几何关系可知:
Figure PCTCN2018071474-appb-000009
kt-kp=h k                  (9)
由此可以得出:
Figure PCTCN2018071474-appb-000010
综上所述,本实施例提供的显示模式控制装置110可与显示面板120相结合,以实现平面显示模式和虚拟曲面显示模式的切换。当显示模式控制装置110起衍射透镜阵列作用时,可实现一种虚拟曲面显示效果,增强了观看的视觉效果冲击;当显示模式控制装置 110起平板玻璃作用时,可实现常规的平面显示效果。
显而易见的,本提案的所有示意图都应当理解为相应实施例的一个局部示意图,而不应当理解为是对本公开的限制。
本示例实施方式还提供了一种显示装置,参考图1所示,包括上述的显示模式控制装置110、显示面板120、以及控制电路;其中,控制电路设置为对显示模式控制装置110供电以使显示面板120呈现平面显示模式,以及对显示模式控制装置110断电以使显示面板120呈现虚拟曲面显示模式。
需要说明的是:显示装置中的细节已经在对应的显示模式控制装置中进行了详细描述,这里不再赘述。
在本示例实施方式中,显示装置例如可以包括手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
应当注意,尽管在上文详细描述中提及了设置为动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中实现。反之,上文描述的一个模块或者单元的特征和功能可以划分为多个模块或者单元。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (20)

  1. 一种显示模式控制装置,用于切换一显示面板的平面显示模式和虚拟曲面显示模式;其中,所述显示模式控制装置包括:
    第一基板,包括阵列分布的多个透镜单元,每个所述透镜单元均设置有环形衍射相位光栅;
    第二基板,与所述第一基板对盒设置;
    液晶层,包括位于所述第一基板和所述第二基板之间的液晶分子;以及,
    控制电极,设置为形成预设电场以控制所述液晶分子的偏转状态。
  2. 根据权利要求1所述的显示模式控制装置,其中,每个所述透镜单元对应于所述显示面板的一像素区域。
  3. 根据权利要求2所述的显示模式控制装置,其中,对应于所述显示面板的不同像素区域的各个透镜单元的焦距自所述第一基板的中心到边缘递增。
  4. 根据权利要求1所述的显示模式控制装置,其中,每个所述透镜单元对应于所述显示面板的一子像素区域。
  5. 根据权利要求4所述的显示模式控制装置,其中,对应于所述显示面板的不同像素区域的各个透镜单元的焦距自所述第一基板的中心到边缘递增,且对应于所述显示面板的同一像素区域内不同子像素区域的所述透镜单元的焦距相同。
  6. 根据权利要求1-5任一项所述的显示模式控制装置,其中,在虚拟曲面显示模式下,所有所述透镜单元的成像像距轨迹呈曲面排布。
  7. 根据权利要求1所述的显示模式控制装置,其中,所述第一基板包括基板本体,且所述环形衍射相位光栅与所述基板本体为一体化结构。
  8. 根据权利要求1所述的显示模式控制装置,其中,所述环形衍射相位光栅包括N个台阶且相邻所述台阶之间的相位差为2π/N;
    其中,N=2 m,m为正整数。
  9. 根据权利要求8所述的显示模式控制装置,其中,每个所述台阶的高度为:
    Figure PCTCN2018071474-appb-100001
    每个所述台阶的宽度为:
    Figure PCTCN2018071474-appb-100002
    其中,λ为显示面板的出射光的波长,n为第一基板的折射率,n o为液晶分子相对于显示面板的出射光的最小折射率,j为菲涅耳波带数,d为菲涅耳波带宽度,i为正整数。
  10. 根据权利要求1所述的显示模式控制装置,其中,所述液晶分子在第一偏转状态时相对于所述显示面板的出射光具有第一折射率,所述液晶分子在第二偏转状态时相对于所述显示面板的出射光具有第二折射率;
    其中,所述液晶分子的第一折射率与所述第一基板以及所述第二基板的折射率均相同。
  11. 根据权利要求10所述的显示模式控制装置,其中,所述液晶分子的初始取向的长轴方向垂直于所述显示面板的出射光的偏振方向;
    或者,所述液晶分子的初始取向的长轴方向平行于所述显示面板的出射光的偏振方向。
  12. 根据权利要求1所述的显示模式控制装置,其中,所述控制电极包括第一电极和第二电极;
    所述第一电极和所述第二电极均设置在所述第二基板上;
    其中,所述第一电极和所述第二电极异层设置,且所述第一电极为板状电极、所述第二电极为条状电极;
    或者,所述第一电极和所述第二电极同层设置,且所述第一电极和所述第二电极均为条状电极并交替设置。
  13. 一种显示装置,其中,包括显示面板、权利要求1-12任一项所述的显示模式控制装置、以及控制电路电路;
    其中,所述控制电路电路设置为对所述显示模式控制装置供电以使显示面板呈现平面显示模式,以及对所述显示模式控制装置断电以使显示面板呈现虚拟曲面显示模式。
  14. 一种由显示模式控制装置执行以切换一显示面板的平面显示模式和虚拟曲面显示模式的方法,其中,所述显示模式控制装置包括:第一基板,包括阵列分布的多个透镜单元,每个所述透镜单元均设置有环形衍射相位光栅;第二基板,与所述第一基板对盒设置;液晶层,包括位于所述第一基板和所述第二基板之间的液晶分子;以及,控制电极,设置为形成预设电场以控制所述液晶分子的偏转状态,其中,所述方法包括:
    通过对所述控制电极供电,使所述液晶分子处于第一偏转状态,以使所述显示面板呈现平面显示模式;
    通过对所述控制电极断电,使所述液晶分子处于第二偏转状态,以使所述显示面板呈现虚拟曲面显示模式。
  15. 一种显示模式控制装置的制造方法,所述显示模式控制装置用于切换一显示面板的平面显示模式和虚拟曲面显示模式,该方法包括:
    设置第一基板,其包括阵列分布的多个透镜单元,每个所述透镜单元均设置有环形衍射相位光栅;
    设置第二基板,其与所述第一基板对盒设置;
    设置液晶层,其包括位于所述第一基板和所述第二基板之间的液晶分子;以及,
    设置控制电极,其配置为形成预设电场以控制所述液晶分子的偏转状态。
  16. 根据权利要求15所述的方法,其中,每个所述透镜单元设置为对应于所述显示面板的一像素区域。
  17. 根据权利要求16所述的方法,其中,对应于所述显示面板的不同像素区域的各个透镜单元的焦距自所述第一基板的中心到边缘递增。
  18. 根据权利要求15所述的方法,其中,每个所述透镜单元设置为对应于所述显示面板的一子像素区域。
  19. 根据权利要求18所述的方法,其中,对应于所述显示面板的不同像素区域的各个透镜单元的焦距自所述第一基板的中心到边缘递增,且对应于所述显示面板的同一像素区域内不同子像素区域的所述透镜单元的焦距相同。
  20. 根据权利要求15-19任一项所述的方法,其中,在虚拟曲面显示模式下,所有所述透镜单元的成像像距轨迹呈曲面排布。
PCT/CN2018/071474 2017-06-29 2018-01-05 显示模式控制装置及其控制方法、显示装置 WO2019000899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/077,427 US10969616B2 (en) 2017-06-29 2018-01-05 Display mode controlling device, controlling method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710513796.4 2017-06-29
CN201710513796.4A CN107329309B (zh) 2017-06-29 2017-06-29 显示模式控制装置及其控制方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019000899A1 true WO2019000899A1 (zh) 2019-01-03

Family

ID=60199022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071474 WO2019000899A1 (zh) 2017-06-29 2018-01-05 显示模式控制装置及其控制方法、显示装置

Country Status (3)

Country Link
US (1) US10969616B2 (zh)
CN (1) CN107329309B (zh)
WO (1) WO2019000899A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918917A (zh) 2017-03-17 2017-07-04 京东方科技集团股份有限公司 液晶盒、显示器和电子设备
CN107329309B (zh) 2017-06-29 2020-11-03 京东方科技集团股份有限公司 显示模式控制装置及其控制方法、显示装置
CN108181671A (zh) * 2018-01-02 2018-06-19 京东方科技集团股份有限公司 透镜型调光装置和显示装置
CN108957754B (zh) * 2018-07-27 2021-08-24 京东方科技集团股份有限公司 增强现实设备及显示方法
CN108873505B (zh) * 2018-07-27 2022-04-05 京东方科技集团股份有限公司 液晶透镜、模组、增强现实设备、眼镜、显示方法
CN117518519B (zh) * 2023-12-29 2024-03-05 成都工业学院 一种弧形视点排布的立体显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071799A (ja) * 2004-08-31 2006-03-16 Seiko Epson Corp マイクロレンズアレイ板及びその製造方法、並びにこれを備えた電気光学装置及び電子機器
CN1914674A (zh) * 2004-02-03 2007-02-14 旭硝子株式会社 液晶透镜元件及光学头装置
US20150192781A1 (en) * 2014-01-03 2015-07-09 Samsung Display Co., Ltd. Liquid crystal lens panel and display device including the same
CN105607172A (zh) * 2016-03-31 2016-05-25 京东方科技集团股份有限公司 光栅组件、光源设备及其驱动方法
CN105867044A (zh) * 2016-06-17 2016-08-17 京东方科技集团股份有限公司 一种液晶透镜、显示装置及显示装置的驱动方法
CN107329309A (zh) * 2017-06-29 2017-11-07 京东方科技集团股份有限公司 显示模式控制装置及其控制方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618106B1 (en) * 1999-07-23 2003-09-09 Bae Systems Information And Electronics Systems Integration, Inc Sunlight viewable color liquid crystal display using diffractive color separation microlenses
JP4349781B2 (ja) * 2002-09-10 2009-10-21 パイオニア株式会社 液晶レンズ並びにその駆動方法及び装置
JP4720507B2 (ja) 2004-02-03 2011-07-13 旭硝子株式会社 液晶レンズ素子および光ヘッド装置
CN104272180B (zh) * 2012-02-27 2017-12-29 E-视觉智能光学公司 具有多个深度衍射结构的电活性透镜
CN102692781A (zh) * 2012-06-18 2012-09-26 苏州大学 一种谐衍射型液晶变焦透镜及其阵列
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914674A (zh) * 2004-02-03 2007-02-14 旭硝子株式会社 液晶透镜元件及光学头装置
JP2006071799A (ja) * 2004-08-31 2006-03-16 Seiko Epson Corp マイクロレンズアレイ板及びその製造方法、並びにこれを備えた電気光学装置及び電子機器
US20150192781A1 (en) * 2014-01-03 2015-07-09 Samsung Display Co., Ltd. Liquid crystal lens panel and display device including the same
CN105607172A (zh) * 2016-03-31 2016-05-25 京东方科技集团股份有限公司 光栅组件、光源设备及其驱动方法
CN105867044A (zh) * 2016-06-17 2016-08-17 京东方科技集团股份有限公司 一种液晶透镜、显示装置及显示装置的驱动方法
CN107329309A (zh) * 2017-06-29 2017-11-07 京东方科技集团股份有限公司 显示模式控制装置及其控制方法、显示装置

Also Published As

Publication number Publication date
CN107329309B (zh) 2020-11-03
CN107329309A (zh) 2017-11-07
US10969616B2 (en) 2021-04-06
US20210011331A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019000899A1 (zh) 显示模式控制装置及其控制方法、显示装置
US9508293B2 (en) Liquid crystal display device
JP5609791B2 (ja) 液晶表示用の対向基板及び液晶表示装置
CN110764291B (zh) 可实现视角切换的显示装置及其显示方法、制作方法
CN106125394B (zh) 一种虚拟曲面显示面板、显示装置及显示方法
WO2015085700A1 (zh) 一种彩膜基板及液晶显示装置
WO2016206261A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
WO2017206563A1 (zh) 显示装置
WO2017202201A1 (zh) 显示面板和显示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
US10831054B2 (en) Display panel and display apparatus
CN108363235B (zh) 减反膜及其制备方法、阵列基板、显示装置
TWI417574B (zh) 變焦透鏡陣列與可切換式平面立體顯示器
WO2017215397A1 (zh) 虚拟曲面显示面板及显示装置
CN108363251B (zh) 一种阵列基板、液晶显示面板以及显示装置
US9235058B2 (en) Polarization-type three-dimensional display device and manufacturing method thereof
WO2019085077A1 (zh) 液晶透镜以及3d显示装置
US20150077667A1 (en) Three-dimensional image display device
US9599854B2 (en) Liquid crystal display device and electronic apparatus
EP3859441B1 (en) Display panel, method for driving same, and display device
JP2013174649A (ja) 液晶表示装置および液晶表示装置の製造方法
US20190129190A1 (en) Liquid crystal lens and 3d displaying device
US20170205645A1 (en) Display apparatus
JP2005091834A (ja) バリア素子およびそれを備えた立体映像表示装置
WO2023122897A1 (zh) 近眼显示装置和超表面透镜的构建方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824861

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18824861

Country of ref document: EP

Kind code of ref document: A1