RU2626797C2 - Способ минимизации зон отчуждения отделяемых частей ракет-носителей - Google Patents

Способ минимизации зон отчуждения отделяемых частей ракет-носителей Download PDF

Info

Publication number
RU2626797C2
RU2626797C2 RU2015137375A RU2015137375A RU2626797C2 RU 2626797 C2 RU2626797 C2 RU 2626797C2 RU 2015137375 A RU2015137375 A RU 2015137375A RU 2015137375 A RU2015137375 A RU 2015137375A RU 2626797 C2 RU2626797 C2 RU 2626797C2
Authority
RU
Russia
Prior art keywords
detachable parts
composition
ignition
pyrotechnic composition
minimizing
Prior art date
Application number
RU2015137375A
Other languages
English (en)
Other versions
RU2015137375A (ru
Inventor
Валерий Иванович Трушляков
Яков Тимофеевич Шатров
Давид Борисович Лемперт
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"
Priority to RU2015137375A priority Critical patent/RU2626797C2/ru
Publication of RU2015137375A publication Critical patent/RU2015137375A/ru
Application granted granted Critical
Publication of RU2626797C2 publication Critical patent/RU2626797C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Air Bags (AREA)

Abstract

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю. По результатам расчетов определяют участки на траектории спуска для воздействия на ОЧ, формируют сигнал в процессе автономного полета ОЧ и осуществляют воздействие на конструкцию ОЧ. На ОЧ размещают пиротехнический состав. При сжигании пиротехнический состав обеспечивает нагрев ОЧ до температуры, при которой происходит их горение в набегающем потоке атмосферного воздуха, по достижении высоты 25-30 км осуществляют зажигание ОЧ с использованием зажигающего состава. Техническим результатом изобретения является максимальное снижение площадей, выделяемых под районы падения ОЧ РН. 5 з.п. ф-лы, 1 табл.

Description

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяемых частей (ОЧ) ступеней ракет-носителей (РН). К ОЧ ступеней РН относятся: отработанные ступени (ОС), переходные отсеки (ПО), створки головных обтекателей (СГО).
Одной из основных проблем, связанных со снижением техногенного воздействия пусков РН на окружающую среду, является наличие ОЧ, что приводит к необходимости выделять значительные площади территорий для районов падения ОЧ, при этом площади районов падения ПО, СГО превышают площади районов падения ОС в 2-3 раза.
Известен «Способ спуска в атмосфере отделяемого от гиперзвукового летательного аппарата элемента, обладающего аэродинамическим качеством, и устройство для осуществления способа» [патент РФ №2086903 от 10,08.1997 г.]. Сущность изобретения заключается в стабилизация ОЧ на заданном угле атаки в плоскости симметрии при воздействии аэродинамического потока, воздействуя на ОЧ стабилизирующим моментом, равным по величине и обратным по знаку аэродинамическому моменту, действующему на отделяемый элемент на угле атаки, соответствующем нулевой аэродинамической подъемной силе и минимуму лобового аэродинамического сопротивления при гиперзвуковых скоростях полета.
Известен также «Способ минимизации зон отчуждения для ОЧ многоступенчатой РН» (патент РФ №2464526 20.10.2012 г.), по которому на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю и по результатам расчетов определяют необходимую зону отчуждения, в конструкции ОЧ выделяют элементы, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от РН, для этих отдельно летящих элементов ОЧ рассчитывают зоны необходимого отчуждения, и после отделения ОЧ от РН в процессе автономного полета этих частей на участке траектории до момента вхождения в плотные слои атмосферы формируют сигнал на средства членения и осуществляют воздействие на конструкцию ОЧ для их физического разделения на выделенные элементы.
К недостаткам технического решения, реализуемого прототипом, следует отнести наличие нескольких районов падения, значительную площадь необходимой зоны отчуждения, т.к. степень разрушения этих ОЧ различна, от полного сгорания до сохранения фрагментов, в связи с чем задача минимизации площадей зон отчуждения для ОЧ многоступенчатой РН остается актуальной.
Техническим результатом изобретения является максимальное снижение площадей зон отчуждения, необходимых для выделения под районы падения ОЧ.
Указанный технический результат достигается за счет того, что в известном способе, по которому на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю и по результатам расчетов определяют участки на траектории полета для воздействия на ОЧ, формирование сигнала в процессе автономного полета ОЧ на дополнительно установленные средства и осуществляют воздействие на конструкцию ОЧ, согласно заявляемому техническому решению в конструкции ОЧ размещают пиротехнический состав (ПС), обеспечивающий нагрев ОЧ до температуры ее горения в набегающем потоке атмосферного воздуха, формирование сигнала на зажигание ПС, отсчитываемого от момента отделения ОЧ от РН и, по достижении высоты 25-30 км осуществляют зажигание ПС, например, с использованием зажигающего состава ЗС, а при формировании сигнала на зажигание ПС учитывают задержку на воспламенение ЗС, сгорания всего количества ПС, размещение ЗС осуществляют в нескольких местах, исходя из повышения вероятности зажигания ПС и минимизации времени сгорания ПС, а размещение ПС по поверхности ОЧ осуществляют с учетом температуры на начало задействования ПС, а в качестве ПС используется составы смесей порошкообразных металлов, например магния, алюминия, титана или их сплавов (например, смесь порошков алюминия и титана, а в качестве ЗС используются составы, например Fe2O3+Mg (69:31), BaO2+Mg (78:22).
Реализация способа обеспечивается в следующей последовательности действий.
В конструкции ОЧ (СГО, ПО) размещают ПС, сгорание которого приводит к нагреву ОЧ до температуры, обеспечивающий их горение в набегающем потоке атмосферного воздуха.
Температуры ОЧ (СГО, ПО) после отделения от РН при движении на атмосферном участке траектории спуска достигают величин 300-500°С, которой недостаточно для их сгорания в атмосфере. Для создания условий их горения необходимо, например, для сплава АМг-6 обеспечение температуры до 600-650°С. Это может быть обеспечено использованием ПС, например, KClO3+Mg. Для получения приращения температуры СГО, ПО, изготовленных из АМг-6, на 350° достаточно сжигания 3-4% от их массы (см. Trushlyakov V., Lempert D., Zarko V. The use of thermite-incendiary compositions for burning of fairing of space launch vehicle // Использование термитно-зажигательных смесей для сжигания обтекателей ракет космического назначения / 18th International Seminar "New Trends in Research of Energetic Materials. 2015. v. 2. pp. 901-904 / Pardubice, Czech Republic, April 15-17, 2015).
Установка ЗС, ПС внутри конструкции ОЧ (СГО, ПО) не представляет технических проблем, т.к. ПС может быть в виде порошков, в виде пластин (с использованием связующего материала).
По результатам расчетов определяют:
- массовый секундный приток кислорода
Figure 00000001
в составе набегающего потока атмосферного воздуха, поступающего к поверхности ОЧ SОЧ;
- массу кислорода
Figure 00000002
в набегающем аэродинамическом потоке воздуха в трубке траектории спуска ОЧ с каждого текущего момента времени до момента достижения высоты, например, 5 км, до которой должно закончиться сжигание ОЧ;
- массу кислорода, необходимую для сжигания ОЧ.
Масса кислорода в 1 м3 в атмосферном воздухе по высоте mo(h) определяется в соответствии с составом земной атмосферы и соответствует примерно 23% от общей массы газов (азот ~75%, другие газы менее 2%). Таким образом, имея распределение плотности атмосферы по высоте (ГОСТ 4401-81 - Атмосфера стандартная), определяется соответствующее количество кислорода по траектории спуска ОЧ в 1 м3.
Оценка массы кислорода в столбе воздуха высотой h км и основанием 1 м2 и приращение кислорода между слоями приведено в таблице 1, начиная с высоты 1 км с использованием барометрической формулы и уравнения Менделеева-Клайперона:
Figure 00000003
,
Figure 00000004
,
где:
P0, h, T(h) - давление на уровне моря, высота, температура воздуха,
μ=29 г/моль - молярная масса воздуха, g=9,81M/c2,
R=8.31 Дж/(моль⋅К) - универсальная газовая постоянная.
Figure 00000005
Как следует из приведенной табл. 1, существенный прирост массы кислорода начинается с высоты 30 км.
Зная скорость движения ОЧ по траектории спуска
Figure 00000006
, можно определить скорость притока кислорода
Figure 00000007
, набегающего на поверхность ОЧ SОЧ в 1 с:
Figure 00000008
где:
V(t), mo(t) - скорость полета ОЧ [м/с] и масса [кг] кислорода в 1 м3 по траектории спуска.
Предполагается, что скорость химического взаимодействия ПС с кислородом воздуха многократно превышает
Figure 00000009
и необходимое количество кислорода присоединяется ПС в процессе химической реакции из окружающей ОЧ атмосферы.
Обтекание поверхности ОЧ предполагается без отрыва потока, т.к. ОЧ совершает нестабилизируемые вращательные движения с малой угловой скоростью (менее 50 град/с).
Общая масса поступления кислорода за интервал времени (t1, t2), соответствующий началу (t1) на высоте 25-30 км, и завершения процесса сжигания (t2) на высоте, например, 5 км:
Figure 00000010
должна быть не менее требуемой
Figure 00000011
для полного сжигания ОЧ.
Это требование накладывается на параметры траектории спуска ОЧ. Время сжигания ОЧ определяется как Δt=t2-t1, соответственно скорость сжигания ОЧ можно оценить:
Figure 00000012
Скорость горения ПС и скорость горения ОЧ имеют разные физико-химические процессы и существенно различны. Очевидно, что скорость горения ПС (горение без кислорода с учетом притока и оттока тепла от набегающего аэродинамического потока, определяется собственным составом) выше скорости горения ОЧ (горение в набегающем потоке кислорода, приток и отток тепла от набегающего аэродинамического потока).
Количество массового секундного притока кислорода к ОЧ
Figure 00000013
, при котором начинается процесс горения всей поверхности (массы) ОЧ (либо ее части) и при котором задействуется ПС, определяется из условия скорости горения ЗС и ПС и, соответственно, скоростью потребления кислорода из набегающего потока. Например, ГО имеет массу ~1000 кг, соответственно, примерное количество ПС составит, например, 5% от массы ГО, что соответствует 50 кг ПС, количеством ЗС (составляет до 5-7 % от массы ПС) на рассматриваемом этапе можно пренебречь по сравнению с массой ПС.
Общее требуемое количество кислорода, которое должно поступить к ОЧ для сжигания за интервал времени Δt=t2-t1, составит: если это сплав АМг-6, то для сжигания 1 кг надо кислорода (8.9 q+6.67 w) граммов, где q - содержание Al в сплаве, % (91,1-93,68%; w - содержание Mg в сплаве 5,8-6,8%; тогда на 1 кг ГО надо 8,9⋅93+6,67⋅7=875 г, а для сжигания 1 тонны надо 875 кг кислорода.
Отсюда можно получить грубые оценки требуемого суммарного массового притока кислорода при движении ОЧ по траектории спуска с момента времени t1 полета с высоты 25-30 км до t2, соответствующего высоте 5 км.
С целью исключения вероятности преждевременного срабатывания ЗС и соответственно ПС отсчет времени t1 осуществляется от момента отделения ОЧ (ПО или СГО) от РН, предлагается использовать размножитель этой команды для задействования ПС на ОЧ для сокращения времени сгорания всей массы ПС, например зажигание ПС в разных местах (до 3-4 мест).
При формировании сигнала на задействование ПС учитывается задержка на воспламенение ЗС, ПС и время горения ОЧ в кислороде набегающего аэродинамического потока. Учитывая высокую скорость движения ОЧ, малый интервал времени на сжигание ОЧ, который должен завершиться в ограниченном интервале высот, например, от 25 км до 5 км, что соответствует времени примерно 170-200 сек, при определении времени срабатывания t1 учитывается задержка воспламенения δt ЗС и ПС, которая определяется экспериментально.
Размещение ПС осуществляют на внутренней поверхности конструкции ОЧ (ПО, СГО), при этом массу ПС на единицу площади ОЧ рассчитывают исходя из нагрева этой площади на предыдущем участке полета, например, коническая часть СГО при выведении РН на атмосферном участке траектории нагревается существенно больше, чем цилиндрическая часть, поэтому количество ПС на 1 м2 конической части СГО будет меньше, чем на цилиндрической части. За время пассивного участка на внеатмосферном участке спуска возможно выравнивание температуры различных участков из-за теплопроводности, однако, значительные размеры ГО (высота до 10 м и выше, диаметры свыше 3 м), низкий коэффициент теплопроводности углепластиков по сравнению с металлами приводит к тому, что сохраняются существенные градиенты температур по поверхности ГО.
Разбивая общую поверхность ОЧ на конечное число участков, определяя температуру каждого после прохождения РН плотных слоев атмосферы к моменту задействования ПС, можно определить потребное удельное распределение ПС по поверхности. Такой дифференцированный подход к размещению массы ПС по поверхности ОЧ позволит повысить эффективность применения ПС. Учитывая тот факт, что ПС с различными связующими добавками может иметь различную плотность и прочность: от порошка (без связующих добавок) до разной прочности твердого тела.
Если конструкция ОЧ представляет собой многослойную структуру типа углепластика и имеет, например, внутри алюминиевые сотовые слои, то ПС можно поместить в эти соты при изготовлении углепластика. Свойства ПС таковы, что технологический процесс изготовления углепластика (температуры, давления, механические нагрузки) не изменяют свойства ПС, не приводят к его задействованию. Если ОЧ, например ПО, представляет собой металлическую конструкцию, то ПС может быть в виде пластин, которые можно прикреплять болтовыми соединениями, заклепками и т.д.
Размещение ЗС осуществляют в нескольких местах (до 3-4), исходя из повышения вероятности зажигания ПС и минимизации времени сгорания ПС.
В качестве ПС используются смеси порошкообразных металлов, например магния, алюминия, титана или их сплавов, например смесь порошков алюминия и титана.
В качестве ЗС используют, например, Fe2O3+Mg (69:31), ВаO2+Mg (78:22) (см. Пиросправка. Справочник по взрывчатым веществам, порохам и пиротехническим составам. Издание 4. (Исправленное) Москва, 2008).
Предложенный способ минимизации зон отчуждения отделяемых частей ракет-носителей за счет того, что на отделяемых частях размещают пиротехнический состав, обеспечивающий при его сжигании нагрев отделяемых частей до температуры, при которой происходит горение отделяемых частей в набегающем потоке атмосферного воздуха по достижению высоты 25-30 км, и зажигания отделяемых частей зажигающим составом обеспечивается максимальное снижение площадей зон отчуждения, необходимых для выделения под районы падения ОЧ.

Claims (6)

1. Способ минимизации зон отчуждения для отделяемых частей, например створок головного обтекателя, переходных отсеков ракеты-носителя, заключающийся в том, что на этапе предполетной подготовки ракеты-носителя производят расчет параметров движения отделяемых частей до момента падения их на землю и по результатам расчетов определяют участки на траектории спуска для воздействия на отделяемые части, формируют сигнал в процессе автономного полета отделяемых частей и осуществляют воздействие на конструкцию отделяемых частей, отличающийся тем, что на отделяемых частях размещают пиротехнический состав, обеспечивающий при его сжигании нагрев отделяемых частей до температуры, при которой происходит горение отделяемых частей в набегающем потоке атмосферного воздуха, по достижении высоты 25-30 км осуществляют зажигание отделяемых частей, например, с использованием зажигающего состава.
2. Способ по п. 1, отличающийся тем, что сигнал на задействование зажигающего состава формируется от момента отделения отделяемых частей от ракеты-носителя.
3. Способ по п. 1, отличающийся тем, что при формировании сигнала на задействование пиротехнического состава учитывается задержка на воспламенение зажигающего состава и сгорание пиротехнического состава.
4. Способ по п. 1, отличающийся тем, что размещение пиротехнического состава по поверхности отделяющейся части осуществляют с учетом температуры поверхности отделяющейся части на начало задействования пиротехнического состава, размещение зажигательного состава осуществляют в нескольких местах исходя из повышения вероятности зажигания, минимизации времени сгорания пиротехнического состава и отделяющейся части.
5. Способ по 1, отличающийся тем, что в качестве пиротехнического состава используется составы, например смеси порошкообразных металлов, например магния, алюминия, титана или их сплавов, например, смесь порошков алюминия и титана.
6. Способ по п. 1, отличающийся тем, что в качестве зажигательного состава используются составы, например, Fe2O3+Mg (69:31), BaO2+Mg (78:22).
RU2015137375A 2015-09-01 2015-09-01 Способ минимизации зон отчуждения отделяемых частей ракет-носителей RU2626797C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015137375A RU2626797C2 (ru) 2015-09-01 2015-09-01 Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015137375A RU2626797C2 (ru) 2015-09-01 2015-09-01 Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Publications (2)

Publication Number Publication Date
RU2015137375A RU2015137375A (ru) 2017-03-06
RU2626797C2 true RU2626797C2 (ru) 2017-08-01

Family

ID=58453907

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015137375A RU2626797C2 (ru) 2015-09-01 2015-09-01 Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Country Status (1)

Country Link
RU (1) RU2626797C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692207C1 (ru) * 2018-08-13 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ минимизации зон отчуждения для отделяемых частей ракет-носителей
RU2700150C1 (ru) * 2018-07-02 2019-09-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации
RU2705258C1 (ru) * 2018-12-10 2019-11-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Головной обтекатель ракеты-носителя
RU2768055C1 (ru) * 2021-09-13 2022-03-23 Игорь Владимирович Догадкин Способ уничтожения надводных целей ракетами, отделяемыми от ракеты-носителя с подводным стартом
RU2775903C1 (ru) * 2021-12-20 2022-07-11 Игорь Владимирович Догадкин Способ уничтожения подземных целей ракетами, отделяемыми от ракеты-носителя

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799902A (en) * 1995-09-18 1998-09-01 Microcosm, Inc. Economical launch vehicle
US5927653A (en) * 1996-04-17 1999-07-27 Kistler Aerospace Corporation Two-stage reusable earth-to-orbit aerospace vehicle and transport system
RU2464526C1 (ru) * 2011-03-30 2012-10-20 Федеральное государственное унитарное предприятие Государственный космический научно-производственный центр имени М.В. Хруничева Способ минимизации зон отчуждения для отделяемых частей многоступенчатой ракеты-носителя
RU2475429C1 (ru) * 2011-07-04 2013-02-20 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ спуска отделяющейся части ступени ракеты космического назначения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799902A (en) * 1995-09-18 1998-09-01 Microcosm, Inc. Economical launch vehicle
US5927653A (en) * 1996-04-17 1999-07-27 Kistler Aerospace Corporation Two-stage reusable earth-to-orbit aerospace vehicle and transport system
RU2464526C1 (ru) * 2011-03-30 2012-10-20 Федеральное государственное унитарное предприятие Государственный космический научно-производственный центр имени М.В. Хруничева Способ минимизации зон отчуждения для отделяемых частей многоступенчатой ракеты-носителя
RU2475429C1 (ru) * 2011-07-04 2013-02-20 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ спуска отделяющейся части ступени ракеты космического назначения

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700150C1 (ru) * 2018-07-02 2019-09-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации
RU2692207C1 (ru) * 2018-08-13 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ минимизации зон отчуждения для отделяемых частей ракет-носителей
RU2705258C1 (ru) * 2018-12-10 2019-11-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Головной обтекатель ракеты-носителя
RU2768055C1 (ru) * 2021-09-13 2022-03-23 Игорь Владимирович Догадкин Способ уничтожения надводных целей ракетами, отделяемыми от ракеты-носителя с подводным стартом
RU2775903C1 (ru) * 2021-12-20 2022-07-11 Игорь Владимирович Догадкин Способ уничтожения подземных целей ракетами, отделяемыми от ракеты-носителя

Also Published As

Publication number Publication date
RU2015137375A (ru) 2017-03-06

Similar Documents

Publication Publication Date Title
RU2626797C2 (ru) Способ минимизации зон отчуждения отделяемых частей ракет-носителей
US6354222B1 (en) Projectile for the destruction of large explosive targets
US20130104765A1 (en) Reactive material enhanced projectiles, devices for generating reactive material enhanced projectiles and related methods
US8783183B2 (en) Active body
US2440271A (en) Rocket projectile
US2613605A (en) Projectile
RU2407982C1 (ru) Дымовой боеприпас
RU2608193C1 (ru) Устройство для изменения траектории астероида, ядра кометы и других космических объектов
RU2585395C1 (ru) Способ минимизации зон отчуждения отделяемых частей ракеты-носителя
RU2541586C1 (ru) Ракета для активного воздействия на облака
RU203385U1 (ru) Осколочно-зажигательный снаряд
GB2474824A (en) Projectile producing exothermic effect initiated by shock waves
RU2672683C1 (ru) Способ минимизации зон отчуждения отделяемых частей ракеты-носителя
RU2082943C1 (ru) Осколочно-фугасный снаряд
JP6572007B2 (ja) ミサイル防御システムとその方法
KR20190043294A (ko) 포 발사 적용을 위한 점화보조물질이 도포된 램제트 고체연료
RU2700150C1 (ru) Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации
RU2485762C2 (ru) Ракета для активного воздействия на облака
RU2620694C1 (ru) Разделяющаяся ракета для воздействия на облака
RU2692207C1 (ru) Способ минимизации зон отчуждения для отделяемых частей ракет-носителей
RU2355995C1 (ru) Авиационная мишень
RU206148U1 (ru) Осколочно-зажигательный снаряд
RU2769032C1 (ru) Способ формирования защитного покрытия стволов орудий
RU2656316C2 (ru) Баллистическая установка для создания высокотемпературных высокоскоростных потоков частиц
RU2715665C1 (ru) Ракета для активного воздействия на облака