WO2019081993A1 - Matériau de masquage et utilisation du matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage - Google Patents

Matériau de masquage et utilisation du matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage

Info

Publication number
WO2019081993A1
WO2019081993A1 PCT/IB2018/057034 IB2018057034W WO2019081993A1 WO 2019081993 A1 WO2019081993 A1 WO 2019081993A1 IB 2018057034 W IB2018057034 W IB 2018057034W WO 2019081993 A1 WO2019081993 A1 WO 2019081993A1
Authority
WO
WIPO (PCT)
Prior art keywords
masking
masking material
dispersion
powder
aluminum
Prior art date
Application number
PCT/IB2018/057034
Other languages
English (en)
Inventor
Nicolas Perrot
Original Assignee
Mecar, Société Anonyme
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecar, Société Anonyme filed Critical Mecar, Société Anonyme
Priority to US16/758,171 priority Critical patent/US11079208B2/en
Priority to LTEPPCT/IB2018/057034T priority patent/LT3701214T/lt
Priority to RS20220745A priority patent/RS63479B1/sr
Priority to CA3079576A priority patent/CA3079576A1/fr
Priority to EP18779054.8A priority patent/EP3701214B1/fr
Priority to ES18779054T priority patent/ES2923681T3/es
Priority to PL18779054.8T priority patent/PL3701214T3/pl
Priority to HRP20221002TT priority patent/HRP20221002T1/hr
Priority to SI201830690T priority patent/SI3701214T1/sl
Priority to DK18779054.8T priority patent/DK3701214T3/da
Publication of WO2019081993A1 publication Critical patent/WO2019081993A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H9/00Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
    • F41H9/06Apparatus for generating artificial fog or smoke screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/70Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/46Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances
    • F42B12/48Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances smoke-producing, e.g. infrared clouds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor

Definitions

  • Masking material and use of the material for masking a lens and ammunition for dispersing such a masking material are described.
  • the technical field of the invention is that of the materials used to ensure the masking of an objective.
  • Masking materials are well known in the military field. They make it possible to protect a target, for example a vehicle, by preventing its detection by an enemy means.
  • Dispersed with a projectile they also make it possible to create a cloud of masking in an area, thus allowing the progression of vehicles or infantrymen towards said zone, sheltered from the cloud.
  • the infrared domains that it is particularly necessary to hide from an operational point of view is the 8-14 micrometer band.
  • silica powder (patent DE4126016), titanium dioxide (statutory invention registration USH769), calcium carbonate or magnesium carbonate (patent FR2396265), carbon powder or carbon nanotubes (patents FR2730742 and FR2421363).
  • the metal powders are interesting but the mass of the block of powder necessary to achieve a masking of relatively large dimensions (height or width greater than 5 meters) will greatly increase the weight of the ammunition loaded to disperse the material, which may lead to a destabilization of the projectile in flight.
  • the metallic material can also be compacted during the storage of the munition leading to masking performance different from that initially expected and may possibly destabilize the projectile in flight by a displacement of the center of gravity.
  • the masking obtained to have a certain duration, it is necessary for the grains of the material to have a sufficiently reduced descent rate.
  • the object of the invention is therefore to provide a material of reduced mass and having good masking efficiency with respect to electromagnetic radiation in a given range of wavelengths.
  • the invention thus allows masking in the visible range but also advantageously in the infrared range, in particular in the 3-5 and 8-14 micrometer ranges.
  • the material according to the invention is of simple industrial implementation and does not present any risk of use.
  • This material is particularly compatible with REACH European regulations.
  • the invention also provides a masking ammunition implementing such a material and allowing its optimal dispersion in the field.
  • the subject of the invention is the use of aluminum oxyhydroxide, such as boehmite or pseudo boehmite, as a dispersible masking material by a munition to ensure the masking of an objective with respect to the radiations electromagnetic in a given wavelength range.
  • aluminum oxyhydroxide such as boehmite or pseudo boehmite
  • the invention proposes a use in which the masking is sought for ranges of infrared wavelengths, the particle size of the oxy- aluminum hydroxide then being between 1 and 100 microns, with at least 90% of the grains of the material which have a mean diameter of between 25 and 45 microns.
  • the subject of the invention is also a masking material intended to be dispersed by an ammunition for producing a cloud ensuring the masking of an objective vis-à-vis the electromagnetic radiations in a given wavelength range, a material characterized in it comprises at least one aluminum oxyhydroxide, such as boehmite or pseudo boehmite.
  • this masking material is effective in a range of infrared wavelengths and the aluminum oxyhydroxide has a particle size of between 1 and 100 microns with at least 90% of the grains of the material which have a mean diameter between 25 and 45 micrometers.
  • the aluminum oxy-hydroxide may be coated with a binder.
  • the binder may in particular comprise polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the subject of the invention is a masking munition comprising an envelope containing a masking material and a pyrotechnic dispersion charge that can be actuated by a rocket, ammunition characterized in that the masking material comprises a material according to the invention.
  • the dispersion load consists of at least one explosive material disposed in a metal dispersion rod closed at its end remote from the rocket, the rod extending axially in the masking material in a manner coaxial with the axis of the ammunition.
  • the masking material may comprise at least one block compressed directly inside the envelope and around the dispersion rod.
  • the masking material may be compressed inside the envelope without the use of a binder.
  • FIG. 1a is a micro-photograph of a first example of grains of a material according to the invention.
  • FIG. 1b is a micro-photograph on a larger scale of a second example of grains of a material according to the invention.
  • FIG. 2 is a longitudinal sectional view of a munition according to one embodiment of the invention.
  • Boehmite and pseudo boehmite are aluminum oxyhydroxides of the generic formula AIO (OH).
  • Boehmite is a naturally occurring material in bauxite ore. It is a hydrated alumina having a lamellar orthorhombic crystalline structure.
  • the pseudo boehmite is a common name for a finely crystallized boehmite, containing more water than boehmite, and consisting of octahedral crystalline layers separated by water molecules.
  • the publication "Crystal Chemistry of Boehmite by Rodney Tettenhorst and Douglas A Hofman" describes comparative syntheses of boehmite and pseudo boehmite and their crystallographic comparisons.
  • boehmite and more particularly finely crystallized boehmite or pseudo boehmite, could be dispersed in the air in the form of a cloud and that the clouds thus produced had a certain durability favoring a masking of a target, for example in the visible range.
  • the falling velocity of cloud particles has been found to be relatively slow with fall velocities of less than 1 m / s.
  • Such behavior is due on the one hand to the reduced mass of the material whose average density of the material itself is of the order of 3 to 3.07 and whose apparent density of the uncompacted bulk powder is less than 1.5, and is due, on the other hand, to the fineness of the boehmite crystals which are morphologically in the form of plates or leaflets as shown in the microscopic picture of FIG. 1a, or in the form of spheres carrying a median trough such as shown in Figure 1b).
  • the powder of the material according to the invention has many advantages.
  • this powder is not a material listed in a pyrotechnic hazard class.
  • the filling of a munition body is easy. It does not require any particular personal protective equipment except a dust mask and safety glasses.
  • the loading of ammunition can be carried out in bulk or compression, however the masking performance of a compressed load will be better.
  • the compression loading will be carried out using conventional and inexpensive installations, such as a hydraulic press.
  • the latter is inert, unlike pulverized aluminum.
  • Bulk density of bulk powder is less than 5, so the material is particularly light.
  • the cloud generated by the suspension of this powder is not corrosive and is very slightly toxic to humans and the environment.
  • the generated cloud makes it possible to provide masking in the infrared ranges of 3 to 5 and 8 to 14 micrometersand in the visible spectrum. Masking is mainly done by absorption of radiation.
  • Boehmite powder or pseudo boehmite is available commercially for different types of grain sizes.
  • This powder is generally produced by a conventional sol-gel process comprising a step of hydrolysis and condensation of an aluminum alkoxide with an excess of water to form an aluminum hydroxide, a step of redissolution of the precipitate obtained to form the sol and formation of the gel by drying the sol.
  • the fineness and morphology of the boehmite or pseudo boehmite grains can be modified by using a spray drying tower.
  • a spray drying tower makes it possible to ensure the drying of industrial boehmite gel or pseudo boehmite solutions while allowing the desired particle size to be calibrated.
  • Spray towers are well known in the field of industrial processes for the production of pulverulent materials and need not be described in more detail.
  • This atomization tower is parameterized so as to obtain a powder whose particle size at d (0.9) is between 25 and 35 micrometers, that is to say that 90% of the grains of the material have an average diameter between 25 and 35 micrometers, the overall particle size of the grains being distributed moreover between 1 micrometer and 100 micrometers.
  • the increase of the atomization pressure makes it possible to reduce the size of the grains of the powder.
  • Such a choice of particle size leads to spherical grains G1, G2 carrying a median trough G3 as shown in Figure lb). This particle size also ensures masking in the ranges of infrared wavelengths in the bands of 3 to 5 and 8 to 14 micrometers.
  • the aluminum oxyhydroxide grains may be coated with a binder.
  • Such a variant will make it possible to increase the size of the granules formed and will facilitate their subsequent compaction in an ammunition. It also makes it possible to limit the dispersion of the grains of the material during the manufacturing steps, in particular by limiting the dust content.
  • the binder may for example comprise polyvinyl alcohol (PVA) in a proportion of 1% to 4% by weight.
  • PVA polyvinyl alcohol
  • the binder is incorporated in the solution of aluminum oxyhydroxide grains in water and before atomization.
  • FIG. 2 shows in longitudinal section an example of an embodiment of a masking munition 1 according to the invention, the munition having a conventional projectile shape with a rotational axis of symmetry X-X '.
  • This ammunition is intended to be pulled by an unrepresented weapon system towards a field area. Its function is to generate at said zone an infrared or visible masking cloud.
  • the munition 1 comprises an envelope 2 enclosing a masking material 3 and a pyrotechnic dispersion charge 4 that can be actuated by a rocket 5, for example of the type chronometric device capable of dissipating a flame in the axial direction XX '.
  • the casing carries at its rear part a belt 12 which makes it possible conventionally to seal the gas when firing into the barrel of a weapon.
  • the dispersion charge 4 is constituted by at least one explosive material, for example tablets of an explosive combining hexogen and wax or a composite explosive, which is disposed in a metal dispersion rod 6 closed at its end 6a. distant from the rocket.
  • the rod 6 is secured to a connecting ring 7 which is fixed to the casing 2, for example by a thread 8.
  • the rod 6 extends axially in the masking material 3 in the dierction of the axis XX 'of the ammunition 1.
  • the connecting ring 7 is preferably made in one piece with the rod 6. This set will for example be made of aluminum to reduce the mass of the munition.
  • the connecting ring 7 contains an internal housing 9 which receives a detonation relay 10 and which is in communication with the cavity of the rod 4. It also comprises a tapping 11 for fixing the rocket 5.
  • the amount of explosive of the dispersion charge 4 is defined as sufficient to ensure the rupture of both the rod 6 and the shell 2 of the munition.
  • the bursting of the dispersion charge 4 puts the masking material 3 into stress, which causes the shell 2 of the munition to burst and the dispersion of the masking material 3.
  • the rod 6 In order to improve the distribution of the masking cloud, the rod 6 will be given a length such that a distance D remains at the rear of the rod 6, at least equal to half the internal diameter d of the envelope 2. Such an arrangement makes it possible to avoid reducing the density of the masking cloud at its center. A rod 6 too long indeed risk creating an annular cloud.
  • the masking material 3 is a material essentially comprising aluminum oxyhydroxide, such as boehmite or pseudo boehmite, the grains of which are optionally coated with a binder such as polyvinyl alcohol (PVA).
  • a binder such as polyvinyl alcohol (PVA).
  • the material 3 is placed in the casing 2 by compression directly into the casing. At least one compressed block is thus produced directly inside the casing 2 and around the dispersion rod 6.
  • the casing 2 carries the connecting ring 7 extended by the 6. It is easy with a piston pierced to the diameter of the rod 6 to achieve an in situ compression of the masking material 3, without the need to perform a subsequent machining of the compressed block to allow the passage of the cane 6. This results in a great ease of manufacture of the ammunition 1.
  • the compression may be performed in one or more passes depending on the length of the munition 1.
  • Locking washers 13 will be positioned between the rear of the block of masking material 3 and a base 14 closing the casing 2 at its rear part.
  • the washers serve to compensate for manufacturing tolerances over the length of the compressed block of the masking material 3 so that the block is immobilized axially in the munition 1.
  • dispersion charge 4 can be put in place only after loading of the masking material 3.
  • the compression operations of the masking material 3 are thus performed on a completely inert munition 1.
  • a solvent will be added to the masking material, for example methyl ethyl ketone in a reduced proportion (5% to 20% by weight, to limit the dust), the solvent may or may not be removed by suction drying before introduction of the base 14.
  • the tests carried out made it possible to verify that the masking material 3 according to the invention was easily compressed, even without a binder.
  • the block obtained is particularly compact and solid. No risk of dislocation when firing is to be feared. No settling of the masking material during the storage phases is to be feared either.
  • the powder of the masking material can be compressed in a separate mold to form a compressed block which can be manipulated to introduce it into the casing 2.
  • the energy imparted by the dispersion charge 4 during its initiation is sufficient to break up the block of the masking material which becomes outside the casing 2 a powdery material forming the desired masking cloud and with the expected performances, especially in the infrared domain.
  • ammunition 1 according to the invention which are not fired by a barrel or a mortar tube but which equip the launcher tubes of the close defense ammunition of the armored vehicles.
  • the masking cloud will have the effect of concealing the vehicle that fires the munition according to the invention.
  • aluminum oxyhydroxide as a masking material 3 need not be in the form of boehmite or pseudo boehmite.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

L'invention a pour objet un matériau de masquage qui est destiné à être dispersé par une munition ou un lanceur pour réaliser un nuage assurant le masquage d'un objectif vis-à- vis des rayonnements électromagnétiques dans une gamme de longueurs d'ondes donnée. Ce matériau est caractérisé en ce qu'il comporte au moins un oxy-hydroxyde d'aluminium, tel que la boehmite ou la pseudo boehmite. L'invention a également pour objet une munition permettant la dispersion d'un tel matériau de masquage et l'utilisation de l' oxy- hydroxyde d'aluminium, tel que la boehmite ou la pseudo boehmite comme matériau de masquage dispersable par une munition.

Description

Matériau de masquage et utilisation du matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage.
Le domaine technique de l'invention est celui des matériaux permettant d'assurer le masquage d'un objectif.
Les matériaux de masquage sont bien connus dans le domaine militaire. Ils permettent de protéger un objectif, par exemple un véhicule, en empêchant sa détection par un moyen ennemi .
Dispersés à l'aide d'un projectile, ils permettent aussi de réaliser un nuage de masquage dans une zone, permettant ainsi la progression de véhicules ou de fantassins vers ladite zone, à l'abri du nuage.
Il est ainsi connu de réaliser des masquages vis-à-vis des rayonnements électromagnétiques dans le domaine visible (longueurs d'onde du rayonnement de 380 nanomètres à 780 nanomètres) et dans le domaine infrarouge (longueurs d'onde de 780 nanomètres à 1 millimètre) .
Compte tenu des technologies de détecteurs infrarouge connues, les domaines infrarouge qu'il est plus particulièrement nécessaire de masquer d'un point de vue opérationnel est la bande 8-14 micromètres.
Pour assurer un masquaç infrarouge, il est connu, dans le domaine des munitions défense rapprochée de véhicules blindés, de disperser une poudre ou des plaquettes métalliques (le plus souvent de laiton ou d'aluminium) . À titre d'exemple, le brevet US5531930 décrit une munition dispersant des plaquettes d'aluminium et le brevet US4704966 décrit un matériau de masquage formé de plaquettes de laiton.
Il a également été proposé de disperser d'autres types de matériaux ayant une granulométrie appropriée au masquage des longueurs d'onde du domaine infrarouge (bandes 3-5 micromètres et 8-12 micromètres).
Parmi les matériaux connus : la poudre de silice (brevet DE4126016) , le dioxyde de titane (statutory invention registration USH769), le carbonate de calcium ou de magnésium (brevet FR2396265), la poudre de carbone ou les nanotubes de carbone (brevets FR2730742 et FR2421363) .
Il est enfin connu de disperser de fines gouttelettes formant un brouillard, masquant dans le domaine visible et infrarouge. Pour cela il suffit de disperser un liquide comme le tétrachlorure de titane qui forme un nuage dense au contact de l'humidité de l'air (brevet EP791164).
Les matériaux formant des nuages de gouttelettes, tétrachlorure de titane par exemple, présentent l'inconvénient d'être très corrosifs et de former des nuages tout à la fois corrosifs et toxiques, comprenant généralement de l'acide chlorhydrique . Ils sont le plus souvent écartés au profit de la dispersion de matériaux inertes.
Les poudres métalliques sont intéressantes mais la masse du bloc de poudre nécessaire pour réaliser un masquage de dimensions relativement importantes (hauteur ou largeur supérieure à 5 mètres) va augmenter fortement le poids de la munition chargée de disperser le matériau, ce qui peut conduire à une déstabilisation du projectile en vol.
Le matériau métallique peut également se compacter au fil du stockage de la munition conduisant à des performances de masquage différentes de celles initialement attendues et peut éventuellement déstabiliser le projectile en vol par un déplacement du centre de gravité.
Par ailleurs pour que le masquage obtenu puisse avoir une certaine durée, il est nécessaire que les grains du matériau aient une vitesse de descente suffisamment réduite.
On adopte ainsi le plus souvent des grains ayant une forme de plaquettes pour que la descente se trouve ralentie. Le brevet US4704966 décrit ainsi un matériau de masquage formé de plaquettes de cuivre ou de laiton.
Cependant cuivre ou laiton sont sensibles à la corrosion et ont une densité trop importante pour réaliser des projectiles permettant de réaliser un masquage de taille importante et à distance .
Il a été proposé par le brevet US5531930 de mettre en œuvre des plaquettes d'aluminium. Cependant ces plaquettes doivent être enrobées pour diminuer les risques d'agglomération dans le corps de munition ce qui complique le procédé de réalisation des munitions. Par ailleurs l'aluminium de faible granulométrie est pyrophorique, c'est-à-dire peut s'enflammer spontanément aux températures ambiantes. Sa mise en œuvre est donc dangereuse et sa dispersion en nuage sur le terrain peut provoquer des incendies.
Le but de l' invention est donc de proposer un matériau de masse réduite et ayant une bonne efficacité de masquage vis à vis des rayonnements électromagnétiques dans une gamme de longueurs d'ondes donnée.
L' invention permet ainsi un masquage dans le domaine visible mais aussi avantageusement dans le domaine infrarouge, en particulier dans les gammes 3-5 et 8-14 micromètres.
Le matériau selon l'invention est de mise en œuvre industrielle simple et ne présente aucun risque d'emploi.
Ce matériau est en particulier compatible avec les réglementations européennes REACH.
L' invention propose également une munition de masquage mettant en œuvre un tel matériau et permettant sa dispersion optimale sur le terrain.
Ainsi l'invention a pour objet l'utilisation de l'oxy- hydroxyde d' aluminium, tel que la boehmite ou la pseudo boehmite, comme matériau de masquage dispersable par une munition pour assurer le masquage d'un objectif vis à vis des rayonnements électromagnétiques dans une gamme de longueurs d'ondes donnée.
Avantageusement l'invention propose une utilisation dans laquelle le masquage est recherché pour des gammes de longueurs d'ondes infrarouges, la granulométrie de l'oxy- hydroxyde d'aluminium étant alors comprise entre 1 et 100 micromètres, avec au moins 90% des grains du matériau qui ont un diamètre moyen compris entre 25 et 45 micromètres.
L'invention a également pour objet un matériau de masquage destiné à être dispersé par une munition pour réaliser un nuage assurant le masquage d'un objectif vis-à-vis des rayonnements électromagnétiques dans une gamme de longueurs d'ondes donnée, matériau caractérisé en ce qu'il comporte au moins un oxy-hydroxyde d'aluminium, tel que la boehmite ou la pseudo boehmite.
Avantageusement ce matériau de masquage est efficace dans une gamme de longueurs d'ondes infrarouges et l' oxy-hydroxyde d'aluminium a une granulométrie comprise entre 1 et 100 micromètres avec au moins 90% des grains du matériau qui ont un diamètre moyen compris entre 25 et 45 micromètres.
Selon une variante de réalisation, l' oxy-hydroxyde d'aluminium pourra être enrobé avec un liant.
Le liant pourra en particulier comprendre de l'alcool polyvinylique (PVA).
L'invention a enfin pour objet une munition de masquage comprenant une enveloppe renfermant un matériau de masquage et une charge pyrotechnique de dispersion pouvant être actionnée par une fusée, munition caractérisée en ce que le matériau de masquage comprend un matériau selon l'invention.
Selon un mode de réalisation, la charge de dispersion est constituée par au moins un matériau explosif disposé dans une canne de dispersion métallique fermée au niveau de son extrémité distante de la fusée, la canne s' étendant axialement dans le matériau de masquage d'une manière coaxiale avec l'axe de la munition.
Avantageusement le matériau de masquage pourra comprendre au moins un bloc comprimé directement à l'intérieur de l'enveloppe et autour de la canne de dispersion.
Selon un mode particulier de réalisation le matériau de masquage pourra être comprimé à l'intérieur de l'enveloppe sans mise en œuvre d'un liant.
L' invention sera mieux comprise à la lecture de la description qui va suivre de modes particuliers de réalisation, description faite en référence aux dessins annexés et dans lesquels :
- La figure la est une micro photographie d' un premier exemple de grains d'un matériau selon l'invention ;
- La figure lb est une micro photographie à plus grande échelle d'un deuxième exemple de grains d'un matériau selon l'invention ;
- La figure 2 est une vue en coupe longitudinale d' une munition selon un mode de réalisation de l'invention.
La boehmite et la pseudo boehmite sont des oxy-hydroxyde d'aluminium de formule générique AIO(OH). La boehmite est un matériau qui existe naturellement dans le minerai de bauxite. C'est une alumine hydratée ayant une structure cristalline orthorhombique lamellaire. La pseudo boehmite est une désignation courante d'une boehmite finement cristallisée, contenant d'avantage d'eau que la boehmite, et formée de couches cristallines octaédriques séparées par des molécules d'eau. La publication « Crystal chemistry of Boehmite de Rodney Tettenhorst et Douglas A Hofman (Clays and clay minerais vol 28, n°5, 373- 380, 1980) » décrit des synthèses comparatives de boehmite et pseudo boehmite et leurs comparaisons cristallographiques .
Ces matériaux sont faciles à approvisionner et sont couramment utilisés dans l'industrie pour la préparation d'abrasifs, de revêtements céramigues, d'encres, de papier, de catalyseurs...
Ils sont aussi utilisés comme produits intermédiaires dans la métallurgie de l'aluminium.
Ces matériaux n'ont à ce jour jamais été mis en œuvre dans le domaine de l'armement et en particulier n'a jamais été incorporé comme chargement d'une munition fumigène.
Les essais conduits par la déposante ont permis de constater que la boehmite, et plus particulièrement la boehmite finement cristallisée ou pseudo boehmite, pouvait être dispersée dans l'air sous forme de nuage et que les nuages ainsi réalisés avaient une certaine durabilité favorisant un masquage d'une cible, par exemple dans le domaine visible.
Il a en particulier été constaté que la vitesse de chute des particules du nuage était relativement lente avec des vitesses de chute inférieure à 1 m/s . Un tel comportement est dû d'une part à la masse réduite du matériau dont la densité moyenne du matériau lui-même est de l'ordre de 3 à 3,07 et dont la densité apparente de la poudre en vrac non compactée est inférieure à 1,5, et est dû d'autre part à la finesse des cristaux de boehmite qui sont morphologiquement en forme de plaques ou de feuillets comme illustré dans la photo microscopique de la figure la, ou encore en forme de sphères portant un creux médian comme représenté dans la figure lb) .
Ces formes favorisent une chute lente des grains et la durabilité du nuage qui est par ailleurs peu sensible au vent .
La poudre du matériau selon l'invention possède beaucoup d' avantages .
D'un point de vue procédé de chargement des corps de munition, cette poudre n'est pas un matériau répertorié dans une classe de risque pyrotechnique.
Le remplissage d'un corps de munition est aisé. Il ne nécessite pas d' équipements de protection individuels particuliers, hormis un masque à poussières et des lunettes de sécurité.
Le chargement des munitions pourra être effectué en vrac ou par compression, cependant les performances de masquage d'un chargement comprimé seront meilleures. Le chargement par compression sera effectué en mettant en œuvre des installations classiques et peu coûteuse, telle qu'une presse hydraulique.
Du point de vue des propriétés intrinsèques de la poudre, cette dernière est inerte, contrairement à l'aluminium pulvérulent . densité apparente de la poudre en vrac est inférieure 5, le matériau est donc particulièrement léger.
Le nuage généré par la suspension de cette poudre n'est pas corrosif et il est très faiblement toxique pour l'homme et 1' environnement .
Par un choix judicieux de la granulométrie, le nuage généré permet d' assurer un masquage dans les gammes infrarouges de 3 à 5 et 8 à 14 micromètreset dans le spectre du visible. Le masquage est principalement assuré par absorption du rayonnement .
L'humidité de l'air ou le taux d'oxygène n'ont que peu d'influence sur l'efficacité de l'aérosol. La poudre ne réagit pas, ni avec l'air, ni avec l'eau de l'atmosphère. poudre de boehmite ou pseudo boehmite est disponible dan commerce pour différents types de granulométries .
Cette poudre est généralement réalisée par un procédé classique de type sol-gel comprenant une étape d'hydrolyse et condensation d'un alkoxyde d'aluminium avec un excès d'eau pour former un hydroxyde d' aluminium, une étape de redissolution du précipité obtenu pour former le Sol puis formation du Gel par séchage du Sol.
Ce procédé Sol-Gel a été mis au point par B.E Yoldas. Pour plus de détails sur les procédés Sol-Gel il est possible de consulter l'ouvrage « Handbook of Sol-Gel science and technology » de Sumio Sakka (ISBN : 1-4020-7968-0) .
La finesses et la morphologie des grains de boehmite ou pseudo boehmite est modifiable en mettant en œuvre une tour de séchage par atomisation. Une telle tour permet d'assurer un séchage des solutions Gel de boehmite ou de pseudo boehmite industrielles tout en permettant de calibrer la granulométrie souhaitée.
Les tours d' atomisation sont bien connues dans le domaine des procédés industriels de production de matériaux pulvérulents et il n'est donc pas nécessaire de les décrire plus en détails .
On paramétrera cette tour d' atomisation de façon à obtenir une poudre dont la granulométrie à d(0,9) est comprise entre 25 et 35 micromètres, c'est-à-dire que 90% des grains du matériau ont un diamètre moyen compris entre 25 et 35 micromètres, la granulométrie globale des grains se répartissant par ailleurs entre 1 micromètre et 100 micromètres. D'une façon classique l'augmentation de la pression d' atomisation permet de diminuer la taille des grains de la poudre.
Un tel choix de granulométrie conduit à des grains G1,G2 en forme de sphères portant un creux médian G3 comme représenté dans la figure lb) . Cette granulométrie assure par ailleurs un masquage dans les gammes de longueurs d'ondes infrarouges dans les bandes de 3 à 5 et 8 à 14 micromètres.
À titre de variante les grains d' oxy-hydroxyde d' aluminium pourront être enrobés avec un liant.
Une telle variante permettra d' augmenter la taille des granules formés et facilitera leur compaction ultérieure dans une munition. Elle permet aussi de limiter la dispersion des grains du matériau lors des étapes de fabrication, notamment par limitation du taux de poussière.
Le liant pourra par exemple comprendre de l'alcool polyvinylique (PVA) dans une proportion de 1% à 4% en masse.
Le liant est incorporé à la solution des grains d' oxy- hydroxyde d'aluminium dans l'eau et avant l' atomisation .
La figure 2 montre en coupe longitudinale un exemple d' un mode de réalisation d'une munition 1 de masquage selon l'invention, la munition auyant une forme classique d'un projectile avec un axe de symétrie rotationel X-X' .
Cette munition est destinée à être tirée par un système d'arme non représenté en direction d'une zone de terrain. Elle a pour fonction de générer au niveau de ladite zone un nuage de masquage infrarouge ou visible.
La munition 1 comprend une enveloppe 2 renfermant un matériau de masquage 3 et une charge pyrotechnique de dispersion 4 pouvant être actionnée par une fusée 5, par exemple de type chronométrique pouvant dissiper une flamme dans la direction axiale X-X' .
L'enveloppe porte à sa partie arrière une ceinture 12 permettant de façon classique d'assurer l'étanchéité aux gaz lors du tir dans le tube d'une arme.
La charge de dispersion 4 est constituée par au moins un matériau explosif, par exemple des comprimés d'un explosif associant hexogène et cire ou d'un explosif composite, qui est disposé dans une canne de dispersion métallique 6 fermée au niveau de son extrémité 6a distante de la fusée.
La canne 6 est solidaire d'une bague de liaison 7 qui est fixée à l'enveloppe 2, par exemple par un filetage 8. La canne 6 s'étend axialement dans le matériau de masquage 3 dans la dierction de l axe X-X' de la munition 1.
La bague de liaison 7 est réalisée de préférence de façon monobloc avec la canne 6. Cet ensemble sera par exemple réalisé en aluminium pour réduire la masse de la munition.
La bague de liaison 7 renferme un logement interne 9 qui reçoit un relais de détonation 10 et qui est en communication avec la cavité de la canne 4. Elle comporte aussi un taraudage 11 permettant de fixer la fusée 5.
La quantité d'explosif de la charge de dispersion 4 est définie suffisante pour assurer la rupture, tant de la canne 6 que de l'enveloppe 2 de la munition. Lorsque la munition est lancée par un canon par exemple pour masquer un objectif, à un instant donné sur le trajectoire de la munition ou par l'impact de la munition, la fusée 5 provoque l'initiation du relais de détonation 10 qui lui-même initie la charge de dispersion 4.
L'éclatement de la charge de dispersion 4 met en contrainte le matériau de masquage 3 qui provoque l'éclatement de l'enveloppe 2 de la munition et la dispersion du matériau de masquage 3.
Afin d'améliorer la répartition du nuage de masquage on donnera à la canne 6 une longueur telle qu'il subsiste en arrière de la canne 6 une distance D, au moins égale à la moitié du diamètre interne d de l'enveloppe 2. Une telle disposition permet d'éviter de réduire la densité du nuage de masquage en son centre. Une canne 6 trop longue risque en effet de créer un nuage annulaire.
Le matériau de masquage 3 est un matériau comprenant essentiellement de l' oxy-hydroxyde d'aluminium, tel que la boehmite ou la pseudo boehmite, dont les grains sont éventuellement enrobés par un liant tel que l'alcool polyvinylique (PVA) .
De préférence le matériau 3 est mis en place dans l'enveloppe 2 par compression directement dans l'enveloppe. On réalise ainsi au moins un bloc comprimé directement à l'intérieur de l'enveloppe 2 et autour de la canne de dispersion 6.
Conformément à ce mode de réalisation de l' invention, l'enveloppe 2 porte la bague de liaison 7 prolongée par la canne 6. Il est aisé à l'aide d'un piston percé au diamètre de la canne 6 de réaliser une compression in situ du matériau de masquage 3, sans qu'il soit nécessaire de réaliser un usinage ultérieur du bloc comprimé pour permettre le passage de la canne 6. Il en résulte une grande facilité de fabrication de la munition 1.
La compression pourra être réalisée en une ou plusieurs passes en fonction de la longueur de la munition 1.
Des rondelles de calage 13 seront positionnées entre l'arrière du bloc de matériau de masquage 3 et un culot 14 assurant la fermeture de l'enveloppe 2 à sa partie arrière. Les rondelles servent à compenser les tolérances de fabrication sur la longueur du bloc comprimé du matériau de masquage 3 de façon à ce que bloc soit bien immobilisé axialement dans la munition 1.
On notera que la charge de dispersion 4 peut n' être mise en place qu'après chargement du matériau de masquage 3. Les opérations de compression du matériau de masquage 3 sont donc effectuées sur une munition 1 complètement inerte.
Selon un mode de réalisation particulièrement avantageux, on pourra comprimer le matériau de masquage 3 à l'intérieur de l'enveloppe 2 sans mise en œuvre d'un liant. Dans ce cas on ajoutera cependant au matériau de masquage un solvant, par exemple le méthyléthylcétone en proportion réduite (5% à 20% en masse, pour limiter les poussières. Le solvant pourra ou non être évacué par séchage avec aspiration avant mise en place du culot 14. Les essais réalisés ont permis de vérifier que le matériau de masquage 3 selon l'invention se comprimait aisément, même sans liant. Le bloc obtenu est particulièrement compact et solide. Aucun risque de dislocation lors du tir n'est à craindre. Aucune décantation du matériau de masquage lors des phases de stockage n'est à craindre non plus.
Il est évident que la poudre du matéria de masquage peut être comprimé dans un moule séparé poi r former un bloc comprimé que l'on peut manipuler pour l' introduire dans l'enveloppe 2.
De manière alternative il n'est pas exclu de remplir l'enveloppe 2 en versant la poudre non-comprimé dans l'enveloppe 2 et de mettre en place le culot 14 sans avoir comprimé la poudre préalablement.
De façon surprenante, l'énergie communiquée par la charge de dispersion 4 lors de son initiation suffit à fragmenter le bloc du matériau de masquage qui redevient hors de l'enveloppe 2 un matériau pulvérulent formant le nuage de masquage souhaité et avec les performances attendues, en particulier dans le domaine infrarouge.
Il est bien entendu possible de réaliser des munitions 1 selon l'invention qui ne sont pas tirées par un canon ou un tube de mortier mais qui équipent les tubes lanceur des munitions de défense rapprochée des véhicules blindés. Dans ce cas, le nuage de masquage aura pour effet de dissimuler le véhicule qui tire la munition selon l'invention. Il est clair que l' oxy-hydroxyde d'aluminium comme matériau de masquage 3 ne doit pas nécessairement se présenter sous la forme de boehmite ou de la pseudo boehmite.
Il est évident que l'invention n'est nullement limitée aux exemples décrits ci-avant mais que de nombreuses modifications peuvent être apportées à la munition et au matériau de masquage ainsi qu'à la méthode décrits ci-avant sans sortir du cadre de l'invention telle que définie dans les revendications suivantes.

Claims

REVENDICATIONS
1.- Utilisation de l' oxy-hydroxyde d'aluminium, tel que la boehmite ou la pseudo boehmite comme matériau de masquage (3) dispersable par une munition (l)ou un lanceur pour assurer le masquage d'un objectif vis à vis des rayonnements électromagnétiques dans une gamme de longueurs d'ondes donnée .
2.- Utilisation selon la revendication 1 pour le masquage d'un objectif pour une gamme de longueurs d'ondes infrarouges, caractérisée en ce que l' oxy-hydroxyde d'aluminium est utilisée sous forme de poudre, comprimé ou non, dont la granulométrie est comprise entre 1 et 100 micromètres, avec au moins 90% des grains (G1,G2) du matériau de masquage (3) qui ont un diamètre moyen compris entre 25 et 35 micromètres.
3. - Utilisation selon la revendication 1 ou 2 pour le masquage d'un objectif pour des rayonnements électromagnétiques dans la bande de longueurs d'ondes infrarouges de 8 à 14 micromètres, dans la bande de longueurs d'ondes infrarouges de 3 à 5 micromètres et le visible
4. - Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que 1 ' oxy-hydroxyde d'aluminium est dispersée sous forme d'un nuage.
5.- Utilisation selon la revendication 2 ou 3, caractérisée en ce que 1 ' oxy-hydroxyde d'aluminium est dispersée au moyen d'une munition explosive comprenant de la poudre d' oxy- hydroxyde d'aluminium sous forme comprimée ou non.
6. - Matériau de masquage destiné à être dispersé par une munition ( 1 ) ou un lanceur pour réaliser un nuage assurant le masquage d'un objectif vis-à-vis des rayonnements électromagnétiques dans une gamme de longueurs d'ondes donnée, caractérisé en ce que le matériau de masquage (3) comporte au moins un oxy-hydroxyde d' aluminium, tel que la boehmite ou la pseudo boehmite.
7. - Matériau de masquage selon la revendication 6, caractérisé en ce que le matériau de masquage (3) est composé essentiellement par de 1 'oxy-hydroxyde d'aluminium.
8. - Matériau de masquage selon la revendication 6 ou 7 et efficace dans une gamme de longueurs d'ondes infrarouges et du visible, caractérisé en ce que 1 ' oxy-hydroxyde d'aluminium est une poudre dont la granulométrie est comprise entre 1 et 100 micromètres avec au moins 90% des grains (G1,G2) du matériau de masquage (3) qui ont un diamètre moyen compris entre 25 et 35 micromètres.
9. - Matériau de masquage selon l'une des revendications 6 à 8 et efficace dans une gamme de longueurs d'ondes infrarouges, caractérisé en ce que l'oxy-hydroxyde d'aluminium a une granulométrie des grains (G1,G2) en forme de plaques ou de feuillets ou en forme de sphères portant un creux médian (G3) .
10. - Matériau de masquage selon la revendication 8 ou 9, caractérisé en ce que les grains (G1,G2) de l'oxy-hydroxyde d'aluminium sont enrobés avec un liant.
11.- Matériau de masquage selon la revendication 10, caractérisé en ce que le liant comprend de l'alcool polyvinylique (PVA) .
12.- Matériau de masquage selon la revendication 11, caractérisé en ce que le liant comprend de l'alcool polyvinylique (PVA) dans une proportion de 1% à 4% en masse.
13.- Matériau de masquage selon l'une quelconque des revendications 8 à 12, caractérisé en ce qu'il se présente sous forme d'un bloc de poudre comprimé.
14.- Munition de masquage comprenant une enveloppe renfermant un matériau de masquage (3) et une charge pyrotechnique de dispersion (4) pouvant être actionnée par une fusée (5) , caractérisée en ce que la munition (1) comprend un matériau de masquage (3) selon l'une des revendications 6 à 13.
15. - Munition de masquage selon la revendication 14, caractérisée en ce que la charge pyrotechnique de dispersion (4) est constituée par au moins un matériau explosif disposé dans une canne de dispersion (6) fermée au niveau de son extrémité (6a) distante de la fusée (5), la canne de dispersion (6) s' étendant axialement dans le matériau de masquage (3) et dans l'axe de la munition.
16. - Munition de masquage selon la revendication 15, caractérisée en ce que la canne de dispersion (6) est une canne métalique.
17. - Munition de masquage selon la revendication 15 ou 16, caractérisée en ce que le matériau de masquage (3) est enfermé dans l'enveloppe (2) par un culot (14) assurant la fermeture de l'enveloppe (2) à sa partie arrière et que la longueur de la canne de dispersion (6) est telle qu'il subsiste une distance axiale (D) entre la canne (6) et le culot (14) .
18. - Munition de masquage selon la revendication 17, caractérisée en ce que la distance (D) entre la canne (6) et le culot (14) est au moins égale à la moitié du diamètre interne (d) de l'enveloppe 2.
19. - Munition de masquage selon l'une quelconque des revendication 15 à 18, caractérisée en ce que le matériau explosif de la charge pyrotechnique de dispersion (4) comprend des comprimés d'un explosif associant hexogène et cire ou d'un explosif composite.
20.- Munition de masquage selon la revendication 19, caractérisée en ce que la quantité d'explosif de la charge de dispersion (4) est suffisante pour assurer la rupture, tant de la canne (6) que de l'enveloppe (2).
21.- Munition de masquage selon l'une quelconque des revendication 14 à 20, caractérisée en ce que le matériau de masquage (3) comprend au moins un bloc comprimé directement à l'intérieur de l'enveloppe (2) et autour de la canne de dispersion ( 6) .
22.- Munition de masquage selon la revendication 21, caractérisée en ce que le matériau de masquage (3) est comprimé à l'intérieur de l'enveloppe (2) sans mise en œuvre d'un liant.
23. - Méthode de fabrication d'une poudre du matériaux de masquage selon l'une des revendications 8 à 13, caractérisée en ce que cette poudre est réalisée par un procédé de type sol-gel comprenant une étape d'hydrolyse et de condensation d'un alkoxyde d'aluminium avec un excès d'eau, suivie par une étape de redissolution du précipité obtenu pour former le Sol et puis par une étape de formation du Gel par séchage du Sol, suivi par un séchage des solutions Gel de boehmite ou de pseudo boehmite obtenues au moyen d'une tour de séchage par atomisation calibrée pour obtenir la granulométrie souhaitée à d(0,9) comprise entre 25 et 35 micromètre.
24. - Méthode de fabrication selon la revendication 23, caractérisée en ce que les grains (G1,G2) de la poudre sont enrobés par un liant comprenant de l'alcool polyvinylique (PVA) , le liant estant incorporé à la solution des grains d' oxy-hydroxyde d'aluminium dans l'eau et avant l' atomisation.
25.- Méthode de fabrication selon la revendication 23, caractérisée en ce que, dans le cas ou la poudre est destinée à être comprimée sans mise en œuvre d'un liant, un solvant est ajouté au matériau de masquage, le solvant pouvant être évacué après compression par séchage avec aspiratio
PCT/IB2018/057034 2017-10-23 2018-09-14 Matériau de masquage et utilisation du matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage WO2019081993A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US16/758,171 US11079208B2 (en) 2017-10-23 2018-09-14 Masking material and use of the material to mask a target and ammunition for disseminating such masking material
LTEPPCT/IB2018/057034T LT3701214T (lt) 2017-10-23 2018-09-14 Medžiagos taikiniui maskuoti ir amunicijos tokiai maskuojančiai medžiagai išsklaidyti naudojimas
RS20220745A RS63479B1 (sr) 2017-10-23 2018-09-14 Korišćenje materijala za maskiranje cilja i municija kojom se omogućava raspršivanje ovog materijala za maskiranje
CA3079576A CA3079576A1 (fr) 2017-10-23 2018-09-14 Materiau de masquage et utilisation du materiau pour masquage d'un objectif et munition permettant de disperser un tel materiau de masquage
EP18779054.8A EP3701214B1 (fr) 2017-10-23 2018-09-14 Utilisation de matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage
ES18779054T ES2923681T3 (es) 2017-10-23 2018-09-14 Uso de material para enmascarar un objetivo y munición que permite dispersar dicho material de enmascaramiento
PL18779054.8T PL3701214T3 (pl) 2017-10-23 2018-09-14 Zastosowanie materiału do maskowania celu oraz amunicja do rozprowadzania takiego materiału do maskowania
HRP20221002TT HRP20221002T1 (hr) 2017-10-23 2018-09-14 Korištenje materijala za maskiranje cilja i streljivo kojim se omogućava raspršivanje takvog materijala za maskiranje
SI201830690T SI3701214T1 (sl) 2017-10-23 2018-09-14 Uporaba materiala za maskiranje tarče in strelivo za dispergiranje takšnega maskirnega materiala
DK18779054.8T DK3701214T3 (da) 2017-10-23 2018-09-14 Anvendelse af materiale til maskering af en genstand og ammunition, der muliggør dispersion af et sådant maskeringsmateriale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2017/5755 2017-10-23
BE2017/5755A BE1025655B1 (fr) 2017-10-23 2017-10-23 Matériau de masquage et utilisation du matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage

Publications (1)

Publication Number Publication Date
WO2019081993A1 true WO2019081993A1 (fr) 2019-05-02

Family

ID=62027748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/057034 WO2019081993A1 (fr) 2017-10-23 2018-09-14 Matériau de masquage et utilisation du matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage

Country Status (14)

Country Link
US (1) US11079208B2 (fr)
EP (1) EP3701214B1 (fr)
BE (1) BE1025655B1 (fr)
CA (1) CA3079576A1 (fr)
DK (1) DK3701214T3 (fr)
ES (1) ES2923681T3 (fr)
HR (1) HRP20221002T1 (fr)
HU (1) HUE059236T2 (fr)
LT (1) LT3701214T (fr)
PL (1) PL3701214T3 (fr)
PT (1) PT3701214T (fr)
RS (1) RS63479B1 (fr)
SI (1) SI3701214T1 (fr)
WO (1) WO2019081993A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002776A1 (de) 2020-05-09 2021-11-11 Diehl Defence Gmbh & Co. Kg Wirkmittelanordnung, Geschoss und Verfahren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129786B4 (de) * 2018-11-26 2022-03-03 Rheinmetall Waffe Munition Gmbh Erprobungs- und/oder Übungsmunition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2396265A1 (fr) 1977-06-28 1979-01-26 Nico Pyrotechnik Procede de production de nuages denses en vue du camouflage
FR2421363A1 (fr) 1978-03-31 1979-10-26 Magnusson Arnold Aerosol d'attenuation de transmission du rayonnement, en particulier du rayonnement infrarouge
US4704966A (en) 1986-05-16 1987-11-10 Aai Corporation Method of forming IR smoke screen
DE4126016C1 (en) 1991-08-06 1992-11-12 Dynamit Nobel Ag, 5210 Troisdorf, De Non-moisture sensitive, artificial camouflaging mixt. - comprises metal dust solid particles e.g. of iron@ surrounded by hydrophobic silica gel
US5531930A (en) 1994-04-12 1996-07-02 Israel Institute For Biological Research Aluminum metal composition flake having reduced coating
FR2730742A1 (fr) 1983-02-08 1996-08-23 Armement Et D Etudes Sae Alset Aerosol pulverulent pour la formation d'un ecran nuageux, opaque au rayonnement infrarouge
US5593781A (en) * 1992-04-15 1997-01-14 Institut Fue Neue Materialien Gemeinnutzige GMBH Method of manufacturing surface-modified ceramic powders with particles in the nanometer size
EP0791164A1 (fr) 1994-11-11 1997-08-27 Forsvarets Forskningsinstitutt Grenade fumigene a main
US20040247899A1 (en) * 2003-06-05 2004-12-09 Peter Bier Process for the production of non-fogging scratch-resistant laminate
EP1671614A1 (fr) * 2004-12-17 2006-06-21 L'oreal Emulsion cosmétique comprenant des particules solides
WO2006115492A1 (fr) * 2005-04-26 2006-11-02 Tda Research Inc. Compositions liberables empechant la corrosion
US20100324193A1 (en) * 2008-02-19 2010-12-23 Albemarle Corporation A process for the production of nanodispersible boehmite and the use thereof in flame retardant synthetic resins
US9828304B1 (en) * 2015-04-21 2017-11-28 The United States Of America As Represented By The Secretary Of The Army Composites of porous pyrophoric iron and ceramic and methods for preparation thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507956A (en) * 1992-03-13 1996-04-16 Solvay Unweltchemie Gmbh Abrasion-resistant carrier catalyst
US7166271B2 (en) * 2003-10-28 2007-01-23 J.M. Huber Corporation Silica-coated boehmite composites suitable for dentifrices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2396265A1 (fr) 1977-06-28 1979-01-26 Nico Pyrotechnik Procede de production de nuages denses en vue du camouflage
FR2421363A1 (fr) 1978-03-31 1979-10-26 Magnusson Arnold Aerosol d'attenuation de transmission du rayonnement, en particulier du rayonnement infrarouge
FR2730742A1 (fr) 1983-02-08 1996-08-23 Armement Et D Etudes Sae Alset Aerosol pulverulent pour la formation d'un ecran nuageux, opaque au rayonnement infrarouge
US4704966A (en) 1986-05-16 1987-11-10 Aai Corporation Method of forming IR smoke screen
DE4126016C1 (en) 1991-08-06 1992-11-12 Dynamit Nobel Ag, 5210 Troisdorf, De Non-moisture sensitive, artificial camouflaging mixt. - comprises metal dust solid particles e.g. of iron@ surrounded by hydrophobic silica gel
US5593781A (en) * 1992-04-15 1997-01-14 Institut Fue Neue Materialien Gemeinnutzige GMBH Method of manufacturing surface-modified ceramic powders with particles in the nanometer size
US5531930A (en) 1994-04-12 1996-07-02 Israel Institute For Biological Research Aluminum metal composition flake having reduced coating
EP0791164A1 (fr) 1994-11-11 1997-08-27 Forsvarets Forskningsinstitutt Grenade fumigene a main
US20040247899A1 (en) * 2003-06-05 2004-12-09 Peter Bier Process for the production of non-fogging scratch-resistant laminate
EP1671614A1 (fr) * 2004-12-17 2006-06-21 L'oreal Emulsion cosmétique comprenant des particules solides
WO2006115492A1 (fr) * 2005-04-26 2006-11-02 Tda Research Inc. Compositions liberables empechant la corrosion
US20100324193A1 (en) * 2008-02-19 2010-12-23 Albemarle Corporation A process for the production of nanodispersible boehmite and the use thereof in flame retardant synthetic resins
US9828304B1 (en) * 2015-04-21 2017-11-28 The United States Of America As Represented By The Secretary Of The Army Composites of porous pyrophoric iron and ceramic and methods for preparation thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RODNEY TETTENHORST; DOUGLAS A HOFMAN: "Clays and clay minerais", CRYSTAL CHEMISTRY OF BOEHMITE, vol. 28, no. 5, 1980, pages 373 - 380
SUMIO SAKKA: "Handbook of Sol-Gel science and technology", ISBN: 1-4020-7968-0

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002776A1 (de) 2020-05-09 2021-11-11 Diehl Defence Gmbh & Co. Kg Wirkmittelanordnung, Geschoss und Verfahren

Also Published As

Publication number Publication date
HRP20221002T1 (hr) 2022-11-11
EP3701214A1 (fr) 2020-09-02
CA3079576A1 (fr) 2019-05-02
PL3701214T3 (pl) 2022-09-19
RS63479B1 (sr) 2022-08-31
BE1025655B1 (fr) 2019-05-21
ES2923681T3 (es) 2022-09-29
DK3701214T3 (da) 2022-07-25
LT3701214T (lt) 2022-06-27
US11079208B2 (en) 2021-08-03
US20200309494A1 (en) 2020-10-01
SI3701214T1 (sl) 2022-07-29
PT3701214T (pt) 2022-07-13
HUE059236T2 (hu) 2022-10-28
BE1025655A1 (fr) 2019-05-16
EP3701214B1 (fr) 2022-05-18

Similar Documents

Publication Publication Date Title
US7469640B2 (en) Flares including reactive foil for igniting a combustible grain thereof and methods of fabricating and igniting such flares
EP3701214B1 (fr) Utilisation de matériau pour masquage d'un objectif et munition permettant de disperser un tel matériau de masquage
US9494397B2 (en) Polymer projectile having an integrated driving band
US9739584B2 (en) Projectile tracer
US8783186B2 (en) Use of pyrophoric payload material in ammunition training rounds
EP1734333B1 (fr) Munition ou composant de munition constituant un engin volant tel un drône
FR2671617A1 (fr) Charge creuse a dispositif deviateur des ondes de detonation.
US8783183B2 (en) Active body
EP0180515B1 (fr) Dispositif pour réduire la trainée des munitions et munitions aptes à le recevoir
US4936219A (en) Fin protection device
JPH01164789A (ja) 信号弾組成物及びこの信号弾組成物を含む信号弾
RU2626797C2 (ru) Способ минимизации зон отчуждения отделяемых частей ракет-носителей
EP0890819A1 (fr) Munition de marquage coloré
US5531930A (en) Aluminum metal composition flake having reduced coating
FR2749382A1 (fr) Utilisation d'un materiau composite a deux composants metalliques, qui sont amenes a reagir selon une reaction fortement exothermique induite par onde de choc, destine a une partie d'un projectile
EP0774642B1 (fr) Procédé de dispersion ou d'application d'un matériau actif, composition et projectile mettant en oeuvre un tel procédé
RU2797572C1 (ru) Боеприпас гладкоствольного огнестрельного оружия
EP0557200B1 (fr) Procédé et dispositif pour neutraliser une menace par déploiement d'une substance neutralisante
US1842369A (en) Gas liberating charge
CA3045649A1 (fr) Materiaux auto-incandescents, munition traceuse et dispositifs d'eclairage
FR2591735A1 (fr) Generateur pyrotechnique de gaz et utilisation dans un dispositif ejecteur de sous-munitions d'une charge militaire
FR2741434A1 (fr) Procede de dispersion ou d'application d'un materiau actif et composition mise en oeuvre pour un tel procede
RU2114380C1 (ru) Унитарный патрон
EP1059505B1 (fr) Douille métallique de munition pour armes à feu interieurement revêtue d'un manchon anti-érosif
RU2357945C1 (ru) Пиротехнический гранулированный состав для образования дымовой завесы инфракрасного излучения с пороховым покрытием и способ его изготовления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18779054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3079576

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018779054

Country of ref document: EP

Effective date: 20200525