WO2019083203A1 - 연속식 반응기를 이용한 변성 중합 개시제의 제조방법 - Google Patents

연속식 반응기를 이용한 변성 중합 개시제의 제조방법

Info

Publication number
WO2019083203A1
WO2019083203A1 PCT/KR2018/012006 KR2018012006W WO2019083203A1 WO 2019083203 A1 WO2019083203 A1 WO 2019083203A1 KR 2018012006 W KR2018012006 W KR 2018012006W WO 2019083203 A1 WO2019083203 A1 WO 2019083203A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
formula
compound represented
polymerization initiator
Prior art date
Application number
PCT/KR2018/012006
Other languages
English (en)
French (fr)
Inventor
이정용
최동철
이원재
최재훈
김현희
최종영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180118053A external-priority patent/KR102080257B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18871351.5A priority Critical patent/EP3543245B1/en
Priority to US16/467,215 priority patent/US11472818B2/en
Priority to CN201880004905.2A priority patent/CN110072868B/zh
Priority to JP2019552893A priority patent/JP6865298B2/ja
Publication of WO2019083203A1 publication Critical patent/WO2019083203A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Definitions

  • the present invention relates to a process for producing a modified polymerization initiator capable of producing a modified polymerization initiator with a high conversion ratio by minimizing side reactions.
  • Natural rubbers, polyisoprene rubbers, polybutadiene rubbers, and the like are known as rubber materials having a small hysteresis loss, but these have a problem of low wet skid resistance.
  • a conjugated diene (co) polymer such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) is prepared by emulsion polymerization or solution polymerization and is used as a rubber for a tire .
  • the greatest advantage of solution polymerization over emulsion polymerization is that vinyl structure content and styrene content, which define rubber properties, can be arbitrarily controlled and molecular weight and physical properties, etc., can be controlled by coupling, It can be adjusted. Therefore, it is possible to easily change the structure of the finally prepared SBR or BR rubber, to reduce the movement of chain ends due to bonding or modification of the chain ends, and to increase the bonding force with the filler such as silica or carbon black, Is widely used as a rubber material for a tire.
  • the glass transition temperature of the rubber may be increased by increasing the vinyl content in the SBR, thereby controlling tire properties such as running resistance and braking force
  • the glass transition temperature fuel consumption can be reduced.
  • the SSBR is prepared by using an anionic polymerization initiator, and chain ends of the formed polymer are bonded or modified by using various modifiers.
  • development of a technique of modifying a polymerization initiator, a modified monomer, and the like in a polymerization step during polymerization has been developed.
  • a hexamethylene lithium initiator which is produced by the reaction of hexamethyleneimine (HMI) with n-butyllithium (BuLi) is widely known as a modified polymerization initiator used in the production of SSBR .
  • the solubility of the hexamethylene lithium initiator is low, so that it precipitates over time and can be used as a polymerization initiator but has a poor reactivity to n-butyl lithium.
  • a conjugated diene compound such as isoprene or 1,3-butadiene is further reacted with hexamethylene lithium synthesized in Reaction Scheme 1 as shown in the following Reaction Scheme 2 to prepare a modified polymerization initiator Method has been proposed.
  • anionic polymerization initiators such as the above-mentioned modified polymerization initiators are generally produced through a batch process or simultaneously produce an anionic polymerization initiator and an SSBR in one batch reactor.
  • the prepared anion polymerization initiator necessarily requires a storage step before being used in the production of SSBR, and there is a problem that the activity is lost by reacting with various scavengers such as moisture and air during the storage time As a result, it may adversely affect the post-process and may deteriorate the physical properties of the SSBR finally produced.
  • the anion polymerization initiator preparation reaction and the SSBR polymerization reaction are carried out in the same batch reactor, but the storage problems can be solved.
  • Korean Patent Laid-Open Publication No. 10-2016-0092227 discloses a method for producing an anionic polymerization initiator using a continuous reactor including a static mixer.
  • the concentration distribution and the temperature distribution of the raw material can be made uniform, and the lithiation reaction is continuously performed, thereby reducing the problem of storage and yield reduction.
  • the static mixer since the static mixer is used, There is a disadvantage that a manufacturing cost is high because a special cooling device is required.
  • the present invention has been conceived to solve the problems of the prior art described above, and it is an object of the present invention to provide a modified polymerization initiator which can be used in a polymerization reaction to easily initiate polymerization and can provide a filler- It is an object of the present invention to provide a process for producing a modified polymerization initiator which can be produced at a high conversion ratio.
  • the present invention provides a process for preparing a compound of formula (I), which comprises reacting a compound represented by the following formula (1) with a compound represented by the following formula Wherein the compound represented by the general formula (1) is introduced into the continuous reactor through the first continuous channel, and the compound represented by the general formula (2) is introduced into the continuous continuous reactor through the second continuous channel, Wherein the catalyst is introduced into the reactor.
  • X is -NR a R b , -OR c , or -SR d ,
  • R a to R d each independently represent an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, A heteroalkenyl group having 2 to 30 carbon atoms, a heterocycloalkyl group having 2 to 30 carbon atoms, or a heteroaryl group having 3 to 30 carbon atoms, wherein R a to R d is substituted or unsubstituted with a substituent comprising at least one heteroatom selected from N, O, S, Si and F atoms, R a and R b are connected to each other and substituted with an alkyl group having 1 to 30 carbon atoms, An aromatic hydrocarbon ring group having 5 to 20 carbon atoms, an aliphatic hydrocarbon ring group having 5 to 20 carbon atoms, an aromatic hydrocarbon ring
  • M is an alkali metal
  • R 1 is hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • the method for producing a modified polymerization initiator according to the present invention can easily produce a modified polymerization initiator which can be used in a polymerization reaction to easily initiate polymerization while providing a filler-affinity functional group to the polymer.
  • the method for producing the modified polymerization initiator according to the present invention can reduce the occurrence of unreacted materials during the lithiation reaction by performing the continuous polymerization using a continuous reactor, and can solve the problem caused by the exothermic reaction of lithiation reaction
  • the production of by-products can be reduced, and as a result, the conversion rate can be improved, so that a high-purity modified polymerization initiator can be produced with a high yield.
  • substituted used in the present invention may mean that a hydrogen atom of a functional group, an atomic group, or a compound is substituted with a specific substituent, and when a hydrogen atom of a functional group, an atomic group, or a compound is substituted with a specific substituent, Or a plurality of one or more substituents may be present depending on the number of hydrogen atoms present in the compound, and when a plurality of substituents are present, the respective substituents may be the same or different.
  • alkyl group used in the present invention means a monovalent aliphatic saturated hydrocarbon and includes linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, , Tert-butyl, and neo-pentyl.
  • alkyl &quot alkyl "
  • alkylene group used in the present invention may mean a bivalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene, and butylene.
  • alkenyl group &quot used in the present invention may mean an alkyl group containing one or more double bonds.
  • alkynyl group &quot may mean an alkyl group containing one or two or more triple bonds.
  • " cycloalkyl group " used in the present invention may mean a cyclic saturated hydrocarbon group.
  • " aryl group " used in the present invention means a cyclic aromatic hydrocarbon, and a monocyclic aromatic hydrocarbon having one ring formed therein or a polycyclic aromatic hydrocarbon having two or more rings bonded thereto polycyclic aromatic hydrocarbons.
  • " heteroalkyl group " used in the present invention may mean an alkyl group in which a carbon atom (except the terminal carbon atom) in the alkyl group is substituted with at least one heteroatom.
  • heteroalkenyl group &quot used in the present invention may mean an alkenyl group in which a carbon atom (except for the terminal carbon atom) in the alkenyl group is substituted with at least one heteroatom.
  • " heteroalkynyl group " used in the present invention may mean an alkynyl group in which a carbon atom (except for the terminal carbon atom) in the alkynyl group is substituted with at least one heteroatom.
  • " heterocycloalkyl group " used in the present invention may mean a cycloalkyl group in which a carbon atom in the cycloalkyl group is substituted with at least one heteroatom.
  • " heteroaryl group " used in the present invention may mean a cycloalkyl group in which the carbon atom in the aryl group is substituted with at least one heteroatom.
  • derived unit and "derived functional group” used in the present invention may be an element, a structure, or a substance itself derived from a substance.
  • the present invention provides a process for producing a modified polymerization initiator which can easily produce a modified polymerization initiator capable of providing a functional group such as a filler-affinitive group to the polymer while acting as a polymerization initiator in polymerizing a conjugated diene polymer do.
  • the method for producing the modified polymerization initiator comprises reacting a compound represented by the following formula (1) and a compound represented by the following formula (2) (step A) Channel and a second continuous channel, and before the reaction, the compound represented by the general formula (1) is introduced into the continuous-type reactor through the first continuous channel, and the compound represented by the general formula (2) And is introduced into the continuous reactor through the second continuous channel.
  • X is -NR a R b , -OR c , or -SR d ,
  • R a to R d each independently represent an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, A heteroalkenyl group having 2 to 30 carbon atoms, a heterocycloalkyl group having 2 to 30 carbon atoms, or a heteroaryl group having 3 to 30 carbon atoms, wherein R a to R d is substituted or unsubstituted with a substituent comprising at least one heteroatom selected from N, O, S, Si and F atoms, R a and R b are connected to each other and substituted with an alkyl group having 1 to 30 carbon atoms, An aromatic hydrocarbon ring group having 5 to 20 carbon atoms, an aliphatic hydrocarbon ring group having 5 to 20 carbon atoms, an aromatic hydrocarbon ring
  • M is an alkali metal
  • R 1 is hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • X is -NR a R b , -OR c, or -SR d , wherein R a to R d independently represent an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms An alkenyl group, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroalkyl group having 1 to 20 carbon atoms, a heteroalkenyl group having 2 to 20 carbon atoms, An alkynyl group, a heterocycloalkyl group having 2 to 20 carbon atoms or a heteroaryl group having 3 to 20 carbon atoms, wherein R a to R d each contain at least one hetero atom selected from N, O, S, Si and F atoms would substituted with a substituent or unsubstituted, R a and R b is an alkyl group having
  • X in the general formula (1) may be selected from substituents represented by the following general formulas (1a) to (1c).
  • R 2 , R 3 , R 6 , R 8 and R 9 independently represent an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, An aryl group having 6 to 10 carbon atoms, a heteroalkyl group having 1 to 10 carbon atoms, a heteroalkenyl group having 2 to 10 carbon atoms, a heteroalkynyl group having 2 to 10 carbon atoms, a heterocycloalkyl group having 3 to 10 carbon atoms or a heteroaryl group having 3 to 10 carbon atoms
  • R 2 and R 3 and R 8 and R 9 may combine with each other to form an aliphatic hydrocarbon ring group having 5 to 20 carbon atoms or an aromatic hydrocarbon ring group having 6 to 20 carbon atoms and R 2 and R 3 , R 6 , R 8, and R 9 are each independently selected
  • the compound represented by Formula 1 may be a compound represented by Formula 1-1 to Formula 1-11.
  • M is an alkali metal
  • R 1 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, Or an aryl group having 6 to 10 carbon atoms.
  • the compound represented by Formula 1 may be prepared by reacting a functional group compound with myrcene.
  • the compound represented by Formula 1 may be prepared by reacting myrcene with a reactive compound To form a reactive site on the myrcene molecular structure and then reacting the functional site compound with a functional group compound to prepare a compound represented by the formula (1) wherein a functional group derived from a functional group compound is introduced into the reactive site.
  • D may be Cl, Br, I, or -OH, and X is as defined in Formula 1 above.
  • the reaction in step A may be performed in a continuous reactor.
  • the continuous reactor may be a reactor for continuously feeding a raw material used for the reaction and proceeding the reaction.
  • the reaction in step A may be carried out in a continuous reactor including a first continuous channel and a second continuous channel, wherein the compound represented by the formula (1) And the compound represented by Formula 2 may be introduced into the continuous reactor through the second continuous channel.
  • the first continuous channel and the second continuous channel may each refer to a charging unit (or an injection unit) for controlling the amount of each compound introduced into the continuous-type reactor.
  • the amount of the compound to be displayed can be controlled independently of the amount of the compound represented by the formula (2), and the amount of each compound can be adjusted according to the reaction environment, thereby minimizing the side reaction.
  • the feeding rate of the first continuous channel may be 0.1 g / min to 1,000 g / min, 0.1 g / min to 700 g / min, or 0.1 g / min to 400 g / min,
  • the introduction rate of the channel may be from 0.1 g / min to 1,000 g / min, from 0.1 g / min to 700 g / min or from 0.1 g / min to 400 g / min, and within this range, 2 can be appropriately controlled without a drastic change in the amount of the compound represented by the general formula (1), thereby minimizing the side reaction.
  • the molar ratio of the compound represented by Formula 1 to the compound represented by Formula 2 may be 1: 0.01 to 5, 1: 0.1 to 5, 1: 0.5 to 3, or 1: 0.5 To 1.5, and the side reaction can be minimized within this range.
  • the modified polymerization initiator prepared according to the molar ratio of the compound represented by the formula (1) and the compound represented by the formula (2) may have a dimer, trimer or oligomer form.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) may be dissolved in a reaction solvent and used in a solution state, respectively. If the compound represented by the general formula (1) and the compound represented by the general formula When the compound is used in a solution state, the concentration of the solution is not particularly limited, and the compound represented by the formula (1) and the compound represented by the formula (2) may be adjusted so as to have the above-mentioned molar ratio.
  • the reaction solvent may be a hydrocarbon solvent which is not reacted with an anion and may be a linear hydrocarbon compound such as pentane, hexane and octane; Derivatives thereof having double bonds; Cyclic hydrocarbon compounds such as cyclohexane and cycloheptane; Aromatic hydrocarbon compounds such as benzene, toluene and xylene; And linear and cyclic ethers such as dimethyl ether, diethyl ether, anisole and tetrahydrofuran; Or the like.
  • the reaction solvent may be cyclohexane, hexane, tetrahydrofuran or diethyl ether.
  • the reaction in the step A, is carried out at a temperature ranging from -20 DEG C to 100 DEG C, from 0 DEG C to 90 DEG C, or from 15 DEG C to 80 DEG C and from 1 bar to 10 bar, 7 bar, or 1 bar to 5 bar. Within this range, the reaction rate is excellent and the side reaction is minimized.
  • the method for producing the modified polymerization initiator according to the present invention can be carried out by using a continuous reactor to increase the mixing ratio of the reaction raw materials (for example, the compound represented by the formula (1) and the compound represented by the formula (2)) during the lithiation reaction, And the generation of by-products can be reduced by reducing the problems caused by the exothermic reaction of the lithiation reaction by rapid heat removal. As a result, it is possible to stably produce a high-purity modified polymerization initiator at a high yield by improving the conversion ratio.
  • the reaction raw materials for example, the compound represented by the formula (1) and the compound represented by the formula (2)
  • the reaction of Step A may be carried out using a polar additive as necessary.
  • the polar additive is selected from the group consisting of tetrahydrofuran, ditetrahydrofuryl propane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene dimethyl ether, ethylene diethyl ether, diethyl glycol, dimethyl ether, tertiary butoxyethoxyethane, And at least one selected from the group consisting of bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine, Can be triethylamine or tetramethylethylenediamine.
  • the polar additive preferably has a content of 0.1 to 10 mol, 0.5 to 5 mol, or 0.5 to 1.5 mol based on 1 mol of the compound represented by the formula (1) As shown in FIG.
  • the present invention provides a modified polymerization initiator prepared from the above-mentioned method for producing a modified polymerization initiator.
  • the modified polymerization initiator according to an embodiment of the present invention is characterized by comprising a unit derived from the compound represented by the formula (1) and a unit derived from the compound represented by the formula (2).
  • the modified polymerization initiator may be a single substance or may be in the form of a mixture in which various substances are mixed.
  • the modified polymerization initiator may include, for example, at least one compound selected from a compound represented by the following formula (3) and an isomer thereof.
  • the modified polymerization initiator may be selected from the group consisting of a dimer, trimer or oligomer of a compound represented by the following formula (3) and an oligomer, trimer and oligomer of an isomer of a compound represented by the following formula Or more species.
  • a compound represented by the following general formula (3) ???????? Isomers thereof; At least one selected from dimers, trimesters and oligomers thereof; And at least one selected from the group consisting of dimers, trimers and oligomers of the above isomers; , And the like.
  • X is as defined in Formula 1
  • M is Na, K or Li
  • R 1 is hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • M may be bonded to neighboring carbon atoms through an ionic bond.
  • the isomer of the compound represented by the formula 3 may include all the structural isomers and stereoisomers of the compound represented by the formula 3, and examples thereof include compounds represented by the following formulas 3-1 to 3-3.
  • X is as defined in Formula 1, M is Na, K or Li, and R 1 is hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • M may be bonded to neighboring carbons through an ionic bond.
  • X may be selected from the substituents represented by the above formulas (1a) to (1c), wherein R 2 , R 3 , R 6 and R 8 And R 9 may be, independently of each other, at least one heteroatom selected from N, O and S atoms, or an alkyl group having 1 to 10 carbon atoms which is unsubstituted or substituted with a substituent containing the hetero atom, and R 4 , R 5 , R 7 is independently an alkyl group having 1 to 6 carbon atoms or a hetero atom selected from N and O atoms or an alkylene group having 1 to 6 carbon atoms which is substituted or unsubstituted with a substituent containing the hetero atom and Z is O have.
  • the compound represented by the formula (3) includes the unit derived from the compound represented by the formula (1) and the unit derived from the compound represented by the formula (2), wherein the dimer has two units derived from the compound represented by the formula (1) And the trimer may be one in which three units derived from the compound represented by the formula (1) and one derived from the unit represented by the formula (2) are bonded to each other.
  • the oligomer may be a combination of a plurality of units derived from the compound represented by the formula (1) and one derived unit represented by the formula (2).
  • the dimer of the compound represented by Formula 3 may be a compound represented by Formula 3-4.
  • the present invention provides a modified conjugated diene-based polymer containing the modified functional group-derived functional group.
  • the modified conjugated diene polymer according to an embodiment of the present invention includes the repeating unit derived from the conjugated diene monomer and includes the above-mentioned functional groups derived from the modified polymerization initiator including at least one end derived from the compound .
  • the conjugated diene monomer-derived repeating unit may mean a repeating unit formed by polymerization of a conjugated diene monomer, and examples of the conjugated diene monomer include 1,3-butadiene, 2,3-dimethyl-1,3-butadiene 1,3-butadiene, and 2-halo-1,3-butadiene (wherein halo means a halogen atom) Lt; / RTI >
  • the modified conjugated diene-based copolymer may be, for example, a copolymer further comprising a repeating unit derived from an aromatic vinyl monomer together with a repeating unit derived from the conjugated diene-based monomer.
  • the repeating unit derived from an aromatic vinyl monomer may mean a repeating unit formed by polymerization of an aromatic vinyl monomer, and examples of the aromatic vinyl monomer include styrene,? -Methylstyrene, 3-methylstyrene, 4-methylstyrene, 4- Styrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene and 1-vinyl-5-hexylnaphthalene.
  • the copolymer may be a random copolymer, and in this case, there is an effect of excellent balance among physical properties.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene polymer is a conjugated diene polymer in the presence of the modified polymerization initiator including the unit derived from the compound represented by the formula (1) and the unit derived from the compound represented by the formula And then polymerizing the diene-based monomer or the conjugated diene-based monomer and the aromatic vinyl-based monomer to prepare an active polymer having an alkali metal bonded thereto.
  • the hydrocarbon solvent is not particularly limited, but may be one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the conjugated diene-based monomer and the aromatic vinyl-based monomer are as defined above.
  • the polymerization may be carried out in the presence of a polar additive.
  • the polar additive may be added in an amount of 0.001 g to 50 g, 0.001 g to 10 g, or 0.005 g to 0.1 g based on 100 g of the total monomer.
  • the polar additive may be at least one selected from the group consisting of tetrahydrofuran, ditetrahydrofuryl propane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl ether, tertiary butoxyethoxyethane, bis (Dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine.
  • Specific examples thereof include triethylamine or tetramethyl Ethylenediamine, and may be the same as or different from the polar additive that can be used in the production of the modified polymerization initiator.
  • the conjugated diene monomer or the conjugated diene monomer and the aromatic vinyl monomer may be copolymerized The difference in the reaction rate of the random copolymer So that it can be easily formed.
  • the polymerization may be anionic polymerization, for example, living anion polymerization having an anionic active site at the polymerization end by a growth polymerization reaction with an anion.
  • the above-mentioned polymerization may be an elevated temperature polymerization, an isothermal polymerization or a constant temperature polymerization (adiabatic polymerization), and the above-mentioned constant temperature polymerization means a polymerization method comprising the step of polymerizing the organic metal compound into its own reaction heat,
  • the temperature-raising polymerization may mean a polymerization method in which the temperature is increased by applying heat to the organometallic compound after the introduction of the organometallic compound. In the isothermal polymerization, heat is applied by applying heat after the organometallic compound is added Or to keep the temperature of the polymerizer constant by taking heat.
  • the polymerization may be carried out at a temperature of, for example, -20 ⁇ to 200 ⁇ , 0 ⁇ to 150 ⁇ , or 10 ⁇ to 120 ⁇ .
  • the modified conjugated diene polymer can be carried out, for example, by batch polymerization (batch polymerization) or continuous polymerization comprising at least one polymerization reactor.
  • Two vacuum-dried 2L stainless steel pressure vessels were prepared. 1822 g of hexane, 250 g of the compound represented by the following formula 1-1 and 162 g of tetramethylethylenediamine were added to the first pressure vessel to prepare a first reaction solution. At the same time, a second reaction solution was prepared by charging 385 g of 2.5M n-butyllithium (in hexane) and 1845 g of hexane into a second pressure vessel. At this time, the molar ratio of the compound represented by the formula (1-1), n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • each pressure vessel was maintained at 5 bar, and the mass flow meter was used to feed the first reaction solution to the first continuous channel at an injection rate of 1.0 g / min and to the second continuous channel The second reaction solution was injected at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at 25 ° C, and the internal pressure was maintained at 2 bar by using a backpressure regulator. After completion of the reaction, it was confirmed through molecular weight analysis that a modified polymerization initiator was synthesized by a change in the molecular weight between the compound represented by Formula 1-1 and the finally obtained substance.
  • the molecular weight of the compound represented by Formula 1-1 was 179 g / mol
  • the molecular weight of the modified polymerization initiator finally obtained was 237 g / mol.
  • the molecular weight of the modified polymerization initiator represents the molecular weight in which Li is substituted with H.
  • molecular weight analysis was determined by GC / Mass analysis.
  • the column was made of ZB-5MS (0.25 mm ID, 30 mm, 0.25 mm df capillary), the gas flow rate (column (He)) was 1 ml / min, The temperature was increased to 320 ° C at 10 ° C / min and maintained for 15 minutes.
  • the injector temperature was 250 ° C, the split ratio was 1/20, and the injection volume was adjusted to 0.2 ⁇ l.
  • the modified polymerization initiator was quenched to protonate the organolithium portion and then measured.
  • Two vacuum-dried 2L stainless steel pressure vessels were prepared. 1900 g of hexane, 250 g of the compound represented by the following formula (1-5) and 124 g of tetramethylethylenediamine were added to the first pressure vessel to prepare a first reaction solution. At the same time, a second reaction solution was prepared by charging 385 g of a 2.5M n-butyllithium (in hexane) liquid and 2600 g of hexane into a second pressure vessel. At this time, the molar ratio of the compound represented by the general formula (1-5), n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • each pressure vessel was maintained at 5 bar, and the mass flow meter was used to feed the first reaction solution to the first continuous channel at an injection rate of 1.0 g / min and to the second continuous channel The second reaction solution was injected at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at 40 ⁇ ⁇ , and the internal pressure was maintained at 2 bar by using a backpressure regulator.
  • a modified polymerization initiator was synthesized by a change in the molecular weight between the compound represented by the formula (1-5) and the finally obtained material.
  • the molecular weight of the compound represented by the formula (1-5) was 234 g / mol
  • the molecular weight of the modified polymerization initiator finally obtained was 292 g / mol.
  • the molecular weight of the modified polymerization initiator represents the molecular weight in which Li is substituted with H.
  • the molecular weight analysis was carried out in the same manner as in Example 1.
  • Two vacuum-dried 2L stainless steel pressure vessels were prepared. 1900 g of hexane, 344 g of the compound represented by the following formula 1-11 and 124 g of tetramethylethylenediamine were added to the first pressure vessel to prepare a first reaction solution. At the same time, a second reaction solution was prepared by adding 370 g of a liquid 2.5M n-butyllithium (in hexane) and 2600 g of hexane into a second pressure vessel. At this time, the molar ratio of the compound represented by Formula 1-11, n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • each pressure vessel was maintained at 5 bar, and the mass flow meter was used to feed the first reaction solution to the first continuous channel at an injection rate of 1.0 g / min and to the second continuous channel The second reaction solution was injected at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at 40 ⁇ ⁇ , and the internal pressure was maintained at 2 bar by using a backpressure regulator. After completion of the reaction, it was confirmed through molecular weight analysis that the modified polymerization initiator was synthesized by the change in the molecular weight between the compound represented by the formula 1-11 and the finally obtained material.
  • the molecular weight of the compound represented by the formula 1-11 was 321 g / mol
  • the molecular weight of the modified polymerization initiator represents the molecular weight in which Li is substituted with H.
  • the molecular weight analysis was carried out in the same manner as in Example 1.
  • Two vacuum-dried 2L stainless steel pressure vessels were prepared. 1900 g of hexane, 253 g of the compound represented by the following Chemical Formula 1-7 and 124 g of tetramethylethylenediamine were added to the first pressure vessel to prepare a first reaction solution. At the same time, a second reaction solution was prepared by charging 385 g of a 2.5M n-butyllithium (in hexane) liquid and 2600 g of hexane into a second pressure vessel. At this time, the molar ratio of the compound represented by the general formula 1-7, n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • each pressure vessel was maintained at 5 bar, and the mass flow meter was used to feed the first reaction solution to the first continuous channel at an injection rate of 1.0 g / min and to the second continuous channel The second reaction solution was injected at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at 25 ° C, and the internal pressure was maintained at 2 bar by using a backpressure regulator. After completion of the reaction, it was confirmed through molecular weight analysis that a modified polymerization initiator was synthesized by a change in the molecular weight between the compound represented by Formula 1-7 and the finally obtained substance.
  • the molecular weight of the compound represented by Formula 1-7 was 237 g / mol , And the molecular weight of the modified polymerization initiator finally obtained was 295 g / mol. At this time, the molecular weight of the modified polymerization initiator represents the molecular weight in which Li is substituted with H.
  • the molecular weight analysis was carried out in the same manner as in Example 1.
  • the modified conjugated diene polymer having the functional group derived from the modified polymerization initiator was prepared.
  • Each of the prepared copolymers was analyzed by NMR to confirm that a nitrogen atom as a functional group derived from the denaturation initiator was present in the copolymer chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerization Catalysts (AREA)

Abstract

본 발명은 부반응을 최소화하여 높은 전환율로 변성 중합 개시제를 제조할 수 있는 변성 중합 개시제의 제조방법에 관한 것이다. 이에 따른 변성 중합 개시제의 제조방법은 중합반응에 사용되어 중합을 용이하게 개시할 수 있으면서, 중합체에 충진제 친화성 작용기를 제공할 수 있는 변성 중합 개시제를 제조할 수 있고, 특히 연속식 반응기를 이용하여 수행함으로써 부산물의 생성을 감소시킬 수 있으며, 결과적으로 전환율을 향상시켜 고순도의 변성 중합 개시제를 높은 수율로 제조할 수 있다.

Description

연속식 반응기를 이용한 변성 중합 개시제의 제조방법
[관련출원과의 상호인용]
본 출원은 2017.10.23자 한국 특허 출원 제10-2017-0137558호 및 2018.10.04자 한국 특허 출원 제10-2018-0118053에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 부반응을 최소화하여 높은 전환율로 변성 중합 개시제를 제조할 수 있는 변성 중합 개시제의 제조방법에 관한 것이다.
최근 자동차에 대한 이산화탄소(CO2) 배출 저감 및 저연비화 등 고효율, 친환경, 고성능의 타이어 물성이 요구됨에 따라, 타이어용 고무 재료로서 주행저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 고무 재료가 요구되고 있다.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR 고무의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액 중합에 의한 SBR 고무가 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR(이하, SSBR이라 함)이 타이어용 고무 재료로 사용되는 경우 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로써 연료소모를 줄일 수 있다.
상기 SSBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다. 최근에는 중합시 변성 중합 개시제, 변성 단량체 등을 이용하여 중합 단계에서 변성시키는 기술의 개발이 이루어지고 있다.
예컨대, SSBR 제조시 사용되는 변성 중합 개시제로는 하기 반응식 1과 같이 헥사메틸렌이민(Hexamethyleneimine, HMI)과 n-부틸리튬(n-butyllithium, BuLi)의 반응으로 만들어지는 헥사메틸렌 리튬 개시제가 널리 알려져 있다.
[반응식 1]
Figure PCTKR2018012006-appb-I000001
그러나, 상기 헥사메틸렌 리튬 개시제의 경우 용매에 대한 용해도가 낮아 시간이 지나면 침전되고, 중합 개시제로서의 이용은 가능하지만 n-부틸리튬 대비 반응성이 좋지 못한 문제점이 있다. 또한, 상기 헥사메틸렌 리튬 개시제의 문제점을 보완하기 위하여 반응식 1로 합성된 헥사메틸렌 리튬에 하기 반응식 2와 같이 이소프렌이나 1,3-부타디엔과 같은 공액디엔 화합물을 더 반응시키켜 변성 중합 개시제를 제조하는 방법이 제안된바 있다.
[반응식 2]
Figure PCTKR2018012006-appb-I000002
그러나, 이렇게 제조된 변성 중합 개시제의 경우 헥사메틸렌 리튬 개시제 대비 용해도 및 반응성이 향상되기는 하나, 여전히 시간이 지남에 따라 침전이 일어나고 불활성화되는 문제가 있다.
한편, 일반적으로 상기와 같은 변성 중합 개시제 등의 음이온 중합 개시제는 회분식 공정을 통하여 제조하거나, 또는 하나의 회분식 반응기에서 음이온 중합 개시제 및 SSBR을 동시에 제조한다. 전자의 경우, 제조된 음이온 중합 개시제는 필연적으로 SSBR 제조에 사용되기 전 저장단계가 필요하게 되고, 저장되는 시간 동안 수분 및 공기 등 다양한 스캐빈저(scavenger)와 반응하여 활성을 잃는 문제가 발생하며, 결과적으로 후공정에 악영향을 미쳐 최종적으로 제조된 SSBR의 물성을 저하시키는 요인으로 작용할 수 있다. 후자의 경우, 음이온 중합 개시제 제조 반응과 SSBR 중합 반응이 동일 회분식 반응기에서 이루어지는 공정으로 저장의 문제점을 해결할 수는 있으나 음이온 중합 개시제의 합성이 제대로 이루어졌는지 확인하기가 어렵고 최종적으로 제조된 SSBR의 물성도 미리 합성한 음이온 중합 개시제를 첨가하는 경우보다 좋지 못한 문제가 있다. 더하여, 기존의 회분식 공정에서는 원료 물질들이 바로 유입되어 혼합 반응하면서 부산물이 생성되거나, 역반응이 발생하여 미반응물이 생성되며, 그 결과 수율이 낮아지는 문제점이 있다.
따라서, 최근에는 상기의 회분식 반응기의 문제를 해결하기 위하여 연속식 반응기를 사용하는 방안이 연구되고 있다.
일례로, 대한민국 공개특허공보 제10-2016-0092227호에는 스태틱 믹서를 포함하는 연속식 반응기를 이용하여 음이온 중합 개시제를 제조하는 방법을 개시하고 있다. 상기 방법의 경우 원료의 농도 분포나 온도 분포를 균일하게 할 수 있어 리튬화 반응을 연속적으로 진행하므로 저장 문제 및 수율 저하 문제가 감소되나, 스태틱 믹서를 사용하고 있어 리튬화 반응의 발열반응 문제의 해결은 되지 않아 특수한 냉각 장치가 필요하여 제조비용이 높은 단점이 있다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 중합반응에 사용되어 중합을 용이하게 개시할 수 있으면서, 중합체에 충진제 친화성 작용기를 제공할 수 있는 변성 중합 개시제를, 부반응을 최소화하여 높은 전환율로 제조할 수 있는 변성 중합 개시제의 제조방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물과 하기 화학식 2로 표시되는 화합물을 반응시키는 단계를 포함하고, 상기 반응은 제1 연속식 채널 및 제2 연속식 채널을 포함하는 연속식 반응기에서 수행하는 것이고, 상기 반응 전, 화학식 1로 표시되는 화합물을 제1 연속식 채널을 통해 연속식 반응기로 투입되고, 화학식 2로 표시되는 화합물은 제2 연속식 채널을 통해 연속식 반응기로 투입되는 것인 변성 개시제의 제조방법을 제공한다:
[화학식 1]
Figure PCTKR2018012006-appb-I000003
상기 화학식 1에서,
X는 -NRaRb, -ORc, 또는 -SRd이고,
상기 Ra 내지 Rd는 서로 독립적으로 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기, 탄소수 2 내지 30의 헤테로알카이닐기, 탄소수 2 내지 30의 헤테로시클로알킬기 또는 탄소수 3 내지 30의 헤테로아릴기이고, 여기에서 Ra 내지 Rd는 각각 N, O, S, Si 및 F 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이고, Ra 및 Rb는 서로 연결되어 탄소수 1 내지 30의 알킬기로 치환되거나 비치환된 탄소수 5 내지 20의 지방족 탄화수소 고리기, 탄소수 6 내지 20의 방향족 탄화수소 고리기 또는 탄소수 3 내지 20의 헤테로고리기를 형성할 수 있고,
[화학식 2]
Figure PCTKR2018012006-appb-I000004
상기 화학식 2에서,
M은 알칼리 금속이고,
R1은 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기 또는 탄소수 6 내지 30의 아릴기이다.
본 발명에 따른 변성 중합 개시제의 제조방법은 중합반응에 사용되어 중합을 용이하게 개시할 수 있으면서, 중합체에 충진제 친화성 작용기를 제공할 수 있는 변성 중합 개시제를 용이하게 제조할 수 있다.
또한, 본 발명에 따른 변성 중합 개시제의 제조방법은 특히, 연속식 반응기를 이용하여 수행함으로써 리튬화 반응 시 미반응물의 발생을 감소시킬 수 있고, 빠른 제열로 리튬화 반응의 발열반응으로 인한 문제를 감소시킴으로써 부산물의 생성을 감소시킬 수 있으며, 결과적으로 전환율을 향상시켜 고순도의 변성 중합 개시제를 높은 수율로 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 발명으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용하는 용어 '치환'은 작용기, 원자단, 또는 화합물의 수소가 특정 치환기로 치환된 것을 의미할 수 있으며, 작용기, 원자단, 또는 화합물의 수소가 특정 치환기로 치환되는 경우, 작용기, 원자단, 또는 화합물 내에 존재하는 수소의 개수에 따라 1개 또는 2개 이상의 복수의 치환기가 존재할 수 있으며, 복수의 치환기가 존재하는 경우, 각각의 치환기는 서로 동일할 수도 있고, 상이할 수도 있다.
본 발명에서 사용하는 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있으며, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함할 수 있다.
본 발명에서 사용하는 용어 '알킬렌기(alkylene group)'는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.
본 발명에서 사용하는 용어 '알케닐기(alkenyl group)'는 이중 결합을 1개 또는 2개 이상 포함하는 알킬기를 의미할 수 있다.
본 발명에서 사용하는 용어 '알카이닐기(alkynyl group)'는 삼중 결합을 1개 또는 2개 이상 포함하는 알킬기를 의미할 수 있다.
본 발명에서 사용하는 용어 '시클로알킬기(cycloalkyl group)'는 환형의 포화 탄화수를 의미할 수 있다.
본 발명에서 사용하는 용어 '아릴기(aryl group)'는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.
본 발명에서 사용하는 용어 '헤테로알킬기(heteroalkyl group)'는 알킬기 내의 탄소 원자(말단의 탄소 원자는 제외)가 1개 이상의 헤테로 원자로 치환된 알킬기를 의미할 수 있다.
본 발명에서 사용하는 용어 '헤테로알케닐기(heteroalkenyl group)'는 알케닐기 내의 탄소 원자(말단의 탄소 원자는 제외)가 1개 이상의 헤테로 원자로 치환된 알케닐기를 의미할 수 있다.
본 발명에서 사용하는 용어 '헤테로알카이닐기(heteroalkynyl group)'는 알카이닐기 내의 탄소 원자(말단의 탄소 원자는 제외)가 1개 이상의 헤테로 원자로 치환된 알카이닐기를 의미할 수 있다.
본 발명에서 사용하는 용어 '헤테로시클로알킬기'는 시클로알킬기 내의 탄소 원자가 1개 이상의 헤테로 원자로 치환된 시클로알킬기를 의미할 수 있다.
본 발명에서 사용하는 용어 '헤테로아릴기'는 아릴기 내의 탄소 원자가 1개 이상의 헤테로 원자로 치환된 시클로알킬기를 의미할 수 있다.
본 발명에서 사용하는 용어 '유래 단위' 및 '유래 작용기'는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있다.
본 발명은 중합체, 특히 공액디엔계 중합체 중합 시 중합 개시제로 작용하면서, 상기 중합체에 충진제 친화성기와 같은 작용기를 제공할 수 있는 변성 중합 개시제를 용이하게 제조할 수 있는 변성 중합 개시제의 제조방법을 제공한다.
본 발명의 일 실시예에 다른 상기 변성 중합 개시제의 제조방법은 하기 화학식 1로 표시되는 화합물과 하기 화학식 2로 표시되는 화합물을 반응시키는 단계(단계 A)를 포함하고, 상기 반응은 제1 연속식 채널 및 제2 연속식 채널을 포함하는 연속식 반응기에서 수행하는 것이고, 상기 반응 전, 화학식 1로 표시되는 화합물은 제1 연속식 채널을 통해 연속식 반응기로 투입되고, 화학식 2로 표시되는 화합물은 제2 연속식 채널을 통해 연속식 반응기로 투입되는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2018012006-appb-I000005
상기 화학식 1에서,
X는 -NRaRb, -ORc, 또는 -SRd이고,
상기 Ra 내지 Rd는 서로 독립적으로 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기, 탄소수 2 내지 30의 헤테로알카이닐기, 탄소수 2 내지 30의 헤테로시클로알킬기 또는 탄소수 3 내지 30의 헤테로아릴기이고, 여기에서 Ra 내지 Rd는 각각 N, O, S, Si 및 F 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이고, Ra 및 Rb는 서로 연결되어 탄소수 1 내지 30의 알킬기로 치환되거나 비치환된 탄소수 5 내지 20의 지방족 탄화수소 고리기, 탄소수 6 내지 20의 방향족 탄화수소 고리기 또는 탄소수 3 내지 20의 헤테로고리기를 형성할 수 있고,
[화학식 2]
Figure PCTKR2018012006-appb-I000006
상기 화학식 2에서,
M은 알칼리 금속이고,
R1은 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기 또는 탄소수 6 내지 30의 아릴기이다.
구체적으로, 상기 화학식 1에서, 상기 X는 -NRaRb, -ORc 또는 -SRd이고, 여기에서 상기 Ra 내지 Rd는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알카이닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 헤테로알킬기, 탄소수 2 내지 20의 헤테로알케닐기, 탄소수 2 내지 20의 헤테로알카이닐기, 탄소수 2 내지 20의 헤테로시클로알킬기 또는 탄소수 3 내지 20의 헤테로아릴기이고, 여기에서 Ra 내지 Rd는 각각 N, O, S, Si 및 F 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이고, Ra 및 Rb는 서로 연결되어 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 5 내지 20의 지방족 탄화수소 고리기, 탄소수 6 내지 20의 방향족 탄화수소 고리기 또는 탄소수 3 내지 20의 헤테로고리기를 형성할 수 있다.
또한, 더 구체적으로, 상기 화학식 1에서 X는 하기 화학식 1a 내지 화학식 1c로 표시되는 치환기 중에서 선택된 것일 수 있다.
[화학식 1a]
Figure PCTKR2018012006-appb-I000007
[화학식 1b]
Figure PCTKR2018012006-appb-I000008
[화학식 1c]
Figure PCTKR2018012006-appb-I000009
상기 화학식 1a 내지 화학식 1c에서,
R2, R3, R6, R8 및 R9는 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알카이닐기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기, 탄소수 1 내지 10의 헤테로알킬기, 탄소수 2 내지 10의 헤테로알케닐기, 탄소수 2 내지 10의 헤테로알카이닐기, 탄소수 3 내지 10의 헤테로시클로알킬기 또는 탄소수 3 내지 10의 헤테로아릴기이고, 여기에서 R2 및 R3와 R8 및 R9는 각각 서로 결합하여 탄소수 5 내지 20의 지방족 탄화수소 고리기 또는 탄소수 6 내지 20의 방향족 탄화수소 고리기를 형성할 수 있고, 상기 R2, R3, R6, R8 및 R9는 각각 N, O 및 S 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이며, R4, R5 및 R7은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기 또는 N 및 O 원자 중에서 선택된 헤테로원자 또는 상기 헤테로원자를 포함하는 치환기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고, Z는 N, O 및 S 원자 중에서 선택된 1종이며, Z가 O 또는 S인 경우 R6는 존재하지 않는다.
더욱 더 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-11로 표시되는 화합물인 것일 수 있다.
[화학식 1-1]
Figure PCTKR2018012006-appb-I000010
[화학식 1-2]
Figure PCTKR2018012006-appb-I000011
[화학식 1-3]
Figure PCTKR2018012006-appb-I000012
[화학식 1-4]
Figure PCTKR2018012006-appb-I000013
[화학식 1-5]
Figure PCTKR2018012006-appb-I000014
[화학식 1-6]
Figure PCTKR2018012006-appb-I000015
[화학식 1-7]
Figure PCTKR2018012006-appb-I000016
[화학식 1-8]
Figure PCTKR2018012006-appb-I000017
[화학식 1-9]
Figure PCTKR2018012006-appb-I000018
[화학식 1-10]
Figure PCTKR2018012006-appb-I000019
[화학식 1-11]
Figure PCTKR2018012006-appb-I000020
또한, 상기 화학식 2에서, M은 알칼리 금속이고, R1은 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알카이닐기, 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기일 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 화학식 1로 표시되는 화합물은 미르센(myrcene)에 관능기 화합물을 반응시켜 제조된 것일 수 있으며, 예를 들어 하기 반응식 3과 같이 미르센을 반응성 화합물과 반응시켜 미르센 분자구조에 반응성 사이트(site)를 형성시키고, 여기에 관능기 화합물을 반응시킴으로써 반응성 사이트에 관능기 화합물 유래 관능기가 도입된 화학식 1로 표시되는 화합물을 제조할 수 있다.
[반응식 3]
Figure PCTKR2018012006-appb-I000021
상기 반응식 3에서, D는 Cl, Br, I 또는 -OH일 수 있고, X는 상기 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시예에 있어서, 상기 단계 A에서의 반응은 연속식 반응기에서 수행하는 것일 수 있다. 이때, 상기 연속식 반응기는 반응에 사용되는 원료 물질을 연속적으로 투입하면서 반응을 진행시키는 반응기를 나타내는 것일 수 있다.
구체적으로, 상기 단계 A에서의 반응은 제1 연속식 채널 및 제2 연속식 채널을 포함하는 연속식 반응기에서 수행하는 것일 수 있고, 이때, 반응 전 상기 화학식 1로 표시되는 화합물은 상기 제1 연속식 채널을 통해 연속식 반응기로 투입되고, 상기 화학식 2로 표시되는 화합물은 상기 제2 연속식 채널을 통해 연속식 반응기로 투입되는 것일 수 있다. 여기에서, 상기 제1 연속식 채널 및 제2 연속식 채널은 각각 연속식 반응기 내에 상기 각 화합물의 투입량을 조절하기 위한 투입부(혹은 주입부)를 의미하는 것일 수 있고, 이 경우 상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물은 서로 독립적으로 투입량이 조절될 수 있으며, 이에 반응 환경에 따라 각각 투입량을 조절할 수 있어 부반응을 최소화할 수 있다.
한편, 상기 제1 연속식 채널의 투입 속도는 0.1 g/min 내지 1,000 g/min, 0.1 g/min 내지 700 g/min 또는 0.1 g/min 내지 400 g/min일 수 있고, 상기 제2 연속식 채널의 투입 속도는 0.1 g/min 내지 1,000 g/min, 0.1 g/min 내지 700 g/min 또는 0.1 g/min 내지 400 g/min일 수 있으며, 이 범위 내에서 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 투입량의 급격한 변화 없이 적절히 조절하여, 부반응을 최소화하는 효과가 있다.
또한, 상기 단계 A에서의 반응 시, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 몰비는 1:0.01 내지 5, 1:0.1 내지 5, 1:0.5 내지 3, 또는 1:0.5 내지 1.5일 수 있고, 이 범위 내에서 부반응이 최소화될 수 있다. 이때, 상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 몰비에 따라 제조되는 변성 중합 개시제가 이합체, 삼합체 또는 올리고머 형태를 가질 수 있다.
한편, 상기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물은 필요에 따라 각각 반응용매에 용해되어 용액상태로 사용되는 것일 수 있으며, 상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물이 용액상태로 사용되는 경우에는 용액의 농도는 특별히 제한하지 않고 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물이 전술한 몰비를 가지도록 조절하여 사용하는 것일 수 있다.
여기에서 상기 반응용매는 음이온과 반응하지 않은 탄화수소 용매일 수 있고, 예컨대 펜탄, 헥산 및 옥탄과 같은 선형 탄화수소 화합물; 겹 가지를 갖는 이의 유도체들; 시클로헥산 및 시클로헵탄 등의 고리 탄화수소 화합물; 벤젠, 톨루엔 및 자일렌 등의 방향족 탄화수소 화합물; 및 디메틸에테르, 디에틸에테르, 아니솔 및 테트라하이드로퓨란 등의 선형 및 고리형의 에테르류; 중에서 선택된 어느 하나 이상인 것일 수 있다. 구체적으로는, 상기 반응용매는 시클로헥산, 헥산, 테트라하이드로퓨란 또는 디에틸에테르일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 단계 A에서 상기 반응은 -20℃ 내지 100℃, 0℃ 내지 90℃, 또는 15℃ 내지 80℃의 온도범위 및 1 bar 내지 10 bar, 1 bar 내지 7 bar, 또는 1 bar 내지 5 bar의 압력 조건하에서 수행하는 것일 수 있으며, 이 범위 내에서 반응 속도가 우수하고, 부반응을 최소화하는 효과가 있다.
본 발명에 따른 상기 변성 중합 개시제의 제조방법은 연속식 반응기를 이용하여 수행함으로써, 리튬화 반응 시 반응원료(예컨대, 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물)의 혼합율을 높여 미반응물의 발생을 감소시킬 수 있고, 빠른 제열로 리튬화 반응의 발열반응으로 인한 문제를 감소시킴으로써 부산물의 생성을 감소시킬 수 있다. 이에, 결과적으로 전환율을 향상시켜 고순도의 변성 중합 개시제를 고수율로 안정적으로 제조할 수 있다.
한편, 상기 단계 A의 반응은 필요에 따라 극성 첨가제를 더 사용하여 수행하는 것일 수 있다. 상기 극성 첨가제는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아밀에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디에틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있고, 구체적으로는 트리에틸아민 또는 테트라메틸에틸렌디아민일 수 있다.
또한, 상기 반응이 극성 첨가제를 사용하여 수행하는 경우에는 상기 극성 첨가제는 상기 화학식 1로 표시되는 화합물 1 몰을 기준으로 0.1 몰 내지 10 몰, 0.5 몰 내지 5 몰, 또는 0.5 몰 내지 1.5 몰의 함량으로 사용하는 것일 수 있다.
또한, 본 발명은 상기의 변성 중합 개시제의 제조방법으로부터 제조된 변성 중합 개시제를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 중합 개시제는 상기 화학식 1로 표시되는 화합물 유래 단위 및 상기 화학식 2로 표시되는 화합물 유래 단위를 포함하는 것을 특징으로 한다.
또한, 상기 변성 중합 개시제는 하나의 물질이거나, 여러 물질이 혼합되어 있는 혼합물 형태인 것일 수 있다.
구체적으로는, 상기 변성 중합 개시제는 일례로 하기 화학식 3으로 표시되는 화합물 및 이의 이성질체 중에서 선택된 1종 이상을 포함하는 것일 수 있다.
또한, 상기 변성 중합 개시제는 하기 화학식 3으로 표시되는 화합물의 이합체(dimer), 삼합체(trimer) 또는 올리고머(oligomer) 및 하기 화학식 3으로 표시되는 화합물의 이성질체의 이합체, 삼합체 및 올리고머 중에서 선택된 1종 이상을 포함하는 것일 수 있다.
또한, 상기 변성 중합 개시제는 다른 일례로 하기 화학식 3으로 표시되는 화합물; 이의 이성질체; 이의 이합체, 삼합체 및 올리고머 중에서 선택된 1종 이상; 및 상기 이성질체의 이합체, 삼합체 및 올리고머 중에서 선택된 1종 이상; 중에서 선택된 1종 이상을 포함하는 것일 수 있다.
[화학식 3]
Figure PCTKR2018012006-appb-I000022
상기 화학식 3에서,
X는 상기 화학식 1에서 정의한 바와 같고, M은 Na, K 또는 Li이고, R1은 수소 또는 탄소수 1 내지 10의 알킬기이다. 또한, 상기 화학식 3에서 M은 이웃한 탄소와 이온 결합으로 결합되어 있는 것일 수 있다.
한편, 상기 화학식 3으로 표시되는 화합물의 이성질체는 상기 화학식 3으로 표시되는 화합물의 구조이성질체 및 입체 이성질체를 모두 포함하는 것일 수 있으며, 예시적으로는 하기 화학식 3-1 내지 화학식 3-3으로 표시되는 화합물 중에서 선택된 하나 이상일 수 있다.
[화학식 3-1]
Figure PCTKR2018012006-appb-I000023
[화학식 3-2]
Figure PCTKR2018012006-appb-I000024
[화학식 3-3]
Figure PCTKR2018012006-appb-I000025
상기 화학식 3-1 내지 화학식 3-3에서,
X는 상기 화학식 1에서 정의한 바와 같고, M은 Na, K 또는 Li이고, R1은 수소 또는 탄소수 1 내지 10의 알킬기이다. 또한, 상기 화학식 3-1 내지 화학식 3-3에서 M은 이웃한 탄소와 이온 결합으로 결합되어 있는 것일 수 있다.
보다 더 구체적으로, 상기 화학식 3, 화학식 3-1 내지 화학식 3-3에서, X는 상기 화학식 1a 내지 화학식 1c로 표시되는 치환기 중에서 선택된 것일 수 있고, 이때 R2, R3, R6, R8 및 R9는 서로 독립적으로 N, O 및 S 원자 중에서 선택된 하나 이상의 헤테로원자 또는 상기 헤테로원자를 포함하는 치환기로 치환되거나, 비치환된 탄소수 1 내지 10의 알킬기일 수 있고, R4, R5 및 R7은 서로 독립적으로 탄소수 1 내지 6의 알킬기 또는 N 및 O 원자 중에서 선택된 헤테로원자 또는 상기 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 탄소수 1 내지 6의 알킬렌기이고, Z는 O인 것일 수 있다.
또한, 상기 화학식 3으로 표시되는 화합물은 전술한 화학식 1로 표시되는 화합물 유래 단위 및 화학식 2로 표시되는 화합물 유래 단위를 포함하는 것으로, 상기 이합체는 화학식 1로 표시되는 화합물 유래 단위 2개와 화학식 2로 표시되는 화합물 유래 단위 1개가 결합되어 있는 형태를 나타내는 것일 수 있고, 상기 삼합체는 화학식 1로 표시되는 화합물 유래 단위 3개와 화학식 2로 표시되는 유래 단위 1개가 결합되어 있는 형태를 나타내는 것일 수 있다. 또한, 상기 올리고머는 화학식 1로 표시되는 화합물 유래 단위 다수개와 화학식 2로 표시되는 유래 단위 1개가 결합되어 있는 형태를 나타내는 것일 수 있다.
예를 들어, 상기 화학식 3으로 표시되는 화합물의 이합체는 하기 화학식 3-4 로 표시되는 화합물일 수 있다.
[화학식 3-4]
Figure PCTKR2018012006-appb-I000026
아울러, 본 발명은 상기 변성 중합 개시제 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위를 포함하고, 적어도 일측 말단에 화학식 1로 표시되는 화합물 유래 단위를 포함하는 상기의 변성 중합 개시제 유래 작용기를 포함하는 것을 특징으로 한다.
상기 공액디엔계 단량체 유래 반복 단위는 공액디엔계 단량체가 중합하여 이루는 반복 단위를 의미할 수 있고, 상기 공액디엔계 단량체는 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌, 2-페닐-1,3-부타디엔 및 2-할로-1,3-부타디엔(여기에서, 할로는 할로겐 원자를 의미한다)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
한편, 상기 변성 공액디엔계 공중합체는 일례로 상기 공액디엔계 단량체 유래 반복 단위와 함께 방향족 비닐 단량체 유래 반복 단위를 더 포함하는 공중합체일 수 있다.
상기 방향족 비닐 단량체 유래 반복 단위는 방향족 비닐 단량체가 중합 시 이루는 반복 단위를 의미할 수 있고, 상기 방향족 비닐 단량체는 일례로 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 공중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런스가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.
한편, 본 발명의 일 실시예에서 상기 변성 공액디엔계 중합체는 탄화수소 용매 중에서, 상기 화학식 1로 표시되는 화합물 유래 단위 및 화학식 2로 표시되는 화합물 유래 단위를 포함하는 상기의 변성 중합 개시제의 존재 하에 공액디엔계 단량체, 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 중합하여 알칼리 금속이 결합된 활성 중합체를 제조하는 단계를 포함하는 제조방법에 의하여 제조되는 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 공액디엔계 단량체 및 방향족 비닐계 단량체는 앞서 정의한 바와 같다.
상기 중합은 극성 첨가제를 포함하여 실시할 수 있으며, 상기 극성 첨가제는 단량체 총 100g을 기준으로 0.001g 내지 50g, 0.001g 내지 10g, 또는 0.005g 내지 0.1g의 첨가할 수 있다. 또한, 상기 극성 첨가제는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아밀에테르, 디프로필에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적으로는 트리에틸아민 또는 테트라메틸에틸렌디아민일 수 있으며, 상기 변성 중합 개시제의 제조 시 사용될 수 있는 극성 첨가제와 동일하거나 상이할 수 있고, 상기 극성 첨가제를 포함하는 경우 공액디엔계 단량체, 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도하는 효과가 있다.
또한, 상기 중합은 일례로 음이온 중합일 수 있고, 구체적인 예로 음이온에 의한 성장 중합 반응에 의해 중합 말단에 음이온 활성 부위를 갖는 리빙 음이온 중합일 수 있다. 또한, 상기 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있고, 상기 정온 중합은 유기 금속 화합물을 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 의미할 수 있고, 상기 승온 중합은 상기 유기 금속 화합물을 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 의미할 수 있으며, 상기 등온 중합은 상기 유기 금속 화합물을 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 의미할 수 있다.
또한, 상기 중합은 일례로 -20℃ 내지 200℃, 0℃ 내지 150℃, 또는 10℃ 내지 120℃의 온도범위에서 실시될 수 있다.
또한, 상기 변성 공액디엔계 중합체는 일례로 배치식(회분식) 또는 1종 이상의 중합 반응기를 포함하는 연속식 중합에 의하여 수행할 수 있다.
이하, 본 발명을 실시예를 통하여 더 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력 용기에 헥산 1822 g, 하기 화학식 1-1로 표시되는 화합물 250 g 및 테트라메틸에틸렌디아민 162 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.5M n-부틸리튬(in 헥산) 385 g 및 헥산 1845 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 1-1로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력 용기의 압력은 5 bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 25℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 2 bar를 유지하였다. 반응 종료 후, 분자량 분석을 통하여 화학식 1-1로 표시되는 화합물과 최종적으로 얻어진 물질 간의 분자량 변화로 변성 중합 개시제가 합성되었음을 확인하였으며, 화학식 1-1로 표시되는 화합물의 분자량은 179 g/mol이고, 최종적으로 얻어진 물질인 변성 중합 개시제의 분자량은 237 g/mol이었다. 이때, 변성 중합 개시제의 분자량은 Li이 H로 치환된 분자량을 나타낸 것이다.
구체적으로, 분자량 분석은 GC/Mass 분석으로 측정하였다. 이때, 컬럼(column)은 ZB-5MS(0.25 mm(ID)Х30 ml, 0.25 ㎛ d.f. capillary)을 사용하고, 가스유속(column(He))은 1 ml/min, 오븐온도는 초기 50℃에서 3분 후 10 ℃/min으로 320℃까지 승온시키고 15분 동안 유지시켰으며, 주입기 온도는 250℃, split ratio 1/20, 주입량은 0.2 μl로 조정하여 측정하였다. 또한, 변성 중합 개시제는 퀀칭(quenching)시켜 유기리튬 부분을 양성자화(protonation)한 후 측정하였다.
[화학식 1-1]
Figure PCTKR2018012006-appb-I000027
실시예 2
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력 용기에 헥산 1900 g, 하기 화학식 1-5로 표시되는 화합물 250 g 및 테트라메틸에틸렌디아민 124 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.5M n-부틸리튬(in 헥산) 385 g 및 헥산 2600 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 1-5로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력 용기의 압력은 5 bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 40℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 2 bar를 유지하였다. 반응 종료 후, 분자량 분석을 통하여 화학식 1-5로 표시되는 화합물과 최종적으로 얻어진 물질 간의 분자량 변화로 변성 중합 개시제가 합성되었음을 확인하였으며, 화학식 1-5로 표시되는 화합물의 분자량은 234 g/mol이고, 최종적으로 얻어진 물질인 변성 중합 개시제의 분자량은 292 g/mol이었다. 이때, 변성 중합 개시제의 분자량은 Li이 H로 치환된 분자량을 나타낸 것이다. 분자량 분석은 실시예 1과 동일한 방법을 통하여 실시하였다.
[화학식 1-5]
Figure PCTKR2018012006-appb-I000028
실시예 3
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력 용기에 헥산 1900 g, 하기 화학식 1-11로 표시되는 화합물 344 g 및 테트라메틸에틸렌디아민 124 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.5M n-부틸리튬(in 헥산) 370 g 및 헥산 2600 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 1-11로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력 용기의 압력은 5 bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 40℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 2 bar를 유지하였다. 반응 종료 후, 분자량 분석을 통하여 화학식 1-11로 표시되는 화합물과 최종적으로 얻어진 물질 간의 분자량 변화로 변성 중합 개시제가 합성되었음을 확인하였으며, 화학식 1-11로 표시되는 화합물의 분자량은 321 g/mol이고, 최종적으로 얻어진 물질인 변성 중합 개시제의 분자량은 378 g/mol이었다. 이때, 변성 중합 개시제의 분자량은 Li이 H로 치환된 분자량을 나타낸 것이다. 분자량 분석은 실시예 1과 동일한 방법을 통하여 실시하였다.
[화학식 1-11]
Figure PCTKR2018012006-appb-I000029
실시예 4
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력 용기에 헥산 1900 g, 하기 화학식 1-7로 표시되는 화합물 253 g 및 테트라메틸에틸렌디아민 124 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.5M n-부틸리튬(in 헥산) 385 g 및 헥산 2600 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 1-7로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력 용기의 압력은 5 bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 25℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 2 bar를 유지하였다. 반응 종료 후, 분자량 분석을 통하여 화학식 1-7로 표시되는 화합물과 최종적으로 얻어진 물질 간의 분자량 변화로 변성 중합 개시제가 합성되었음을 확인하였으며, 화학식 1-7로 표시되는 화합물의 분자량은 237 g/mol이고, 최종적으로 얻어진 물질인 변성 중합 개시제의 분자량은 295 g/mol이었다. 이때, 변성 중합 개시제의 분자량은 Li이 H로 치환된 분자량을 나타낸 것이다. 분자량 분석은 실시예 1과 동일한 방법을 통하여 실시하였다.
[화학식 1-7]
Figure PCTKR2018012006-appb-I000030
실시예 5 내지 8
상기 실시예 1 내지 실시예 4에서 제조된 각 변성 중합 개시제를 이용하여 상기 변성 중합 개시제 유래 작용기를 갖는 변성 공액디엔계 중합체를 제조하였다.
구체적으로, 20 L 오토클레이브 반응기를 이용하여, 상기 실시예 1 내지 실시예 4에서 제조된 각 변성 중합 개시제 존제 하에 스티렌 21 g, 1,3-부타디엔 58 g, 무수 노르말헥산 581 g을 투입하여 50℃에서 80℃까지 승온하면서 중합 전환율 99%까지 중합을 진행하였다. 이후, 1,3-부타디엔을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하고, 산화방지제인 Wingstay K가 헥산에 30 중량% 녹아있는 용액 14 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 스티렌-부타디엔 공중합체를 제조하였다.
제조된 각 공중합체를 NMR로 분석하여, 변성 개시제 유래 작용기인 질소원자가 공중합체 사슬에 존재하는 것을 확인하였다.

Claims (7)

  1. 하기 화학식 1로 표시되는 화합물과 하기 화학식 2로 표시되는 화합물을 반응시키는 단계를 포함하고,
    상기 반응은 제1 연속식 채널 및 제2 연속식 채널을 포함하는 연속식 반응기에서 수행하는 것이고,
    상기 반응 전, 화학식 1로 표시되는 화합물은 제1 연속식 채널을 통해 연속식 반응기로 투입되고, 화학식 2로 표시되는 화합물은 제2 연속식 채널을 통해 연속식 반응기에 투입되는 것인 변성 중합 개시제의 제조방법:
    [화학식 1]
    Figure PCTKR2018012006-appb-I000031
    상기 화학식 1에서,
    X는 -NRaRb, -ORc, 또는 -SRd이고,
    상기 Ra 내지 Rd는 서로 독립적으로 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기, 탄소수 2 내지 30의 헤테로알카이닐기, 탄소수 2 내지 30의 헤테로시클로알킬기 또는 탄소수 3 내지 30의 헤테로아릴기이고, 여기에서 Ra 내지 Rd는 각각 N, O, S, Si 및 F 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이고, Ra 및 Rb는 서로 연결되어 탄소수 1 내지 30의 알킬기로 치환되거나 비치환된 탄소수 5 내지 20의 지방족 탄화수소 고리기, 탄소수 6 내지 20의 방향족 탄화수소 고리기 또는 탄소수 3 내지 20의 헤테로고리기를 형성할 수 있고,
    [화학식 2]
    Figure PCTKR2018012006-appb-I000032
    상기 화학식 2에서,
    M은 알칼리 금속이고,
    R1은 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기 또는 탄소수 6 내지 30의 아릴기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    상기 X는 -NRaRb, -ORc, 또는 -SRd이고,
    상기 Ra 내지 Rd는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알카이닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 헤테로알킬기, 탄소수 2 내지 20의 헤테로알케닐기, 탄소수 2 내지 20의 헤테로알카이닐기, 탄소수 2 내지 20의 헤테로시클로알킬기 또는 탄소수 3 내지 20의 헤테로아릴기이고, 여기에서 Ra 내지 Rd는 각각 N, O, S, Si 및 F 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이고, Ra 및 Rb는 서로 연결되어 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 5 내지 20의 지방족 탄화수소 고리기, 탄소수 6 내지 20의 방향족 탄화수소 고리기 또는 탄소수 3 내지 20의 헤테로고리기를 형성할 수 있고,
    상기 화학식 2에서, R1은 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알카이닐기, 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기인 것인 변성 중합 개시제의 제조방법.
  3. 청구항 1에 있어서,
    상기 화학식 1에서,
    X는 하기 화학식 1a 내지 화학식 1c로 표시되는 치환기 중에서 선택된 것인 변성 중합 개시제의 제조방법:
    [화학식 1a]
    Figure PCTKR2018012006-appb-I000033
    [화학식 1b]
    Figure PCTKR2018012006-appb-I000034
    [화학식 1c]
    Figure PCTKR2018012006-appb-I000035
    상기 화학식 1a 내지 화학식 1c에서,
    R2, R3, R6, R8 및 R9는 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알카이닐기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기, 탄소수 1 내지 10의 헤테로알킬기, 탄소수 2 내지 10의 헤테로알케닐기, 탄소수 2 내지 10의 헤테로알카이닐기, 탄소수 3 내지 10의 헤테로시클로알킬기 또는 탄소수 3 내지 10의 헤테로아릴기이고, 여기에서 R2 및 R3와 R8 및 R9는 각각 서로 결합하여 탄소수 5 내지 20의 지방족 탄화수소 고리기 또는 탄소수 6 내지 20의 방향족 탄화수소 고리기를 형성할 수 있고, 상기 R2, R3, R6, R8 및 R9는 각각 N, O 및 S 원자 중에서 선택된 하나 이상의 헤테로원자를 포함하는 치환기로 치환되거나 비치환된 것이며,
    R4, R5 및 R7은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기 또는 N 및 O 원자 중에서 선택된 헤테로원자 또는 상기 헤테로원자를 포함하는 치환기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고,
    Z는 N, O 및 S 원자 중에서 선택된 1종이며, Z가 O 또는 S인 경우 R6은 존재하지 않는다.
  4. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물은 1:0.01 내지 5의 몰비로 반응시키는 것인 변성 중합 개시제의 제조방법.
  5. 청구항 1에 있어서,
    상기 반응은 -20℃ 내지 100℃의 온도범위 및 1 bar 내지 10 bar의 압력 조건하에서 수행하는 것인 변성 중합 개시제의 제조방법.
  6. 청구항 1에 있어서,
    상기 반응은 극성 첨가제를 사용하여 수행하는 것인 변성 중합 개시제의 제조방법.
  7. 청구항 6에 있어서,
    상기 극성 첨가제는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아밀에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디에틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 변성 중합 개시제의 제조방법.
PCT/KR2018/012006 2017-10-23 2018-10-12 연속식 반응기를 이용한 변성 중합 개시제의 제조방법 WO2019083203A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18871351.5A EP3543245B1 (en) 2017-10-23 2018-10-12 Method for preparing modified polymerization initiator by using continuous reactor
US16/467,215 US11472818B2 (en) 2017-10-23 2018-10-12 Method for preparing modification polymerization initiator using continuous type reactor
CN201880004905.2A CN110072868B (zh) 2017-10-23 2018-10-12 使用连续型反应器制备改性聚合引发剂的方法
JP2019552893A JP6865298B2 (ja) 2017-10-23 2018-10-12 連続式反応器を用いた変性重合開始剤の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0137558 2017-10-23
KR20170137558 2017-10-23
KR10-2018-0118053 2018-10-04
KR1020180118053A KR102080257B1 (ko) 2017-10-23 2018-10-04 연속식 반응기를 이용한 변성 중합 개시제의 제조방법

Publications (1)

Publication Number Publication Date
WO2019083203A1 true WO2019083203A1 (ko) 2019-05-02

Family

ID=66246521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012006 WO2019083203A1 (ko) 2017-10-23 2018-10-12 연속식 반응기를 이용한 변성 중합 개시제의 제조방법

Country Status (1)

Country Link
WO (1) WO2019083203A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502131A (en) * 1994-12-23 1996-03-26 Bridgestone Corporation Method of preparing polymer using allyl-and xylyl-amine containing initiators
US20020128525A1 (en) * 2000-04-07 2002-09-12 Takasago International Corporation Process for producing optically active 3,7-dimethyl-6-octenol and process for producing intermediate therefor
JP2013108037A (ja) * 2011-11-24 2013-06-06 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
KR20160092227A (ko) 2015-01-27 2016-08-04 주식회사 엘지화학 연속 공정식 음이온 중합개시제의 제조방법 및 음이온중합 개시제
WO2017047923A1 (ko) * 2015-09-17 2017-03-23 주식회사 엘지화학 음이온 중합개시제의 제조방법, 제조장치 및 이로부터 제조되는 음이온 중합개시제
KR20170112676A (ko) * 2016-04-01 2017-10-12 주식회사 엘지화학 연속 공정식 음이온 중합개시제의 제조방법 및 이로부터 제조되는 음이온 중합개시제

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502131A (en) * 1994-12-23 1996-03-26 Bridgestone Corporation Method of preparing polymer using allyl-and xylyl-amine containing initiators
US20020128525A1 (en) * 2000-04-07 2002-09-12 Takasago International Corporation Process for producing optically active 3,7-dimethyl-6-octenol and process for producing intermediate therefor
JP2013108037A (ja) * 2011-11-24 2013-06-06 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
KR20160092227A (ko) 2015-01-27 2016-08-04 주식회사 엘지화학 연속 공정식 음이온 중합개시제의 제조방법 및 음이온중합 개시제
WO2017047923A1 (ko) * 2015-09-17 2017-03-23 주식회사 엘지화학 음이온 중합개시제의 제조방법, 제조장치 및 이로부터 제조되는 음이온 중합개시제
KR20170112676A (ko) * 2016-04-01 2017-10-12 주식회사 엘지화학 연속 공정식 음이온 중합개시제의 제조방법 및 이로부터 제조되는 음이온 중합개시제

Similar Documents

Publication Publication Date Title
WO2014175561A1 (ko) 공역디엔계 중합체의 제조방법, 상기 중합체를 포함하는 조성물 및 상기 조성물을 포함하는 타이어
WO2015056898A1 (ko) 변성 공액 디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2016104987A1 (ko) 변성 공액디엔계 중합체 및 그를 포함하는 조성물
WO2015194786A1 (ko) 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
WO2017047923A1 (ko) 음이온 중합개시제의 제조방법, 제조장치 및 이로부터 제조되는 음이온 중합개시제
WO2017111487A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2015056994A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조방법
JP6865298B2 (ja) 連続式反応器を用いた変性重合開始剤の製造方法
WO2015057021A1 (ko) 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2016093496A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2019177436A1 (ko) 변성 중합 개시제 및 이의 제조방법
WO2019083203A1 (ko) 연속식 반응기를 이용한 변성 중합 개시제의 제조방법
WO2017061831A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2016111445A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2018066943A1 (ko) 변성 개시제 및 이를 포함하는 변성 공액디엔계 중합체
WO2016089035A1 (ko) 아민기를 포함하는 음이온 말단을 갖는 음이온 중합 개시제, 이를 이용한 변성 공역디엔계 공중합체의 제조방법, 및 이에 따라 제조한 변성 공역디엔계 공중합체를 포함하는 고무 조성물
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2016085102A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법
WO2019039835A2 (ko) 변성 중합 개시제 및 이의 유래 작용기를 포함하는 변성 공액디엔계 중합체
WO2016080764A1 (ko) 공액 디엔의 중합용 촉매 조성물
WO2016129818A1 (ko) 폴리올레핀-폴리스티렌 블록공중합체를 포함하는 유기 아연 화합물 및 이의 제조 방법
WO2021206250A1 (ko) 촉매 조성물, 이를 포함하는 세척액 조성물 및 이를 이용한 중합장치의 세척방법
WO2015056878A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조방법
KR20190109089A (ko) 연속식 반응을 통한 변성 중합 개시제의 제조방법
WO2023096369A1 (ko) 에틸렌 알파-올레핀 공중합체 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018871351

Country of ref document: EP

Effective date: 20190617

ENP Entry into the national phase

Ref document number: 2019552893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE