WO2019083342A1 - 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서 - Google Patents

기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서

Info

Publication number
WO2019083342A1
WO2019083342A1 PCT/KR2018/012924 KR2018012924W WO2019083342A1 WO 2019083342 A1 WO2019083342 A1 WO 2019083342A1 KR 2018012924 W KR2018012924 W KR 2018012924W WO 2019083342 A1 WO2019083342 A1 WO 2019083342A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
group
channel layer
layer
transistor
Prior art date
Application number
PCT/KR2018/012924
Other languages
English (en)
French (fr)
Inventor
권오석
이창수
박선주
하태환
박철순
김경호
김진영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180027512A external-priority patent/KR101979225B1/ko
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to EP18871738.3A priority Critical patent/EP3703134B1/en
Priority to CN201880069999.1A priority patent/CN111837239A/zh
Priority to US16/759,432 priority patent/US20210181147A1/en
Priority to JP2020523709A priority patent/JP6926334B2/ja
Publication of WO2019083342A1 publication Critical patent/WO2019083342A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors

Definitions

  • the present invention relates to a graphene transistor including a linker layer composed of N-heterocyclic carbene compounds having functionalized end portions, a method for producing the same, and a biosensor using the same.
  • Graphene is one of the carbon isotopes composed of carbon atoms and has a two-dimensional planar layer structure composed of sp 2 of carbon.
  • This graphene has a very large surface area, is chemically stable, has excellent mechanical stability and thermal conductivity ( ⁇ 5,000 W / mK) and absorbs a very small amount of visible light. And has a high transparency such as a transmittance of 97%, and is very flexible. Therefore, even if it is physically stretched by 20%, it has excellent flexibility in preserving electric and electronic properties.
  • graphene has a very high electrical conductivity (intrinsic electron mobility of 20,000 cm 2 / Vs), because it has an electrically semimetallic nature while charge inside it acts as zero effective mass particles.
  • graphene Due to these outstanding optical, physical and chemical properties, graphene has emerged as the most notable material since Novoselove and Gaming discovered it in 2004. Recently, touch panels, organic light emitting devices, super capacitors, hydrogen generation / Applications of graphene to storage devices, solar cells, photocatalysts and biosensors are discussed.
  • graphene is mechanically peeled off and graphene composed of hexagonal two-dimensional carbon atoms is used for a transistor, it is reported that graphene has a field effect characteristic, And is attracting attention as a substitute for semiconductor materials.
  • a graphene when a graphene is formed into a nanoribbon having a channel width of 10 nm or less, a band gap is formed due to a size effect.
  • a visible graphene transistor can be manufactured.
  • the graphene transistor has a characteristic of linearly increasing the conductivity according to the voltage of the gate.
  • the electron transport is ballistic, the electron effective mass becomes zero and the charge mobility is very high.
  • modification to the surface of graphene is required in that it affects the stability of the transistor relative to the ions in the solution, and the sensitivity and selectivity of the biosensor including the stability of the transistor.
  • a covalent functionalization method in which an organic material is covalently bonded to a hydrophilic functional group, such as forming oxygen functional groups such as epoxy, hydroxyl, carbonyl, or carboxylic acid groups on the surface and the end of graphene, Non-covalent functionalization using non-covalent bonds such as hydrogen bonding or charge interactions, and the like.
  • graphene may be modified chemically by covalent bonding with functional monomers or polymers, or physically modified by noncovalent bonding, and then hydrazine (N 2 H 2 ) or sodium borohydride (NaBH 4 ) To produce functionalized graphene.
  • hydrazine N 2 H 2
  • sodium borohydride NaBH 4
  • the non-covalent bond has a merit that the formation method is relatively simple, the defects occurring on the surface of the graphene are minimized, and the excellent physical properties of the graphene are ensured, but the stability against the physical or chemical treatment is low .
  • the conventional surface modification method as described above is composed of a multistage process of modifying the surface and reducing graphene, and requires an additional chemical reaction step such as the use or removal of a reducing agent, which is one of the factors that deteriorate transistor performance.
  • an additional chemical reaction step such as the use or removal of a reducing agent, which is one of the factors that deteriorate transistor performance.
  • there are many technical defects such as low reproducibility, high temperature process, and inadequate mass production.
  • the conventional biosensor using the graphene transistor is manufactured by doping the graphene to improve the performance and then assembling the bio-probe into the biosensor. As a result, .
  • the selectivity and sensitivity of the biosensor including the inherent graphene inherent electrical conductivity are improved, the surface of the graphene can be rapidly modified without additional chemical reaction steps, and the combination of the doping treatment and the bio- There is a great need for technology that can be implemented.
  • Patent Document 1 Korean Published Patent Application No. 2015-0120003 (Oct. 27, 2015)
  • Patent Document 2 Korean Published Patent Application No. 2013-0027199 (Mar.
  • the present invention can facilitate the modification of the surface of the graphene channel layer and attachment of the bio-probe without any additional chemical reaction step, as well as the specific binding of the target substance to be bound to the bio- Which is capable of changing the electric conductivity of the semiconductor device more sensitively.
  • one aspect of the present invention provides a method for manufacturing a graphene channel layer, comprising: providing a substrate, a graphene channel layer disposed on the substrate, a pair of metals spaced apart on the graphene channel layer, And a linker layer composed of N-heterocyclic carboxy compounds.
  • a method for fabricating a semiconductor device comprising: forming a graphene channel layer by growing a graphene film by chemical vapor deposition using a hydrocarbon gas as a carbon source on a substrate; forming a pair of metals on the graphene channel layer And forming a linker layer on the surface exposed to the outside of the graphene channel layer using a surface treatment agent comprising an N-heterocyclic carbene compound.
  • a biosensor including the graphene transistor described above.
  • the graphene transistor of the present invention can easily connect the probe to the graphene channel layer by using the N-heterocyclic carboxylic compound as a linker layer, As shown in Fig. Accordingly, there is an advantage that the electrochemical change due to the coupling between the probe and the target material can be sensed sensitively by the change in electrical conductivity of the graphene channel layer.
  • Figure 1 is a graphene transistor showing the attachment of a bio-probe onto a linker layer.
  • FIG. 2 is a TEM photograph of a graphene formed of a single layer of the graphene micropatterned electrode produced in FIG. 3, c) a photograph of a graphene micropatterned electrode, d) a micrograph of the graphene micropatterned electrode, and e) A graph showing the results of Raman analysis in portions A and B in (d).
  • FIGS. 3 and 4 are flowcharts showing a process for manufacturing a graphene micropattern electrode.
  • FIG. 5 is a schematic diagram showing that the carban group of the N-heterocyclic carbene compound is covalently bonded to the graphene layer of the graphene channel layer.
  • Figure 6 is a molecular structure and nuclear magnetic resonance data showing the N-heterocyclic carbene compounds whose terminal sites are functionalized with a) azide groups b) phthalimide groups, respectively.
  • FIG. 8 is a reaction chart showing a step of synthesizing N-heterocyclic carboxy compound (NHC2).
  • N-heterocyclic carboxy compound (NHC3).
  • N-heterocyclic carboxy compound (NHC4).
  • NMR nuclear magnetic resonance spectroscopy
  • 13 is a graph showing the real-time response of the biosensor including the graphene transistor to the H1N1 HA antigen.
  • FIG. 14 is a graph showing a real-time response to dopamine in a biosensor including a graphene transistor.
  • 15 is a schematic diagram showing formation of graphene by CVD deposition on a copper substrate.
  • FIG. 16 is a graph showing conditions of the graphene forming process of FIG.
  • FIG. 17 is a graph showing transparency according to the formation of graphene in Fig.
  • 19 is a graph showing the a) to c) DFT modeling of the graphene transistor, d) the current-voltage characteristic and e) the transition curve characteristic.
  • 20 is a graph showing a) Raman data and b) current-voltage characteristics of a graphen transistor.
  • 21 is a graph showing a real-time response to geosmin of a biosensor including a graphen transistor.
  • 22 is a graph showing a real-time response of E. coli to a biosensor including a graphene transistor.
  • One aspect of the invention provides a graphene transistor.
  • the graphene transistor of the present invention includes a substrate, a graphene channel layer, a pair of metal and a linker layer.
  • the substrate serves as a support for supporting the structures of the graphene transistor of the present invention.
  • the substrate may be an insulating inorganic substrate such as a Si substrate, a glass substrate, a GaN substrate, or a silica substrate, a metal substrate such as Ni, Cu, A substrate or the like can be used.
  • a SiO 2 substrate it is preferable that the substrate is a SiO 2 substrate because of its excellent affinity with the graphene channel layer.
  • the substrate may be selected from a variety of materials capable of depositing graphene, and may be composed of, for example, a material such as silicon-germanium, silicon carbide (SiC), and the like, and may include an epitaxial layer, A silicon-on-insulator layer, a semiconductor-on-insulator layer, and the like.
  • a material such as silicon-germanium, silicon carbide (SiC), and the like, and may include an epitaxial layer, A silicon-on-insulator layer, a semiconductor-on-insulator layer, and the like.
  • the graphene channel layer constituting the graphene transistor of the present invention may be formed of graphene.
  • the on / off ratio of the operating current is very low due to a high current flowing in the off state even when no voltage is applied to the gate, Can be manufactured.
  • the graphene channel layer may be formed of a single layer or a bi-layer graphene. However, since the sensitivity of the biosensor may be lowered due to reduction of surface resistance when the graphene layer is used, It is more preferable to comprise a single layer of graphene as shown.
  • the pair of metals may be a source electrode and a drain electrode formed on the graphene channel layer so as to be spaced apart from each other to apply a voltage to the graphene channel layer.
  • the source electrode and the drain electrode may be electrically connected through the graphene channel layer, may include a conductive material, and may be formed of, for example, a metal, a metal alloy, a conductive metal oxide, or a conductive metal nitride have.
  • the source electrode and the drain electrode may be formed of a metal such as Cu, Co, Bi, Be, Ag, Al, Au, Hf, Cr, In, Mn, Mo, Mg, Ni, Nb, Pb, Pd, But not limited to, Pt, Re, Rh, Sb, Ta, Te, Ti, W, V, Zr, Zn and combinations thereof. Pt is preferable in terms of ease of use.
  • the linker layer has a structure in which the graphene channel layer of the graphene transistor of the present invention is bonded to the bio-probe, And may be disposed on the channel layer.
  • the linker layer consists of N-heterocyclic carboxy compounds.
  • N-heterocyclic carbene compound may be represented by the following formula (1).
  • A may be an azide or phthalimide
  • R 1 may be an alkylene group or alkoxyalkylene having 1 to 10 carbon atoms and 1 to 5 repeating units
  • R 1 is preferably an alkylene group or an alkoxyalkylene group having 1 to 4 carbon atoms and 1 to 8 carbon atoms in the repeating unit, and the repeating unit is 1 to 4 And more preferably an alkyloxy group having 2 to 5 carbon atoms.
  • R 2 and R 3 may be the same or different and are an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylene group, an alkenylene group, an alkynylene group, an alkoxy group, An alkyl group and a benzyl group, but in terms of bonding between the probe and the graphene channel layer, an alkyl group, a cycloalkyl group, an alkenyl group, and a benzyl group having 3 to 16 carbon atoms It is preferably at least any one of them, more preferably a cycloalkyl group having 6 to 10 carbon atoms or a benzyl group.
  • a carban group may be bonded to the graphene layer of the graphene channel layer through a covalent bond.
  • the band gap can be formed without any additional doping treatment, There is an effect of reducing noise, and there is no need for additional chemical treatment such as participation of a crosslinking agent, thereby simplifying the process and reducing the cost.
  • N-heterocyclic carbene compound may be functionalized at the terminal portion (A portion of the above formula (1)) with an azide group or a phthalimide group.
  • the linker layer and the bio-probe can be combined without additional chemical reaction steps.
  • the N-heterocyclic carbene compound is selected from the group consisting of 6-4 (-azidobutoxy) -1,3-diisopropyl-1H-benzo [d] imidazol- Diiso-propyl-1H-benzo [d] imidazol-2-ylidene, 6- (2- (2- Benzo [d] imidazol-2-ylidene, 6- (4- (1, 2-dimethoxyethoxy) ethoxy) ethoxy) Yl) butoxy) -1,3-diisopropyl-1H-benzo [d] imidazol-2-ylidene and 6- (4-azidobutoxy-1,3-di Benzyl-1H-benzo [d] imidazol-2-ylidene, and is preferably at least one selected from the group consisting of 6- (2- (2- (2- (2-azidethoxy) Benzo [d] imidazol-2-ylidene or 6- (4-azi
  • the link layer formed by the N-heterocyclic carbene compound may form a linker layer in the form of a single layer.
  • the compound When the compound is formed as a single layer of the N-heterocyclic carbene compound, it has an excellent charge mobility, transparency and flexibility inherent to graphene, and can block noise signals due to the approach of nonspecific external charges .
  • the linker layer may have a thickness of 0.1 nm to 1 nm. When the thickness of the linker layer is thinner than 0.1 nm, the resistance increases. When the thickness of the linker layer is thicker than 1 nm, the transparency decreases.
  • Another aspect of the present invention provides a method of manufacturing a graphene transistor.
  • a method of fabricating a graphene transistor according to the present invention includes the steps of forming a graphene channel layer by growing graphene by chemical vapor deposition using a hydrocarbon gas as a carbon source on a substrate, Forming a pair of metals in the fin channel layer and forming a linker layer using a surface treatment agent comprising N-heterocyclic carbene compound on the surface exposed to the outside of the graphene channel layer .
  • Such a graphene channel layer can be formed, for example, by a chemical vapor deposition method, and a single layer or an aqueous graphene layer having excellent crystallinity can be obtained in a large area by using this method.
  • the chemical vapor deposition method is a method of growing graphene by adsorbing, decomposing or reacting a carbon precursor in the form of gas or vapor having a high kinetic energy on a substrate surface, separating the carbon precursor into carbon atoms, and causing carbon atoms to bond to each other .
  • the chemical vapor deposition method may be at least one selected from the group consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD), Atmospheric Pressure Chemical Vapor Deposition (APCVD), and Low Pressure Chemical Vapor Deposition (LPCVD) It is preferable that the chemical vapor deposition method is LPCVD in that deposition can be performed with minimized defects in the area.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • APCVD Atmospheric Pressure Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • a metal catalyst such as nickel, copper, aluminum, or iron is deposited on a wafer having a silicon oxide layer by using a sputtering apparatus and an electron beam evaporator to form a metal catalyst layer, CH 4 , C 2 H 2, and the like, and is heated to cool the metal catalyst layer to absorb carbon, cooling the metal catalyst layer to separate carbon from the metal catalyst layer to crystallize the metal,
  • the graphene channel layer can be formed by removing the catalyst layer.
  • the method of forming the graphene channel layer is not limited to chemical vapor deposition, and a graphene channel layer may be formed by various methods.
  • a graphene channel layer can be formed by an epitaxial synthesis method in which a material having a high thermal conductivity is thermally treated at a high temperature of 1,500 ° C.
  • the pair of metals may be a source electrode and a drain electrode, and they may be formed by a method known in the art. For example, a thermal deposition process, an E-beam deposition process, , PECVD, LPCVD, PVD (Physical Vapor Deposition), sputtering, ALD, or the like.
  • the step of forming the linker layer on the surface exposed to the outside of the graphene channel layer may be performed by dipping the substrate on which the graphene channel layer is formed by immersing the substrate in a solution of N-heterocyclic carbene compound at room temperature for a predetermined time in the presence of argon .
  • the graphene channel layer and the linker layer can be modified for 5 to 300 seconds even if there is no additional chemical reaction step, the surface of the graphene channel layer can be modified, and manufacturing convenience and cost are reduced,
  • the reaction is preferably carried out for 20 to 60 seconds. This is advantageous in that it is simpler and faster than the conventional one.
  • the N-heterocyclic carbene compound constituting the linker layer can be formed by a synthesis method as shown in FIG. 7 to FIG. 11, and according to the present invention, an imidazolium salt can be synthesized by using as a source.
  • a graphene transistor is manufactured from an N-heterocyclic carboxy compound having a cyclic structure using an imidazolium salt as a source, from the viewpoint of ease of reaction with surface modification with a graphene channel layer.
  • the reaction conditions for modifying the surface of the graphene channel layer are extremely high, and the surface of the graphene channel layer can not be entirely modified, There is a limit in that it can not be completely blocked.
  • the electrons provided by the carbene compounds having no cyclic structure tend to accumulate in the graphene channel layer and tend to lower the stability of the graphene channel layer itself. Therefore, when a certain amount of the carbene compound is used There is a problem that the pinch channel layer is separated again.
  • Another aspect of the present invention provides a biosensor including the graphene transistor as described above.
  • the biosensor according to the present invention uses a semiconductor characteristic in which the current flowing through the graphene channel layer between the source and drain electrodes changes due to the electric field effect.
  • the probe included in the bio-probe portion formed on the surface of the graphene channel layer reacts with the target, a change occurs in the electric field around the graphene channel layer.
  • the current value flowing in the graphene channel region between the source electrode and the drain electrode And the target is detected in such a manner that the change of the current is measured.
  • Such a biosensor is excellent in sensitivity, specificity, promptness and portability by using the graphene transistor as described above. Particularly, since graphene has high charge carrier mobility and conductivity characteristics by using the graphene as a channel layer, And real-time detection performance.
  • the linker layer is formed in the graphene channel layer in the transistor as described above and the bioproblem connecting to the graphene channel layer exists in the channel region of the transistor, the sensitivity of the sensor is further improved and the doping process and the attachment of the bio- So that the process can be simplified.
  • the manufacturing method of the biosensor may include a step of doping the graphene channel layer and a step of bonding the bio-probe on the linker layer.
  • the graphene transistor included in the biosensor does not require a separate doping process for forming a band gap because the bandgap is formed by modifying the surface of the graphene channel layer with N-heterocyclic carbene compound.
  • Doping is required to control the band gap energy in terms of operating efficiency and reliability.
  • the step of performing the doping may be at least one selected from the group consisting of substitutional doping, chemical doping, and surface charge transfer doping.
  • substitutional doping is a method in which carbon atoms are substituted with boron or nitrogen. More specifically, when graphene is synthesized by a chemical vapor phase method, boron (HBO 3 , H 2 B 6 ) and nitrogen (NH 3 ) The added gas is flowed simultaneously with methane to synthesize boron and graphene substituted with nitrogen, or heat treatment is performed at high temperature while the gas is flowed, or plasma is applied.
  • the graphene oxide is reduced and substituted at the same time, so that the degree of doping can be controlled by controlling the intensity of plasma and the amount of gas.
  • the chemical doping changes the work function of graphene by using a chemical substance.
  • the chemical doping may be changed to a p-type or an n-type depending on a chemical used.
  • a gold chloride is preferably used.
  • Such chemical doping does not change the mechanical and chemical properties of the target material and has the advantage of being easy to control.
  • the electron state of graphene can be changed by taking or transferring electrons from graphene.
  • Examples of the adsorbent for generating surface charge include tetrafluorotetracyanoquinodimethane (F4-TCNQ) and fluoropolymer (CYTOP).
  • the step of bonding the bio-probe on the linker layer may include forming a linker layer by modifying the surface of the graphene channel layer with N-heterocyclic carbene compound to form an N-heterocyclic carbene compound (Such as an aptamer or an antibody) with a functional group (for example, an azide group or a phthalimide group) in the upper part of the linker layer exposed.
  • N-heterocyclic carbene compound such as an aptamer or an antibody
  • a functional group for example, an azide group or a phthalimide group
  • the step of doping the graphene channel layer and the step of bonding the bio-probe on the linker layer may be performed at the same time.
  • a biosensor was manufactured by doping the graphene channel layer first, modifying the surface by further chemical treatment, and then attaching the bio-probe to the graphene channel layer.
  • the present invention can simultaneously perform doping of the graphene channel layer and attachment of the bio-probe portion in that the bio-probe portion directly bonds to the functionalized N-heterocyclic carbene compound at the terminal portion. And the economic efficiency is improved by simplification.
  • the bio-probe unit may include a probe material including at least one selected from the group consisting of platamers, DNA, antigens, antibodies, and peptides.
  • the aptamer is a peptide molecule synthesized from RNA, DNA, synthetic nucleotide, etc., and can be synthesized with a specific base sequence and selectively bound to a target substance.
  • the antigen, antibody or dopamine of H1N1 HA can be detected using the probe material as shown in FIGS. 13 and 14.
  • FIG. 13 the probe material as shown in FIGS. 13 and 14.
  • the suspension was then extracted with methylene chloride (3 x 100 ml).
  • the organic layer was dried over sodium sulfate, the solvent was evaporated and the crude product was purified by silica column chromatography using a methylene chloride: methanol gradient mixture.
  • Benzo [d] imidazole (1.86 g, 6.91 mmol) was added to a solution of sodium azide (NaN 3 , 0.49 g, 7.6 mmol) in N, N-dimethylformamide ) In the presence of argon at 80 < 0 > C for 8 hours.
  • the reaction mixture was poured into water (200 ml) and extracted with ethyl acetate (2 x 150 ml). The combined organic layers were dried over sodium sulfate, the solvent was evaporated and the crude product was purified by silica column chromatography using a methylene chloride: methanol gradient mixture.
  • Step 4 Synthesis of 5- (4-azidobutoxy) -1,3-diisopropyl-1H-benzo [d] imidazol-3-iodide
  • Benzod [d] imidazol-3-ium iodide (80 mg, 0.18 mmol) was dissolved in anhydrous THF (3.6 ml) Lt; / RTI > to give precain.
  • 1 M KHMDS (0.18 ml, 0.18 mmol) in THF as a solution in base was added dropwise to the mixture at room temperature and stirred for 15 minutes. It was observed that a white precipitate (KI) was formed immediately.
  • the resulting mixture was filtered through a 0.2 ⁇ ⁇ PTFE syringe filter, and NHC1 was prepared by diluting it with a 0.05 M concentration of carban.
  • Step 1 Synthesis of 4- (2- (2- (2- (2- (2-bromoethoxy) ethoxy) ethoxy) ethoxy) -2-nitroaniline
  • Step 2 Synthesis of 5- (2- (2- (2- (2- (2-bromoethoxy) ethoxy) ethoxy) ethoxy) -1H-benzo [d] imidazole
  • Step 4 Preparation of 5- (2- (2- (2- (2- (2-azidethoxy) ethoxy) ethoxy) ethoxy) -1,3-diisopropyl-1H- benzo [d] Synthesis of -Iium iodide
  • Step 2 Synthesis of 2- (4 - ((1H-benzo [d] imidazol-5-yl) oxy) butyl) isoindoline-
  • the suspension was then extracted with methylene chloride (3 x 100 ml).
  • the organic layer was dried over sodium sulfate, the solvent was evaporated and the crude product was purified by silica column chromatography using a methylene chloride: methanol gradient mixture.
  • Step 3 Synthesis of 5- (4- (1,3-dioxoisoindolin-2-yl) butoxy) -1,3-diisopropyl-1H- benzo [d] imidazol-3-iodide
  • Benzo [d] imidazol-3-iodide (99 mg, 0.18 mmol) was added to a solution of 5- (4- (1,3- dioxoisoindol- ) was dissolved in anhydrous THF (3.6 ml) and stirred in a glovebox to obtain precavan.
  • 1 M KHMDS (0.18 ml, 0.18 mmol) in THF as a solution in base was added dropwise to the mixture at room temperature and stirred for 15 minutes. It was observed that a white precipitate (KI) was formed immediately.
  • the resulting mixture was filtered through a 0.2 ⁇ ⁇ PTFE syringe filter and diluted with a 0.05 M concentration carban to produce NHC4.
  • the suspension was then extracted with methylene chloride (3 x 100 ml).
  • the organic layer was dried over sodium sulfate, the solvent was evaporated and the crude product was purified by silica column chromatography using a methylene chloride: methanol gradient mixture.
  • Benzo [d] imidazole (1.86 g, 6.91 mmol) was added to a solution of sodium azide (NaN 3 , 0.49 g, 7.6 mmol) in N, N-dimethylformamide ) In the presence of argon at 80 < 0 > C for 8 hours.
  • the reaction mixture was poured into water (200 ml) and extracted with ethyl acetate (2 x 150 ml). The combined organic layers were dried over sodium sulfate, the solvent was evaporated and the crude product was purified by silica column chromatography using a methylene chloride: methanol gradient mixture.
  • Step 4 Synthesis of 5- (4-azidobutoxy) -1,3-dibenzyl-1H-benzo [d] imidazol-
  • Benzod [d] imidazol-3-rim bromide (80 mg, 0.18 mmol) was dissolved in anhydrous THF (3.6 ml) and treated in a glove box Followinged by stirring to obtain precavan.
  • 1 M KHMDS (0.18 ml, 0.18 mmol) in THF as a solution in base was added dropwise to the mixture at room temperature and stirred for 15 minutes. It was observed that a white precipitate (KI) was formed immediately.
  • the resulting mixture was filtered through a 0.2 ⁇ ⁇ PTFE syringe filter and diluted with 0.05 M concentration of carban to produce NHC5.
  • a polymethyl methacrylate (PMMA, 950 PMMA A4, 4% in anisole) solution was spin-coated at a rate of 6,000 rpm on the graphene layer formed on the copper foil, The PMMA-coated graphene layer was separated from the copper foil, and the graphene layer separated by the copper foil was immersed in deionized distilled water for 10 minutes to remove residual etchant ions from the graphene layer .
  • a positive photoresist (AZ5214, Clariant Corp.) was spin-coated on the graphene channel layer formed on the substrate through the above Example [1-1], and then the graphene channel layer was formed through UV exposure, baking, And patterned.
  • the graphene transistor prepared in the above Example [1-2] was immersed in the carbene solution at room temperature in the presence of argon for 20 minutes, and then washed with THF, deionized water (DI) and IPA, To prepare a graphene transistor of Example 1 in which a cobenzene compound of NHC1 was attached on the graphene channel layer.
  • DI deionized water
  • a graphene transistor was fabricated in the same manner as in Example 1 except that the N-heterocyclic carboxy compound (NHC2) of Preparation Example 2 was used.
  • a graphene transistor was fabricated in the same manner as in Example 1 except that the N-heterocyclic carboxy compound (NHC3) of Preparation Example 3 was used.
  • Example 2 The same procedure as in Example 1 was carried out except that the graphene channel layer and NHC4 were bonded to each other using the following N-heterocyclic carboxy compound (NHC4) of Production Example 4 using the following chemical vapor deposition method (Chemical Vapor Deposition) A graphene transistor was fabricated.
  • NHC4 N-heterocyclic carboxy compound
  • the mixed solution was filtered with a 0.2 ⁇ ⁇ PTFE syringe filter, and diluted with the carbene compound of Preparation Example 4 having a concentration of 0.05M to prepare a carbene solution containing NHC4.
  • the THF solvent in the mixed solution was removed at 50 to 60 ° C, and the graphene transistor prepared in the above Example [1-2] was exposed at a temperature of 120 to 150 ° C under a pressure of 500 mTorr for 15 to 30 minutes To thereby vapor-deposit a cobenzene compound of NHC4 on the graphene channel layer.
  • the resultant was washed with THF and IPA, and then dried in a vacuum state.
  • the grains of Example 4 having a carbene compound of NHC4 adhered on the graphene channel layer Pin transistor was fabricated.
  • a graphene transistor was fabricated in the same manner as in Example 1, except that the N-heterocyclic carboxy compound (NHC5) of Preparation Example 5 was used.
  • a graphene transistor was fabricated in the same manner as in Example 1, except that the N-heterocyclic carboxy compound was not used.
  • the graphene transistor formed through Examples [1-1] and [1-2] was immersed in 30 mL of a methanol solution containing 0.0015 wt% of 1,5-diaminonapthalene (DAN)
  • DAN 1,5-diaminonapthalene
  • the naphthalene ring of the DAN forms a ⁇ - ⁇ interaction with the graphene channel layer and exposes the amine group (-NH 2 ) of the DAN to the outside by removing the remaining reactants and removing water using nitrogen gas,
  • a graphene transistor (DAN pi-pi interacted GT) was fabricated in which the surface of the graphene channel layer was modified with an amine group of DAN.
  • Example 1 (H1N1 HA antibody) according to N-heterocyclic carbene compounds, and the n-doping of the graphene channel layer with respect to the graphene channel layer NHC-covalent GT in Example 1 (Fig. 19 d), Example 2, Example 3 (Fig.
  • the N-heterocyclic carbon compound of NHC1 to NHC3 and the graphene channel layer have high band gap energies (corresponding to strong electron density) of 0.51 eV, 0.443 eV and 0.521 eV, , It can be seen that the cervene compound according to the present invention exhibits excellent bonding with the graphene channel layer.
  • 19 (d) it can be seen that the electrical resistance of Comparative Example 1 (Bare GT) is the smallest. From this, it can be seen that the graphene channel layers of Examples 1, As shown in Fig.
  • Example 1 Alkyl-NHC-covalent
  • Example 3 Benzyl-NHC-covalent
  • Comparative Example 2 pi-pi interacted GT
  • Example 3 (Benzyl-NHC-covalent GT) were compared to observe the change of graphene channel layer due to n- A graphene transistor of Example 1 (Bare GT) and Comparative Example 2 (pi-pi interacted GT) was fabricated, and Raman spectroscopy was performed to measure the current-voltage characteristics. The results are shown in FIG. At this time, Pristine graphene means graphene in which the graphene channel layer is not functionalized with N-heterocyclic carbene compound.
  • a graphene transistor functionalized with an azide group (NHC_N 3 _graphene, Example 1) or a phthalimide group (NHC_Nph_graphene, Example 3) has a large size in the vicinity of 1,600 (cm -1 ) It can be seen that the graphene channel layer consists of a single layer in that it shows a pointed (sharp) shaped peak.
  • n-doping was increased in Comparative Example 1, Comparative Example 2, Example 1, and Example 3.
  • the Ids value was increased negatively at a certain V g . It was found that the amount of the cyclic carbene compound adhered also increased.
  • a graphene transistor having a carbene compound of Example 3 (benzyl-NHC-covalent GT) was prepared. 2 ⁇ L of 5 ng / mL H1N1 HA antibody and 2 ⁇ L of dopamine antibody were added to each A biosensor with H1N1 HA antibody and dopamine antibody was prepared by EDC-NHS reaction. The H1N1 HA antigen or the H1N1 HA antigen with 0.1 nM to 100 nM concentration was added to each antigen using PBS solution. 100 nM of dopamine was treated and the detection experiment was carried out. The results are shown in Figs. 13 and 14. Fig.
  • the biosensor according to the present invention can detect 1 nM concentration of H1N1 HA antigen and 100 nM of dopamine.
  • a graphene transistor having the carbene compound of Example 4 formed thereon was prepared, and 2 ⁇ L of aptamer (5'-CTCTCGGGACGACCCGTTTGTTCCTGGCTTTTTAAGAGGTCTTTTTAAGAGGTCTGGTTGATGTCTTGGTTGATGTCTCCC-3 ', Bioneer) specific to geosmin was added to the graphene channel layer Thereafter, a biosensor having an aptamer specific to geosmin was prepared through EDC-NHS reaction. The biosensor was treated with 1 to 100 fg / mL of geosmin using a PBS solution. As shown in the figure, it was confirmed that the biosensor according to the present invention can detect even 1 fg / mL of geosmin.
  • a graphene transistor in which the cube compound of Example 5 was formed was prepared, and 2 ⁇ L of 5 ng / mL AMP (Magainin 1, Lugen sci) was added to the graphene channel layer, followed by EDC-NHS reaction AMP-attached biosensor was prepared and treated with 10 to 100 CFU / mL of E. coli using a PBS solution.
  • the biosensor according to the present invention 10 CFU / mL of E. coli could be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명은 기판, 상기 기판에 배치되는 그래핀 채널층, 상기 그래핀 채널층의 양단에 이격되어 배치되는 한 쌍의 금속 및 상기 그래핀 채널층 상에 배치되고 N-헤테로사이클릭 카벤 화합물로 이루어진 링커층을 포함하는 그래핀 트랜지스터, 그 제조방법 및 이를 포함하는 바이오 센서에 관한 것이다. 본 발명에 따른 그래핀 트랜지스터는, N-헤테로사이클릭 카벤 화합물의 카벤기와 그래핀 채널층이 공유 결합하여 그래핀 채널층의 표면을 전면적으로 개질하므로, 트랜지스터로서 우수한 전기 전도도를 발휘하면서도 이를 포함하는 바이오 센서의 선택성과 민감도가 향상된다.

Description

기능화된 N-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서
본 발명은 말단 부위가 기능화된 N-헤테로사이클릭 카벤 화합물로 이루어진 링커층을 포함하는 그래핀 트랜지스터, 그 제조방법 및 이를 이용하는 바이오 센서에 관한 것이다.
그래핀은 탄소 원자로 이루어진 탄소 동소체 중의 하나로서, 탄소의 sp2 혼성으로 이루어진 2차원의 평면 층상 구조를 갖는다.
이러한 그래핀은 기존의 탄소 소재에 비해 표면적이 매우 넓고, 화학적으로 안정하며, 기계적 안정성과 열전도도(~5,000 W/mK)가 우수하고, 가시광선에 대한 흡수량이 매우 낮아 550nm의 파장의 빛에 대한 투과율이 97%에 이르는 등 우수한 투명성을 가지며, 탄력이 매우 강하여 물리적으로 이를 20% 신장시키더라도 전기전자적 성질이 그대로 보존되는 뛰어난 유연성을 갖는다.
또한, 그래핀은 전기적으로 반금속 성질을 가지면서도, 그 내부에서 전하가 제로 유효 질량 입자로 작용하기 때문에, 매우 높은 전기 전도도(20,000cm2/Vs의 진성 전자 이동도)를 가지는 것으로 알려져 있다.
이러한 뛰어난 광학적, 물리적, 화학적 특성으로 인해, 2004 년 노보셀로브와 게임이 이를 발견한 이후로, 그래핀은 가장 주목 받는 소재로 떠오르고 있으며, 최근에는 터치 패널, 유기발광소자, 슈퍼커패시터, 수소 발생/저장 장치, 태양 전지, 광촉매 및 바이오 센서 등에 그래핀의 응용 가능성이 논의되고 있다.
특히, 그라파이트를 기계적으로 박리하여 6각 구조의 2차원 형상의 탄소 원자로 구성된 그래핀을 트랜지스터에 이용한 경우에 전계효과(field effect) 특성이 있다는 것이 보고된 이후로, 그래핀은 종래의 실리콘과 같은 반도체 물질을 대체할 수 있는 물질로 각광받고 있다.
예를 들면, 그래핀을 10 nm 이하의 채널 폭을 갖는 나노 리본 형태로 제조하는 경우 크기 효과(size effect)로 인해 밴드갭(band gap)이 형성되는바, 이를 이용하여 상온에서도 우수한 작동 특성을 보이는 그래핀 트랜지스터를 제조할 수 있다.
이러한 그래핀 트랜지스터는 게이트의 전압에 따라 전도도가 선형적으로 증가하는 특성이 있으며, 특히 전자 수송이 탄도성을 가지므로, 전자 유효 질량이 0이 되어 전하 이동도가 매우 높은 우수한 장점이 있다.
다만, 그래핀 간에 작용하는 반데르발스힘에 따른 균일성, 분산성의 저하 또는 구조적 안정성으로 인해, 위와 같이 우수한 물성에도 불구하고 실제 적용 가능한 기술에 대한 연구가 매우 제한적이었다.
최근에는, 위와 같은 문제점들을 해결하기 위해 다양한 방법이 시도되고 있으며, 특히 관능기를 활용하여 그래핀의 표면을 개질하는 연구가 활발히 이루어지고 있다.
특히, 용액 중의 이온에 대한 트랜지스터의 안정성이나 이를 포함하는 바이오 센서의 선택성 및 민감도에 영향을 미치는 점에서, 그래핀의 표면에 대한 개질이 요구되고 있다.
이를 위해, 종래에는 그래핀의 표면과 끝 부분에 에폭시, 수산기, 카르보닐기, 또는 카르복실산기 등의 산소 기능기들을 형성시키는 것과 같이 친수성 기능기에 유기물을 공유 결합시키는 공유 기능화법이나, 파이-파이 결합, 수소 결합 또는 전하간 상호작용 등의 비공유 결합을 이용하는 비공유 기능화법 등이 이용되었다.
예를 들면, 그래핀을 기능성 단분자 또는 고분자와 공유 결합을 통해 화학적으로 그래핀의 표면을 개질하거나, 비공유 결합으로 물리적으로 개질한 후, 하이드라진(N2H2)이나 수소화붕소나트륨(NaBH4)과 같은 환원제를 이용하여 환원하여 기능성이 부여된 그래핀을 제조하였다.
그러나, 그래핀의 표면에 기능기 그룹이 공유 결합을 형성하는 경우, sp2 결합이 sp3 결합으로 변화하여 그래핀의 전기 전도도가 저하되는 문제가 있다.
또한, 이러한 공유 결합은 대부분 그래핀의 표면 끝 부분에서 형성되어 그래핀의 표면이 부분적으로만 개질되었는바, 트랜지스터 등의 성능 향상에 대한 일정한 제약으로 작용하였고, 특히, 이는 바이오 탐침의 부착량에 대한 제한으로 작용하여 이러한 그래핀 트랜지스터를 포함하는 바이오 센서의 선택성과 민감도를 소망하는 수준으로 발현시키지 못하는 한계가 있었다.
한편, 비공유 결합에 의하는 경우, 형성 방법이 비교적 간단하고, 그래핀의 표면에 발생하는 결함을 최소화시켜 그래핀의 우수한 물성이 담보되는 장점이 있으나, 물리적 또는 화학적 처리에 대한 안정성이 낮다는 문제가 있었다.
더욱이, 위와 같은 종래의 표면 개질 방법은 표면을 개질하는 단계 및 그래핀을 환원하는 단계의 다단계 공정으로 구성되었는바, 환원제의 사용이나 제거 과정과 같이 추가적인 화학 반응 단계를 필요로 하였고, 이는 그래핀 트랜지스터의 성능을 저하시키는 하나의 요인으로 작용하였으며, 이외에도 낮은 재현성, 고온 공정, 대량 생산의 부적합 등 많은 기술적 결함들이 있었다.
뿐만 아니라, 종래의 그래핀 트랜지스터를 이용하는 바이오 센서는, 성능 향상을 위해 그래핀에 대하여 도핑 처리를 실시한 이후에 바이오 탐침을 결합하는 방식으로 이분화되어 제조되었는바, 이로 인해 제조 단가가 상승하는 문제점도 있었다.
따라서, 그래핀 본연의 뛰어난 전기 전도도를 가지면서도, 이를 포함하는 바이오 센서의 선택성과 민감도가 향상되며, 추가적인 화학 반응 단계 없이 신속하게 그래핀의 표면을 개질시키고, 도핑 처리 및 바이오 탐침의 결합을 동시에 실시할 수 있는 기술에 대한 필요성이 매우 높은 실정이다.
[선행기술문헌]
(특허문헌 1) 한국 공개특허공보 제2015-0120003호(2015.10.27.)
(특허문헌 2) 한국 공개특허공보 제2013-0027199호(2013.03.15.)
본 발명은 추가적인 화학 반응 단계 없이도 그래핀 채널층의 표면에 대한 개질 및 바이오 탐침의 부착을 용이하게 할 수 있을 뿐만 아니라, 상기 바이오 탐침에 결합되는 피검출 물질의 특이적 결합에 의해 그래핀 채널층의 전기 전도도가 보다 민감하게 변화할 수 있는 트랜지스터를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명의 일 측면은 기판, 상기 기판에 배치되는 그래핀 채널층, 상기 그래핀 채널층 상에 이격되어 배치되는 한 쌍의 금속 및 상기 그래핀 채널층 상에 배치되고 N-헤테로사이클릭 카벤 화합물로 이루어진 링커층을 포함하는 그래핀 트랜지스터를 제공한다.
또한, 본 발명의 다른 측면은 기판 상에 탄화수소 가스를 탄소 공급원으로 하여 화학 기상 증착법으로 그래핀을 성장시켜 그래핀 채널층을 형성하는 단계, 상기 그래핀 채널층에 한 쌍의 금속을 형성하는 단계, 및 상기 그래핀 채널층의 외부로 노출되는 표면 상에 N-헤테로사이클릭 카벤 화합물을 포함하는 표면처리제를 이용하여 링커층을 형성하는 단계를 포함하는 그래핀 트랜지스터의 제조방법을 제공한다.
또한, 본 발명의 또 다른 측면은 전술한 그래핀 트랜지스터를 포함하는 바이오 센서를 제공한다.
본 발명의 그래핀 트랜지스터는 N-헤테로사이클릭 카벤 화합물을 링커층으로 이용함으로써 탐침부를 그래핀 채널층에 쉽게 연결할 수 있을 뿐만 아니라, 탐침부와 그래핀 채널층의 화학적 결합에 의해 외부적인 환경 변화에 대해 우수한 안정성을 가진다. 따라서, 탐침부와 타겟 물질간의 결합에 따른 전기 화학적 변화를 그래핀 채널층의 전기전도도 변화로써 민감하게 감지해낼 수 있는 장점이 있다.
또한, 본 발명의 그래핀 트랜지스터의 제조방법에 따르면, 그래핀 채널층과 링커층은 추가적인 화학 반응 단계 없이 신속하고 간단하게 그래핀의 표면을 개질시키면서 결합되므로, 제조 편의성이 증대되고 제조 비용이 절감된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 링커층 상에 바이오 탐침부가 부착되는 것을 나타내는 그래핀 트랜지스터이다.
도 2는 도 3에서 제조된 그래핀 마이크로 패턴 전극의 b) 단일층으로 형성된 그래핀의 TEM 사진, c) 그래핀 마이크로 패턴 전극의 사진, d) 그래핀 마이크로 패턴 전극의 현미경 사진, 및 e) 상기 d)의 A, B 부분에서의 라만 분석 결과를 나타내는 그래프이다.
도 3 및 도 4는 그래핀 마이크로 패턴 전극을 제조하는 공정을 나타내는 순서도이다.
도 5는 N-헤테로사이클릭 카벤 화합물의 카벤기가 그래핀 채널층의 그래핀 상에 공유 결합하는 것을 나타내는 모식도이다.
도 6은 말단 부위가 각각 a) 아자이드기 b) 프탈리마이드기로 기능화된 N-헤테로사이클릭 카벤 화합물을 나타내는 분자구조식과 핵자기공명 데이터이다.
도 7은 N-헤테로사이클릭 카벤 화합물(NHC1)의 합성 단계를 나타내는 반응도이다.
도 8은 N-헤테로사이클릭 카벤 화합물(NHC2)의 합성 단계를 나타내는 반응도이다.
도 9는 N-헤테로사이클릭 카벤 화합물(NHC3)의 합성 단계를 나타내는 반응도이다.
도 10은 N-헤테로사이클릭 카벤 화합물(NHC4)의 합성 단계를 나타내는 반응도이다.
도 11은 N-헤테로사이클릭 카벤 화합물(NHC5)의 합성 단계를 나타내는 반응도이다.
도 12는 N-헤테로사이클릭 카벤 화합물(NHC5)의 핵자기 공명 분광분석법(NMR)의 스펙트럼을 나타내는 그래프이다.
도 13은 그래핀 트랜지스터를 포함하는 바이오 센서의 H1N1 HA 항원에 대한 실시간 반응을 나타낸 그래프이다.
도 14는 그래핀 트랜지스터를 포함하는 바이오 센서의 도파민에 대한 실시간 반응을 나타낸 그래프이다.
도 15는 구리 기판 상에 CVD 증착법으로 그래핀을 형성하는 것을 나타내는 모식도이다.
도 16은 도 6의 그래핀 형성 과정의 조건을 나타내는 그래프이다.
도 17은 도 6의 그래핀 형성에 따른 투명도를 나타내는 그래프이다.
도 18은 N-헤테로사이클릭 카벤 화합물로 그래핀 트랜지스터의 표면을 처리하는 과정을 나타낸 것이다.
도 19는 그래핀 트랜지스터의 a)~c) DFT 모델링, d) 전류-전압 특성 및 e) 전이곡선 특성을 나타내는 그래프이다.
도 20은 그래핀 트랜지스터의 a) 라만 데이터 및 b) 전류-전압 특성을 나타내는 그래프이다.
도 21은 그래핀 트랜지스터를 포함하는 바이오 센서의 지오스민(geosmin)에 대한 실시간 반응을 나타낸 그래프이다.
도 22는 그래핀 트랜지스터를 포함하는 바이오 센서의 E. coli에 대한 실시간 반응을 나타낸 그래프이다.
이하, 본 발명을 상세히 설명한다.
1. 그래핀 트랜지스터
본 발명의 일 측면은 그래핀 트랜지스터를 제공한다.
도 1을 참고하면, 본 발명의 그래핀 트랜지스터는 기판, 그래핀 채널층, 한 쌍의 금속 및 링커층을 포함한다.
상기 기판은 본 발명의 그래핀 트랜지스터의 구성들이 지지되는 지지대로서의 역할을 하는 구성으로서, Si 기판, 유리 기판, GaN 기판, 실리카 기판 등의 절연성 무기물 기판, Ni, Cu, W 등의 금속 기판 또는 플라스틱 기판 등을 사용할 수 있으며, 절연성 기판을 사용하는 경우, 그래핀 채널층과의 친화력이 우수한 점에서, SiO2 기판인 것이 바람직하다.
또한, 상기 기판은 그래핀의 증착이 가능한 다양한 물질 중에서 선택될 수 있으며, 예를 들어 실리콘-게르마늄, 실리콘 카바이드(SiC) 등의 물질로 구성될 수 있고, 에피택셜(epitaxial) 층, 실리콘-온-절연체(silicon-on-insulator)층, 반도체-온-절연체(semiconductor-on-insulator)층 등을 포함할 수 있다.
본 발명의 그래핀 트랜지스터를 구성하는 상기 그래핀 채널층은 그래핀으로 이루어질 수 있는데, 이 경우 게이트에 전압이 가해지지 않은 오프 상태에서도 높은 전류가 흘러 작동 전류의 온/오프 비율이 매우 낮으므로 고성능의 트랜지스터를 제조할 수 있다.
상기 그래핀 채널층은 단층 또는 이층(bi-layer)의 그래핀으로 이루어질 수 있으나, 이층의 그래핀을 사용하면 표면저항의 감소로 인해 바이오 센서의 민감도가 저하될 수 있는 점에서, 도 2에 나타낸 바와 같이 단층의 그래핀으로 이루어지는 것이 보다 바람직하다.
상기 한 쌍의 금속은 그래핀 채널층에 전압을 인가하기 위해 상기 그래핀 채널층 상에서 서로 이격되어 형성되는 소스 전극과 드레인 전극일 수 있다.
이러한 소스 전극과 드레인 전극은 상기 그래핀 채널층을 통하여 전기적으로 연결될 수 있고, 도전성을 가지는 물질을 포함할 수 있으며, 예를 들어 금속, 금속 합금, 전도성 금속 산화물 또는 전도성 금속 질화물 등으로 형성될 수 있다.
상기 소스 전극과 드레인 전극은, 예를 들면, 각각 독립적으로, Cu, Co, Bi, Be, Ag, Al, Au, Hf, Cr, In, Mn, Mo, Mg, Ni, Nb, Pb, Pd, Pt, Re, Rh, Sb, Ta, Te, Ti, W, V, Zr, Zn 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 포함할 수 있으나 이에 한정되는 것은 아니며, 그래핀과의 접촉성 및 식각의 용이성 측면에서, Pt인 것이 바람직하다.
상기 링커층은 본 발명의 그래핀 트랜지스터의 그래핀 채널층에 바이오 탐침부와 결합시키기 위한 구성으로서, 도 3 및 도 4에 나타낸 바와 같이 상기 한 쌍의 금속의 이격된 사이에 노출되어 있는 그래핀 채널층 상에 배치될 수 있다.
상기 링커층은 N-헤테로사이클릭 카벤 화합물로 이루어져 있다.
구체적으로, 상기 N-헤테로사이클릭 카벤 화합물은 하기의 화학식(1)로 표시할 수 있다.
[화학식(1)]
Figure PCTKR2018012924-appb-I000001
상기 화학식(1)에 있어서, A는 아자이드기(azide) 또는 프탈리마이드기(phthalimide)일 수 있고, R1은 반복 단위가 1 내지 5인 탄소 수 1 내지 10의 알킬렌기 또는 알콕시알킬렌기일 수 있으나, 그래핀 채널층의 전기전도도의 민감성 측면에서, R1은 반복 단위가 1 내지 4이고 탄소 수 1 내지 8인 알킬렌기 또는 알콕시알킬렌기인 것이 바람직하고, 반복 단위가 1 내지 4이고 탄소 수 2 내지 5인 알코올시알킬렌기인 것이 보다 바람직하다.
또한, R2 및 R3는 동일하거나 상이할 수 있으며, 탄소 수 1 내지 20인 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴알킬기 및 벤질기로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있으나, 탐침부와 그래핀 채널층의 결합성 측면에서, 탄소 수 3 내지 16인 알킬기, 시클로알킬기, 알케닐기 및 벤질기로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것이 바람직하고, 탄소 수 6 내지 10인 시클로알킬기 또는 벤질기인 것이 보다 바람직하다.
상기 N-헤테로사이클릭 카벤 화합물의 경우, 도 5에 나타낸 바와 같이, 카벤기가 상기 그래핀 채널층의 그래핀 상에 공유결합을 통해 결합될 수 있다.
이와 같이, N-헤테로사이클릭 카벤 화합물의 카벤기와 그래핀 채널층의 그래핀이 자가결합을 통해 공유결합을 형성하기 때문에, 별도의 도핑 처리 없이도 밴드갭을 형성할 수 있고 외부의 비특이적 전하에 따른 노이즈를 감소시킬 수 있는 효과가 있을 뿐만 아니라, 가교제의 참가 등과 같은 추가적인 화학 처리가 필요하지 않아 공정이 간소화되고 비용이 절감되는 효과가 있다.
또한, 상기 N-헤테로사이클릭 카벤 화합물은 말단 부위(상기 화학식(1)의 A 부분)가 아자이드기 또는 프탈리마이드기로 기능화될 수 있다. 그로 인해, 링커층과 바이오 탐침부는 추가적인 화학 반응 단계 없이 결합할 수 있다.
상기 N-헤테로사이클릭 카벤 화합물은 6-4(-아지도부톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-2-일리덴, 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-2-일리덴, 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴, 6-(4-(1,3-다이이소인돌린-2-일)부톡시)-1,3-다이이소프로필-1H-벤조[d]이미다졸-2-일리덴 및 6-(4-아지도부톡시-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴으로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것이 바람직하며, 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴 또는 6-(4-아지도부톡시-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴인 것이 더욱 바람직하다.
상기와 같은 N-헤테로사이클릭 카벤 화합물이 형성하는 링크층은 단일층의 형태로 링커층을 형성할 수 있다.
상기 N-헤테로사이클릭 카벤 화합물의 단일층으로 형성되는 경우, 그래핀 본연의 우수한 전하 이동도, 투명도 및 유연성을 가질 뿐만 아니라, 외부의 비특이적 전하들의 접근에 의한 노이즈 신호를 차단할 수 있는 효과가 있다.
또한, 상기 링커층은 그 두께가 0.1nm~1nm일 수 있다. 상기 링커층의 두께가 0.1nm보다 얇은 경우 저항이 증가하는 문제점이 있고, 1nm보다 두꺼운 경우 투명도가 감소하는 문제가 있다.
2. 그래핀 트랜지스터의 제조방법
본 발명의 다른 측면은, 그래핀 트랜지스터의 제조방법을 제공한다.
도 3 및 도 4를 참고하면, 본 발명에 따른 그래핀 트랜지스터의 제조방법은 기판 상에 탄화수소 가스를 탄소 공급원으로 하여 화학 기상 증착법으로 그래핀을 성장시켜 그래핀 채널층을 형성하는 단계, 상기 그래핀 채널층에 한 쌍의 금속을 형성하는 단계 및 상기 그래핀 채널층의 외부로 노출되는 표면 상에 N-헤테로사이클릭 카벤 화합물을 포함하는 표면처리제를 이용하여 링커층을 형성하는 단계를 포함한다.
이러한 그래핀 채널층은 예를 들면, 화학 기상 증착법을 이용하여 형성할 수 있으며, 이를 이용하면 뛰어난 결정질을 갖는 단층 내지 수층의 그래핀을 대면적으로 얻을 수 있다.
상기 화학 기상 증착법은 기판 표면에 높은 운동 에너지를 갖는 기체 또는 증기 형태의 탄소 전구체를 흡착, 분해 또는 반응시켜 탄소 원자로 분리시키고, 해당 탄소 원자들이 서로 원자간 결합을 이루게 함으로써 그래핀을 성장시키는 방법이다.
본 발명에 있어서, 상기 화학 기상 증착법은 PECVD(Plasma Enhanced Chemical Vapor Deposition), APCVD(Atmospheric Pressure Chemical Vapor Deposition) 및 LPCVD(Low Pressure Chemical Vapor Deposition)로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있으며, 넓은 면적에 결점을 최소화하여 증착이 가능한 점에서 상기 화학 기상 증착법은 LPCVD인 것이 바람직하다.
상기 화학 기상 증착의 구체적인 방법으로서, 예를 들면 니켈, 구리, 알루미늄, 철 등의 금속 촉매를 스퍼터링 장치 및 전자빔 증발 장치를 이용하여 산화 실리콘층을 가지는 웨이퍼 상에 증착시켜 금속 촉매층을 형성하고, 이를 CH4, C2H2 등의 탄소를 포함하는 가스와 함께 반응기에 넣고 가열하여, 금속 촉매층에 탄소가 흡수되도록 하고, 이를 냉각하여 상기 금속 촉매층으로부터 탄소를 분리시켜 결정화시킨 후, 최종적으로 상기 금속 촉매층을 제거함으로써 그래핀 채널층을 형성할 수 있다.
다만, 상기 그래핀 채널층을 형성하는 방법은 화학 기상 증착법에 한정되는 것은 아니며, 여러 가지 방법을 이용하여 그래핀 채널층을 형성할 수 있다.
예를 들어, 여러 층으로 구성된 흑연 결정에서 기계적인 힘으로 한 층을 벗겨내어 그래핀을 만드는 물리적 박리법, 산화-환원 특성을 활용한 화학적 박리법 또는 SiC와 같이 탄소가 결정에 흡착되거나 포함되어 있는 재료를 1,500℃의 고온 상태에서 열처리하는 에피텍셜 합성법을 이용하여 그래핀 채널층을 형성시킬 수 있다.
상기 한 쌍의 금속은, 소스 전극과 드레인 전극일 수 있으며, 이들은 당업계에 공지된 방법으로 형성할 수 있으나, 예를 들어, 열증착 공정(Thermal Deposition), 이빔증착 공정(E-beam Deposition), PECVD, LPCVD, PVD(Physical Vapor Deposition), 스퍼터링(sputtering), ALD 등의 증착 방법에 의하여 형성할 수 있다.
상기 그래핀 채널층의 외부로 노출되는 표면 상에 링커층을 형성하는 단계는 그래핀 채널층이 형성된 기판을 아르곤 존재 하에서 N-헤테로사이클릭 카벤 화합물 용액에 상온에서 일정 시간 침지하는 방법으로 형성시킬 수 있다.
이때, 그래핀 채널층과 링커층은 추가적인 화학 반응 단계가 없더라도 5 내지 300초 동안 반응하는 것에 의해 그래핀 채널층의 표면을 개질시킬 수 있으며, 제조 편의성이 증대되고 제조 비용이 절감되는 점에서, 상기 반응은 20 내지 60초 동안 이루어지는 것이 바람직하다. 이는 종래에 비해 더욱 간단하고 신속하다는 장점이 있다.
상기 링커층을 구성하는 N-헤테로사이클릭 카벤 화합물은, 도 7 내지 도 11에 나타낸 바와 같은 합성 방법으로 형성시킬 수 있고, 본 발명에 따르면, 이미다졸륨염을 소스로 이용하여 합성될 수 있다.
즉, 본 발명에서는 그래핀 채널층과의 표면 개질에 대한 반응 용이성 측면에서, 이미다졸륨염을 소스로 이용하여 고리 구조를 갖는 N-헤테로사이클릭 카벤 화합물로 그래핀 트랜지스터를 제조한다.
만약, 고리 구조를 가지지 않는 카벤 화합물을 이용하는 경우, 그래핀 채널층의 표면을 개질시키기 위한 반응 조건이 매우 과격할 뿐만 아니라, 그래핀 채널층의 표면을 전면적으로 개질시키지 못하므로, 외부 전하의 영향을 완전히 차단하지 못하는 한계가 있다. 또한, 고리 구조를 가지지 않는 카벤 화합물이 제공한 전자들은 그래핀 채널층에 지속적으로 축적이 되어 그래핀 채널층 자체의 안정성을 저하시키는 경향이 매우 높은 점에서, 일정량 이상의 카벤 화합물을 사용하는 경우 그래핀 채널층으로부터 다시 분리가 되는 문제가 있다.
3. 바이오 센서
본 발명의 또 다른 측면은, 위와 같은 그래핀 트랜지스터를 포함하는 바이오 센서를 제공한다.
본 발명에 따른 바이오 센서는, 전기장 효과에 의해 소스 및 드레인 전극 사이의 그래핀 채널층을 흐르는 전류가 변하는 반도체 특성을 이용한 것이다.
구체적으로, 그래핀 채널층의 표면에 형성된 바이오 탐침부에 포함되는 프로브가 표적물과 반응하면, 주변의 전기장에 변화가 일어나며, 이로 인해 소스 전극과 드레인 전극 사이의 그래핀 채널 영역에 흐르는 전류 값이 함께 변하고, 이러한 전류의 변화를 측정하는 방식으로 표적물을 검출한다.
이러한 바이오 센서는, 위와 같은 그래핀 트랜지스터를 이용함으로써 민감도, 특이성, 신속성 및 휴대성이 우수하며, 특히, 그래핀을 채널층으로 사용함으로써 그래핀의 높은 전하 캐리어 이동도와 전도도 특성으로 인하여 우수한 민감도와 실시간 감지 성능을 가진다.
또한, 위와 같이 링커층을 트랜지스터 내의 그래핀 채널층에 형성시켜 이에 결합하는 바이오 탐침부를 트랜지스터의 채널 영역에 존재시킴으로써 센서의 민감도가 더욱 향상될 뿐만 아니라, 도핑 처리와 바이오 탐침의 부착을 동시에 실시할 수 있게 되어 공정이 간소화되는 효과가 있다.
이러한 바이오 센서의 제조방법은, 상기 그래핀 채널층에 도핑을 실시하는 단계 및 상기 링커층 상에 바이오 탐침부를 결합하는 단계를 포함할 수 있다.
즉, 상기 바이오 센서에 포함되는 그래핀 트랜지스터는, N-헤테로사이클릭 카벤 화합물로 그래핀 채널층의 표면을 개질시킴으로써 밴드갭이 형성되므로, 밴드갭의 형성을 위한 별도의 도핑 처리를 요하지 않으나, 작동 효율과 신뢰성 측면에서 밴드갭 에너지를 조절하기 위한 도핑이 요구된다.
이때, 상기 도핑을 실시하는 단계는 치환 도핑, 화학적 도핑 및 표면 전하 전달 도핑으로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
이들 중, 치환 도핑은 탄소 원자를 보론이나 질소로 치환하는 방법이며, 보다 구체적으로, 화학 증기 기상법으로 그래핀을 합성할 때, 보론(HBO3, H2B6)과 질소(NH3)가 첨가된 가스를 메탄과 동시에 흘려 주어 보론과 질소가 치환된 그래핀을 합성하거나, 상기 가스를 흘려주면서 고온에서 열처리를 하거나 플라즈마를 가하는 것이다.
특히 고온 열처리를 하면서 보론과 질소를 포함한 가스를 흘려주면 그래핀 산화물은 환원되는 동시에 치환되므로, 플라즈마의 세기와 가스량의 조절로 도핑 정도를 조절할 수 있는 장점이 있다.
화학적 도핑은 화학물질을 이용하여 그래핀의 일함수를 변화시키는 것으로서, 사용하는 화학 물질에 따라 p형 또는 n형으로 달라질 수 있으며, 특히 금 염화물이 바람직하게 사용된다.
이러한 화학적 도핑은 목표 물질의 기계적, 화학적 성질을 변화시키지 않으며, 조절이 용이한 장점이 있다.
한편, 그래핀의 표면에 전자가 부족하거나 풍부한 물질이 존재하면 그래핀으로부터 전자를 빼앗거나 전달함으로써 그래핀의 전자 상태가 달라질 수 있으며, 이를 이용한 것이 표면 전하 전달 도핑이다.
즉, 그래핀 위에 전하 전달을 일으킬 수 있는 분자를 도포시키거나 증착을 통해서 구조를 형성하면 그래핀을 이루는 탄소와의 전기음성도의 차이로 인해 전하 전달이 자발적으로 일어나서 그래핀을 도핑하는 방식이다.
표면 전하를 일으키기 위한 흡착 물질로는, 예를 들면, tetrafluorotetracyanoquinodimethane(F4-TCNQ)와 fluoropolymer(CYTOP)을 들 수 있다.
또한, 상기 링커층 상에 바이오 탐침부를 결합하는 단계는 N-헤테로사이클릭 카벤 화합물로 그래핀 채널층의 표면을 개질시켜 링커층을 형성하고, 상기 링커층을 구성하는 N-헤테로사이클릭 카벤 화합물의 관능기(예를 들면, 아자이드기나 프탈리마이드기)가 링커층의 상부에 노출이 된 상태에서 바이오 탐침부(예를 들면, 압타머나 항체 등)와 반응시킴으로써 이루어질 수 있다.
한편, 상기 그래핀 채널층에 도핑을 실시하는 단계와 링커층 상에 바이오 탐침부를 결합하는 단계는 동시에 이루어질 수 있다.
종래에는, 그래핀 채널층에 먼저 위와 같은 도핑을 실시하고, 이에 추가적인 화학적 처리를 실시하여 표면을 개질시킨 후, 이에 바이오 탐침부를 부착하는 단계로 바이오 센서를 제조하였다.
이에 비해, 본 발명은 말단 부위가 기능화된 N-헤테로사이클릭 카벤 화합물에 직접 바이오 탐침부가 결합하는 점에서, 그래핀 채널층에 대한 도핑과 바이오 탐침부의 부착을 동시에 실시할 수 있는바, 공정의 간소화에 따라 경제성이 향상되는 효과를 발휘한다.
한편, 상기 바이오 탐침부는 압타머, DNA, 항원, 항체 및 펩타이드로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 프로브 물질을 포함할 수 있다.
여기서, 압타머는 RNA, DNA, 합성 뉴클레오티드 등으로부터 합성되는 펩티드 분자를 말하며, 특정한 염기 서열로 합성하여 타겟 물질과 선택적으로 결합될 수 있다.
본 발명에 따른 바이오 센서는, 하나의 예로서, 도 13 및 도 14에 나타낸 바와 같이 상기 프로브 물질을 이용하여 H1N1 HA의 항원, 항체 또는 도파민을 검출할 수 있다.
이하에서, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다.
그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이에 의하여 한정되는 것은 아니다.
[제조예] 말단 부위가 기능화된 N-헤테로사이클릭 카벤 화합물의 합성
[제조예 1] 6-(4-아지도부톡시-1,3-디이소프로필-1H-벤조[d]이미다졸-2-일리덴(이하, 'NHC1'로 기재한다)의 합성
1 단계: 4-(4-브로포부톡시)-2-니트로아닐린의 합성
4-아미노-3-니트로페놀(2.0g, 13.0mmol)과 1,4-디브로모부탄(3.64g, 16.9mmol)이 포함된 무수 아세토니트릴(65ml) 용액에 K2CO3(1.8g, 13.0mmol)를 첨가하였다. 반응 혼합물을 80℃에서 12 시간 동안 아르곤 존재하에 교반하였다. 반응 혼합물을 상온까지 냉각한 후 무기 침전물을 여과하고 아세토니트릴(50ml)로 세정하였다. 다음으로, 용매를 증발시키고 조생성물을 n-헥산:에틸아세테이트 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.5g (67%), 1H NMR (600 MHz, CDDl3): δ C10H13BrN2O3의 ESI-MS (m/z): 288.01, Calc.: 288.01 이었다.
2 단계: 5-(4-브로모부톡시)-1H-벤조[d]이미다졸의 합성
4-(4-브로모부톡시)-2-니트로아닐린(2.5g, 8.65mmol), 철분말(4.8g, 86.5mmol) 및 염화암모늄(4.6g, 86.5mmol)이 포함된 이소프로필 알코올(60ml)에 포름산(45ml)을 첨가하였다. 반응 혼합물을 90℃에서 16 시간 동안 아르곤 존재하에 교반한 후 이를 상온까지 냉각하고, 소결 유리 여과기로 여과시켰다. 얻어진 고형분을 이소프로필 알코올(3 x 50ml)로 세정하였다. 여과된 액체를 증발 건조시키고 포화 탄산수소나트륨 용액을 첨가하여 pH 7이 될 때까지 중화시켰다. 다음으로, 현탁액(suspension)을 염화메틸렌(3 x 100ml)으로 추출하였다. 유기층을 황산나트륨으로 건조시키고, 용매를 증발시킨 후 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 1.86g (80%), 1H NMR (600 MHz, CDDl3): δ C11H13BrN2O의 ESI-MS (m/z): 269.14, Calc.: 269.14 이었다.
3 단계: 5-(4-아지도부톡시)-1H-벤조[d]이미다졸의 합성
5-(4-브로모부톡시)-1H-벤조[d]이미다졸(1.86g, 6.91mmol)을 N,N-디메틸포름아미드(35ml) 중의 아지드화 나트륨(NaN3, 0.49g, 7.6mmol)과 함께 80℃에서 8 시간 동안 아르곤 존재하여 교반하였다. 반응 혼합물을 물(200ml)에 넣고 에틸아세테이트(2 x 150ml)로 추출하였다. 결합된 유기층을 황산나트륨으로 건조시키고, 용매를 증발시킨 후 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 1.4g (88 %), 1H NMR (600 MHz, CDDl3): δ C11H13N5O의 ESI-MS (m/z): 231.25, Calc .: 231.26 이었다.
4 단계: 5-(4-아지도부톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-3-리움 요오드화물의 합성
5-(4-아지도부톡시)-1H-벤조[d]이미다졸(1.4g, 6.05mmol)과 아세토니트릴(60ml) 중의 탄산세슘(Cs2CO3, 1.97g, 6.05mmol)의 현탁액에 2-요오드프로판(15.1ml, 151mmol)을 첨가하였다. 반응 혼합물을 90℃에서 24 시간 동안 아르곤 존재 하에 교반하였다. 다음으로, 과량의 2-요오드프로판 및 용매를 진공에서 증발시켰다. 조생성물을 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 1.8g (67%), 1H NMR (600 MHz, CDDl3): δ C17H26N5OI의 ESI-MS (m/z): 316.20, Calc.: 316.21 이었다.
5단계: NHC1의 합성
5-(4-아지도부톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-3-리움 요오드화물(80mg, 0.18mmol)을 무수 THF(3.6ml)에 용해시키고 글로브박스에서 교반하여 프리 카벤을 얻었다. 바탕용액으로서 THF 중의 1M KHMDS(0.18ml, 0.18mmol)을 상온에서 혼합물에 적가하고 15분 동안 교반하였다. 백색 침전물(KI)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 생성된 혼합물을 0.2μm PTFE 실린지 필터로 여과하고, 0.05M 농도의 카벤으로 희석시킴으로써 NHC1을 제조하였다.
[제조예 2] 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-2-일리덴(이하, 'NHC2'로 기재한다)의 합성
1 단계: 4-(2-(2-(2-(2-브로모에톡시)에톡시)에톡시)에톡시)-2-니트로아닐린의 합성
4-아미노-3-니트로페놀(2.0g, 13.0mmol) 및 1-브로모-2-(2-(2-(2-브로모에톡시)에톡시)에톡시)에탄(6.24g, 19.5mmol)이 포함된 무수 아세토니트릴(65ml) 용액에 K2CO3(1.8g, 13.0mmol)를 첨가하였다. 반응 혼합물을 80℃에서 12 시간 동안 아르곤 존재하에 교반하였다. 반응 혼합물을 상온까지 냉각한 후 무기 침전물을 여과하고 아세토니트릴(80ml)로 세정하였다. 다음으로, 용매를 증발시키고 조생성물을 n-헥산:에틸아세테이트 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하여 생성물을 수득하였다.
이때, 수율: 3.8g (75%), 1H NMR (600 MHz, CDDl3): δ C14H21BrN2O4의 ESI-MS (m/z): 393.06, Calc.: 393.07 이었다.
2 단계: 5-(2-(2-(2-(2-브로모에톡시)에톡시)에톡시)에톡시)-1H-벤조[d]이미다졸의 합성
4-(2-(2-(2-(2-브로모에톡시)에톡시)에톡시)에톡시-2-니트로아닐린(3.8g, 9.66mmol), 철분말(5.40g, 96.6mmol) 및 염화암모늄(5.16g, 96.6mmol)이 포함된 이소프로필 알코올(70ml)에 포름산(48ml)을 첨가하였다. 반응 혼합물을 90℃에서 20 시간 동안 아르곤 존재하에 교반한 후 이를 상온까지 냉각하고, 소결 유리 여과기로 여과시켰다. 얻어진 고형분을 이소프로필 알코올(3 x 50ml)로 세정하였다. 여과된 액체를 증발 건조시키고 포화 탄산수소나트륨 용액을 첨가하여 pH 7이 될 때까지 중화시켰다. 다음으로, 현탁액(suspension)을 염화메틸렌(3 x 100ml)으로 추출하였다. 유기층을 황산나트륨로 건조시키고, 용매를 증발시킨 후 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.8g (78 %), 1H NMR (600 MHz, CDDl3): δ C15H31BrN2O4의 ESI-MS (m/z): 372.06, Calc.: 372.07 이었다.
3 단계: 5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1H-벤조[d]이미다졸의 합성
5-(2-(2-(2-(2-브로모에톡시)에톡시)에톡시)에톡시-1H-벤조[d]이미다졸 (2.8g, 7.5mmol)을 N,N-디메틸포름아미드(40ml) 중의 아지드화 나트륨(NaN3, 0.536g, 8.25mmol)과 함께 80℃에서 8 시간 동안 아르곤 존재하여 교반하였다. 반응 혼합물을 물(200ml)에 넣고 EtOAc(2 x 150ml)로 추출하였다. 유기층을 황산나트륨으로 건조시키고, 용매를 증발시킨 후 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.0g (80%), 1H NMR (600 MHz, CDDl3): δ C15H21N5O4의 ESI-MS (m/z): 335.15, Calc.: 335.16 이었다.
4 단계: 5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-3-리움 요오드화물의 합성
5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1H-벤조[d]이미다졸(1.9g, 5.66mmol)과 아세토니트릴(60ml) 중의 탄산세슘(1.84g, 5.66mmol)의 현탁액에 2-요오드프로판(14ml, 141mmol)을 첨가하였다. 반응 혼합물을 90℃에서 24 시간 동안 아르곤 존재하에 교반하였다. 다음으로, 과량의 2-요오드프로판 및 용매를 진공에서 증발시켰다. 조생성물을 디클로로메탄:메탄올 구배 혼합물을 사용하는 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.1g (70%), 1H NMR (600 MHz, CDDl3): δ C21H34N5O4의 ESI-MS (m/z): 420.26, Calc.: 420.26 이었다.
5 단계: NHC2의 합성
5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-3-리움 요오드화물(80mg, 0.15mmol)을 무수 THF(3ml)에 용해시키고 글로브박스에서 교반하여 프리 카벤을 얻었다. 바탕용액으로서 THF 중의 1M KHMDS(0.15ml, 0.15mmol)을 상온에서 혼합물에 적가하고 15분 동안 교반하였다. 백색 침전물(KI)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 생성된 혼합물을 0.2μm PTFE 실린지 필터로 여과하고, 0.05M 농도의 카벤으로 희석시킴으로써 NHC2를 제조하였다.
[제조예 3] 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴(이하, 'NHC3'로 기재한다)의 합성
1 단계: 5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸-3-리움 브롬화물의 합성
5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸(1.2g, 3.58mmol)과 아세토니트릴(36ml) 중의 탄산세슘(1.17g, 3.58mmol)의 현탁액에 벤질 브롬화물(11ml, 82mmol)을 첨가하였다. 반응 혼합물을 90℃에서 24 시간 동안 아르곤 존재하에 교반하였다. 다음으로, 과량의 벤질 브롬화물을 진공에서 증발시켰다. 조생성물을 디클로로메탄:메탄올 구배 혼합물을 사용하는 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 1.7g (80 %), 1H NMR (600 MHz, CDDl3): δ C29H34N5O4의 ESI-MS (m/z): 516.26, Calc.: 516.26 이었다.
2 단계: NHC3의 합성
5-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸-3-리움 브롬화물(90mg, 0.15mmol)을 무수 THF(3ml)에 용해시키고 글로브박스에서 교반하여 프리 카벤을 얻었다. 바탕용액으로서 중의 1M KHMDS THF(0.15ml, 0.15mmol)을 상온에서 혼합물에 적가하고 15분 동안 교반하였다. 백색 침전물(KBr)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 생성된 혼합물을 0.2μm PTFE 실린지 필터로 여과하고, 0.05M 농도의 카벤으로 희석시킴으로써 NHC3를 제조하였다.
[제조예 4] 6-(4-(1,3-다이이소인돌린-2-일)부톡시)-1,3-다이이소프로필-1H-벤조[d]이미다졸-2-일리덴(이하, 'NHC4'로 기재한다)의 합성
1 단계: 2-(4-(4-아미노-3-니트로페녹시)부톡시)이소인돌린-1,3-다이온의 합성
4-아미노-3-니트로페놀(2.0g, 13.0mmol)과 N-(4-브로모부틸)프탈리마이드(4.03g, 14.3mmol)이 포함된 무수 아세토니트릴(65ml) 용액에 K2CO3(1.8g, 13.0mmol)를 첨가하였다. 반응 혼합물을 80℃에서 12 시간 동안 아르곤 존재하에 교반하였다. 반응 혼합물을 상온까지 냉각한 후 무기 침전물을 여과하고 아세토니트릴(50ml)로 세정하였다. 다음으로, 용매를 증발시키고 조생성물을 n-헥산:에틸아세테이트 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 3.65g (79%), 1H NMR (600 MHz, CDDl3): δ C18H17N3O5의 ESI-MS (m/z): 355.11, Calc.: 355.12 이었다.
2 단계: 2-(4-((1H-벤조[d]이미다졸-5-일)옥시)부틸)이소인돌린-1,3-다이온의 합성
2-(4-(4-아미노-3-니트로페녹시)부톡시)이소인돌린-1,3-다이온 (3.0g, 8.44mmol), 철분말(4.71g, 84.4mmol) 및 염화암모늄(4.51g, 84.4mmol)이 포함된 이소프로필 알코올(60ml) 에 포름산(45ml)을 첨가하였다. 반응 혼합물을 90℃에서 16 시간 동안 아르곤 존재하에 교반한 후 이를 상온까지 냉각하고, 소결 유리 여과기로 여과시켰다. 얻어진 고형분을 이소프로필 알코올(3 x 60ml)로 세정하였다. 여과된 액체를 증발 건조시키고 포화 탄산수소나트륨 용액을 첨가하여 pH 7이 될 때까지 중화시켰다. 다음으로, 현탁액(suspension)을 염화메틸렌(3 x 100ml)으로 추출하였다. 유기층을 황산나트륨으로 건조시키고, 용매를 증발시키고 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.1g (75%), 1H NMR (600 MHz, CDDl3): δ C11H13BrN2O의 ESI-MS (m/z): 335.13, Calc.: 335.13 이었다.
3 단계: 5-(4-(1,3-다이옥소이소인돌린-2-일)부톡시)-1,3-다이이소프로필-1H-벤조[d]이미다졸-3-리움 요오드화물의 합성
2-(4-((1H-벤조[d]이미다졸-5-일)옥시)부틸)이소인돌린-1,3-다이온 (2.0g, 5.96mmol)과 아세토니트릴(60ml) 중의 탄산세슘(Cs2CO3, 1.94g, 5.96mmol)의 현탁액에 2-요오드프로판 (15ml, 149mmol)을 첨가하였다. 반응 혼합물을 90℃에서 24 시간 동안 아르곤 존재 하에 교반하였다. 다음으로, 과량의 2-요오드프로판 및 용매를 진공에서 증발시켰다. 조생성물을 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.1g (65%), 1H NMR (600 MHz, CDDl3): δ C17H26N5OI의 ESI-MS (m/z): 420.23, Calc.: 420.23 이었다.
4 단계: NHC4의 합성
5-(4-(1,3-다이옥소이소인돌린-2-일)부톡시)-1,3-다이이소프로필-1H-벤조[d]이미다졸-3-리움 요오드화물(99mg, 0.18mmol)을 무수 THF(3.6ml)에 용해시키고 글로브박스에서 교반하여 프리 카벤을 얻었다. 바탕용액으로서 THF 중의 1M KHMDS(0.18ml, 0.18mmol)을 상온에서 혼합물에 적가하고 15분 동안 교반하였다. 백색 침전물(KI)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 생성된 혼합물을 0.2μm PTFE 실린지 필터로 여과하고, 0.05M 농도의 카벤으로 희석시킴으로써 NHC4을 제조하였다.
[제조예 5] 6-(4-아지도부톡시-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴(이하, 'NHC5'로 기재한다)의 합성
1 단계: 4-(4-브로포부톡시)-2-니트로아닐린의 합성
4-아미노-3-니트로페놀(2.0g, 13.0mmol)과 1,4-디브로모부탄(3.64g, 16.9mmol)이 포함된 무수 아세토니트릴(65ml) 용액에 K2CO3(1.8g, 13.0mmol)를 첨가하였다. 반응 혼합물을 80℃에서 12 시간 동안 아르곤 존재하에 교반하였다. 반응 혼합물을 상온까지 냉각한 후 무기 침전물을 여과하고 아세토니트릴(50ml)로 세정하였다. 다음으로, 용매를 증발시키고 조생성물을 n-헥산:에틸아세테이트 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 2.5g (67%), 1H NMR (600 MHz, CDDl3): δ C10H13BrN2O3의 ESI-MS (m/z): 288.01, Calc.: 288.01 이었다.
2 단계: 5-(4-브로모부톡시)-1H-벤조[d]이미다졸의 합성
4-(4-브로모부톡시)-2-니트로아닐린(2.5g, 8.65mmol), 철분말(4.8g, 86.5mmol) 및 염화암모늄(4.6g, 86.5mmol)이 포함된 이소프로필 알코올(60ml)에 포름산(45ml)을 첨가하였다. 반응 혼합물을 90℃에서 16 시간 동안 아르곤 존재하에 교반한 후 이를 상온까지 냉각하고, 소결 유리 여과기로 여과시켰다. 얻어진 고형분을 이소프로필 알코올(3 x 50ml)로 세정하였다. 여과된 액체를 증발 건조시키고 포화 탄산수소나트륨 용액을 첨가하여 pH 7이 될 때까지 중화시켰다. 다음으로, 현탁액(suspension)을 염화메틸렌(3 x 100ml)으로 추출하였다. 유기층을 황산나트륨으로 건조시키고, 용매를 증발시키고 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 1.86g (80%), 1H NMR (600 MHz, CDDl3): δ C11H13BrN2O의 ESI-MS (m/z): 269.14, Calc.: 269.14 이었다.
3 단계: 5-(4-아지도부톡시)-1H-벤조[d]이미다졸의 합성
5-(4-브로모부톡시)-1H-벤조[d]이미다졸(1.86g, 6.91mmol)을 N,N-디메틸포름아미드(35ml) 중의 아지드화 나트륨(NaN3, 0.49g, 7.6mmol)과 함께 80℃에서 8 시간 동안 아르곤 존재하여 교반하였다. 반응 혼합물을 물(200ml)에 넣고 에틸아세테이트(2 x 150ml)로 추출하였다. 결합된 유기층을 황산나트륨으로 건조시키고, 용매를 증발시키고 조생성물과 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
이때, 수율: 1.4g (88%), 1H NMR (600 MHz, CDDl3): δ C11H13N5O의 ESI-MS (m/z): 231.25, Calc .: 231.26 이었다.
4 단계: 5-(4-아지도부톡시)-1,3-디벤질-1H-벤조[d]이미다졸-3-리움 브롬화물의 합성
5-(4-아지도부톡시)-1H-벤조[d]이미다졸(1.4g, 6.05mmol)과 아세토니트릴(60ml) 중의 탄산세슘(Cs2CO3, 1.97g, 6.05mmol)의 현탁액에 벤질브로마이드(20ml, 20mmol)을 첨가하였다. 반응 혼합물을 90℃에서 24 시간 동안 아르곤 존재 하에 교반하였다. 다음으로, 과량의 벤질브로마이드 및 용매를 진공에서 증발시켰다. 조생성물을 염화메틸렌:메탄올 구배 혼합물을 사용하여 실리카 컬럼 크로마토그래피로 정제하였다.
5 단계: NHC5의 합성
5-(4-아지도부톡시)-1,3-디벤질-1H-벤조[d]이미다졸-3-리움 브롬화물(80mg, 0.18mmol)을 무수 THF(3.6ml)에 용해시키고 글로브박스에서 교반하여 프리 카벤을 얻었다. 바탕용액으로서 THF 중의 1M KHMDS(0.18ml, 0.18mmol)을 상온에서 혼합물에 적가하고 15 분 동안 교반하였다. 백색 침전물(KI)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 생성된 혼합물을 0.2㎛ PTFE 실린지 필터로 여과하고, 0.05M 농도의 카벤으로 희석시킴으로써 NHC5를 제조하였다.
상기와 같이 제조된 NHC5의 분자구조식을 핵자기 공명 분광분석법(NMR)을 이용하여 확인한 결과를 도 12에 나타내었다.
[실시예] 그래핀 트랜지스터의 제조
[실시예 1] NHC1이 링커층으로 적용된 그래핀 트랜지스터의 제조
[1-1] 기판 상에 그래핀 채널층의 형성
도 15 내지 도 17에 나타낸 바와 같이, 구리 호일을 챔버 내에 위치시키고, 이를 1,000℃까지 가열하고, 이를 H2 90 mTorr 및 8 sccm으로 30분(20분의 프리 어닐링과 10분의 안정화) 동안 유지한 후, CH4를 20 sccm으로 40분 동안 총 압력이 560 mTorr인 상태로 가한 다음, 이를 35℃/min로 200℃까지 냉각시키고, 로(furnace)를 상온까지 냉각하여 상기 구리 호일 상에 단일의 그래핀층을 형성하였다.
다음으로, 상기 구리 호일 상에 형성된 그래핀층 상에 폴리메틸메타아크릴레이트(PMMA, MicroChem Corp, 950 PMMA A4, 4% in anisole) 용액을 분당 6,000 rpm의 속도로 스핀 코팅하고, 에천트를 이용하여 상기 PMMA가 코팅된 그래핀층을 상기 구리 호일로부터 분리하였고, 상기와 같이 구리 호일로부티 분리된 그래핀층을 10분 동안 탈이온 증류수에 침지하여 상기 그래핀 층에 남아 있는 잔여 에천트 이온들을 제거하였다.
상기와 같이 세척된 그래핀층을 기판인 폴리에틸렌나프탈레이트(PEN) 필름으로 전사한 다음, 상기 그래핀층 상에 PMMA 용액을 투하하여 상기 그래핀층을 코팅하고 있던 PMMA를 제거함으로써, 기판 상에 그래핀 채널층을 형성하였다. 이 때 투명성은 97.8%로 유지되었다.
[1-2] 마이크로 패턴 전극 형성
상기 실시예 [1-1]을 통해 기판 상에 형성된 그래핀 채널층에, 포지티브 포토레지스트(AZ5214, Clariant Corp)를 스핀 코팅한 다음, UV 노광, 베이킹 및 현상 과정을 거쳐 통해 그래핀 채널층을 패턴화하였다.
상기와 같이 패턴화되어 정렬된 그래핀 채널층의 양 말단에 RIE(oxygen plasma treatment) 방법을 통해 패턴 전극(폭/길이=W/L=1, L=100 μm 채널 길이)을 형성한 다음, 이미지 반전, 열 증착 및 리프트-오프(Lift-off)의 공정을 통해 상기 그래핀 채널층 상에 마이크로 패턴 전극(W/L=5, L=100μm 채널 길이)이 형성된 그래핀 트랜지스터를 제조하였다.
[1-3] 담금법(dipping)을 이용한 그래핀 채널층과 NHC1의 결합
벤조[d]이미다졸-3-리움의 요오드화물 또는 브롬화물 0.25mmol이 포함되어 있는 무수 THF(5ml)을 상온에서 아르곤의 존재 하에 저어주면서 바탕 용액으로서 1M HMDS이 포함되어 있는 THF(0.25mmol)를 상기 벤조[d]이미다졸-3-리움 용액에 적가한 후, 15분 동안 교반하여 혼합 용액을 제조하였다. 이때, 고체 침전물(KI 또는 KBr)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 이어서, 상기 혼합 용액을 0.25μm PTFE 실린지 필터로 여과하고, 농도가 0.05mM인 제조예 1의 카벤 화합물로 희석시켜 NHC1이 포함된 카벤 용액을 준비하였다. 여과가 종료된 후, 상기 실시예 [1-2]에서 준비한 그래핀 트랜지스터를 상기 카벤 용액에 상온에서 아르곤 존재 하에 20분 동안 침지한 후 THF, 탈이온수(DI) 및 IPA로 세정하고, 진공 상태에서 건조시킴으로써 그래핀 채널층 상에 NHC1의 카벤 화합물이 부착된 실시예 1의 그래핀 트랜지스터를 제조하였다.
[실시예 2] NHC2가 링커층으로 적용된 그래핀 트랜지스터의 제조
제조예 2의 N-헤테로사이클릭 카벤 화합물(NHC2)을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 그래핀 트랜지스터를 제조하였다.
[실시예 3] NHC3이 링커층으로 적용된 그래핀 트랜지스터의 제조
제조예 3의 N-헤테로사이클릭 카벤 화합물(NHC3)을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 그래핀 트랜지스터를 제조하였다.
[실시예 4] NHC4가 링커층으로 적용된 그래핀 트랜지스터의 제조
제조예 4의 N-헤테로사이클릭 카벤 화합물(NHC4)을 이용하고, 아래의 화학 기상 증착법(Chemical Vapor Deposition)을 이용하여 그래핀 채널층과 NHC4를 결합시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 그래핀 트랜지스터를 제조하였다.
화학 기상 증착법(Chemical Vapor Deposition)을 이용한 그래핀 채널층과 NHC4의 결합을 보다 구체적으로 설명하면, 벤조[d]이미다졸-3-리움 요오드화물 또는 브롬화물 0.15~0.25 mmol이 포함되어 있는 무수 THF(5ml)을 상온에서 아르곤 존재 하에 저어주면서 바탕 용액으로서 1M KHMDS(0.15~0.25 mmol)이 포함되어 있는 THF(0.15~0.25 mmol)를 상기 벤조[d]이미다졸-3-리움 용액에 적가한 후, 15분 동안 교반하여 혼합 용액을 제조하였다. 이때, 고체 침전물(KI 또는 KBr)이 즉각적으로 형성되는 것을 관찰할 수 있었다. 이어서, 상기 혼합 용액을 0.2㎛ PTFE 실린지 필터로 여과하고, 농도가 0.05M인 제조예 4의 카벤 화합물로 희석시켜 NHC4가 포함된 카벤 용액을 준비하였다. 여과가 종료된 후, 혼합 용액 중의 THF 용매를 50~60℃에서 제거하고, 상기 실시예 [1-2]에서 준비한 그래핀 트랜지스터에 대하여 120~150℃에서 500 mTorr의 압력으로 15분~30분 동안 감압함으로써 상기 그래핀 채널층 상에 NHC4의 카벤 화합물을 기상 증착시키고, 이를 THF 및 IPA로 세정한 후 진공 상태에서 건조시켜 그래핀 채널층 상에 NHC4의 카벤 화합물이 부착된 실시예 4의 그래핀 트랜지스터를 제조하였다.
[실시예 5] NHC5가 링커층으로 적용된 그래핀 트랜지스터의 제조
제조예 5의 N-헤테로사이클릭 카벤 화합물(NHC5)을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 그래핀 트랜지스터를 제조하였다.
[비교예 1]
N-헤테로사이클릭 카벤 화합물을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 그래핀 트랜지스터를 제조하였다.
[비교예 2]
상기 실시예 [1-1] 및 [1-2]를 통해 형성된 그래핀 트랜지스터를 1,5-diaminonapthalene(DAN) 0.0015 wt%를 포함한 메탄올 용액 30 mL에 침지하여 반응을 진행시킨 후, 증류수를 이용하여 잔여 반응물들을 제거하고 질소 가스를 이용하여 수분을 제거하여, DAN의 나프탈렌 고리가 그래핀 채널층과 π-π 상호 작용을 형성하고 DAN의 아민기(-NH2)가 외부로 노출되도록 함으로써, 그래핀 채널층의 표면이 DAN의 아민기로 개질된 그래핀 트랜지스터(DAN pi-pi interacted GT)를 제조하였다.
[실험예 1]
N-헤테로사이클릭 카벤 화합물에 따른 그래핀 채널층과의 결합 적합성의 차이, N-헤테로사이클릭 카벤 화합물에 따른 바이오 탐침부(H1N1 HA 항체)의 부착 여부 및 그래핀 채널층에 대한 n-도핑 여부를 확인하기 위하여, 실시예 1(도 19의 d)에서 Alkyl-NHC-covalent GT로 표시됨), 실시예 2, 실시예 3(도 19의 d) 및 e)에서 Benzyl-NHC-covalent GT로 표시됨), 비교예 1(Bare GT) 및 비교예 2(DAN pi-pi interacted GT)의 그래핀 트랜지스터를 준비하고, 5ng/mL 농도의 H1N1 HA 항체 2μL를 상기 그래핀 채널층에 투입한 후, EDC-NHS 반응을 통해 H1N1 HA 항체가 링커층 상에 부착되어 있는 바이오 센서를 제조하였으며, 밀도함수이론(Density Functional Theory, DFT)에 따른 모델링을 실시하고, 전류-전압 특성 및 전이 곡선 특성을 측정하였으며 그 결과를 도 19에 나타내었다.
도 19의 a)~c)에 따르면, NHC1 내지 NHC3의 N-헤테로사이클릭 카벤 화합물과 그래핀 채널층은 각각 0.51eV, 0.443eV 및 0.521eV의 높은 밴드갭 에너지(강한 전자 밀도에 대응된다)를 가지는 것으로 확인되었는바, 본 발명에 따른 카벤 화합물은 그래핀 채널층과 우수한 결합성을 나타낸다는 것을 알 수 있다. 또한, 도 19의 d)에 따르면, 비교예 1(Bare GT)의 전기 저항이 가장 작다는 것을 알 수 있는데, 이로부터 실시예 1, 실시예 3 및 비교예 1의 그래핀 채널층은 카벤 화합물과 결합하고 있다는 것을 알 수 있다. 또한, 비교예 2(pi-pi interacted GT)와 비교하여 실시예 1(Alkyl-NHC-covalent)과 실시예 3(Benzyl-NHC-covalent)의 전기 저항이 증가한 점에서, 실시예 1 및 실시예 3의 그래핀 트랜지스터에는 H1N1 HA 항체가 성공적으로 부착하였다는 것을 알 수 있다.
한편, 도 19의 e)에 따르면, H1N1 HA 항원을 투입한 경우, 전이 곡선이 좌측으로 약 0.1V 이동한 점으로부터, 그래핀 채널층에 대하여 N-헤테로사이클릭 카벤 화합물(NHC3)에 의한 n-도핑이 이루어졌다는 것을 알 수 있다.
[실험예 2]
N-헤테로사이클릭 카벤 화합물 및 이에 의한 n-도핑에 따른 그래핀 채널층의 변화를 관찰하기 위해 실시예 1(Alkyl-NHC-covalent GT), 실시예 3(Benzyl-NHC-covalent GT), 비교예 1(Bare GT) 및 비교예 2(pi-pi interacted GT)의 그래핀 트랜지스터를 제조하고, 이에 대하여 라만 분광법를 실시하고, 전류-전압 특성을 측정하였으며 그 결과를 도 20에 나타내었다. 이때, Pristine graphene은 그래핀 채널층이 N-헤테로사이클릭 카벤 화합물로 기능화되지 않은 그래핀을 의미한다.
도 20의 a)에 따르면, 아자이드기(NHC_N3_graphene, 실시예 1) 또는 프탈리마이드기(NHC_Nph_graphene, 실시예 3)로 기능화된 그래핀 트랜지스터는 1,600(cm-1) 부근에서 크기가 크고 뾰족한(예리한) 모양의 피크를 나타낸 점에서, 그래핀 채널층이 단일층으로 이루어져 있다는 것을 알 수 있다.
반면에, N-헤테로사이클릭 카벤 화합물로 기능화되지 않은 그래핀을 사용한 비교예 1의 경우 2,600(cm-1) 부근에서 가장 큰 피크를 나타낸 점에서, 그래핀 채널층이 다층으로 형성되어 있다는 것을 알 수 있다.
도 20의 b)에 따르면, 비교예 1, 비교예 2, 실시예 1 및 실시예 3으로 갈수록 n-도핑이 증가하였는데, 이에 따라 일정 Vg 에서 Ids 값이 음으로 증가한 점에서, N-헤테로사이클릭 카벤 화합물의 부착량도 증가하였다는 것을 알 수 있다.
[실험예 3]
바이오 센서의 감도를 확인하기 위하여, 실시예 3(benzyl-NHC-covalent GT)의 카벤 화합물이 형성되어 있는 그래핀 트랜지스터를 준비하고, 5ng/mL 농도의 H1N1 HA 항체 2μL 및 도파민 항체 2μL를 각각의 그래핀 채널층에 투입한 후, EDC-NHS 반응을 통해 H1N1 HA 항체 및 도파민 항체가 부착되어 있는 바이오 센서를 제조하였으며, PBS 용액을 사용하여 각 항원에 대하여 0.1nM~100nM 농도의 H1N1 HA 항원 또는 100nM의 도파민을 처리하여 검출 실험을 실시하고, 그 결과를 도 13 및 도 14에 나타내었다.
도 13 및 도 14에 도시된 바와 같이, 본 발명에 따른 바이오 센서를 통해 1nM 농도의 H1N1 HA 항원, 그리고 100nM 농도의 도파민까지도 검출해 낼 수 있음을 확인하였다.
또한, 실시예 4의 카벤 화합물이 형성되어 있는 그래핀 트랜지스터를 준비하고, 지오스민(geosmin)에 특이적인 압타머(5'-CTCTCGGGACGACCCGTTTGTTCCTCGGCTTTTTAAGAGGTCTGGTTGATGTCGTCCC-3', 바이오니아 社) 2μL를 그래핀 채널층에 투입한 후, EDC-NHS 반응을 통해 지오스민에 특이적인 압타머가 부착되어 있는 바이오 센서를 제조하였으며, PBS 용액을 사용하여 1~100 fg/mL의 지오스민을 처리하여 검출 실험을 실시한 결과, 도 21에 도시된 바와 같이 본 발명에 따른 바이오 센서를 통해 1 fg/mL의 지오스민까지도 검출할 수 있음을 확인하였다.
또한, 실시예 5의 카벤 화합물이 형성되어 있는 그래핀 트랜지스터를 준비하고, 5ng/mL 농도의 AMP(Magainin 1, Lugen sci 社) 2μL를 그래핀 채널층에 투입한 후, EDC-NHS 반응을 통해 AMP가 부착되어 있는 바이오 센서를 제조하였으며, PBS 용액을 사용하여 10~100 CFU/mL의 E. coli를 처리하여 검출 실험을 실시한 결과, 도 22에 도시된 바와 같이 본 발명에 따른 바이오 센서를 통해 10 CFU/mL의 E. coli까지도 검출할 수 있음을 확인하였다.

Claims (13)

  1. 기판;
    상기 기판에 배치되는 그래핀 채널층;
    상기 그래핀 채널층의 양단에 이격되어 배치되는 한 쌍의 금속; 및
    상기 그래핀 채널층 상에 배치되고 N-헤테로사이클릭 카벤 화합물로 이루어진 링커층;
    을 포함하는 그래핀 트랜지스터.
  2. 청구항 1에 있어서,
    상기 링커층은 상기 N-헤테로사이클릭 카벤 화합물의 카벤기와 그래핀 채널층의 공유 결합에 의해 형성되고, 상기 N-헤테로사이클릭 카벤 화합물은 말단 부위가 아자이드기 또는 프탈리마이드기로 기능화되어 노출되는 그래핀 트랜지스터.
  3. 청구항 1에 있어서,
    상기 N-헤테로사이클릭 카벤 화합물은 하기 화하식(1)의 화학 구조를 갖는 그래핀 트랜지스터:
    [화학식(1)]
    Figure PCTKR2018012924-appb-I000002
    상기 화학식(1)에서, A는 아자이드기 또는 프탈리마이드기이고, R1은 반복 단위가 1 내지 5인 탄소 수 1 내지 10의 알킬렌기 또는 알콕시알킬렌기이며, R2 및 R3는 서로 독립적으로 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 및 아릴알킬기로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
  4. 청구항 3에 있어서,
    상기 N-헤테로사이클릭 카벤 화합물은 6-4(-아지도부톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-2-일리덴, 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디이소프로필-1H-벤조[d]이미다졸-2-일리덴, 6-(2-(2-(2-(2-아지도에톡시)에톡시)에톡시)에톡시)-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴, 6-(4-(1,3-다이이소인돌린-2-일)부톡시)-1,3-다이이소프로필-1H-벤조[d]이미다졸-2-일리덴 및 6-(4-아지도부톡시-1,3-디벤질-1H-벤조[d]이미다졸-2-일리덴으로 이루어진 군으로부터 선택되는 적어도 어느 하나인 그래핀 트랜지스터.
  5. 청구항 1에 있어서,
    상기 N-헤테로사이클릭 카벤 화합물은 한 쌍의 금속 사이에 노출되어 있는 그래핀 채널층 상에 형성되는 그래핀 트랜지스터.
  6. 청구항 1에 있어서,
    상기 N-헤테로사이클릭 카벤 화합물은 자가결합 단일층을 형성하는 그래핀 트랜지스터.
  7. 청구항 1에 있어서,
    상기 링커층의 두께는 0.1 nm ~ 1 nm인 그래핀 트랜지스터.
  8. 청구항 1에 있어서,
    상기 그래핀 채널층은 단층 또는 이층(bi-layer)의 그래핀으로 이루어진 그래핀 트랜지스터.
  9. 기판 상에 탄화수소 가스를 탄소 공급원으로 하여 화학 기상 증착법으로 그래핀을 성장시켜 그래핀 채널층을 형성하는 단계;
    상기 그래핀 채널층에 열증착 공정으로 한 쌍의 금속을 형성하는 단계; 및
    상기 그래핀 채널층의 외부로 노출되는 표면 상에 N-헤테로사이클릭 카벤 화합물을 포함하는 표면처리제를 이용하여 링커층을 형성하는 단계;
    를 포함하는 그래핀 트랜지스터의 제조방법.
  10. 청구항 9에서,
    상기 N-헤테로사이클릭 카벤 화합물은 이미다졸륨염을 소스로 이용하여 합성되는 그래핀 트랜지스터의 제조방법.
  11. 청구항 1 내지 청구항 8 중 어느 한 항에 따른 그래핀 트랜지스터를 포함하는 바이오 센서.
  12. 청구항 11에 있어서,
    상기 바이오 센서는, 그래핀 트랜지스터의 링커층 상에 노출되어 있는 아자이드기 또는 프탈리마이드기에 결합되는 바이오 탐침부를 포함하고,
    상기 바이오 탐침부는 DNA, RNA, 항원, 항체, 펩티드로 이루어진 군으로부터 선택되는 적어도 하나로 이루어진 프로브 물질을 포함하는 바이오 센서.
  13. 청구항 12에 있어서,
    상기 항원, 항체는 H1N1 HA인 바이오 센서.
PCT/KR2018/012924 2017-10-27 2018-10-29 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서 WO2019083342A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18871738.3A EP3703134B1 (en) 2017-10-27 2018-10-29 Biosensor comprising graphene transistor functionalized with n-heterocyclic carbene compound and fabrication method therefor
CN201880069999.1A CN111837239A (zh) 2017-10-27 2018-10-29 包含功能性n-杂环卡宾化合物的石墨烯晶体管,其制备方法和包含其的生物传感器
US16/759,432 US20210181147A1 (en) 2017-10-27 2018-10-29 Graphene transistor comprising functionalized n-heterocyclic carbene compound, fabrication method therefor, and biosensor comprising same
JP2020523709A JP6926334B2 (ja) 2017-10-27 2018-10-29 機能化されたn−ヘテロサイクリックカルベン化合物を含むグラフェントランジスタ及びその製造方法、これを含むバイオセンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170141049 2017-10-27
KR10-2017-0141049 2017-10-27
KR10-2018-0027512 2018-03-08
KR1020180027512A KR101979225B1 (ko) 2017-10-27 2018-03-08 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서

Publications (1)

Publication Number Publication Date
WO2019083342A1 true WO2019083342A1 (ko) 2019-05-02

Family

ID=66247966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012924 WO2019083342A1 (ko) 2017-10-27 2018-10-29 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서

Country Status (1)

Country Link
WO (1) WO2019083342A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582540A (zh) * 2020-12-06 2021-03-30 南开大学 具有量子干涉效应的化合物及包含其的垂直单分子场效应晶体管集成器件的制备方法
JP2022502470A (ja) * 2018-10-10 2022-01-11 コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジーKorea Research Institute Of Bioscience And Biotechnology カルベン化合物、カルベン‐金属ナノ粒子複合体およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130006869A (ko) * 2011-06-24 2013-01-18 삼성전자주식회사 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터
KR20130027199A (ko) 2011-09-07 2013-03-15 성균관대학교산학협력단 N―도핑된 그래핀을 이용한 전계효과 트랜지스터 및 그의 제조 방법
KR101407175B1 (ko) * 2012-12-26 2014-06-13 포항공과대학교 산학협력단 탄소 박막을 포함한 전자 소자 및 탄소 박막을 포함한 전기화학 소자
KR101547410B1 (ko) * 2010-12-20 2015-08-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 조성물
KR20150120003A (ko) 2014-04-16 2015-10-27 서울대학교산학협력단 수은에 선택적인 감응성을 보이는 압타머가 도입된 그래핀을 채널로 사용하는 고감응성 전계 효과 트랜지스터 수은 센서의 제조방법
KR101585767B1 (ko) * 2014-05-08 2016-01-15 주식회사 포스코 그래핀 박막의 제조방법 및 이를 이용하여 제조된 그래핀 박막
KR20170019626A (ko) * 2015-08-12 2017-02-22 성균관대학교산학협력단 그래핀-유기 반도체 수직형 트랜지스터 및 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547410B1 (ko) * 2010-12-20 2015-08-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 조성물
KR20130006869A (ko) * 2011-06-24 2013-01-18 삼성전자주식회사 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터
KR20130027199A (ko) 2011-09-07 2013-03-15 성균관대학교산학협력단 N―도핑된 그래핀을 이용한 전계효과 트랜지스터 및 그의 제조 방법
KR101407175B1 (ko) * 2012-12-26 2014-06-13 포항공과대학교 산학협력단 탄소 박막을 포함한 전자 소자 및 탄소 박막을 포함한 전기화학 소자
KR20150120003A (ko) 2014-04-16 2015-10-27 서울대학교산학협력단 수은에 선택적인 감응성을 보이는 압타머가 도입된 그래핀을 채널로 사용하는 고감응성 전계 효과 트랜지스터 수은 센서의 제조방법
KR101585767B1 (ko) * 2014-05-08 2016-01-15 주식회사 포스코 그래핀 박막의 제조방법 및 이를 이용하여 제조된 그래핀 박막
KR20170019626A (ko) * 2015-08-12 2017-02-22 성균관대학교산학협력단 그래핀-유기 반도체 수직형 트랜지스터 및 이의 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022502470A (ja) * 2018-10-10 2022-01-11 コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジーKorea Research Institute Of Bioscience And Biotechnology カルベン化合物、カルベン‐金属ナノ粒子複合体およびその製造方法
JP7212409B2 (ja) 2018-10-10 2023-01-25 コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジー カルベン化合物、カルベン‐金属ナノ粒子複合体およびその製造方法
CN112582540A (zh) * 2020-12-06 2021-03-30 南开大学 具有量子干涉效应的化合物及包含其的垂直单分子场效应晶体管集成器件的制备方法
CN112582540B (zh) * 2020-12-06 2022-09-30 南开大学 具有量子干涉效应的化合物及包含其的垂直单分子场效应晶体管集成器件的制备方法

Similar Documents

Publication Publication Date Title
US7385221B1 (en) Silylethynylated heteroacenes and electronic devices made therewith
TW574387B (en) Method of manufacturing high-mobility organic thin films using organic vapor phase deposition
KR20190047575A (ko) 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서
KR101096981B1 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
KR102084088B1 (ko) 지카 바이러스 검출용 센서 및 이의 제조방법
US20060141664A1 (en) Semiconductor devices having regions of induced high and low conductivity, and methods of making the same
WO2019083342A1 (ko) 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서
WO2007064104A1 (en) Quinacridine derivatives and organic electronic devices using the same
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
US7791069B2 (en) Field effect transistor and method of producing same
JP2010053094A (ja) ビスナフトチオフェン誘導体、及び電界効果トランジスタ
KR100868863B1 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2023191535A1 (ko) 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법
WO2014137180A1 (ko) 그래핀 산화물의 부분환원을 이용한 탄소기반 전자소자 및 이의 제조방법
WO2023177186A1 (ko) 클릭반응을 이용한 cnt 필름, 이를 이용한 cnt 기반 바이오 센서 및 이의 제조방법
JP2011086836A (ja) 大気安定性に優れた有機トランジスタ
CN114292201B (zh) 一种具有量子干涉效应的化合物及包含其的单分子场效应晶体管
WO2011105152A1 (ja) ペリレンテトラカルボン酸ジイミド化合物を含有してなる有機半導体材料、及び有機半導体素子
WO2020138979A1 (ko) 화합물, 그래핀 채널 부재 및 이를 포함하는 센서
WO2020138982A1 (ko) 카다베린 후각 수용체를 포함하는 그래핀 채널 부재 및 이를 포함하는 센서
WO2019054655A2 (ko) 유기트랜지스터
WO2018174455A1 (ko) 가스 센서 및 그 제조 방법
WO2017171214A1 (ko) 열전 박막을 이용한 열화학 가스 센서 및 그 제조방법
WO2019209039A1 (ko) 다환 방향족 탄화수소 기반의 분자 전자 소자용 화합물 및 이를 포함하는 분자 전자 소자
KR102564557B1 (ko) 축합 헤테로방향족 화합물의 합성 방법, 축합 헤테로방향족 화합물 및 그 중간체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018871738

Country of ref document: EP

Effective date: 20200527